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Stability Theory for a Pair of Trailing Vortices

8. C. Crow*
The Boeing Company, Seatlle, Wash.

Trailing vortices do not decay by simple diffusion. Usually they undergo a symmetric and
nearly sinusoidal instability, until eventually they join at intervals to form a train of vortex
rings. The present theory accounts for the instability during the early stages of its growth.
The vortices are idealized as interacting lines; their core diameters are taken into account by
a cutoff in the line integral representing self-induction. . The equation relating induced veloc-
ity to vortex displacement gives rise to an eigenvalue problem for the growth rate of sinusoidal
perturbations. Stability is found to depend on the products of vortex separation b and cutoff
distance d times the perturbation wavenumber. Depending on those products, both sym-~
metric and antisymmetric eigenmodes can be unstable, but only the symmetric mode involves
strongly interacting long waves. An argument is presented that d/b = 0.063 for the vortices
trailing from an elliptically loaded wing. In that casé, the maximally unstable long wave has
a length 8.6b and grows by a factor e in a time 9.4(4r/Cr)(b/V.), where 4z is the aspect ratio, Cy,
is the lift coefficient, and ¥, is the speed of the aircraft. The vortex displacements are sym-
metric and are confined to fixed planes inclined at 48° to the horizontal.

Nomenclature

= rate of displacement amplification
= aspect ratio of wing '

= separation between vortices

= vortex core diameter

= lif t coefficient

= cutoff distance in self-induction integral, proportional to ¢
= diameter of vortex ring

= longitudinal unit vector

= lateral unit vector

= vertical unit vector

= perturbation wavenumber

= line increment directed along vortex
= radial vortex displacement, with components (y,2)
displacement eigenvector, with components (4,2)
separation between points on vortices
position of an unperturbed vortex along e,-axis
time
= perturbation velocity at vortex, with components

(u,w,w) {

= totalinduced velocity, u — e.(I',/27b)
= aircraft speed

coordinate along unperturbed vortex
dimensionless amplification rate, (27b%/I'.)a
dimensionless wavenumber, kb

circulation around a vortex, positive or negative
magnitude of circulation || :
dimensionless cutoff distance, kd

angle of ¥ from the horizontal
v = kinematic viscosity
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Presented as Paper 70-53 at the ATAA 8th Aerospace Sciences
Meeting, New York, January 19-21, 1970; submitted December
22, 1969, revision received April 6, 1970. I began this work
during the spring of 1963, as a consulting project for P. B.
MacCready of Meteorology Research Inc., Altadena, Calif. I
profited greatly at that time from conversations with him and with
P. B. S. Lissaman at the California Institute of Technology.
The results of that early work have so far been available only in
manuscript form. Because of rising interest in the behavior of
trailing vortices, I have refined and completed the theory of their
instability, and the work appears here for the first time as a formal

aper.
P 5‘)Staﬂ’ Scientist, Boeing Scientific Research ILaboratories.
Member AIAA.
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w(8) = self-induction function, j; iz £

Subscripts

1 = portside trailing vortex

2 = starboard trailing vortex

A = antisymmetric eigenmode

S = symmetric eigenmode

m = vortex inducing a field

n = vortex acted upon by that field
max = maximally amplified mode

1. Introduction

HE power of an aircraft is spent in generating its wa
Not all the power is lost at once to friction. A good

of 1t, the part corresponding to induced drag, concentra
into a pair of contra-rotating vortices that trail behind th
craft. The coherent, energetic flow around the trailing
tices of a heavy airliner poses a threat to lightplanes, and
important to know how long the danger persists. '
Trailing vortices form out of the vortex sheet leaving
trailing edge of a wing. The way the sheet wraps into a
of contra-rotating vortices is well understood.? The vor
persist for a relatively long time, a minute or two, but
nearly so long as would be the case if they simply diffused
one another. Sometimes moisture condenses in their cc
that their motion becomes visible, and then the trailing
tices are seen to undergo a slow, symmetric, and nearly s
oidal instability. Figure 1 is a photograph 6f such ar
currence, reproduced here through the courtesy of Mete
ogy Research Inc.? The vortex cores recede and draw
gether in a wavy pattern, until they connect at the e
points to form a train of vortex rings. ,
Once the rings have formed, the wake quickly disintegl
into a harmless turbulent state. The persistence of co
flow depends mainly on the growth rate of the instabilit
precedes the formation of vortex rings. The object.
study is to find the cause of the instability and its growt.
~ Scorer® has proposed buoyancy as the cause, thou i
quantitative theory has arisen around the idea.
vortices induct each other downward and carry a colur
circulating air down with them. If the atmosphere i
stratified, the descending column is warmer than its surt
ings and might buoy upward as a wave. Certainly buo
could stop the descent of the vortex pair.
The analysis presented here is based on a more eleme
model: the wake is idealized as a pair of nearly paralle



g.1 Vortex trail of a B-47, photographéd with a eamera
med straight upwards. The time elapsed since the pas-
sage of the aircraft appears under each picture.

x lines interacting in neutrally stable air. The vortices are

nvected in their own induced field. Gusts or flight-path
rregularities displace the two lines slightly in a random fash-
on, and the displacements amplify under mutual induction.

he wavy pattern seen in practice is the most rapidly growing
mode of instability. The model appears fully capable of ex-
plaining the observations, so buoyancy is probably not an es-
sential mechanism.

9. Cenvection in the Induced Field

The analysis begins with the kinematic relation* between
vorticity and velocity in an incompressible fluid:

2 Ron X dLn
U= 3 e R ™

where n takes on the values 1 and 2. Equation (1) gives the

velocity at a point on the nth vortex in terms of the relative

position R, length dL,, and strength I',, of all the vortex ele-

ments in the flow. Some of the geometrical quantities are

illustrated in Fig. 2. The vector distance from an element of
~ vortex n to another of vortex m satisfies

8a) + (ta' — 1) (2)

where the first two terms on the right involve the locations of
the unperturbed vortices, and the third represents radial dis-
placement from their nominal positions. The primes are used
to distinguish points lying on the same vortex, in case m = n.
The displacement r, has components in the lateral and verti-
cal directions and is a function of z, and ¢ Ia = e, yn(at) +
€,2n(xn,t). The relation between dL. and a displacement dz.
in the e,-direction is apparent from the detail sketch of Fig. 3:

CdLn = (e, + o1, dz)dz. o (3)

R = ex(zm’ - xn) + ey(sm -

Fig. .2 _\Geolnetrical quantities entering the analysis.

The vortices are viewed from above, so the aircraft generat-

ing them lies beyond the upper left-hand corner of the
. figure.

r/Fhe circulations T, and lateral locations s, are related to the

~ quantities ‘sl}own in Fig. 2 as follows: Ty = -, Ty = 4 T';

st = — b/s, 8= +b/2. Inthe absence of perturbations, the
vortices drift downward at arate T',/2wb, so the coordinates of
Figs. 2 and 3 must be envisaged as moving downward at that
rate as well.

"The only dynamics implied in Eq. (1) is the circulation
theorem; which enabled T',, to be removed from the integral as
a constant. . The vorticity-transport theorem closes the dy-
namical problem: in an inviscid and neutrally buoyant fluid,
elements of a vortex line move with fluid particles. In mathe-

matical terms,
br@/bt + Un(OT/OTn) = yUn + €Wn 4)

where (uavsw,) are the components of U, + e.(I./2nb),
which is the velocity of convection with respect to the down-
ward moving coordinates. Equations (1-4) thus provide a
self-contained description of the vortices as they evolve in
their induced field. - : .

Tt is necessary to depart from the notion of vortex lines to &
certain extent, however, in order to account properly for the
self-induction of & vortex. Otherwise & difficulty arises with
the m = n term on the right of Eq. (1): the line integral di-
verges logarithmically around |Ran| = 0. The divergence is
artificial, because the vortices actually have finite core diam-
eters as shown in thé figures. Elements of a vortex lying
within a core diameter of each other cannot be idealized as in-
teracting lines. Some means must be provided to relax the
singularity ‘in the self-induction integral, and the means
adopted hereis to cut the integral off an arc-length d on either
side of the point |Ras| = 0. Rosenhead® and Hama’ have
used similar artifices to account for self-induction in other con-
texts: The cutoff distance d is taken as proportional to the
diameter ¢ of the vortex cores. The constant of proportion-
ality is calculated“‘approximately in Sec. 6, where the cutoff
method is applied to two problems whose solutions by other
means are known. s

The system of Egs. (1-4), together with the cutoff method
for evaluating self-induction, is a model of the phenomenon
shown in Fig. 1 rather than an exact theory. The model is
probably as sound as the notion of compact trailing vortices
itself, and it has the advantage of suppressing irrelevant com-
plications that would arise in an exact theory, like surface

Fig. 3 Relation be-
tween an arc-length
dL and a displace-
ment e dx down the
longitudinal  axis.
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Fig. 4 Mutual-induction functions.

ripples on the vortex cores.” Like any model, however, it has
a limited domain of validity. Equations (1-4) cannot apply
to vortices so thick that d is comparable to b, and they may
not apply to displacement perturbations having a wavelength
asshort asd. The model predicts the instability that actually
oceurs, but it also predicts spurious instabilities that lie out-
side its domain of physical validity. No trouble arises, as
long as common sense is used to distinguish the physical in-
stability from purely mathematical ones incidental to the in-
troduction of cutoff integrals.

3. Linearized Eigenvalue Problem

The next step is to suppose that the vortices are displaced
only slightly from their unperturbed positions. The problem
posed in Eqgs. (1-4) can be linearized, as long as the vortex dis-
placements remain small compared with b and their slopes

remain small compared with 1: |r,|/b <« 1 and |0r,/dz.] < 1.

The first inequality means that the third term on the right of
Eq. (2) is generally small compared with the others. The sec-
ond inequality means that the second term in the brackets of
Eq. (3) is much smaller in magnitude than the first. To first
order in the perturbation quantities |r.|/b and [0r./dza|,
Eq. (1) assumes the form

2 Pm « (Sm - Su)da:ml
U= mzzl dar {—ez f_m [(xm, - xn)Z + (Sm - Sn>2]3/2'+
o (Sw — $) (020 /02" YdXwm
& f‘m [(xml - Zn)g + (Sm - 871-)2}3/2 +
o [(en' — 2a) — @' — 2)©@2a"/02a)] ,
& f*@ [(@n' — @a)? + (8 — 8a)?]7 o’

@ 3(Sm - Sn)2(yml - f[_/n) .
e f“m ([(Q:m/ - In)z 'I" (sm - S1L)2]5/2
[(.Z/m, - ?/n) — (.xm, - xn) (a?/n//a?«'m')]> '
[(T»m, — 2t + (sm . Svn)213/2 dzm (5)

where cutoffs in the integrals for m = n are understood. Note
that it has not been necessary to assume that |r.|/c < 1, a
restriction that might arise if the displacements were treated
as shear waves in the vortex cores (cf. Ref. 7). The present
model requires & less severe linearization than an expansion
of the primitive equations of motion would have done.

The first term on the right of Eq. (5) involves no perturba-
tion quantities and represents downward induction at the
rate I',/27h, as is easily verified by direct integration. The
second term represents longitudinal convection and enters the
dynamics through the term w,0r./0z. in Eq. (4). Longitu~
dinal convection is a second-order effect, however, and drops
out when Eq. (4) itself is linearized. The third and fourth
terms on the right of Eq. (5) are first-order approximations of
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the velocity components v, and w,, which are the dominant,

convection terms in Bq. (4). The linearized version of Eq. (4)
1s then as follows:

or., 2 T

.5.2 N 7nz=: 1 4 x

{e f‘ﬂ [(Z.ml Zn) - (xm’ - xﬂ) (bzml/axm,)]
v — @ [(.Zm’ h xn)2 + (Sm - Sn)2]3/2

fm ( S(Sm —_ Sn)‘l(ym, - Z/n)
e. = -

dﬁlﬁ m ! +

[(xml - .'L‘n)z + (Sm — Sﬂ)?]-’)/?

(0 = 3 = (o = 2@
[(Ivn/ —2n)? + (Sm — Sn)2]3/2 L

(6)
Equation (6) admits solutions of exponential form, namely
fn(@al) = Tne®t#2 No generality is lost in considering

such solutions, since an arbitrary function can be synthesized
from them by Fourier integration. As aresult of the assumed
exponential form of solution, Eq. (6) changes from an integro-
differential equation into a set of algebraic equations for the
constant vectors I,

N rz ~ © dﬂi
WT T g B fo RN
_I‘i ” f o coskr + kr sinkz o+
or 2Jo T @ oy
o fco coskz -+ kx sinkz — 1
d

— 21
x(’!

dr  (7a)

A &A fm dv +

1= T e @
Ty fw - cosha ds —

o g (x2 + b2)¥/2 z

I o coskaz + kv sinkz — 1
o, > dz (7b)

>

together with a complementary pair of equations obtained by
transposing the subscripts 1 and 2. The dummy variable z
has replaced the quantity (z.' — 2.) appearing in Eq. (6),
and a partial integration has simplified the second member of
Eqgs. (7). The cutoff length d appears here explicitly for the
first time. Equations (7) have eigenvector solutions r, only

for certain eigenvalues of a, which happen to be either purely

imaginary or purely real. Imaginary values correspond 0
neutrally stable oscillations of the vortex pair. Real and
positive values of @ are the amplification rates of expon entially
growing instabilities. ’

Tt is convenient to rewrite Eqgs. (7) and their complements 10
terms of dimensionless quantities, represented by the lower
case Greek characters defined in the nomenclature list:

ah = —2 + i, — Bz (83)
oz = —f + xhr + Bwin (8b)
afs = 2 — YE + Bl (8¢)
@B = G — xh — Bp (8d)

The dimensionless interaction functions x(8), ¥(8), and w(®
come from the trigonometric integrals in Egs. (7) and can he
evaluated analytically as follows:

x(8) = BK.(B),  ¥(B) = BE,(B) + BKi(B)
w(8) = %[(cosd — 1)/82 + sind/8 — Ci(8)]

C%(8) is the integral cosine,3 and Ko(B) and K(8) are modlf_ie'd :
Bessel functions of the second kind.? The mutual—inducmon
functions x(8) and ¢(B) are plotted in Fig. 4, and the €
induction function w(8) is plotted on semi-logarithmic coor”
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dinates in Fig. 5.« is an eigenvalue of Eqgs. (8) and is related
to 8 and 6 through the interaction functions. Whether ¢ is
real or imaginary thus depends entirely upon the dimensionless
wavenumber § and cutoff §, since a(k,b,d,I,) = (I'./27wb?%)
a(B,8), a result that could have been anticipated from di-
mensional considerations.

Equations (8) have been arranged in four columns, each of
which has a distinet physical meaning. The column on the
left of the equality signs represents the rate of change of the
displacement amplitudes in time. The first column on the
right represents the zeroth-order field of one vortex acting on
the displacement perturbations of the other. The potential
field of vortex 1, for example, combined with the general down-
ward motion of the vortex pair, results in a two-dimensional
field of pure strain in the vicinity of vortex 2. Displacement
perturbations of vortex 2 tend to diverge under the strain. If
only the first column on the right of Egs. (8) were effective,
then o would be =1, and the positive root would correspond
to unconditional instability. The second column on the right
represents the velocity perturbations at one vortex due to the
displacement perturbations of the other. The velocity per-
turbations can retard or accelerate instability, depending on
the value of the dimensionless wavenumber (3.

. The third column on the right of Eqs. (8) represents self-
mduction. If self-induction alone were effective, then o
would be =+18%(8), and the vortices would execute neutrally
stable oscillations independently of each other. The third
column indeed must dominate the others for very slender vor-

\ tices, since w(8) grows as log(1/8) when & becomes small, as

is evident from Fig. 5. The nature of the oscillation depends
on the phase difference between the eigenvectors I, associated
with the two roots & = +18%(8). If the net values of §,and
2, differ by a factor 7, then the nth vortex is bent into a helix,
and the helix travels along the e,-axis with a phase velocity
(Tok/2m)w(8). If §u and 2, are in phase, on the other hand,
then the vortex remains confined to & plane, which spins at an
angular frequency (I'.k2/2m)w(8), in a direction opposite the
general rotation around the vortex. In either event, self-

~ induction tends to stabilize the vortex pair. If 8 is sufficiently
- small, then displacement perturbations of a given § uncouple,

and each vortex spins independently under its own induction.
At larger values of 8, perturbations interlock from one vortex
to the other and diverge.

4. Symmetric and Antisymmetric Modes

A sinusoidally perturbed vortex pair has four degrees of free-
dom, so the eigenvalue «(8,8) has four roots. The roots could
be found by a straightforward solution of the determinant as-
sociated with Egs. (8). As with most physical problems, how-
ever, it is more revealing to combine the eigenvectors into in-
dependent modes, each involving fewer degrees of freedom
than the system as a whole. The independent modes of a
vortex pair are as follows: :

>

ysziﬂ_'yl,ZS:ZZ”i‘zl

9

A~

Ja =T+ 24 =2 — 21

 If mode S alone were excited, then the vortex distortions
- would appear symmetric to an observer on the ground. If

mode A4 alone were excited, then the distortions would appear
antisymmetric. In that sense, the subscripts S and 4 denote
symmetric and antisymmetric modes.

Independent pairs of equations for the two modes follow

- from Eqgs. (8) and (9):

afis = (I — ¢ + Bw)is, azs = (1 4+ x — B*)s
(10)

aja = (1 + ¢ + Bw)ias, aza = (1 — x — Bw)ja
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Fig. 5 Self-induction function plotted on semi-logarith-
mic coordinates.

The four roots of a are thus = as and oy, where

as = [(1 = ¥ + B L+ x = B) ]
an= [0+ ¢+ Bl = x — o)

the principal square-root being intended in either case.  'When
the two factors inside the brackets of one of Eqs. (11) have
the same sign, the corresponding « is real, and the mode is un-
stable. Otherwise the mode is a neutrally stable oscillation,
qualitatively similar to the oscillation of an isolated vortex.
The vortices are twisted into travelling helices or are confined
to spinning planes, depending on the phase difference between
the t, corresponding to the imaginary eigenvalues +a.

Tigure 6 is a stability diagram for mode S based on the first
of Eqs. (11), and Fig. 7 is the diagram for mode 4. The ei-
genvalues are real in the shaded regions, which therefore are
regions of instability. 8/8 is used as the abscissa instead of 8,
because 8/ equals d/b, a geometrical property of the vortices
independent of the wavenumber k. The stability diagrams
span the interval 0 < 6/8 < 1, and they could have been ex-
tended to even larger values. When /8 = 1, however, the
separation b of the vortices is little more than twice their core

(11)

Fig. 6 Stability diagram for mode S. Regions of insta-

bility are shaded, and the locus of vanishing self-induction

is shown as a dashed line. The shaded region in the upper

right-hand corner is probably a spurious effect of the cut~
off model.
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Fig. 7 Stability
diagram for mode

o] 0.25 0.50 075 10

diameters ¢ (cf. Sec. 6), so larger values of §/8 are physically
meaningless. .

Outsicle the shaded regions of the diagrams, the tendency of
the vortices to spin in their own fields overcomes their mutual
induction, and the pair is stable. The tendency to spin
diminishes as d grows to a significant fraction of the perturba-
tion wavelength 2r/k. The dashed curves in Figs. 6 and 7
represent the locus of § = 1.06, corresponding to a value of
0.17 for the ratio of cutoff distance over wavelength. Accord-
ing to Fig. 5, the tendency to spin vanishes altogether at § =
1.06. Almost any interaction between the two vortices leads
to instability, as is evident from the diagrams. The regions
well above and to the right of the dashed lines involve vortices
that are rather thick compared with the perturbation wave-
length. The cutoff model may not portray those regions
accurately. :

Once the vortices become unstable, the eigenmode as-
sociated with the positive root of a quickly dominatesthe de-
caying mode of the negative root. The growing perturbations
are planar standing waves, as sketched in Fig. 8. 'The upper
drawing shows the vortices when mode S alone is excited, and
the decaying part of the disturbance has died away. The
lower drawing shows the vortices deforming in mode A. The
planes are fixed at angles 6(3,0) to the horizontal, where tanf
= %/§». Expressions for the planar angles of modes S and A
follow from Eqs. (9-11):

tanfs = [(1 +x — Bw)/(1 — ¢ + ) 12
tanfs = [(1 — x — B2w)/(1 +. ¢ + B%w)]V?

(12)

5. Maximum Amplification Rates

Upstream conditions determine the ratio /6, so the insta-
bilities of a given vortex pair lie on a vertical cut through the
(8,6/8)-plane of Figs. 6 and 7. For each 8/8, perturbations
spanning a whole spectrum of wavenumbers 8 can be unsta-
ble, and the question arises whether any particular 8 ulti-
mately dominates. If atmospheric turbulence excited all
wavenumbers equally, then the mode having the maximum o
for a given 8/8 would become the dominant instability. Tur-
bulence does not excite uniformly across the wavenumber spec-
trum, but for now it suffices to concentrate on modes that
have local maxima of a above a given §/8. The way turbu-
lence imposes a final selection among those preferred modes is
discussed in Sec. 7.

Figure 9 shows profiles of a along three vertical cuts through
the (8,6/8)-plane. The solid curves represent as and the
dotted a4 The curves were computed from Eqs. (11) with
the aid of the table of integral cosines in Ref. 8 and the tables
of Bessel functions in Ref. 9. Only real eigenvalues are dis-
played; the gaps along the S-axis lie in the unshaded regions
of Figs. 6 and 7. The upper plot applies to vortices having
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6/8 = 0.2, the middle to §/8 = 0.3, and the lower to §/8 =
0.4. None of those values is as small as the /8 of an aircrafy
wake, which is found in Sec. 6 to be about 0.063. The three
cuts in Fig. 9 were chosen to illustrate the point that g is rea]
in two separate regions and has two local maxima whenever
8/8 < 0.4. a4 has only one maximum along the B-axis for
any reasonable value of §/8.

Considering the middle plot of Fig. 9, as an example, one can
see that as has maxima at 8 = 1.2 and 3.4, and that ey hag g
maximum at 8 = 3.6. Wavenumbers Bn.x associated with
maximum amplification rates can be found in a similar way for
each &/8, and the results are plotted in Fig. 10. The solid
and dashed lines refer to mode S and the dotted line to mode 4.
Low-wavenumber peaks of asg, such as the one at § = 1.2 in
the middle plot of Fig. 9, fall along the solid curve in Fig. 10,
Those peaks correspond to waves whose lengths greatly ex-
ceed the vortex core diameters. The long waves interact
strongly, and the stabilizing effect of self-induction is strong
aswell. The remaining peaks of aslie along the dashed curve
of Fig. 10, and the peaks of a4 lie along the dotted curve. The
dashed and dotted curves are not far from the locus of § =
1.06, where self-induction vanishes. They therefore repre-
sent weak interactions, weakly resisted by self-induction,
Only the symmetric mode S can be unstable in spite of strong
self-induction.

The maximum amplification rates themselves are plotted
against 6/8 in Fig. 11. The three types of curve have the
same meaning as in Fig. 10: the solid line represents strong
interactions in the symmetric mode, the dashed line represents
weak interactions in the symmetric mode, and the dotted line
represents weak interactions in the antisymmetric mode. At
8/B = 0.3, for example, the amax of mode S under strong inter-
action is 0.77, as can be seen directly from Fig. 9. Note that
strong interactions do not give rise to modes growing more
rapidly than those involving weak interactions; the strong
mutual induction and strong self-induction roughly balance.
Qmax 18 NOt far from unity in the interval 0 < 6/8 < 0.4 for all
three kinds of interaction.

For each 8/8 and associated Buax, the tangent of the planar
angle .. can be calculated from Eqgs. (12). Those tangents
are plotted in Fig. 12, in which the curves have the usual
meanings. Throughout the interval 0 < 6/8 < 0.4, the
planes containing any maximally unstable mode are inclined
at about 45° to the horizontal. The three quantities cumax,
Brnax, and Oimax completely deseribe the instability, and all that
remains is to choose a value of §/8 at which to evaluate them.

Fig. 8 Shapes of
unstable modes
after transients
have died away:
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6. Selection of a Cutoff Distance

tnrl 51112 ~ Suppose that a diameter ¢ of the vortex cores is defined in
ATICE, terms of th'e distribution -of vorticity within them. &/8 can
or all j then be written as a product of (c/b) and (d/c). The factor
(¢/b) is a physical quantity, having nothing to do with the
mathematical model being used for this stability analysis.
(¢/b) depends on the lift distribution over the wing generating
tsual the v'or.tices and must be calculated aerodypamically. The
the remaining factor (d/c) depends on the relation of the cutoff
Tined model to exact dynamics. The only way to determine (d/c)
isto apply the cutoff method to a problem whose exact solution
is known a priori.
The two factors should be calculated on the basis of a com-
mon assumption about the core structure. The assumption
adopted here is that vorticity is distributed uniformly within
cores of diameter ¢ and is zero outside, so the cores rotate like
solid bodies. For a uniform vorticity distribution, both (¢/b)
and (d/c) can be drawn from past work.
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Fig. 10 Wavenumbers § at which maximum amplification
ocecurs for Gxed 5/8. The solid line denotes strongly inter-
acting long waves of mode S, the dashed line denotes short
waves of mode' S, and the dotted line denotes mode A.
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Spreiter and Sacks (Ref. 1) estimate that (¢/b) = 0.197 be-
hind an elliptically loaded wing. They assume that energy is
conserved as a vortex sheet wrapsinto two distinet vortices in
solid-body rotation. Conservation of energy is not strictly
consistent with eventual solid-body rotation, since dissipation
is required to smooth the layered vorticity of a rolled-up sheet.
Nevertheless, the estimate (¢/b) = 0.197 is probably accurate
enough and is certainly a reliable lower bound for the assumed
wing loading and vorticity distribution.

The factor (d/c) is to be found by applying the cutoff
method to a problem having a known solution and involving a
vortex core in solid-body rotation. Fortunately, there are
two such problems, or rather two limiting cases, both due to
Kelvin (Sir W. Thomson).

The first problem concerns a displacement wave travelling
around a columnar vortex. Kelvin showed in Ref. 7 that a
very long wave (ke < 1) rotates around the vortex at an angu-

lar frequency
(T'./4m)k2[log(1/kc) -+ 1.0590]

in a direction opposite the circulatory flow. It was argued
in Sec. 3 on the basis of the cutoff model that a wave on an 180~
lated vortex spins at an angular frequency (T.k%/2m)w(8) in
the retrograde direction. The angular frequency for very
long waves (6 = kd < 1) is

(T'./4m)k*[log(1/kd) — 0.0772]
where the limiting form for the integral cosine appearing n

w(3) has been taken from Ref. 8. The cutoff model agrees
with Kelyin’s theory, provided

(/) = 0.3210 @)

Fig. 12 Planar ‘
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The seczond problem concerns the speed of a vortex ring.X
Using sorne fundamental theorems about vorticity, Kelvin
found tha,t & vortexring of diameter D propagates at a speed

(T./2xD)[log(D/c) + 1.8294] (14)

if the rirag is slender (¢/D « 1). According to the cutoff
model, th-€ speed of a vortex ring is exactly

(T',/27D) log[1/tan(d/2D)]

and the 1imit appropriate for comparison with Kelvin’s result
is :

(I'./27D)[log(D/d) + 0.6931]
The cutoff model again agrees with Kelvin’s theory, provided
(d/c) = 0.3210 (15)

exactly the same as Eq. (13).

Equations (1 3) and (15) pertain to radically different flows,
yet the two estimates of (d/c) are the same. The coincidence
suggests that the cutoff model becomes asymptotically exact in
the limitc of small core diameter, provided that the cutoff
length d is chosen as 0.321c. If so, then the model could prove
enormously useful for machine computation of vortex
motions. T

Combined with the estimate (¢/b) = 0.197 of Spreiter and
Sacks, E2q. (13) or (15) implies that §/8 = 0.063 behind an
elliptically loaded wing. It must be remembered that 8/8
has been. calculated on the basis of a particular assumption
about the structure of the vortex cores, namely that their vor-
ticity is distributed uniformly. There are other possibilities,
for example the bell-shaped distribution of a vortex diffusing
under the action of viscosity. Tung and Ting" have devised
a singular-perturbation theory of vortex motion, from which
they con clude that Eq. (14) applies to a diffusing vortex ring,
provided ¢ is taken as 2(st)l/%, Presumably (¢/b) could be
calculated along the lines of Ref. 1 for a bell-shaped vorticity
distribution. The choice §/8 = 0.063, however, is accept-
able for now. Refinements can be deferred to the future when
more will be known about real core structures.

7. Theoretical Predictions

It was shown in Sec. 5 that three preferred modes of insta-
hility exist for any 6/8 S 0.4, each having a local maximum
of a along the B-axis. According to Fig. 10, the symmetric
mode S preferred under strong interaction in the case 6/8 =
0.063 lies at & Bmax = 0.73.  The other two preferred modes,
S and A under weak interaction, consist of much shorter
waves at & Bmex = 17. The short waves are not observed in
practice, although nothing in stability theory precludes their
appearance. They amplify slightly faster, in fact, than the
long waves. Obviously another criterion is operating to make
o final selection among the three modes offered by stability
theory.

Atmospheric turbulence probably makes the final selection.
The Kolmogorov similarity theory implies that the amount
of turbulent energy available to excite a mode of wave-
number k is proportional to k%2 Turbulence drives the
long waves associated with 8/8 = 0.063 a factor of
(0.73/17)7%% more energetically than it drives the short
waves, and (0.73/17)7%% = 190. For values of 8/8 as small
as 0.063, the structure of atmospheric turbulence imposes an
overwhelming bias in favor of the long waves, which are un-
stable only in the symmetric mode.

The Bumax of that mode is 0.73 as already noted, and the other
two dimensionless parameters follow from Figs. 11 and 12:

# In the preprint version of this paper, a slight arithmetical error
was made in the computation leading to Eq. (13), and the coinci-
dence between Eqs. (13) and (15) passed unnoticed. I am in-
debted to P. C. Parks for finding the error and pointing out the
coincidence during his stay at thé Langley Research Center.
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Gmex = 0.83, and tanfm. = 1.11. Those dimensionless
quantities can be translated into a physical description of the

mode arising from the combined action of instability and tur-

bulent agitation:

1) The trailing vortices distort into symmetric waves of
length 27wb/0.73 = 8.6b. The wavelength is 6.8 times the
span of the aircraft, since the vortex separation behind an
elliptically loaded wing is w/4 times its span, as Spreiter
and Sacks show in Ref. 1.

2) The instability grows by a factor e i a time 71 =
1.21(27b%/T',), where (2wb?/T,) is the time required for the
vortices to move downward a distance b under their own in-
duction. The circulation I', can be expressed in terms of
aircraft parameters by means of Eq. (10) of Ref. 1, with the re-
sult that a=! = 9.4(4z/Cr)(b/V,). Note that b denotes
wingspan in Ref. 1, whereas here b stands for vortex separa-
tion. Compared with the process of vortex formation, the
subsequent instability is very slow. The vortex sheet behind
an elliptically loaded wing rolls up in a time 0.36(A4r/C1)
(b/V.,), according to Eq. (27) of Ref. 1. The time scale ¢ =1 ig
26 times longer.

3) The perturbed vortices are confined to fixed planes ag
shown in the upper illustration of Fig. 8. The planes are in-
clined to the horizontal at an angle § = tan™! (1.11), which is
48°.

The predictions 1), 2), and 3) follow straight from the theory
and involve no fitted constants. The very large wavelength
of the preferred mode, namely 8.6b, is perhaps surprising.

8. Comparison between Theory and Experiment

Although it can be seen quite regularly, the instability of
trailing vortices rarely has been photographed. One piece of
experimental evidence is Plate 2 of Ref. 3. Reference 2 con-
tains several photographic sequences, one of which has been
reproduced here as Fig. 1. Doubtless much more information
will soon be available, but the evidence in Refs. 2 and 3 can be
compared to the theoretical predictions as follows:

1) The wavelength in Fig. 1 is roughly 8b. The wave-
length in Plate 2 of Ref. 3 is about 9b. Those estimates are
very crude, so the striking agreement with the theoretically
predicted wavelength of 8.6b may be partly fortuitous.

9) Figure 1 shows the vortex trail of a B-47 at cruising
speed and altitude. The vortex spacing b was about 90 ft,
and the aircraft speed V, would have been about 720 fps.
The ratio (C/Ax) for a cruising B-47 is about 0.055. Thus
a-1 would have heen about 9.4(90/720)(0.055)~ = 21 sec.
That figure is of the right order-of-magnitude to explain the
sequence of photographs in Fig. 1, though no really quantita-
tive comparison is possible. The trailing vortices of Fig.

" connected after 60 sec, at which time the linear instability

would have grown by a factor /2! = 17.4, a reasonably large
amplification. The time scale ™ = 21 sec should apply
approximately to the commercial jet transports as well as to 2
B-47. Tt is noteworthy that the time scale of the instability
during approach to landing is not much different. (C1/Ax)
rises to about 0.18, V, drops to about 220 fps, and ¢~ T&
mains unchanged as 21 sec.

3) There are no photographs that would permit even &
rough evaluation of the angle 6. Figure 12 of Ref. 2, however
shows that the vortices do undergo sinusoidal displacements
in the vertical direction. i

As far as it goes, the comparison between theory and expert”
ment is highly encouraging. It will be interesting to see ho¥
well the agreement persists as more quantitative data 8¢
cumulate. '
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- Boundary-Layer Displacement and Leading Edge Bluntness
Effects on Attached and Separated Laminar Boundary

Layers in a Compression Corner. Part I: Theoretical Study

Micuarrn 8. HoLpen™
Cornell Aeronautical Laboratory, Inc., Buffalo, N.Y.

This paper describes a theoretical analysis of highly cooled attached and separated regions
of shock wave-laminar boundary-layer interaction in the presence of strong streamwise pres-
sure gradients generated by boundary-layer displacement effects at the leading edge. This
metheod is an extension of an earlier analysis by Holden!1? to conditions where the invisecid
flow cannot be described by simple isentropic flow relationships, and where the boundary-
layer upstream of the main interaction is subjected to a strong pressure gradient. The analysis
is compared with measurements described in Part II of the study. For strong leading edge I
displacement effects (}r > 1), the analysis predicts that highly cooled boundary layers in
hypersonic flow will be supercritical; a supercritical-suberitical jump is therefore required to -
join the solution to the suberitical viscous layer at separation. An examination of the experi-
mental measurements indicates that the supercritical-suberitical jump does not reflect a
sudden and basic change in the flow mechanics of separation, but is an approximation neces-
sary because the conventional boundary-layer equations cannot adequately describe the
viscous interaction process leading to separation. For some high Mach number, low Reynolds
number conditions, we were unable to obtain a unique solution, without recourse to experi-
mental data, by locating a critical point in the throat region of the flow. As in the separated
region, there is serious question whether the conventional boundary-layer equations can be
used to adequately describe the mechanism of boundary-layer reattachment in these flows.

Nomenclature L . = reference length
: M = Mach number
= gpeed of sound P = pressure
Cp = the skin-friction coefficient Pr - = Prandtl number
Cr = the swface heat-transfer coefficient q = local surface heat-transfer rate
Cp,Cy = specific heats of the gas at constant pressure and at Re, = Reynolds number puz/u
constant volume, respectively S = enthalpy function A¢/hs, — 1
= the constant of proportionality in the linear viscosity- Sy = hw/hs, — 1
temperature relation u/ue = CT/1w t = leading edge thickness ‘
Cy = [w(T*)/u(Te)) T/ T : U,V = the velocity components parallel to the x and y axes,
Dy = drag of the blunt leading edge respectively
= static enthalpy z,y = coordinates parallel to and normal to the surface, re-
hs,H = total enthalpy spectively
¢ = leading edge drag coefficient Dy/3pxUx v = specific heat ratio
8,6* = boundary-layer thickness and displacement thickness,

respectively
vy=1/yv+1
wedge angle
local ‘angle between x axis and streamline at the edge
of the boundary layer
a parameter controlling inviscid tip bluntness effect,
ke = M3kt/x . :
x = dynamic viscosity |
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