Third M.I.T. Conference on Computational Fluid and Solid Mechanics June 14–17, 2005  

Developments of multi-level boundary element methods for steady heat diffusion problems

M.M. Grigoriev*, G.F. Dargush
Department of Civil Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA

  Full Text
We have recently developed a novel multi-level boundary element method (MLBEM) for steady heat diffusion in irregular two-dimensional domains. This paper extends the MLBEM methodology to dramatically improve the performance of the original multi-level formulation. First, we perform analyses of numerical error and computational complexity for the multi-level boundary element algorithm and show that the optimal complexity of the algorithm is O(N log N). Next, we consider a model problem of line multi-integral evaluation and investigate the performance of the MLBEM formulation using a single-patch approach. Then we study the performance of the multi-level boundary element formulation on an example Neumann problem of steady heat diffusion leading to a boundary integral equation of the second kind. Here, we solve a problem involving four million degrees of freedom in less than one hour on a desktop workstation. Finally, we consider a model problem in a unit square with mixed boundary conditions and study the performance for the new MLBEM formulation.

Keywords:  Steady heat diffusion; Multi-level boundary element method; Error analysis

* Corresponding author. Tel.: +1 716 645 2593, ext. 2249; Fax: +1 716 645 3733; E-mail: