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Abstract

We have recently developed a novel multi-level boundary element method (MLBEM) for steady heat diffusion in

irregular two-dimensional domains. This paper extends the MLBEM methodology to dramatically improve the per-
formance of the original multi-level formulation. First, we perform analyses of numerical error and computational
complexity for the multi-level boundary element algorithm and show that the optimal complexity of the algorithm is

O(N log N). Next, we consider a model problem of line multi-integral evaluation and investigate the performance of the
MLBEM formulation using a single-patch approach. Then we study the performance of the multi-level boundary
element formulation on an example Neumann problem of steady heat diffusion leading to a boundary integral equation

of the second kind. Here, we solve a problem involving four million degrees of freedom in less than one hour on a
desktop workstation. Finally, we consider a model problem in a unit square with mixed boundary conditions and study
the performance for the new MLBEM formulation.
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1. Introduction

A standard boundary element method (BEM) tech-

nique requires two major steps to obtain a numerical
solution. During the first step, a global boundary ele-
ment matrix is formed, which necessitates an integration

of the kernel functions over each of the boundary ele-
ments. The global matrix solution constitutes the second
step to obtain an unknown vector of boundary tem-

peratures and heat fluxes. While the first step requires N2

operations, the complexity of the second step is of the
order N3 when using Gauss elimination. For relatively

small numbers of degrees of freedom (e.g. N<104), the
regular BEMs are fast and practical even on a single-
processor computer, since the integration over the
boundary elements dominates over the matrix solution.

However, most problems of practical importance,
especially in three dimensions, require fine boundary
element meshes leading to very large numbers of degrees

of freedom, i.e. N>105. For these boundary element
discretizations, the conventional BEM algorithms
become prohibitively expensive even on state-of-the-art

supercomputers due to both memory and run-time
requirements.
In the past two decades, several fast algorithms have

been proposed in order to extend the applicability of
regular boundary element methods to larger numbers of
degrees of freedom. These fast methods include Barnes–

Hut [1,2], wavelets [3,4], fast multipole [5–9], and multi-
level multi-integration [10–12] algorithms. While the fast
multipole and wavelet-based approaches have been

developed extensively, multi-level multi-integration
(MLMI) methods have not enjoyed a wide acceptance in
computational practice, despite the great potential of the

methods. The MLMI method was proposed by Brandt
and Lubrecht [11] for fast evaluation of multi-integrals
involving both smooth and singular-smooth kernels.
Following this pioneering work [11], Lubrecht and

Ioannides [13], Polonsky and Keer [14], and Venner and
Lubrecht [12] extended the MLMI methods to the
solution of elastohydrodynamic lubrication and rough

surface-contact problems.
Despite the recent progress in developments of the

multi-level boundary element methods (MLBEM) for

linear problems [10,15–17], there still exist several very
important issues in the MLBEM algorithm that need to
be addressed. First and foremost, the thorough analysis
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of errors arising in the numerical formulation is man-
datory to set the application borderlines. Although the

error analysis was presented by Brandt and Lubrecht in
their original paper [11], we believe that more detailed
analysis is required to accommodate a level-by-level

transfer of the multi-integration for a set of boundary
element meshes. The other very important issue is the
analysis of the multi-grid algorithm utilized to accelerate

the convergence of the iterative solvers. In this paper, we
focus on the former issue. We re-visit the error analysis
for the MLMI and present the reader with the relations
that permit the estimation of the truncation error with

the numbers of transfer levels and correction points and
the order of kernel interpolation/anterpolation. We
show that the theoretical results agree well with the

numerical calculations. Moreover, we find an optimal
combination between the interpolation/anterpolation
order and the number of transfer levels that minimizes

the work necessary to obtain an accurate solution. We
demonstrate that the asymptotic computational com-
plexity of the presented method is indeed of the order

O (N ln N).
Finally in this paper, we rethink and modify the

MLBEM formulation [10] to dramatically improve the
performance of the numerical approach. First, we pre-

evaluate the singular corrections for both matrix-vector
and matrix-transpose-vector multiplication. Next, the
centered correction stencils are also pre-evaluated for an

internal source point and then applied to any other
source point, except for the patch-end points. These two
modifications in the original algorithm lead to tre-

mendous reductions in run-time and memory
requirements. In order to demonstrate the performance
of the proposed method, we consider three example
problems with exact solutions.

2. Multi-level boundary element methods

2.1. Governing equation and integral formulation

The steady-state diffusion of heat is governed by the
following dimensionless equation:

@2T

@xi@xi
¼ 0 ð1Þ

In the Laplace equation, Eq. (1), xi is the Eulerian co-
ordinate and T is the temperature. Both temperatures
�T(x) on x 2 �T and normal fluxes �QnðxÞ on x 2 �Q may
be specified as Dirichlet and Neumann boundary con-

ditions, respectively. Note that �T\�Q = 0 and
�T[�Q = �, where the surface � bounds the computa-
tional domain �. The corresponding well-known

integral form of the boundary value problem is given by:

cð�ÞTð�Þ þ
Z
�

QðxÞgðx� �Þd�ðxÞ ¼
Z
�

TðxÞfðx� �Þd�ðxÞ

ð2Þ

In Eq. (2),

gðx� �Þ ¼ 1

2�
ln
1

r
and fðx� �Þ ¼ ðxi � �iÞni

2�r2

are the potential kernels for two dimensional problems,

with r as the radial distance between x and �, Q(x) =
� @TðxÞ

@n is the normal heat flux, ni(x) is the unit outward
normal to the surface �(x), and � stands for the collo-

cation point � 2 �. The geometric function c(�) = 0.5
when � is on the smooth boundary and c(�) = 1 when �
lies inside the domain �.

2.2. Boundary element method discretization

Let us introduce P smooth non-overlapping boundary

patches �p for p = 1, 2, . . ., P, and assume that the
variation of boundary temperature T(x) and normal
heat flux Q(x) over every patch �p is smooth. Then, Eq.
(2) may be written as follows:

cð�ÞTð�Þ þ
XP
p¼1

Z
�

QðxÞgðx� �Þd�ðxÞ

¼
XP
p¼1

Z
�p

TðxÞfðx� �Þd�ðxÞ ð3Þ

Introducing linear boundary elements over all

boundary patches, we discretize integral Eq. (3) to the
form:

cmTm þ
XP
p¼1

XNp

n¼1
Qð�Þn Gð�Þmn ¼

XP
p¼1

XNp

n¼1
Tð�Þn Gð�Þmn ð4Þ

The algorithm for an accurate evaluation of discrete

coefficients Gð�Þmn and Fð�Þmn is detailed in Grigoriev and
Dargush [10]. Here, to facilitate the MLBEM algorithm,
we apply boundary conditions and recast the discrete
integral, Eq. (4), into the following matrix form:

Au ¼ b ð5Þ

where u is the generalized vector of unknown tempera-
tures and heat fluxes and b is the known force vector.

Note that the global matrix A of size N�N is now
dense.
Similar to our earlier work [10], we utilize a bi-con-

jugate gradient method [18] to solve the matrix equation,

Eq. (5). Since this iterative approach requires both
matrix-vector (Au) and matrix transpose-vector (AT� u)
multiplications at any iteration, we use fast MLMI

[10,11] for these operations. In the following two
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subsections, we briefly outline the MLMI algorithm that
was detailed in Grigoriev and Dargush [1] and discuss

modifications introduced in the fast matrix-vector
operations that allow tremendous savings in computa-
tional resources.

2.3. Multi-level multi-integration for matrix-vector
multiplication

For patch �p, we introduce a sequence of L boundary
element meshes M0, M1, . . ., ML, where M0 is the finest-
level mesh and ML is the coarsest boundary element
mesh. On the finest-level mesh, the block-matrix-vector

multiplication can be represented as the following multi-
summation over every patch:

w
ð0Þ
i ¼ h0

XN0

j¼0
H
ð0Þ
i;j u

ð0Þ
j � Ri for i ¼ 0; 1; 2; . . . ;N0

ð6Þ

In Eq. (6), the multi-summation is performed over

index j representing the set of boundary elements onM0,
h0 is the scaled boundary element mesh size on the finest-
level mesh, u

ð0Þ
j stands for the generalized vector of

unknown temperatures or heat fluxes at any iteration on
the finest level mesh, and H

ð0Þ
i;j is the generalized form of

assembled coefficients.

Following the approach presented earlier by the cur-
rent authors [10], we introduce a coarse-to-fine-level
interpolation of the generalized kernels that permits a
fine-to-coarse-level transfer of the multi-summation

equation, Eq. (6). Furthermore, owing to the asymptotic
smoothness of the kernels, we restrict correction of the
interpolated kernels only to m nodes at the vicinity of

the source point. In doing so, all corrections outside the
singularity zone are neglected, since these are smaller
than the error due to a boundary element discretization.

Therefore, the multi-integrals on the coarsest level ML

can be written in the following form:

w
ðLÞ
i ffi hL

XNL

j¼0
H
ðLÞ
i;j u

ðLÞ
j þC

ðLÞ
i ð7Þ

Here, the total correction C
ðLÞ
i includes both the singular

and the patch-end corrections [10]. The multi-integrals
on any finer-level meshes k<L are evaluated recursively
from the coarsest to the finest levels using the following

[10]:

w
ðkÞ
i ffi Îkkþ1wðkþ1Þ

h i
i
þhk

XNk

i�jj j�m
H
ðkÞ
i;j � Ĥ

ðkÞ
i;j

� �
u
ðkÞ
j þ

C
ðkÞ
i � Ĉ

ðkÞ
i ð8Þ

We should note that the evaluation of the correction
Ĉ
ðkÞ
i requires a sequential evaluation of coefficients C

ðkÞ
i

for stencil nodes adjacent to the current source node i.
Obviously, the computational load as well as storage
requirements are reduced significantly provided that the

corrections C
ðkÞ
i are pre-evaluated. Moreover, note that

these pre-evaluations are not needed to be performed for
all levels. The computer requirements are reduced even

to a more dramatic extent if the centered correction
stencils are pre-evaluated for an internal source point
and then applied to any other source point for which the
correction stencil is not affected by the patch ends.

Indeed, several source points close to the patch ends
require re-evaluation of the individual correction sten-
cils. However, as the boundary mesh gets refined, the

additional computations become insignificant.

2.3.1. Multi-level multi-integration errors
The G-kernel interpolation error for the fine-to-

coarse-level transfer can be given by

GðnÞ � ~GðnÞ ¼ ð�1Þ
pþ1=2ðp!!Þ2h0

2�ðpþ 1Þnpþ1 ð9Þ

where n = j i � j j is the distance between the source and
interpolation points and p is the kernel interpolation
order. Note that the interpolation error decays rapidly
as n increases. Thus, the truncation error for the multi-

integral equation, Eq. (6), when only m correction points
are retained within the singularity zone will be as
follows:

E
ð0Þ
T �

ðp!!Þ2h0
2�pðpþ 1Þmp

uð�Þk k1 ð10Þ

In Eq. (10), ku(�)k1 is the temperature maximum at
some intermediate point �. Since the inter-level transfer

error E
ðkÞ
T remains the same for all levels k = 0, 1, . . ., L

� 1, then we get the total truncation error as follows:

ET � jEð0ÞT j þ jE
ð1Þ
T j � � � jE

ðL�1Þ
T j � LjEð0ÞT j ð11Þ

However the total truncation error given by Eq. (11)
must be less than the linear boundary element dis-
cretization error, a lower bound of which can be

represented approximately by the following

Ed ffi
h20ð1þ ln 2Þ

16�
u00ð�Þk kc ð12Þ

where ku} (�)kc is some norm for the second derivative

of the temperature at point �. Therefore, we express the
number of correction points m within the singularity
zone necessary to retain the accuracy of the multi-level
transfers as follows
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m � 8Lðp!!Þ2

ð1þ ln 2Þpðpþ 1Þh0
uð�Þk k1
u00ð�Þk kc

" #1
p

ð13Þ

We note that the truncation error for the F-kernel will be
dramatically smaller for the same values of m, since the
kernel decays much faster than the G-kernel when

moving away from the source point. Therefore, m due to
G-kernel interpolation controls the total truncation
error.

2.3.2. Computational complexity
The anterpolation of the solution vector requires

Ka ¼ 2ðpþ 2ÞN0ð1�
1

2L
Þ ð14Þ

work units, where N0 represents the number of finest-
level points and each work unit comprises one multi-

plication and one addition. Meanwhile, evaluation of
multi-integrals using Eq. (7) needs

KðLÞw ¼ N2
0

4L
þmLN0

2L
ð15Þ

work units. The complexity of using Eq. (8) to evaluate
w
ðkÞ
i on level k = L � k0 requires

KðkÞw ¼
N0

2L�k0þ1
2ðpþ 1Þ þmþmðL� k0Þð Þ ð16Þ

units. Thus, the total complexity of the algorithm can be
given by

KT ¼
N0

2L�k0þ1
2ðpþ 1Þ þmþmðL� k0Þð Þ ð17Þ

Notice that for p = const, the complexity of the multi-
level algorithm appears of the order O(N1+1/p). How-
ever, when the order of interpolation increases with the

mesh refinement, we can show that the optimal com-
plexity of the algorithm is O(N ln N).
Since the expression in Eq. [11]

ðp!!Þ2 ffi 0:32ðpþ 1Þ½0:35ðpþ 1Þ�pþ1 ð18Þ

holds approximately for p>3, we substitute Eq. (18)
into Eqs (13) and (16) to minimize KT with respect to p.

This procedure leads to

0:7ðC N0Þ1=p 1� 1

p
lnðC N0Þ

� �
¼ �4 ð19Þ

Substituting � = (CN0)
1/p into Eq. (19) and solving it

yields � ffi 6.5. Therefore, p � In N0 and m � ln N0.
Finally, the optimal complexity will be of the order

O(N0 ln N0).

2.4. Multi-level multi-integration for matrix-transpose-
vector multiplication

A block-matrix-transpose-vector multiplication on
the finest-level mesh M0 can be given by the following

multi-summation over each patch:

w
ð0Þ
j ¼ h0

XN0

i¼0
H
ð0Þ
i;j u

ð0Þ
i � Rj for j ¼ 0; 1; 2; . . . ;N0

ð20Þ

Notice that the summation in Eq. (20) is now performed
over index i representing the collocation point �i. Again,

the multi-integral in Eq. (20) can be transferred to the
coarsest level as follows:

w
ðLÞ
j ffi hL

XNL

i¼0
H
ðLÞ
i;j u

ðLÞ
i þ C

ðLÞ
j ð21Þ

The multi-integrals w
ðkÞ
j on the finer-level mesh points

can be represented as follows:

w
ðkÞ
j ffi ~Ikkþ1wðkþ1Þ

h i
j
þhk

XNk

i�jj j�m
H
ðkÞ
i;j � ~H

ðkÞ
i;j

� �
u
ðkÞ
i þ

C
ðkÞ
j � ~C

ðkÞ
j ð22Þ

Again, we pre-evaluate ~C
ðkÞ
j and the centered correction

stencils to dramatically reduce the complexity of the
computations similar to the fast matrix-vector operation
described above.

2.5. C-cycle multi-grid

Since the bi-conjugate gradient method [18] used in
this work requires O(N1/2) iterations on the boundary
element mesh M0 for mixed boundary value problems,

we utilize the multi-grid technique proposed by Brandt
[19] to accelerate the convergence. Although several
multi-grid algorithms are readily available, we restrict

our consideration to the C-cycle multi-grid [19], as it
provides good convergence acceleration for the pro-
blems considered in this presentation.

3. Numerical results

3.1. Introduction

The MLBEM code developed earlier for the fast
solution of heat diffusion [10] has been extended to

accommodate the modifications outlined above. All runs
have been performed on a Sun Ultra-Enterprise work-
station with quadruple UltraSparc-II 336-MHz

processors. However, no parallelization is utilized. In
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this paper, we consider three example problems that
possess analytical solutions. We first consider an exam-

ple problem of line multi-integration involving the log-
singular kernel. The next example is formulated for a
unit square with homogeneous boundary conditions
leading to a Neumann problem. The global matrix is

indeed well conditioned for the integral equation of the
second kind, and thus we obtain converged solutions in
just a few iterations for all boundary element meshes

considered in this example. Finally, for the third exam-
ple problem involving mixed boundary conditions,
multi-grid iterations are mandatory to accelerate the

convergence.

3.2. Problem 1

We evaluate the following multi-integral

wð�Þ ¼
Z 1

0

TðxÞgðx� �Þdx for � 2 ½0; 1� ð23Þ

involving the log-singular kernel g(x � �). For the

oscillatory function u(x) = cos(�x), the multi-integral in
Eq. (23) permits a closed form expression, which is used
to evaluate the numerical solution error

wk k ¼ max wnum � wexj j for � 2 ½0; 1� ð24Þ

The numerical results are summarized in Table 1.
Here, we present MLBEM solutions and compare them

with the direct multi-integration. Note that the latter
operation is extremely time-consuming for large N0, and
thus only relatively small numbers of degrees of freedom

are presented in Table 1 for the direct evaluation.
Meanwhile, the MLBEM formulation allows extremely
fast and accurate evaluations of w(�) for N0 well beyond

a million. The run-times increase at an approximate rate

of 1.09 for large numbers of degrees of freedom. We
note an excellent agreement between MLBEM and

predicted (Eq. 13) values of m.

3.3. Problem 2

Next, let us consider steady-state heat diffusion in a

unit square with four boundary patches. We utilize an
equal number of boundary elements for each boundary
patch. Consider an oscillatory solution of the form:

Texðx1; x2Þ ¼
cosð�x1Þ coshð�x2Þ

coshð�Þ ð25Þ

satisfying the governing heat diffusion in Eq. (1). We

specify normal heat fluxes on all boundaries and look
for boundary temperatures at any boundary collocation
node. For the Neumann boundary value problem, we

introduce an L1 error norm kTk to monitor the
numerical solution error

Tk k ¼ max Tnum � Texj j for �ðmÞ 2 �T ð26Þ

Since the global matrix is well-conditioned for this
problem, the convergence of the bi-conjugate gradient
method (BCGM) is virtually independent of the mesh

size. Therefore, no multi-grid acceleration is needed for
the integral equation of the second kind. Table 2 sum-
marizes the comparisons between the conventional and
fast boundary element methods for this problem. Notice

that the conventional iterative algorithm prohibits
solutions with more than 20 000 degrees of freedom due
to memory restrictions. Meanwhile, the MLBEM for-

mulation permits accurate solutions for more than four
million degrees of freedom. We emphasize that these
solutions are obtained on a moderate desktop work-

station in just under an hour.

Table 1

CPU requirements and the number of correction points m inside the singularity zone: Problem 1, �= 104�, � implies estimated values

Direct MLBEM m

N0 kwk CPU time(s) kwk CPU time(s) Eq. (13) MLBEM

512 6.00e–4 4.33 6.00e–4 0.10 4 2

1024 6.68e–4 17.3 6.69e–4 0.13 4 2

2048 5.57e–5 69.3 5.58e–5 0.18 4 4

4096 6.44e–5 275 6.45e–5 0.26 4 4

8192 3.47e–6 1.10e3 3.79e–6 0.41 4 4

16 384 3.12e–6 4.42e3 3.38e–6 0.68 4 4

32 768 1.12e–6 1.77e4 1.12e–6 1.61 6 6

65 536 3.04e–7 7.07e4 3.04e–7 3.01 6 6

131 072 – �2.8e5 8.09e–8 6.88 8 8

262 144 – �1.1e6 2.11e–8 13.2 8 8

524 288 – �4.5e6 5.35e–9 29.9 10 10

1 048 578 – �1.8e7 1.28e–9 65.6 12 12

2 097 152 – �7.2e7 3.33e–10 130 12 12
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3.4. Problem 3

Finally, we re-visit Problem 2 and utilize mixed

boundary conditions. Namely, we specify temperatures
on vertical boundaries and normal heat fluxes elsewhere.
This problem leads to an ill-conditioned matrix, and,

thus, we use a C-cycle multi-grid to accelerate the con-
vergence. We note that the converged solutions are then
obtained in just a few cycles. Table 3 presents compar-

isons between MLBEM and direct BEM solutions using
Gauss elimination. For values of N0 presented in Table
3, no direct solutions were possible. Meanwhile, the

MLBEM algorithm permits solutions for over a million
degrees of freedom.

5. Conclusions

A multi-level boundary element solver [10] has been

extended to provide an extremely robust, efficient, and
fast computational tool. We introduced two important
modifications into the code, namely the implementation

of a pre-evaluation of the total correction from the fine-

level meshes and the facilitation of fast matrix-vector
multiplications using a sliding correction stencil for the
discrete coefficients. These amendments have led to

dramatic improvements of the modified multi-level
algorithm and permitted solutions on boundary element
meshes that are three orders of magnitude finer than
those possible using conventional boundary element

methods.
In this study, we present analysis of truncation errors

for the MLBEM and investigate the complexity of the

algorithm. We show that the optimal complexity of the
multi-level method is of the order O(N ln N). Then, we
study performance of the MLBEM on three model

problems. We compare the CPU time and memory
requirements for the fast multi-level and conventional
BEMs and demonstrate exceptional performance of the
fast BEM. We have been able to model the example

steady heat diffusion problem involving more than four
million degrees of freedom on a workstation in less than
one hour.
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