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The individual and combined influences of aspect ratio (A), Reynolds number (Re)
and Rossby number (Ro) on the leading-edge vortex (LEV) of a rotating wing of
insect-like planform are investigated numerically. A previous study from our group has
determined the wingspan to be an appropriate length scale governing the large-scale
LEV structure. In this study, the A range considered is further extended, to show that
this scaling works well as A is varied by a factor of 4 (1.8 6A6 7.28) and over
a Re range of two orders of magnitude. The present study also extends this scaling
for wings with an offset from the rotation axis, which is typically the case for actual
insects and often for experiments. Remarkably, the optimum range of A based on
the lift coefficients at different Re coincides with that observed in nature. The scaling
based on the wingspan is extended to the acceleration terms of the Navier–Stokes
equations, suggesting a modified scaling of Ro, which decouples the effects of A. A
detailed investigation of the flow structures, by increasing Ro in a wide range, reveals
the weakening of the LEV due to the reduced spanwise flow, resulting in a reduced
lift. Overall, the use of span-based scaling of Re and Ro, together with A, may
help reconcile apparent conflicting trends between observed variations in aerodynamic
performance in different sets of experiments and simulations.

Key words: aerodynamics, biological fluid dynamics, swimming/flying

1. Introduction
In recent years, the study of the aerodynamics of the flapping wings of insects

has gained significant interest among biophysicists and researchers motivated
by the developments in micro air vehicles (MAVs). Extensive investigations of
various geometric and kinematic parameters affecting wing aerodynamics have been
undertaken. Researchers have established that the stable attachment of the vortex
formed from separation at the leading edge, known as the leading-edge vortex (LEV),
plays a key role in achieving stable flight (Maxworthy 1979; Ellington et al. 1996).
Wing aspect ratio (A), Reynolds number (Re) and Rossby number (Ro) are among
the important parameters that can influence LEV formation and its stability.

† Email address for correspondence: shantanu.bhat@monash.edu
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The flapping stroke of insects comprises two half-strokes, namely, the upstroke and
the downstroke. The flapping motion can be thought of as a sequence of rotation
or sweep motions during each half-stroke, and flip or pitch motion during the
stroke reversal. The LEV is formed as a result of the flow separating at the leading
edge of a wing at a high angle of attack in the rotational translation phase. It
is sustained throughout the rotational translation, also often referred to simply as
‘translation’, which is a major part of the stroke associated with lift generation.
Dickinson, Lehmann & Sane (1999) have established that the instantaneous forces
on a flapping wing during the translation phase are similar to those experienced by
the same wing with the same angle of attack in pure rotation. Therefore, various
experimental and quasi-steady models of a rotating wing have been employed in
order to study the main LEV properties and the factors affecting stability (Sane &
Dickinson 2002; Lentink & Dickinson 2009b; Ozen & Rockwell 2012; Garmann &
Visbal 2014; Tudball Smith et al. 2017). Although these models do not capture the
unsteady effects during the stroke reversal, they predict the overall aerodynamics well,
particularly those at the middle of the half-strokes.

The most important geometric parameter affecting the flapping and rotating wing
aerodynamics is the wing aspect ratio (A). It is defined as the ratio of the wingspan
(b) to the mean wing chord (c). The influence of A on the lift and drag forces
has been a topic of much debate for a long time. Usherwood & Ellington (2002)
measured forces on rotating wings over a range of aspect ratios (4.53<A< 15.84)
using a hawkmoth wing planform. They reported a decrease in the horizontal force
and a negligible effect on the vertical force with an increase in A. Luo & Sun (2005)
investigated 10 different insect wing shapes in the range of 2.86A6 5.5, rotating at
a constant angular velocity. They observed that A has a minimal effect on the force
coefficients if the velocity at the radius of the second moment of wing area is used as
a reference velocity. Garmann & Visbal (2014) also observed very little variation in
the lift coefficient (CL) by simulating rotating rectangular wings of A= 1, 2 and 4.

However, some researchers, on the other hand, have observed a variation in the
forces acting on the wing with a change in A. Ansari, Knowles & Zbikowski (2008)
simulated the flapping motion of wing planforms obtained by various combinations of
wing shapes and aspect ratios. By maintaining a constant wing area for all the wing
planforms, they observed that the lift force increased with A for all the wing shapes,
except the triangular wing, for which the lift was nearly unaffected. Harbig et al.
(2012) observed a maximum CL forA=5.1 and a decrease in CL with a change in A
on both the lower and the higher sides, whereas Han, Chang & Cho (2015) obtained a
maximum CL for the wing of A=3 during its translation phase. Among theA values
in the range 1.5 to 8, they suggested that the wing of A=3 had the best aerodynamic
performance. In an experimental study, Kruyt et al. (2015) rotated rectangular wings
of A values in the range 2 to 10, at relatively high Reynolds numbers (Re ∼ 104).
For a high angle of attack, they proposed that the LEV remains attached for the
normalised wing-tip radius R/c<4. By studying different aspect ratios (1.56A67.5)
for three different wing shapes, Shahzad et al. (2016) observed that the trend in the
variation of CL depends on its scaling. They proposed that using the tip velocity (Ut)
as the reference, CL decreases with an increase in A; however, using the velocity at
the radius of gyration (Ug) as the reference, CL increases with A in a lower range
and remains relatively unchanged for A> 6. Phillips, Knowles & Bomphrey (2015)
performed stereo particle image velocimetry (SPIV) measurements of the flow over
flapping wings of aspect ratios in the same range. By computing the mean CL from
the LEV circulation, they predicted a trend similar to that of Shahzad et al. (2016).
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Ozen & Rockwell (2013) proposed that the organised swirl of the LEV degraded with
an increase in A. They also noted that the positive spanwise flow moved towards the
trailing edge for higher A values.

The Reynolds number in all these studies was defined as Re = Uref c/ν, where c
is the mean wing chord and ν is the kinematic viscosity of the fluid. As mentioned
above, the reference velocity Uref has been chosen as either Ut or Ug, with the
exception of Shahzad et al. (2016), who have used Uref = f

√
S, where f is the flapping

frequency and S is the wing area. Interestingly, Harbig, Sheridan & Thompson (2013)
examined the A–Re coupling and proposed a new scaling for the Reynolds number
based on the wingspan (b) as Reb = Ugb/ν. They showed that the flow structures
over wings of different aspect ratios rotating at a constant Reb are similar. With this
scaling, at higher values of Reb (∼103), they observed that CL remained relatively
unaffected with an increase in aspect ratio in the range A 6 5.1, beyond which it
started reducing. However, at a low Reb (∼102), CL decreased monotonically with
an increase in A. Carr, DeVoria & Ringuette (2015) followed the same definition
of Reynolds number as suggested by Harbig et al. (2013). They performed force
measurements on rectangular wings of aspect ratios in the range 1 6A6 4 rotating
at a high Reb and confirmed that CL remains unaffected by A in this range.

Lentink & Dickinson (2009b) were the first to highlight the importance of Rossby
number instead of A. They established the importance of the rotational accelerations
in stabilising the LEVs. It was shown that the centripetal and Coriolis accelerations
scale with the wing-tip Rossby number (Rot = R/c), where R is the wing-tip radius.
It should be noted that their Rossby number was defined as R/c instead of Rg/c,
where Rg is the radius of gyration of the wing. This is because the values of R for
various insect wings are more readily available than those of Rg in the literature to
allow a comparison. Interestingly, Lee, Lua & Lim (2016) pointed out that the A
studies in the past did not preserve Ro, which would have resulted in a coupled
effect of A and Ro. Here, the Rossby number has been defined as Ro= Rg/c. They
classified the geometries such as in Usherwood & Ellington (2002), Luo & Sun (2005)
and Han et al. (2015) as ‘constant r̂2 configurations’ and the geometries such as in
Garmann & Visbal (2014), Kruyt et al. (2015) and Phillips et al. (2015) as ‘constant
1R configurations’, where r̂2 is the radius of gyration normalised by the wing-tip
radius and 1R is the wing-root offset from the axis of rotation. They argued that
by varying A in the two configurations, the A–Ro coupling changes in different
ways. Since Ro also affects the lift production, they mapped CL on the plane of A
and Ro by studying different combinations of these two parameters and proposed
an explanation of the discrepancies in the trends of CL observed in the literature.
However, all the simulations were conducted at Re= 500 (Re being defined as Re=
Ugc/ν), which showed that, for a given Ro, CL could be maximised by increasing A.
On the contrary, at such Reynolds numbers in nature, only low-A wings are observed,
as can be seen in the data for various insects by Weis-Fogh (1973) and Ellington
(1984). Recently, Jardin & Colonius (2018) have also investigated the effects of A
and Ro independently (maintaining a constant chord-based Re = 577) and confirmed
that the lift-optimal aspect ratios are between 3 and 4. They showed that the LEV
topology is stable up to the spanwise distance of r/b=3. However, at higher Reynolds
numbers, the stable LEV region shrinks and bursts at a lower r/b location (Bhat et al.
2018), which would result in a lower A as an optimal one. In contrast, in nature,
high-A wings are observed at higher Reynolds numbers. Therefore, even though the
A–Ro coupling may explain the discrepancies in most of the past studies, it may not
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provide a satisfactory explanation of why certain aspect-ratio wings are observed only
at certain Reynolds numbers in nature.

Motivated by Lentink & Dickinson (2009b), the effect of Ro has also been explored
independently. Since Ro is identified as the ratio of inertial force to Coriolis force, the
contribution of the Coriolis force to the stability of the LEV has also been a topic
of debate. While researchers such as Lentink & Dickinson (2009b) and Jardin (2017)
stated that the Coriolis force promotes the spanwise flow, Garmann & Visbal (2014)
argued that the pressure gradient and the centrifugal forces are responsible for the
spanwise flow. Limacher, Morton & Wood (2016) showed that the LEV size is limited
in spanwise direction by its tilting in the wake caused by the Coriolis acceleration.
Wolfinger & Rockwell (2014) showed that the stability of the LEV is confined to
the cases with sufficiently low Ro. Their low-Ro wings had the tip and root vortices
deflected towards the centre of rotation, whereas the high-Ro wings had a reduced
deflection of the vortices. Later, Tudball Smith et al. (2017) systematically varied Ro
by changing the wing-root offset (b0) and observed a drop in the values of CL. At
large Ro, this value approached the value for a translating wing. Phillips, Knowles &
Bomphrey (2017) also extended the wing-root offset measured in terms of petiolation
(P = b0/c) and found that the LEV size and strength increased with P. However,
the observed LEV circulatory lift also increased with P, which is in contradistinction
to the trends predicted by both Lee et al. (2016) and Tudball Smith et al. (2017).
This inconsistency requires further investigation in accordance with the flow features
that influence force production. Moreover, it is important to revisit the chord-based
definition of the Rossby number since the wingspan has been shown to be the more
relevant length scale of the LEV structure.

The presence of a central holder is difficult to avoid in experimental models and
robotic flyers as it helps to hold and rotate the wing. For instance, the experimental
studies on Rossby-number effects such as by Wolfinger & Rockwell (2014) and
Phillips et al. (2017) involve central holders, whereas the numerical studies such
as Lee et al. (2016) and Tudball Smith et al. (2017) do not involve a holder.
The experimental studies implicitly assume that the flow over a wing at a given
Rossby number is the same with or without a holder. The question that arises while
comparing these studies is whether in fact the presence or absence of the holder
makes any difference. Since the central holder in experiments also rotates with the
wing, it can be hypothesised that the secondary flow near the wing root due to the
rotating holder may interfere with the LEV formed at the root. Beyond a certain
size of the holder, the increased secondary flow may well influence the forces on the
wing.

In summary, there have been many recent contributions to the understanding of
LEV structure and its appropriate scaling, but they also throw up some seemingly
contradictory trends. The present computational study investigates the effects of
A, Ro and Re on a rotating wing planform by defining and then systematically
varying each of these parameters. An aim is to further uncouple the influence of each
parameter, thereby enabling observed contradictory trends of some past investigations
to be explained. Considering that the Rossby number is changed due to a change in
wing-root offset, the A–Re decoupling, which was established by Harbig et al. (2013)
for zero-offset wings, requires verification at different offsets. Indeed, in the present
study, the use of the span-based Reynolds number (Reb) is shown to still decouple
the effects of A on the flow structure, even for the wings with a normalised offset
of b0/b 6 0.16, covering the majority of insects (Bhat et al. 2018). For a wing of
A=2.91, matching a fruit-fly planform, the influence of Rossby number is studied by
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Effects of aspect ratio, Re and Ro on a rotating insect wing 925

varying the normalised offset in the range 06 b0/b6 6 resulting in a Rossby-number
variation in the range 1.67 6 Ro 6 10.2. By rescaling the Navier–Stokes equations
using the span length as the length scale, a more appropriate definition for the Rossby
number is shown to be Rob = Rg/b. The ability of this modified Rossby number
together with the offset ratio to better decouple observed aerodynamic variations is
then investigated, again showing that this choice helps resolve literature discrepancies.
Considering its relevance to experimental models and MAVs, the presence of a central
body is also studied by varying its size, as part of this study. Overall, this paper
attempts to show that the proposed choice of parameters provides a more independent
set to compare lift coefficients, and the corresponding flow structures responsible for
the aerodynamic forces.

2. Methodology
The computational approach used in this study has been adopted from a previous

investigation by Harbig et al. (2013). The flow over a rotating wing was modelled
based on the unsteady incompressible Navier–Stokes equations cast in a non-inertial
rotating frame of reference along with the continuity constraint

∂ρu
∂t
+∇ · (ρuu)=−∇p+µ∇2u− 2ρΩ × u− ρΩ × (Ω × r)− ρΩ̇ × r (2.1)

and

∇ · u= 0, (2.2)

where ρ is the density, µ is the dynamic viscosity, p is the pressure, Ω is the
rotational velocity vector, and u is the velocity vector in the rotating frame. The
equations were solved numerically using the commercial code ANSYS CFX version
17.2. Second-order-accurate schemes were employed for both spatial and temporal
discretisations.

The wing geometry was based on a generic fruit fly (Drosophila melanogaster)
wing as a representative wing shape, since it has been extensively studied by many
researchers both numerically and experimentally (Vogel 1966; Zanker & Götz 1990;
Birch, Dickson & Dickinson 2004; Liu & Aono 2009; Hawkes & Lentink 2016). The
basic wing was dimensioned similarly to that of the actual fruit fly (Zanker & Götz
1990), with a dimensional wingspan (b) of 2.47 mm and an aspect ratio (A) of 2.91.
The wings of different aspect ratios were produced by stretching or compressing the
original wing shape in the chordwise direction. The thickness to chord ratio of 0.03
was maintained for the computational models. The wing root was offset from the
rotation axis by an amount b0 such that the total span is R= b+ b0. The wing-root
offset (b0) was normalised by b to give the offset ratio b̂0. In some cases, the wing
was attached to a cylindrical central body to match experimental designs with a wing
holder. The central body causes the wing root to be offset from the centre of rotation
by an amount b0. The schematic of the wing, central body and the coordinate system
are shown in figure 1.

A simplified wing motion was prescribed in order to obtain the LEV structure that
is formed during the mid-stroke of a typical flapping cycle of an insect. This required
the wing, initially at rest in a quiescent fluid, to be rapidly accelerated to a constant
angular velocity (Ωc) by rotating about the central axis. Throughout its motion, the
wing maintained a constant angle of attack (α = 45◦) with the horizontal plane.
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FIGURE 1. Schematic of the wing, central body and the coordinate system.

t/T

CL Birch et al. (2004), Re = 120
Present work, Re = 120
Birch et al. (2004), Re = 1400
Present work, Re = 1400
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0
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2.0

FIGURE 2. (Colour online) Time history of lift coefficients for an A= 2.91 wing with an
offset ratio b0/b= 0.08 is compared with the experimental measurements by Birch et al.
(2004) at two different Reynolds numbers.

The acceleration period was chosen to be t = 0.084T , the same as that used by
Harbig et al. (2013), where T is the total simulation time. An impulsively started
wing has been shown to be comparable to the beginning of the downstroke of a
flapping cycle (Poelma, Dickson & Dickinson 2006), with the acceleration period
typically ranging between 6 and 10 % of the total simulation time (Birch et al. 2004;
Lentink & Dickinson 2009b). With a constant angular velocity, the flow over the
wing achieved a quasi-steady state after approximately t = 0.4T , as can be seen in
figure 2. The simulation was stopped after 270◦ rotation of the wing. The prescribed
motion profile is given by

Ω(t)=


1
2
Ωc

(
1− cos

( πt
0.084T

))
, t< 0.084T,

Ωc, t > 0.084T.
(2.3)

The geometry was embedded in a cylindrical computational domain similar to
that used by Harbig et al. (2013). The domain had a diameter 18R and a length
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Effects of aspect ratio, Re and Ro on a rotating insect wing 927

48c, where R is the distance of the wing tip from the axis of rotation and c is the
mean wing chord. The domain was meshed using an unstructured tetrahedral mesh
with triangular prism elements near the wing surface. Typical meshes consisted of
approximately 40 million elements, with a grid spacing of 0.00725c on the wing’s
surface. Mesh independence was verified by comparing the predicted forces to those
from two other meshes generated by halving the mesh resolution twice (i.e. reducing
the number of cells by a factor of 8 and 64), which resulted in a 0.7 % and 2.4 %
difference, respectively, in the lift coefficients averaged over the final 30◦ rotation
(CL). Here, CL is calculated as

CL =
L

0.5ρ(ΩRg)2S
, (2.4)

where L is the mean lift acting on the wing over the final 30◦ rotation, Rg is the wing’s
radius of gyration and S is the wing area. That study was performed at a chord-based
Reynolds number of Rec= 1400. The time step was chosen to be 0.00185T . This was
validated by halving the time step, which resulted in a less than 0.1 % difference in
the mean forces.

The forces predicted by this method were compared to those obtained experimentally,
from literature studies. Figure 2 shows the comparison of the time traces of the lift
coefficients predicted at two different chord-based Reynolds numbers for the wing of
A= 2.91 and the normalised offset of b̂0= 0.08, with the experimental data by Birch
et al. (2004) for a similar wing. No information about their offset was found. Hence,
a reasonable normalised offset of b̂0 = 0.1 was estimated from their schematic. To
match the present way of calculating CL, the data from Birch et al. (2004) were scaled
by b/R. The lift values predicted by the present method show a close match with
the experiments. A reduction in the forces after t/T = 0.7 in the experiments may be
due to the deceleration of the wing, whereas the wing in the numerical simulations
continued to rotate at a constant angular velocity.

3. Results
3.1. Span-based Reynolds-number scaling

As discussed in § 1, Harbig et al. (2013) have proposed the use of a span-based
Reynolds number in order to decouple Reynolds-number and A effects. They
observed very similar LEV flow structures over wings of different aspect ratios
rotating at a constant Reb. However, in their numerical models, the wing-root offset
was zero. Since the root offset, or the petiolation, can also influence the flow structure,
in this study the flow structures for wings of different aspect ratios and with a
non-zero normalised wing-root offset of b̂0 = 0.16 have been investigated.

Wings of aspect ratios 1.8, 2.91, 5.1 and 7.28, with a central body giving a wing-
root offset of b̂0=0.16, were rotated at different Reynolds numbers in the range 3006
Reb 6 10 000. Note that this extends the aspect-ratio range of that studied by Harbig
et al. (2013), by including the case of A= 1.8. First, the flow structures at Reynolds
numbers Reb = 300 and Reb = 4000 were compared for different aspect ratios. In all
the cases, the LEV was observed to form and increase in size from the wing root
to the wing tip. The LEV was identified using the Q-criterion (Hunt, Wray & Moin
1988), which is defined as

Q∗ =Qb2/U2
g =

1
2 [ΩijΩij − SijSij] =

1
2 [‖Ω‖

2
− ‖S‖2

], (3.1)
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FIGURE 3. (Colour online) The normalised spanwise vorticity (ω∗z ) contours are shown at
the spanwise location r/b= 0.4 for different aspect-ratio wings, with b̂0 = 0.16, rotating
at Reb = 300 in (a–d) and at Reb = 4000 in (e–h). The black solid lines represent the
vortices identified by the constant Q-criterion. The thick solid line shows the side view
of the wing and the thick black dot, drawn at one of its ends, represents the leading edge.
The rotation angle in all the cases is φ = 270◦.

where Ωij and Sij are, respectively, the asymmetric and symmetric components of
the normalised velocity-gradient tensor. Importantly, Q∗ > 0 represents the region
dominated by the rotational strain ‖Ω‖2. Figure 3 shows the normalised spanwise
vorticity (ω∗z ) contours on the spanwise plane located at r/b = 0.4. The vortices are
represented by the isocontours of Q∗ = 1 shown by solid black lines. It can be seen
that, at Reb= 300, there is a single LEV with lower vorticity. However, at Reb= 4000,
the LEV is stronger with a higher ω∗z due to an increased swirl and it is split to
form dual LEVs. It should be noted that the flow structure for all aspect ratios is
similar at a given Reb, suggesting that the span-based scaling of the Reynolds number
is the appropriate scaling that defines the flow structure. This was further confirmed
by tracking the LEV split location, which is a prominent flow feature, for all these
wings rotating at different Reynolds numbers.

The LEV split is identified with the help of Graftieaux’s vortex core identification
algorithm (Graftieaux, Michard & Grosjean 2001), as discussed by Harbig et al.
(2013). The circulation about a grid point P was computed as

γ2(P)=
1
N

∑ [RPM ∧ (UM −UP) · z]
‖RPM‖ ‖UM −UP‖

, (3.2)

where N is the number of grid points M inside a bounded square region with
P as the centre, RPM is the radius vector and UPM is the velocity vector with
respect to P. Given the definition, |γ2| is bounded by unity. It is calculated on
two-dimensional velocity planes along the span, with z being the unit vector normal
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FIGURE 4. (Colour online) The curves for the split location as a function of Reynolds
number scaled with the wing chord for different aspect ratios in (a) collapse if the
Reynolds number is scaled with the wingspan (Reb) in (b). The normalised wing-root
offsets in all the cases were maintained to be b̂0 = 0.16.

to the plane. The vortex core was identified by the regions where |γ2| > 2/π as
being locally dominated by rotation. The circulation inside this region was calculated
by integrating the spanwise vorticity. When plotted against the spanwise location,
the circulation initially increased and then suddenly dropped to show two circulation
values corresponding to the dual LEVs. This location was referred to as the LEV-split
location. The details of this approach can be found in Harbig et al. (2013).

As can be seen in figure 4, the LEV-split locations for the wings of four different
aspect ratios were tracked over a range of Reynolds numbers (300 < Reb < 10 000).
With an increase in Reb, the split location for any A wing was observed to move
towards a lower r/b, i.e. towards an inward location along the span. If plotted
against the chord-based Reynolds number (Rec), the curves of the split location for
different aspect ratios are different. The splits at higher A at a chosen Rec occur
more towards the root than the lower-A wings. However, if plotted against the
span-based Reynolds number (Reb), all the four curves appear to collapse onto a
single curve with a variation of less than ∼5 % of the span, suggesting that the LEV
structures at any given Reb are similar, at least over the range of aspect ratios studied
(1.8 6A6 7.28).

Note that these results also extend the range of aspect ratios examined by Harbig
et al. (2013) by including a short-span A = 1.8 wing. This is relevant because a
number of previous studies have examined short-aspect-ratio geometries, especially
A = 1 square planforms and A = 2 rectangular planforms. As the aspect ratio
is decreased towards very low values, it might be expected that this would affect
the ability of the LEV to fully form, and the nonlinear effects of the root and tip
vortices would be greater. Also, for very large aspect ratios, the LEV streamwise
size should start to become comparable to, or extend beyond, the chord, thus the
chord length should begin to have a larger effect. Hence it is interesting that the
span-based Reynolds number collapses the split location as the aspect ratio is varied
over a factor of 4 and the Reynolds number is varied over a factor of 100.

Perhaps also of interest is that the chord-based Reynolds-number scaling appears
to work better at smaller Reynolds numbers, as shown by the convergence of the
curves in figure 4(a) for the lower end of the Reynolds-number range. In line with
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FIGURE 5. (Colour online) Plots of CL are shown as a function of A for four different
Reynolds numbers, with no wing-root offset in (a) and with the offset b̂0 = 0.32 in (b).

the discussion above, this would seem to be related to the fact that, for smaller
Reynolds numbers, the cross-sectional size of the LEV structure is much bigger
because increased diffusion prevents a tight roll-up of the leading-edge separating
shear layer. This effect of the increased diffusion on the LEV size at low Rec has
also been observed in the defocusing digital particle image velocimetry (DDPIV)
experiments by Kim & Gharib (2010). Adding to this is reduced spanwise flow,
reducing the advection of vorticity towards the tip (Birch & Dickinson 2001; Birch
et al. 2004). Thus, at small Rec, because of its larger length scale, the LEV growth
during rotation will be more strongly influenced by the size of the chord. Despite
this, even at Reb = 300, corresponding to that of an actual fruit fly, figure 3(a–d)
shows that the spanwise scaling still works reasonably well in characterising the LEV
structure. Therefore, throughout this study, the span-based Reynolds number is used
to separate Reynolds-number and aspect-ratio effects.

3.2. Effect of A and Reb at different offsets
Since the LEV structure is similar for wings of widely different aspect ratios rotating
at a constant Reb, at least to first order, the lift acting on them might be expected
to be similar. However, as observed by Harbig et al. (2013), the lift coefficient is
influenced by A, depending on Reb. Additionally, the wing-root offset can also
influence the mean lift coefficient (CL); this offset has been shown to be responsible
for the discrepancies in the values of CL reported by various researchers. Thus, in this
section, the reasons behind the variation of CL at various A values are investigated
for two different wing-root offset ratios (b̂0 = 0 and 0.32). Here, the time-mean lift
coefficient (CL) has been obtained by averaging the instantaneous lift coefficients
over the final 30◦ rotation of the wing, but noting that the variation over that angle
is relatively small (see figure 2).

For zero offset, figure 5(a) shows that, for Reb= 300, CL reduces continuously with
an increase in A beyond the value 2.91. However, at a higher Reb (Reb = 1000), CL

increases slightly for A 6 4 and then decreases for higher A values. Further, with
an increase in Reb, the peak CL is reached at A ' 5. For an offset b̂0 = 0.32, in
figure 5(b), CL is not observed to increase, but remains relatively stable for the similar
range of A values where it was observed to increase in figure 5(a). Thus, at lower
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Effects of aspect ratio, Re and Ro on a rotating insect wing 931

Reynolds numbers, wings of lower aspect ratio appear to perform better; however, on
increasing Reynolds number, the optimal aspect ratio increases to larger values. The
effect of petiolation is to shift the optimal aspect ratio to smaller values, although
at higher Reynolds numbers there is still a local maximum in the lift coefficient for
A∼5. In general, it can be inferred from these results that the wings of higher aspect
ratio can perform optimally only at higher Reynolds numbers whereas the wings of
lower aspect ratios can perform near optimally over a wider Reynolds-number range.

The reason behind the different behaviours at low and high Reynolds numbers
was further investigated. Figure 6(a–f ) shows the pressures on the wing surfaces of
different aspect ratios rotating at Reb = 300. In all the cases, the highest magnitude
of suction is present under the area covered with the LEV towards the leading edge,
as can be seen in figure 6(g–l). The magnitude of suction, identified by the negative
pressure on the wing surface, is observed to reduce with an increase in A, perhaps
due to a lower area available to redistribute the pressure on the wing surface. It is
important to note that the vortex breakdown has occurred after the LEV and the
trailing edge vortex (TEV) have merged with the tip vortex (TV) and turned into the
wake. Moreover, the stagnation point, identified by zero relative pressure, is always
outside the wing surface. The continuous reduction in the magnitude of suction results
in a reduction in the lift coefficient. It can be seen that, in all the cases at Reb= 300,
no vortex breakdown is observed, as has also been noted by Lentink & Dickinson
(2009b). The vortex breakdown is typically observed at higher Reynolds numbers,
where the LEV undergoes enlargement, followed by a burst into smaller non-coherent
vortical structures. However, at Reb = 300, the LEV split can be observed aft of
the wing tip, which separates the merged LEV–TV–TEV structure into two coherent
vortical streaks diminishing in the wake.

The magnitude of suction is higher at a higher Reb, as can be seen in figure 7(a–f ).
At this Reb of 4000, the vorticity is transported at a higher rate through the LEV core,
causing it to reduce in size compared to that at the lower Reb. In addition, the lower
diffusion also allows the LEV structure to remain more compact and closer to the
wing surface, as can be seen in figure 3. It can be noted from figure 7(g–l) that, unlike
the low-Reb flow, vortex breakdown occurs at a spanwise location before the LEV
merges with the tip vortex. As indicated by Shyy & Liu (2007), the vortex breakdown
occurs at high Reb due to a stronger swirling flow associated with a more compact
LEV. The stagnation point is observed to be on the wing surface near the location of
the vortex breakdown, past which the LEV connects to the tip vortex, creating a trail
of small unstable vortices in the wake. With an increase in the aspect ratio, the trailing
edge is observed to move closer to the stagnation point. For A> 5.1, the stagnation
point moves away from the wing surface, accompanied by a drop in the lift.

Thus, purely based on the lift performance in rotation, the optimal wing aspect
ratio at Reb = 300 is ∼3, which interestingly is the same as a real fruit fly wing
flapping at a Reynolds number in a similar range. As Reb increases, the optimal aspect
ratio also increases. However, the aspect ratios lower than the optimal one have a
lift performance that is not very different from that of the optimal wing. Hence, as
pointed out above, the low-A wings perform better over a wide range of Reynolds
numbers whereas the high-A wings perform better only at high Reynolds numbers.
Interestingly, even in nature, low-aspect-ratio wings are found in insects flying over a
wide range of Reynolds numbers. For example, the fruit fly D. melanogaster and the
beetles Cerambycid species and Melolontha vulgaris fly at the approximate Reb values
of 350, 5000 and 13 000, respectively, and have wing aspect ratios close to 3 (Weis-
Fogh 1973). However, high aspect ratios (A> 5) can be found only in insects that
fly at high Reb (>103), such as the crane fly (Tipula paludosa, A= 5.5, Reb∼ 3000)
and the common hawker (Aeshna juncea, A= 5.6, Reb ∼ 10 000) (Ellington 1984).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

23
 A

ug
 2

01
9 

at
 0

0:
33

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
83

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.833


932 S. S. Bhat, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

Y
Z

X

3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0
-0.3
-0.6
-0.9
-1.2
-1.5
-1.8
-2.1
-2.4
-2.7
-3.0

30
27
24
21
18
15
12
9
6
3
0
-3
-6
-9
-12
-15
-18
-21
-24
-27
-30

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

( j) (k) (l)

ø*
z

p*

FIGURE 6. (Colour online) At Reb = 300, the normalised pressure (p∗) contours on the
suction-side surface of the wings of various aspect ratios are shown in (a–f ). The LEV
is represented using an isosurface of the constant Q-criterion coloured with ω∗z in (g–l).

3.3. Effect of the presence of a central body

As mentioned earlier, the presence of a central body is difficult to avoid in
experiments and for robotic flyers. The effect of the presence of the holder for
different Rossby numbers has been investigated. In this study, we modelled two sets
of geometries: first, with holders of varying sizes that cause the wing to be offset
from the rotation axis by an amount b0; and second, without holders, but shifting the
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FIGURE 7. (Colour online) At Reb= 4000, the negative pressure on the wing’s surface on
the suction side is shown to be reducing with A in (a–f ). The LEV is represented using
an isosurface of the constant Q-criterion coloured with ω∗z in (g–l).

wing root away from the rotation axis by the same amount as that with the holders.
In all these cases, the wing was rotated with Reb = 1000.

The time traces of the lift coefficient for different offsets are compared in
figure 8(a). The lift coefficient of the wing is similar with and without the holder for
smaller offsets, with the difference increasing with offset especially at longer times.
For the two smallest holder sizes considered, b̂0= 0.23 and 0.48, when averaged over
the last 30◦ of rotation, the difference between C̄L of the wing with and without the
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FIGURE 8. (Colour online) The time traces of the coefficient of lift acting on the wing of
A= 2.91 rotating at Reb= 1000 with and without holders for different offsets are plotted
in (a). In (b), the time traces of the coefficient of lift acting on the holders for the same
cases show an influence of the holder size on the lift.

holder is less than 1 %. A noticeable difference is that the lift coefficient of the wing
without the holder remains constant after t/T ∼ 0.5, whereas the lift coefficient of the
wing with the holder keeps reducing with time. This reduction in the lift coefficient
with time is greater for larger holders, which indicates that this is caused by the
presence of the holder. The coefficient of lift exerted on the holder is also monitored
separately, as presented in figure 8(b). The CL of the holder with b̂0 = 0.23 is small,
accounting for only approximately 5 % of the total lift for long times. When observed
during the time t/T < 0.25, the CL of the holder increases dramatically with its size.
For the holders in the range b̂0 6 0.98, beyond t/T = 0.5, CL reaches an almost
constant value close to 0.1. However, for larger holders, CL reduces continuously
with time, without reaching a stable value. Larger holders have a greater drop in
CL, which becomes negative for b̂0 > 1.98. Therefore, the presence of the central
body can be assumed to have a negligible influence on the lift force only if its size
(in terms of the wing offset equal to its radius) is less than b̂0 = 0.5. Accordingly,
to investigate Rossby-number effects in the present study, where the range of wing
offsets is b̂0 > 0.5, the wing has been modelled without the presence of the holders.

3.4. Effects of Reb and Rob

In past studies, the lift on a rotating wing has been observed to be dependent on
the Reynolds number. However, it should also be noted that the lift also depends on
the wing-root offset, which essentially changes the Rossby number. This is shown by
comparing the variation of CL over a range of Reynolds numbers 75 6 Reb 6 4000
between three different wing offsets b̂0=0, 0.08 and 0.16, such that the corresponding
Rossby numbers were Rg/c= 1.66, 2.05 and 2.51, respectively. First, the wing with
Rg/c= 1.66 was rotated about its rotation axis and the time trace of CL was obtained,
similar to that in § 2. Since CL remains constant past t/T = 0.5, the mean lift
coefficient CL was obtained by averaging CL over the last 30◦ of rotation, which
corresponds to the normalised time 0.9 6 t/T 6 1. The CL value was observed to
increase with Reb due to an increased suction created by the increasingly compact
LEV core, as shown in a later section. However, at higher Reynolds numbers,
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Rg/c = 2.51
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Reb = 300, rotating
Reb = 300, translating
Reb = 1000, rotating
Reb = 1000, translating
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Reb = 4000, translating
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FIGURE 9. (Colour online) The variation of CL with Reb is shown in (a) for the wing of
A= 2.91 with three different offsets changing its Rossby number as Rg/c= 1.66, 2.05
and 2.51. The variation of CL with Rg/c is shown in (b) for the Reynolds numbers
Reb = 300, 1000 and 4000. Here, the dashed lines represent the value for the purely
translating wing at these Reynolds numbers. The solid lines are trend lines covering the
higher-Rossby-number range.

the reduction in viscosity becomes less important, with LEV bursting limiting the
contribution of the LEV.

As can be seen in figure 9(a), at a low Reb, there is a larger increase in CL for the
same increase in Reynolds number compared to that at a higher Reb. Figure 9(a) also
indicates that the lift coefficient is dependent on Rossby number, which was varied by
changing the wing offset. With an increase in Rg/c, caused by increasing offset, the
values of CL decrease, which shifts the CL–Reb curves downwards. Extending these
results, the Rossby number was varied over a wider range (1.66 6 Rg/c 6 10.1) and
the variation of CL was obtained, as shown in figure 9(b). The CL value decreased
with an increase in Rg/c and approached the value for the translating wing. This trend
is in line with the variation of lift coefficient demonstrated by Lee et al. (2016) and
Tudball Smith et al. (2017).

It is important to note that the ratio Rg/c can be varied in two ways: first, by
varying the offset, thereby changing Rg; and second, by varying the aspect ratio,
thereby changing c (for a constant wingspan). In most Rossby-number studies,
Rg/c is called the Rossby number. Since the wingspan was found to be a more
relevant parameter to define the flow structure, the use of Rg/c was re-examined in
this context. The scaling of the Navier–Stokes equations is revisited as shown in
appendix A. Using a similar approach to Lentink & Dickinson (2009a), the length
scale for the acceleration terms is taken as the wingspan. The revised scaling shows
that, for a rotating wing, the centripetal and Coriolis accelerations scale with Rg/b.

The difference between using the ratios Rg/c and Rg/b for Rossby number is made
clear by observing the flow structures over wings of various aspect ratios. First, the
wings of A= 2.91, 5.1 and 7.28 were rotated at Reb = 300. With the rotation axis
placed at the wing root, the wing of A= 7.28 has the largest Rg/c. For a constant
span, the wings of A = 5.1 and 2.91 have longer chords. Therefore, to maintain a
constant Rg/c, the values of Rg for the wings of A = 5.1 and 2.91 were increased
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FIGURE 10. (Colour online) The LEV structures, identified by Q-criterion, for wings of
A= 7.28, 5.1 and 2.91 at a constant Rg/c rotating at Reb= 300 are shown in (a–c). The
LEV structures for the same wings at Reb= 300, but with a constant Rg/b, are shown in
(d–f ). The isosurfaces are coloured by ω∗z . The variations of CL with Rg/c, in (g), and
with Rg/b, in (h), are shown for the wings of various A rotating at Reb= 300. The data
by Tudball Smith et al. (2017) are for the wing rotating at Reb = 350.

by moving their wing roots away from the rotation axis. The LEV structures over
the three wings with a constant Rg/c are compared in figure 10(a–c) in the order of
reducing A. It can be seen that for A= 7.28, the vorticity of the LEV is advected
in the spanwise direction towards the wing tip. A vortex trail is left in the wake
after the LEV merges with the tip vortex and tilts. However, with a reduction in A,
the spanwise advection of vorticity gradually decreases. This is due to the further
increase in the wing-root offset that creates a reduction in the Coriolis effects, which
are important to maintain the LEV structure intact (Jardin 2017). However, the ratio
Rg/b can be maintained as constant across different aspect ratios by providing the
same wing-root offsets. In the present case, Rg/b = 0.57 is obtained for the three
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Effects of aspect ratio, Re and Ro on a rotating insect wing 937

wings with a zero offset. This resulted in similar Coriolis effects for the three wings.
Therefore, the LEV structure in the constant-Rg/b cases is similar across different A,
as shown in figure 10(d–f ). The comparison of time evolution of the flow structures
over A = 7.28 and A = 2.91 wings at a constant Rg/c with those at a constant
Rg/b can be seen in movie 1 in the supplementary material available online at
https://doi.org/10.1017/jfm.2018.833. It can also be noted that all the cases shown
in figure 3 have a non-zero offset (b̂0 = 0.16) with a constant Rg/b (= 0.7), which
exhibit a similar LEV structure across various aspect ratios at a constant Reb. This
suggests that the ratio Rg/b is a better choice to characterise the flow structure and
resultant aerodynamics. Hence, the revised definition of the Rossby number, which
represents the relation between inertial and Coriolis forces, in the context of rotating
wing planforms is

Rob = Rg/b. (3.3)

Moreover, when the variation of CL with Rg/b is obtained for various aspect
ratios, the comparison shows a monotonic decrease in CL with A, as can be seen
in figure 10(h), unlike that in figure 10(g). This decrease in CL with an increase
in A at Reb = 300 is due to the decrease in the magnitude of suction pressure, as
explained earlier in § 3.2. For the wings with a constant c and constant Rg, as A
increases, the difference between the tip and the root radius (and hence the difference
between the normalised streamwise velocities at the two points) increases. Hence,
at a constant Reb, even though the mean circulation fed into the LEV from the
leading edge remains similar (due to constant Rg) across various aspect ratios, the
spanwise vorticity flux increases, which likely causes a more compact LEV positioned
closer to the surface and so increasing the suction. This contributes to an increased
CL. However, as the wingspan is increased, at some point, as the LEV grows in
cross-section along the span it will no longer be contained within the chord of the
wing. This will limit the growth in lift for high-A wings, and because the area
keeps increasing, CL will again reduce. Hence, these two factors compete to cause
an increase in CL initially, up to a certain A, and then a decrease. This is consistent
with the observations of Lee et al. (2016) and Jardin & Colonius (2018) that show
that CL reaches the maximum value near the optimal A and decreases at higher A.
Therefore, although there seems to be a collapse of the curves for the two highest
aspect ratios in figure 10(g), we expect that at even higher A, CL would again
begin to drop. On the other hand, for the wings with a constant b and constant Rg,
the forcing driving the spanwise flow is the same (since the tips and roots are at
the same points for both wings) across A and it might be expected that the mean
LEV circulation is also similar. However, the active area for suction reduces with A
and there is also a decrease in the magnitude of suction due to the influence of the
proximity of the opposite-sign vorticity from the trailing edge. Hence, at a constant
Rg/b, CL is seen to decrease with A, consistent with that shown in figure 5.

Following the revised definition of the Rossby number, the curves from figure 9(b)
are scaled as a function of Rg/b, as can be seen in figure 11. The data for a wing with
A= 2 rotating at Reb = 1000 have been extracted by interpolation from the contour
map by Lee et al. (2016). The curve obtained from their data compares well with that
from the present study for the same Reynolds number, even though the aspect ratios
are different. Earlier, it has been shown in § 3.2 that the values of CL at Reb = 1000
change by a very small amount for the wings of A in the range 1.8 6A6 4 (see
figure 5). Consistent with this result, the wings of A= 2.91 and A= 2 are shown
to have only a minor change in CL over a wide range of Rob in figure 11. In all the
cases, there is a decrease in CL with an increase in Rob, which is investigated further.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

23
 A

ug
 2

01
9 

at
 0

0:
33

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
83

3

https://doi.org/10.1017/jfm.2018.833
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.833


938 S. S. Bhat, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

Rg/b

Reb = 300, rotating
Reb = 300, translating
Reb = 1000, rotating
Reb = 1000, translating
Reb = 4000, rotating
Reb = 4000, translating

0.6

0.8

1.0
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1.4

1.6

1.8

2.0
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1 2 3 4

Lee et al. (2016), Reb = 1000, 

FIGURE 11. (Colour online) The variation of CL with Rg/b is plotted for Reynolds
numbers Reb = 300, 1000 and 4000 for the wing of A= 2.91. Data extracted from Lee
et al. (2016) for an A= 2 rectangular wing have been added for comparison.

The lift force on the wing is due to the difference in the pressures on the pressure
and suction sides of the wing. Hence, for the range Rob 6 1.02, where the lift
coefficient drops drastically, a comparison of pressures is shown in figure 12. The
Reynolds number in all these cases was 1000. It can be clearly seen that the pressure
distribution on the wing suction side changes dramatically with Rob. There is a
smaller change observed on the pressure side. At a low Rob, the suction-side surface
has a greater magnitude of negative pressure, creating a higher suction contributing
to the overall lift. As the Rossby number is increased, the magnitude of the suction
pressure on the wing surface reduces, thereby reducing the lift. It should be noted
that the presence of the central body in this range of Rob has a negligible impact on
the lift since the corresponding offset ratios are in the range b̂0 < 0.5.

A detailed investigation is conducted by observing the flow structures. In
figure 13(a–f ), the LEV is shown using a semitransparent isosurface of the
three-dimensional Q-criterion. The secondary vortex features inside the LEV are
highlighted using the isosurface of the two-dimensional Q-criterion. The presence of
the dual-LEV structure is evident in all the cases. The primary shear layer separates
from the leading edge and forms the vortex LEV1. The secondary vortex that splits
from LEV1 near the mid-chord location forms the vortex LEV2, as can be seen
in figure 13(g). It is important to note that with an increase in Rob, the primary
shear layer spreads over a larger area, which is accompanied by a decrease in the
strength of the secondary vortex. This variation of the vortex strength in terms of
its vorticity can be seen more clearly in figure 13(g–l), where the spanwise vorticity
contours are shown at three different spanwise locations for each case. In the range
0 6 Rob 6 0.78, both the primary and secondary vortices are clear and distinct. The
primary shear layers elongate more for Rob > 0.78 and the secondary vortex loses its
strength and merges with the primary shear layer. The dramatic change in the LEV
structure with an increase in the wing-root offset observed by Bhat et al. (2018) in
the scanning PIV experiments provides additional evidence to this observation. Thus,
it is important to note that the LEV structure changes markedly with an increase
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(a) Rob = 0.57 (b) Rob = 0.63 (c) Rob = 0.70

(d) Rob = 0.78 (e) Rob = 0.86 (f) Rob = 1.02

(g) Rob = 0.57 (h) Rob = 0.63 (i) Rob = 0.70

( j) Rob = 0.78 (k) Rob = 0.86 (l) Rob = 1.02
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FIGURE 12. (Colour online) At Reb = 1000, the comparison of normalised pressures on
the suction-side surfaces are shown in (a–f ) and those on the pressure-side surfaces are
shown in (g–l) for different values of Rob.

in Rob. The decrease in its strength must be responsible for the decreasing suction
on the wing.

For a quantitative comparison, the normalised spanwise circulation around the LEV
(Γ ∗z ) on a spanwise cross-sectional plane was computed as

Γ ∗z =
Γz

Ugb
, (3.4)
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FIGURE 13. (Colour online) In (a–f ), the LEVs for different Rob are represented using
the semitransparent isosurfaces of the three-dimensional Q-criterion. Additionally, the
isosurfaces of the two-dimensional Q-criterion coloured with the normalised vorticity
are shown to highlight the secondary vortex features. The normalised spanwise vorticity
contours at the locations r/b= 0.3, 0.58 and 0.86 for all the cases are shown in (g–l).
Here, the black lines represent the isocontours of the two-dimensional Q-criterion.

where Γz is the circulation around the LEV core obtained by integrating the spanwise
vorticity over the region bounded by |γ2| = 2/π. When observed across various
spanwise planes, the normalised spanwise circulation around the LEV (Γ ∗z ) increases,
initially, with r/b, followed by a sudden drop when the LEV split occurs, as can
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FIGURE 14. (Colour online) The spanwise variation of the normalised spanwise
circulation (Γ ∗z ), mean normalised spanwise velocity (uz/Ug) and mean normalised
spanwise vorticity flux (uzωzb/U2

g) of the LEV for different Rossby numbers are shown in
(a), (c) and (d), respectively. Here, the filled symbols represent the values for LEV1 and
open symbols represent those for LEV2. The LEV circulatory lift coefficients obtained
from Γ ∗z and the actual CL for various Rob are shown in (b). The changes in the root
velocity (Ur), tip velocity (Ut) and the velocity gradient, with a change in Rob, are shown
by the schematic and line plot in (e) and ( f ), respectively. The data points shown in red
in ( f ) represent the mean spanwise vorticity flux extracted at r/b= 0.5 for various Rob.

be seen in figure 14(a). Beyond r/b ∼ 0.5, two different curves can be seen, which
refer to LEV1 and LEV2. For Rob= 1.02, only one curve is observed since the LEV
did not split. Overall, there is an increase in the circulation at any given r/b, with
an increase in Rob. Therefore, the LEV circulatory lift computed by integrating the
spanwise circulation is also observed to be increasing with Rob, as can be seen in
figure 14(b). This also matches with the trends predicted from PIV images, such
as those by Phillips et al. (2017). However, the overall CL computed directly from
the forces acting on the wing is observed to be reducing with Rob. Therefore, the
LEV circulatory lift coefficient does not appear to be an accurate estimator of the
overall CL.

The spanwise variation of the mean spanwise velocity inside the LEV (uz/Ug)
was also tracked across various Rob, as shown in figure 14(c). In all the cases, the
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(a) Rob = 0.57 (b) Rob = 0.63 (c) Rob = 0.70

(d) Rob = 0.78 (e) Rob = 0.86 (f) Rob = 1.02
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FIGURE 15. (Colour online) The normalised spanwise pressure gradients [(∂p/∂z)∗] on
the wing suction side are compared for different values of Rob in (a–f ).

spanwise velocity initially increased, followed by a gradual decrease along r/b> 0.2.
Overall, uz/Ug decreased with an increase in Rob, which resulted in a decreased
spanwise vorticity flux, denoted by the term uzωzb/U2

g , as can be seen in figure 14(d).
This reduction in the spanwise velocity may have been induced by the reduced
streamwise velocity gradient, as described by the schematic and plot in figure 14(e, f ),
respectively. With an increase in the wing-root offset, the relative velocity gradient
between the tip velocity (Ut) and root velocity (Ur) decreases in inverse proportion,
which induces a lower spanwise flow. The resulting spanwise vorticity flux at the
midspan location also shows a reduction, matching the trend closely with the decay
of the velocity gradient. Hence, it can be seen that an increase in the Rossby number
reduces the action of the Coriolis force, causing a reduction in the outward vorticity
flux. This, in turn, weakens the LEV and creates a lower magnitude of suction, which
is responsible for the reduction in CL, as shown in figure 11. It can be noted from
figure 14(c) that, after the split, there is a higher spanwise velocity through LEV2,
whereas there is a negative spanwise velocity through LEV1. This is due to the tilting
of LEV in the wake and shifting of the peak negative spanwise pressure gradient
towards the trailing edge, as discussed below.

The footprints of the decreased LEV strength can be observed in the spanwise
pressure gradient on the wing’s surface, as shown in figure 15(a–f ). Here, the
normalised spanwise pressure gradient is calculated as (∂p/∂z)∗= (∂p/∂z)[b/(0.5ρU2

g)].
The location of the zero pressure gradient near the midspan region indicates the
location where the LEV changes its direction and turns into the wake. For lower Rob,
a more negative pressure gradient is present near the midspan region, which allows
a stronger transport of the fluid in the spanwise direction. Therefore, at lower Rob,
the LEV is narrower and stronger at the core, where the peak spanwise velocity is
along the core of LEV2. With an increase in Rob, the region of the negative pressure
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FIGURE 16. (Colour online) The contours of CL are shown on the plane of A and Reb
in (a) for Rob= 0.7. The contours of CL are shown on the plane of A and Rob in (b) for
Reb = 300. The variations of Reb and Rob with respect to A in past studies are shown
in (c) and (d), respectively. There are two sets of parameters used by Carr et al. (2015),
where FM corresponds to those used for force measurements and SPIV corresponds to
those used for SPIV measurements (only at their maximum values of Reb).

gradient shrinks towards the wing root. Therefore, the weakening of the LEV is
accompanied by a reduced spanwise flow.

Thus, it can be concluded that the lift coefficient of the wing is a strong function
of the Rossby number in terms of the spanwise scaling, related by an inverse
proportionality. The lift coefficient at a very high Rob approaches the value for a
purely translating wing. The decrease in the lift coefficient is associated with the
weakening of the LEV caused by the reduced spanwise pressure gradient, allowing a
lower spanwise vorticity transport.

3.5. Combined effects of A, Reb and Rob

As discussed earlier, the variation of CL with A has been debated in past studies. In
such studies, it was often also observed that the values of Reb and Rob also varied
with respect to A. Therefore, from the three-dimensional parameter space explored
in the present study, the combined effects of A, Reb and Rob are obtained in terms
of contours of CL mapped onto the plane of A and Reb in figure 16(a), and onto the
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plane of A and Rob in figure 16(b). The discrepancies in the literature, regarding the
effects of A, can be attributed to the simultaneous variations in Reb and Rob along
with A. From the information about the geometry and kinematics given in previous
studies on A effects, respective values of Reb and Rob were computed. The variations
of Reb and Rob with respect to A in these studies can be seen in figure 16(c,d),
respectively.

Consider the data, for example, by Shahzad et al. (2016), where the value of Rob

has been maintained to be constant. Their Reb has increased with A, which would
result in an increased CL. However, an increase in A beyond a certain value would
cause a reduction in CL, cancelling out the increase due to Reb. A combined effect of
these parameters resulted in a small increase in CL in the lower range of A, followed
by a relatively stable CL at higher values of A, as can be seen in their figure 26(c).
Similarly, the data by Phillips et al. (2015) show an increase in Reb and a decrease in
Rob, both contributing to an increase in CL. An increase in A beyond a certain value
should decrease CL. A combined effect resulted in an increase in CL in the range 1.56
A6 6, followed by a slight decrease in CL at a higher A, as can be seen in their
figure 14(b). Interestingly, Carr et al. (2015) conducted SPIV measurements of the
flow over rectangular wings of aspect ratios 2 and 4, while their Reb and Rob values
were changed only by a small amount (<4 %). The three-dimensional flow structure
over the two wings was observed to be similar, which confirms the use of the span-
based scaling. It should be noted that their Reynolds number was scaled based on the
wing-tip velocity, which was maintained to be ∼10 500.

It should be noted that most experimental studies have been conducted at high
Reynolds numbers (Reb ∼ 104), beyond the upper limit of the present study. The
reduced viscous effects, amplification of background noise and strong spanwise flow
at such high Reynolds numbers might cause an early bursting of the LEV with very
high undulations in the LEV structures. Hence, it might be difficult to identify the
LEV characteristics, such as the LEV-split location. Therefore, in a future study at
a higher Reb, a different approach may be required to verify the correlation of the
span-based Reynolds number with the LEV structure, although it is not clear why
the scaling should not hold at least of over a reasonable aspect-ratio range.

4. Conclusions

Recent studies have shown that the effects of the wing aspect ratio, Reynolds
number and Rossby number on the flow over a rotating wing are strongly coupled,
leading to seemingly contradictory variations in the lift coefficient as these individual
parameters are varied. In this study, we have tried to better decouple the effects of
these parameters by proposing the wingspan as a more appropriate length scale for
both the Reynolds number and Rossby number. In particular, the reasons behind the
variation in the lift coefficients in all the cases have been explored by observing the
variation in the flow structures contributing to the varying lift.

The study was conducted using three-dimensional direct numerical flow simulations.
From the observed flow structures, the wingspan was confirmed to be a more relevant
length scale than the wing chord for characterising the LEV structure formed over
the wing, supporting the applicability of the span-based Reynolds number (Reb)
proposed by Harbig et al. (2013). The current study extended the range of aspect
ratios previously considered to show that this scaling extends over a factor of 4
change in aspect ratio and a factor of 100 in Reynolds number. In addition, wings of
different aspect ratios were found to have a similar LEV structure at a constant Reb,
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even when their roots were offset from the rotation axis out to the range covering
most insects. Moreover, based on the mean lift coefficient (CL) acting on the wing,
low-A wings (A ∼ 3) were observed to perform well at all investigated Reynolds
numbers, whereas the high-A wings were observed to perform efficiently only at
higher Reynolds numbers. This appears to be due to a much more diffuse LEV
forming at low Reynolds number with less axial flow along it, so the effectiveness
of the LEV begins to reduce for longer aspect ratios. On the other hand, at higher
Reynolds numbers the LEV is more compact in cross-sectional area and can be
maintained in this form for a larger span. This may provide useful insights into the
range of wing aspect ratios observed at different Reynolds numbers in nature, and
indeed is consistent with typical insect aspect ratio/Reynolds number observations as
discussed in the text.

Experimental models of rotating wings typically involve a central body, for which
the wing is offset from its rotation axis. In the present study, the effect of the presence
of the central body was also investigated. For a low offset, the values of CL remained
constant past t/T = 0.5 due to a stable LEV. However, at higher offsets (b̂0 > 0.5), CL

was observed to decrease continuously with time, suggesting a significant influence of
the presence of the central body. This validates the use of holders in experiments as
they typically use smaller offsets than this limit.

Finally, the effects of Rossby number were studied by varying the wing-root offset
over a wide range. The flow structures over various A wings were observed to be
similar with a constant Rg/b rather than a constant Rg/c, suggesting the applicability
of a span-based scaling for the Rossby number. Indeed, for a fixed Reynolds number
(Reb), the lift variation curves with span-based Rossby number follow a monotonic
trend with aspect ratio; this is not the case for the curves based on the standard
chord-based Rossby number. The values of CL were observed to decrease with Rob,
approaching the value for the translating wing. This reduction was shown to be due
to the reduction in suction pressure on the wing surface. This was further observed
to be caused by weakening of the LEV on account of the reduced spanwise pressure
gradient and the spanwise vorticity transport.

The combined effects of the three parameters are shown on the contour maps of CL

on A–Reb and A–Rob planes. The discrepancies in past studies regarding the effects
of A on CL may be explained by the variations in Reb and Rob with respect to A.
Thus, in summary, this paper provides evidence and analysis suggesting that the use of
a Reynolds number and Rossby number based on span, together with the aspect ratio,
essentially provide a more orthogonal parameter set to examine and compare variations
in aerodynamic performance and flow structure of different sets of experiments and
simulations, than the commonly used chord-based parameters.
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Appendix
To understand the influence of Rossby number and Reynolds number on the flow

better, the Navier–Stokes (NS) equations are revisited by examining the key scalings
using the method similar to Lentink & Dickinson (2009a). The vector NS equation in
a rotating frame of reference is given by

ρ
Du
Dt
+ ρΩ̇ × r+ ρΩ × (Ω × r)+ 2ρΩ × u=−∇p+µ∇2u. (A 1)

Lentink & Dickinson (2009a) have scaled the velocity terms by the wing-tip velocity
(Ut) and the length terms by the mean chord (c). However, using the scaling based
on the findings of Harbig et al. (2013) and the present study, the variables can be
non-dimensionalised as follows: u∗= u/Ug, t∗= tUg/b, Ω∗=Ω/Ω , Ω̇∗= Ω̇/Ω̇ , r∗=
r/b, p∗= p/(ρU2

g) and ∇∗= b∇, where Ug is the velocity at the radius of gyration of
the wing, Ω is the time-averaged angular velocity, Ω̇ is the time-averaged angular
acceleration and b is the wingspan. Substituting these terms and dividing equation
(A 1) by ρUg

2/b gives

Du∗

Dt
+
Ω̇b2

U2
g

Ω̇∗ × r∗ +
Ω2b2

U2
g

Ω∗ × (Ω∗ × r∗)+
2Ωb
Ug

Ω∗ × u∗

=−∇
∗p∗ +

µ

ρUgb
∇
∗2u∗. (A 2)

Omitting the symbol ∗ for simplicity and rearranging the terms, the equation can be
rewritten as

Du
Dt
+
(Ω̇/Ω2)

(Rg/b)2
Ω̇ × r+

1
(Rg/b)2

Ω × (Ω × r)+
2

(Rg/b)
Ω × u

=−∇p+
µ

ρUgb
∇

2u. (A 3)

Thus, it can be noted that the viscous term scales with ρUgb/µ, which is the
span-based Reynolds number (Reb). The angular and centripetal accelerations scale
with (Rg/b)2 and the Coriolis acceleration scales with Rg/b. Thus, the use of a
span-based length scale for non-dimensionalisation suggests that the Rossby number,
which defines the influence of the rotational acceleration terms, should also depend
on the span rather than the chord. This would seem to make physical sense since the
rotational acceleration terms should depend on a radial rather than an azimuthal length
scale. For a constant speed rotation, the angular acceleration term can be omitted.
With an increase in Rg/b, the influence of the centripetal and Coriolis accelerations
reduces, which could have caused a reduction in the spanwise flow.
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