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a b s t r a c t 

Flow-induced vibration (FIV) of a bluff body is a complex fluid-structure interaction (FSI) problem, for 

which analytical solutions generally don’t exist. Therefore, such problems generally need to be examined 

with experimental methods or computational simulations. Researchers have developed various numerical 

methodologies to solve FSI problems using either conforming or non-conforming grid methods. However, 

these methods are not always ideal for flow-induced vibration problems, as they can be computation- 

ally expensive or generate low accuracy solutions, especially for the cases with large body displacements. 

FIV problems often require long simulation times because, for a given parameter set, the transient flow 

solution time can be long and generally at least 10 oscillation cycles are required to simulate the repre- 

sentative long term behaviour. Thus, to gain a clear understanding and enhance knowledge of FIV of a 

bluff body, it is advantageous to have an efficient numerical methodology. We have developed two effi- 

cient fully-coupled FSI solvers to accurately predict the FIV of an elastically mounted bluff body and a 

tethered bluff body. These FSI solvers were developed based on the widely used open-source CFD pack- 

age OpenFOAM . In these solvers, the fluid flow was modelled in a reference frame attached to the centre 

of mass of the solid body, so that a non-deforming grid can be employed. A predictor-corrector iterative 

method was used to enable strong coupling between the solid motion and the fluid flow. Each of the FSI 

solvers was validated against previously reported investigations. While efficient, the limitation of these 

FSI solvers is that they can only be used to examine the nature of FIV of a single, rigid bluff body. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Flow-induced vibration (FIV) problems of bluff bodies are con-

ronted in a wide range of engineering fields: fluid mechan-

cs, structural mechanics, vibrations, computational fluid dynamics

CFD) and acoustics. When a fluid flows past a bluff solid struc-

ure, a large amplitude fluctuating pressure force can develop near

he rear of the structure, leading to an unsteady wake. FIV is pri-

arily excited by this unsteadiness of the wake. Vortex-induced

ibration, or (VIV), is a category of FIV, occurring through the syn-

hronisation of structural vibration with the vortex shedding. This

elf-limited vibration state can be expected to be excited when

he vortex shedding frequency is sufficiently close to the natu-

al frequency of the solid system. FIV can cause fatigue damage

r even a failure of a structure, and therefore it is a crucial con-

ideration for the design of many engineering systems. Some ex-

mples are bridges, chimney stacks, aircraft, ground vehicles, sub-
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arines, tethered structures, buoyancy and spar hulls, pipelines,

able-laying and offshore structures. 

Due to the complex nature of FIV problems concerning bluff

ody flows, it is difficult to obtain an analytical solution. Ex-

eriments or computational simulations are the only feasible

ptions for investigating FIV. To reveal the fundamentals of

he field, a huge volume of experimental studies has been

onducted on FIV on generic shapes. The major findings of

hese studies can be found from the comprehensive reviews of

1,2,28,29,39,47,48,50] and [9] . 

In the literature, phenomenological models have been devel-

ped following the idea of wake oscillators, to predict FIV. These

odels were based on the van der Pol or Rayleigh equation, which

odels a self-sustained, stable and nearly harmonic oscillation of

nite amplitude [10,51] . These models still need to be improved

o accurately predict FIV. Moreover, these models are always re-

uired to be fine tuned based on the experimental observations

nd have a limited contribution toward the understanding of FIV

roblems. The experimental studies have their own limitations, for

xample, difficulties in the visualization of the wake, especially for

he case of complex and three-dimensional geometries, and diffi-

https://doi.org/10.1016/j.compfluid.2019.104340
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104340&domain=pdf
mailto:methma.mm@gmail.com
https://doi.org/10.1016/j.compfluid.2019.104340
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culties of obtaining accurate force measurements, as a result of ex-

ternal noise. Therefore, computational simulations are essential to

advance the knowledge of FIV. Compared to experimental studies,

fewer computational studies have been reported on FIV, as it is

difficult to implement an accurate, stable and efficient numerical

methodology. 

In FIV problems of bluff bodies, the flow of the fluid and the

motion of the solid need to be solved in a coupled manner, as both

the fluid and the solid body have their own motion. There exist

two main fluid-structure interaction approaches, which have been

used to solve FIV problems of bluff bodies for many years. One is

the conforming grid method and the other is the non-conforming

grid method [15] . The conforming grid method is the conventional

method, which treats the interface between the fluid and the solid

as a physical boundary, and deforms the grid of the fluid domain

according to the motion/or deformation of the solid structure. This

method is also known as the arbitrary Lagrangian–Eulerian (ALE)

method [16,42] or adaptive-mesh method. This method consists of

three different solver algorithms; a fluid flow solver, a solid de-

formation solver (if the solid is a flexible body), and an internal

grid deformation solver. At each time step, the method needs to be

proceed through all three solvers. The limitations of this method

arise from the grid deformation step. This step can be quite chal-

lenging and time-consuming, especially for 3 D problems. More-

over, for the scenarios involving large translational or rotational

structural motion, the grid can be severely distorted, leading to

a less accurate solution. The studies of [8,14,49] are some exam-

ples of using a conforming method for FIV problems. Although

conforming methods have been widely used for many fluid-

structure interaction problems, it is not an efficient method for FIV

problems. 

For FSI problems, widely used non-conforming grid methods

are the immersed boundary (IB) methods. These methods treat the

boundary between the fluid and the solid as a virtual interface,

and the related interface conditions are imposed on the model

equations as constraints so that a non-conforming grid can be em-

ployed. The classical IB method was first introduced by [30] , to

simulate blood flow in the human heart. As re-meshing is not

required in IB methods, and it can be applied to a wide vari-

ety of problems including complex geometries and large struc-

tural deformations. Some examples are: FSI problems in heart val-

ues [5,13,20] ; bio-film processes [7] ; particulate flows [45] ; flap-

ping wings [27] ; flow-induced vibration problems [21,40,41] . In

this method, the structural grid is arbitrarily immersed in the back-

ground fluid grid with a moving boundary. The motion of the im-

mersed boundary is usually taken into account by adding a ficti-

tious body force in the governing equations. The major disadvan-

tage of these methods is the reduced accuracy of the solution near

the fluid-structure interface, due to IB methods typically smear-

ing out the sharp interface to a layer of the thickness of the or-

der of the mesh width. This limits the IB method’s applicability to

high Reynolds number flows. Beside thick immersed boundaries,

IB methods can result in less accurate predictions, as the Dirich-

let boundary condition is not able to be applied strongly on the

interface. 

As a remedy to the low accuracy due to the thick-interface of IB

methods, a set of sharp-interface IB methods has been recently de-

veloped [5,21,25] . In these methods, the resolution near the fluid-

solid interface is increased enabling a sharp interface. Cut-cell

methods, immersed interface methods, and hybrid Cartesian im-

mersed boundary methods are some examples of these methods,

which have increased the accuracy of the solution, but the com-

plexity of the solution process has also increased. Even for these

improved methods that have higher-order accuracy at a boundary,

because the boundary translates through the grid, it still restricts

the resolution achievable at a boundary to the size of the cell size.
Compared to the adaptive mesh methods and immersed bound-

ry methods, a flow-induced vibration problem of a rigid bluff

ody can be solved accurately and efficiently when the fluid

ow is modelled in a body-fixed reference frame. This is a non-

onforming grid method, which solves the fluid flow and the solid

ody motion in a coupled manner without deforming the grid.

his method has been previously used in the studies of [3,4,22–

4] to investigate the forced vibration and the free vibration of an

lastically mounted cylinder. They have implemented this numer-

cal methodology based on the spectral element method, which

as higher order accuracy. As the spectral element methods have

ainly been developed for direct numerical simulations, applica-

ions were limited to low Reynolds number flows. This article de-

elops a fully coupled FSI solver in the OpenFOAM environment to

ccurately and efficiently predict the flow-induced vibration prob-

ems of both elastically mounted and tethered bodies. OpenFOAM

s an open source CFD package which comes with a range of inbuilt

urbulence models. Therefore, this solver can be easily adapted for

igh Reynolds number flows. Although this method is efficient and

ccurate, it can only be applied for the investigations of FIV prob-

ems of a single, rigid bluff body. As the fluid flow is modelled in

 reference frame attached to the centre of the mass of the solid

ody, it cannot be used for FIV problems of multiple bodies or

ther FSI problems involving flexible bodies. 

Our previous articles [34–37] provide a general outline of this

ethod. This article presents a detailed description of the numer-

cal methodology, including the implementation process in Open-

OAM. The structure of present article is as follows: Section 2 pro-

ides a brief overview of OpenFOAM including discussions on the

lgorithm of the icoFoam flow solver for the laminar flows and val-

dation studies for non-VIV studies; following this, Sections 3 and

 discuss the numerical approaches used for the flow-induced

ibration problems of an elastically mounted body and a teth-

red body, respectively, providing detailed descriptions of the FSI

ystems, FSI solver algorithms, implementations of the solvers in

penFOAM, and validation studies; finally, the article ends with

onclusions in Section 5 . 

. Simulations in openfoam 

The widely used open-source CFD package, OpenFOAM, is made

vailable by OpenCFD Ltd and distributed freely via https://www.

penfoam.com for Linux operating systems. This CFD package is

eveloped based on the finite-volume method, and it has the ca-

ability of performing simulations on multiple processors in paral-

el, achieving good parallel efficiencies. OpenFOAM is a framework

or developing application executables that use packaged function-

lity contained within a collection of approximately 100 C+ li-

raries [43] . OpenFOAM contains approximately 250 pre-built ap-

lications that fall into solver and utility categories. Solvers are de-

igned to solve a specific problem in continuum mechanics while

tilities are designed to perform tasks that involve data manipula-

ion. OpenFOAM solvers are capable of handling a wide range of

roblems in fluid dynamics. Users can develop new solvers, utili-

ies and libraries with some pre-requisite knowledge of the under-

ying method, physics and programming techniques involved. 

OpenFOAM comes with both pre- and post-processing environ-

ents. The interface to the pre- and post-processing environments

re themselves OpenFOAM utilities, thereby ensuring consistent

ata handling across all environments. OpenFOAM has a limited

raphical interface. Therefore, the utility paraFoam provides visual-

sation capabilities for the grid and the predictions by connecting

o the data analysis and visualization application ParaView. 

Typically, an OpenFOAM case contains mainly three types of di-

ectories, namely the constant directory, the system directory and

he time directories. Only a brief description of the file system is

https://www.openfoam.com
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iven below, and readers are referred to the OpenFOAM user guide

43] for more details. The constant directory contains the full de-

cription of the case grid in a subdirectory called polyMesh . It also

ontains the files specifying physical and turbulent properties for

he application concerned, e.g. the file transportProperties . The sys-

em directory contains the files associated with the control param-

ters and solution procedures. It should contain at least the con-

rolDict, fvSchemes and fvSolution files. The controlDict file speci-

es the control parameters including the start/end time, the time

tep and parameters for data output. The fvSchemes file determines

he discretization schemes used in the solution, while the fvSolu-

ion file determines the equation solver algorithms, tolerances and

ther algorithm controls. A case directory contains individual files

or each time instance. The name of each time directory is based

n the simulated time at which the data is written. A time direc-

ory contains individual files of data for particular fields, e.g. veloc-

ty and pressure fields. 

.1. Governing equations of non-FIV simulations 

The fluid is assumed Newtonian and incompressible and the

avier–Stokes and incompressibility equations given in Eqs. (1) and

2) describe the motion of the fluid. 

∂ u 

∂t 
= −

(
u · ∇ 

)
u − 1 

ρ
∇ P + 

μ

ρ
∇ 

2 
u . (1) 

 · u = 0 . (2) 

ere, u = u (x, y, z, t ) is the velocity vector of the fluid at a given

ocation and at a given time, P is the pressure, ρ is the fluid den-

ity, assumed constant. Given constant density, it is usual to elimi-

ate explicit reference to the density by introducing the kinematic

ressure p = P/ρ, and the kinematic viscosity ν = μ/ρ . OpenFOAM

acilitates simulations in the dimensional form. For the present di-

ect numerical simulations, the only fluid property that is required

o be specified is the kinematic viscosity, ν , which can be obtained

y ν = UD/Re, where U is the freestream velocity, D is the diame-

er of the sphere/cylinder, and Re is the Reynolds number. 

.2. The icoFOAM flow solver for non-VIV simulations 

OpenFOAM has a wide range of standard solvers designed for

pplications in different categories of continuum mechanics. Flow

n the laminar regime has been considered so far. The pre-built

coFoam solver is considered to be appropriate for the present sim-

lations, as it is a transient solver for the incompressible, laminar

ow of Newtonian fluids. The icoFoam solver was implemented ac-

ording to the PISO (Pressure Implicit with Splitting of Operator)

lgorithm introduced by [17] . This algorithm approximates the spa-

ially and temporally discretized fluid equations with an order of

ccuracy O ( δt 2 ), with δt the time step. The widely used PISO algo-

ithm is generally stable and relatively easy to implement. 

.2.1. Outline of the PISO algorithm 

The PISO algorithm integrates the Navier–Stokes equations for-

ard in time using a predictor step followed by several corrector

teps. In the predictor step, the discretised momentum equation

we will refer to this as the velocity equation ) is solved implicitly

or a new velocity field with the previous pressure and velocity

elds. An equation is derived combining the discretised continu-

ty equation and momentum equations (we will refer to this as the

ressure equation ). In the corrector step, a velocity field and a pres-

ure field are found that are able to satisfy both the continuity and

he momentum equations. This is done by first solving the above-

entioned pressure equation for the pressure (with the velocity

ound in the predictor step or the previous corrector step), and
hen solving the momentum equation for the velocity. At the end

f the time step, the velocity and the pressure fields found from

he last corrector step are taken as the new velocity and pressure

elds. The next section describes the PISO algorithm used in the

coFoam solver in more detail. 

[17] shows that this algorithm needs, at least, two corrector

teps to achieve the desired accuracy. He showed that with two

orrector steps, the velocity and pressure can be approximated to

rder of accuracy O ( δt 4 ) and O ( δt 3 ), respectively. Adding another

orrector step would increase the accuracy of the approximations,

ut it will unnecessarily increase the computational time because

he order of accuracy of the algorithm is only O ( δt 2 ). Therefore, we

sed only two corrector steps in all of our simulations. 

.2.2. PISO algorithm used in the icoFoam solver 

This algorithm states the steps of solving Navier–Stokes equa-

ions for the time step ( n + 1 ) with the values of u and p at pre-

ious time step ( n ) for two corrector steps. Let the superscripts ∗,
∗, ∗∗∗ denote intermediate field values obtained during the split-

ing process. A semi-discrete form of the momentum Eq. (1) can

e given as 

u 

∗ − u 

n 

�t 
= −A 

′ u 

∗ + H 

′ ( u 

∗) − ∇p n , (3) 

here −A 

′ u 

∗ and H 

′ (u 

∗) represent the diagonal and non-diagonal

lements of the discretized convection and diffusion terms, respec-

ively. This equation can be rearranged as: 

 u 

∗ = H( u 

∗) − ∇p n , (4) 

ith A = 1 / �t + A 

′ and H( u 

∗) = H 

′ ( u 

∗) + u 

n / �t . 

Predictor step : Solve the momentum equation given in

q. (4) for the first intermediate value of the velocity field ( u 

∗)

ith previous values of pressure ( p n ) and velocity ( u 

n ). This u 

∗

n general will not satisfy the zero divergence condition (given in

q. (2) ). 

First corrector step : A new velocity field ( u 

∗∗) together with

 corresponding new pressure field ( p ∗) are now considered such

hat the zero-divergence condition 

 · u 

∗∗ = 0 (5) 

s met. For this, the momentum Eq. (4) is taken as 

 u 

∗∗ = H( u 

∗) − ∇p ∗. (6) 

ere, non-diagonal terms of the convection and diffusion terms

ave been treated explicitly ( H( u 

∗) ); we will see the reason

hortly. Eq. (6) and (5) are used to derive the pressure equation

 

(∇p ∗

A 

)
= ∇ ·

(
H( u 

∗) 
A 

)
. (7) 

hen the pressure equation is solved for p ∗ with velocity field

ound in the predictor step ( u 

∗), and afterwards Eq. (6) is solved

or u 

∗∗. 

Second corrector step : A new velocity field ( u 

∗∗∗) together

ith its corresponding new pressure field ( p ∗∗) are formulated to

eet the zero-divergence condition 

 · u 

∗∗∗ = 0 . (8) 

he momentum Eq. (4) is taken in a semi explicit form as 

 u 

∗∗∗ = H( u 

∗∗) − ∇p ∗∗, (9) 

he corresponding pressure equation is therefore 

 

(∇p ∗∗

A 

)
= ∇ ·

(
H( u 

∗∗) 
A 

)
. (10) 

olving Eq. (10) , p ∗∗ can be found. Then u 

∗∗∗ can be found from

q. (9) . Finally, set u 

∗∗∗ as u 

n +1 and p ∗∗ as p n +1 . 
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Table 1 

A comparison of time-averaged drag coefficient, C d , time-averaged lift coefficient, C l , and Strouhal 

number, St , of a rigidly mounted sphere, at Re = 30 0 , 50 0 and 10 0 0. Values calculated for C d , C l , and 

St closely match values of other studies. 

Re = 300 Re = 500 Re = 10 0 0 

Study C d C l St C d C l St C d St 1 St 2 

Present study 0.665 0.070 0.137 0.57 0.06 0.18 0.49 0.19 0.33 

[6] 0.665 0.065 0.136 – – – – – –

[11] 0.658 0.067 0.134 – – – – – –

[19] 0.656 0.069 0.137 – – – – – –

[26] – – – 0.55 – – 0.46 – –

[31] – – – 0.56 0.05 0.15 0.46 0.185 0.33 

[38] – – – – – 0.18 – 0.2 –

[44] – – – – – 0.167 – 0.2 0.35 
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2.3. Numerical discretization and solver algorithms 

OpenFOAM was developed based on the finite-volume method

(FVM), similar to many computational fluid dynamics packages. In

general, the finite-volume approach is based on the conservation of

some quantity, i.e. , what goes into the control volume through the

sides accumulates in the control volume. In this method, the gov-

erning equations are integrated over all finite volumes of the com-

putational domain. The finite-volume method requires a spatial do-

main to discretize into contiguous cells. Dependent variables are

principally stored at cell centroids, although they may be stored in

cell faces or vertices. OpenFOAM provides considerable freedom in

grid generation and manipulation, especially when the geometry is

complex or changes over time. 

OpenFOAM offers the freedom of choosing appropriate dis-

cretization schemes from a wide selection, for each and every term

in the governing equations. This is done through the fvSchemes file

in the system directory. The time-derivative term, ∂ u / ∂ t , was dis-

cretized based on the backward Euler approach, which is implicit

and second-order accurate. The gradient ( ∇) and Laplacian ( ∇ 

2 )

operators were discretized by the second-order Gauss scheme us-

ing linear interpolation. The divergence ( ∇ · ) operator was also dis-

cretized similarly but with the � = 0.5 interpolation scheme. To

calculate the surface normals for the Laplacian, a blend of the cor-

rected (which is unbounded, second-order and conservative) and

uncorrected (bounded, first-order and non-conservative) schemes

were used with a blend factor of 0.5. 

The velocity equation mentioned in the predictor step was

solved using a Preconditioned (Bi-) Conjugate Gradient (PBiCG) it-

erative method preconditioned with a Diagonal Incomplete-Lower-

Upper (DILU) decomposition. The pressure equation defined in a

corrector step was solved using a Preconditioned Conjugate Gradi-

ent (PCG) iterative method preconditioned with the Diagonal In-

complete Cholesky (DIC) decomposition. It is possible to use the

simpler Conjugate Gradient method with the DIC preconditioner

for the pressure equation (see the Eq. (7) ), since the Laplacian op-

erator yields a symmetric and positive definite matrix when discre-

tised. However, the discretized velocity equation will not be sym-

metric due to the nonlinear convection term, thus dictating the use

of the Bi-conjugate gradient method with the DILU preconditioner.

2.4. Validation studies of flow past a bluff body 

The flow past a rigidly mounted sphere was investigated at Re =
30 0 , 50 0 and 10 0 0. The computed values for the time-averaged

drag and lift coefficients, C d and C l , respectively, and the Strouhal

number, St , are listed in Table 1 . As the lift coefficient is negligible

at Re = 10 0 0 , a secondary Strouhal number is calculated instead of

 l . As can be seen, the present results closely match values calcu-

lated in other studies [6,11,19,26,31,38,44] . 
. FIV solver of an elastically mounted body 

.1. Governing equations 

FIV of an elastically mounted rigid body placed at the centre

f a huge fluid domain was considered for the present study. The

uid flow was modelled in the moving reference frame fixed to

he centre of the mass of the solid body (see Fig. 1 ) so that a non-

eforming grid can be used for the fluid domain. Since this frame

ccelerates according to the body vibration, it is a non-inertial ref-

rence frame. Therefore, the (momentum) Navier–Stokes equations

iven in Eq. (1) need to be adjusted by adding the acceleration

f the frame, which is indeed the acceleration of the sphere, to

he momentum equations, as a fictitious source term. For the case

f an elastically-mounted rigid-body, the motion of the solid body

as assumed to behave as a spring-mass-damper system, while

he fluid was assumed incompressible and viscous. 

The coupled fluid-solid system can be described by the Navier–

tokes equations given by Eq. (11) , and the continuity equation

iven by (12) , together with the governing equation for the motion

f the solid by Eq. (13) : 

∂ u 

∂t 
+ ( u · ∇ ) u = −∇ p + ν ∇ 

2 
u − ẍ c , (11)

 · u = 0 , (12)

 ẍ c + c ˙ x c + k x c = f l . (13)

ere, x c , ˙ x c , and ẍ c are the solid displacement, velocity, and accel-

ration vectors, respectively. In addition, m is the mass of the body,

 is the damping constant, k is the structural spring constant, and

 l is the flow-induced integrated vector force acting on the solid

ody due to kinematic pressure and viscous shear forces acting on

he body surface. 
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.2. The fluid-structure solver 

To solve the fully-coupled fluid-structure system defined by the

qs. (11) –(13) , an FSI solver was created (named vivIcoFoam ). This

olver is developed based on the OpenFOAM flow solver, icoFoam,

hat we discussed in Section 2.2 . A predictor-corrector iterative

ethod is used in the vivIcoFoam solver to handle the coupling

etween the solid displacement and the fluid flow. At the begin-

ing of an iteration, the solid motion is obtained by explicitly pre-

icting or implicitly correcting. Then, the fluid equations given in

qs. (11) and (12) are solved with the predicted or subsequently

orrected solid acceleration, and the fluid forces induced on the

olid are calculated. Details of the predictor and corrector itera-

ions at the (n + 1) th time step can be elaborated as follows: 

he predictor iteration 

Initially, the sphere acceleration, ẍ c , is predicted explicitly using

he third-order polynomial extrapolation 

¨
 

(n +1 , p 1 ) 
c = 3 

˙ x 
(n ) 

c − 3 

˙ x 
(n −1) 

c + 

˙ x 
(n −2) 
c . (14) 

hen, the sphere velocity, ˙ x c , and displacement, x c , are estimated

y integrating the predicted ẍ c and estimated 

˙ x c by a third-order

dams–Moulton method by 

˙ 
 

(n +1 , p 1 ) 
c = 

˙ x 
(n ) 

c + 

δt 

12 

(
5 ẍ (n +1 , p 1 ) 

c + 8 ẍ (n ) 
c − ẍ (n −1) 

c 

)
(15) 

nd 

 c 
(n +1 , p 1 ) = x c 

(n ) + 

δt 

12 

(
5 

˙ x 
(n +1 , p 1 ) 

c + 8 

˙ x 
(n ) 

c − ˙ x 
(n −1) 

c 

)
, 

(16) 

espectively, where δt is the time step. Finally, the fluid equa-

ions are solved with ẍ 
(n +1 , p 1 ) 

c , and the fluid force exerted on the

phere, f l 
(n +1 , p 1 ) , is calculated for the coming corrector iteration. 

 th corrector iteration 

Initially, the corrected value of ẍ c is calculated by solving the

olid motion Eq. (13) with the values of x c , ˙ x c , and f l calculated in

he predictor iteration or the previous corrector iteration by 

¨
 

(n +1 , c i ) 
c = − c 

m 

˙ x 
(n +1 , k i ) 

c − k 

m 

x c 
(n +1 , k i ) + 

1 

m 

f l 
(n +1 , k i ) , (17) 

here, k 1 = p 1 at the first corrector iteration, and k i = c i −1 for i > 1.

or i ≥ 2, the solid acceleration is relaxed to improve the conver-

ence by 

¨
 

(n +1 , c i ) 
′ 

c = ẍ 
(n +1 , c i −1 ) 

c + γ
(

ẍ (n +1 , c i ) 
c − ẍ 

(n +1 , c i −1 ) 
c 

)
, (18) 

here γ is the relaxation parameter. Note that relaxing the solu-

ion is only required for small mass ratio cases ( m 

∗ < 1), and oth-

rwise γ is set to be 1. Then, the corrected values of ˙ x c and x c are

pdated by 

˙ 
 

(n +1 , c i ) 
c = 

˙ x 
(n ) 

c + 

δt 

12 

(
5 ẍ (n +1 , c i ) 

c + 8 ẍ (n ) 
c − ẍ (n −1) 

c 

)
(19) 

nd 

 c 
(n +1 , c i ) = x c 

(n ) + 

δt 

12 

(
5 

˙ x 
(n +1 , c i ) 

c + 8 

˙ x 
(n ) 

c − ˙ x 
(n −1) 

c 

)
, (20) 

espectively. Finally, the fluid equations are solved with ẍ 
(n +1 , k i ) 

c ,

nd the fluid force exerted on the sphere, f l 
(n +1 , c i ) , is calculated

or the coming corrector iteration. 

.2.1. Termination of the iterative algorithm 

The predictor-corrector iterative process is terminated once the

onvergence criteria are met. After the predictor iteration, several

orrector iterations are performed until the relative error of the

olid acceleration, e a , and the relative error of the fluid force act
n the solid, e f , converge within a prescribed error bound, ε, as

iven in Eq. (21) : 

e a = 

|| ẍ (n +1 , c i +1 ) 
c − ẍ (n +1 , c i ) 

c || 2 
|| ẍ (n +1 , c i +1 ) 

c || 2 
< ε & 

 f = 

|| f 
(n +1 , c i +1 ) 

l 
− f 

(n +1 , c i ) 
l 

|| 2 
|| f 

(n +1 , c i +1 ) 

l 
|| 2 

< ε, (21) 

here || . || 2 represents the Euclidean norm. The value of ε was

hosen as 0.001 for simulations since it was found that further de-

reasing ε does not increase the accuracy of the solution. Typically,

he FSI solver required 3 corrector steps. Fig. 2 displays histograms

f number of corrector iterations consumed in the VIV simulations

onducted at Re = 20 0 0 , m 

∗ = 3 , and U 

∗ = 5 , 6 , 7 , 8 , 9 , 10 , 12 ,

nd 14. As can be seen, in most cases the number of corrector

teps was less than 6, with the upper limit set to 15. 

The temporal accuracy of the overall FSI solver is second-order,

lthough the solution process for the solid motion is third-order

ccurate. This is because the PISO algorithm itself is of second-

rder accuracy. It is recalled that the fluid domain was modelled in

 moving frame-of-reference. This motion is acknowledged through

he outer domain velocity boundary conditions (except the outlet

oundary). In this article, all the outer boundaries, except the out-

et where a pressure condition is enforced, have a velocity con-

ition prescribed on them. Once the predictor-corrector iterative

rocess has completed, the velocity at the inlet boundaries is up-

ated according to the velocity of the solid, ˙ x s , before proceeding

o the next time step. 

.3. Implementation of the vivIcoFoam solver in OpenFOAM 

The web page, https://openfoamwiki.net/index.php , describes

ow to develop a new OpenFOAM solver, by providing an exam-

le of ‘how to add temperature to icoFoam ’. The vivIcoFoam solver

as implemented in OpenFOAM following those steps. 

This solver was developed such that it can be used for both 2 D

imulations (such as cylindrical bodies) and 3 D simulations. In ad-

ition, the solid motion can be restricted to the lift direction or

an be allowed to move in all three directions. The solid motion

arameters and other algorithm control settings should be pre-

cribed in the solidMotionData file, which is in the system directory

f a case, (see Appendix A for a sample of this file). The solver

alculates the mass of the solid, m = 

4 
3 ρπ(D/ 2) 3 m 

∗, the damping

onstant, c = 4 πmζ /U 

∗, and the spring constant, k = 4 π2 m/ (U 

∗) 2 ,
ccording to the values given for the non-dimensional parameters:

ass ratio m 

∗, damping ratio ζ , and reduced velocity U 

∗. 

This solver is designed to be used for a rectangular fluid do-

ain. It reads the names of the boundary patches from the bound-

ryToUpdate file in the constant directory. A sample of this file can

e found in Appendix A . This file also declares the type of the sim-

lation, i.e. 2 D or 3 D , to recognize the inlet patches that need to

e updated. The solver updates the velocity of the inlet boundaries

nd the pressure gradient of the solid boundary at the end of each

ime step. The solver writes the solid motion data (displacement,

elocity and acceleration of the solid) together with the force co-

fficients to a csv file in the case directory. 

.3.1. vivIcoFoam algorithm 

The steps of ‘vivIcoFoam’ algorithm, which solves fluid-solid

oupled system Eqs. 11 – (13) are given below for the time step

 n + 1 ) with the values of u , p , x c , ˙ x c , and ẍ c at the previous time

teps, n , n − 1 and n − 2 ( Fig. 3 illustrates the flow chart of this

lgorithm.) 

tep 1 [Initialization] Read the solidMotionData file in the system

irectory and the boundarytToUpdate file in the constant directory

https://openfoamwiki.net/index.php/How_to_add_temperature_to_icoFoam
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Table 2 

Computational time of flow-induced vibration of a cylinder. 

Grid near the cylinder (circumferential × radial) A ∗rms C d f ∗ No. of shedding cycles Computational time (h) 

Fine (112 × 45) 0.41 1.67 1.00 10 1.20 

Medium (168 × 80) 0.41 1.66 1.00 10 3.41 

Extra fine (224 × 111) 0.41 1.66 1.00 10 6.69 

Fig. 2. Normalized histograms of number of corrector iterations, c i used for the simulations of the vortex-induced vibration of a sphere at Re = 20 0 0 , m 

∗ = 3 , and reduced 

velocity U ∗ = 5 , 6 , 7 , 8 , 9 , 10 , 12 , and 14. 
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of the case. Declare variables, and perform initializations required

to update the boundary conditions and to write the output data.

Calculate the dimensional parameters of the solid motion equation

given in Eq. (13) according to the user defined non-dimensional

parameters. 

Step 2a [The predictor iteration] Predict the solid acceleration,

ẍ c 
(n +1 , p 1 ) , using a polynomial extrapolation as shown in Eq. (14) .

Then, estimate the solid velocity, ˙ x c 
(n +1 , p 1 ) , and displacement,

x c 
(n +1 , p 1 ) , using Eqs. (15) and (16) , respectively. 

Step 2b [A corrector iteration] Correct the value of ẍ c 
(n +1 , c i ) by

solving the Eq. (17) . Then, update the values of ˙ x c 
(n +1 , c i )) and

x c 
(n +1 , c i ) using Eqs. (19) and (20) , respectively. 

Step 3 [Solve fluid equations] PISO algorithm discussed in

Section 2.2.2 was modified to solve Navier–Stokes Eqs. (11) and

(12) . Each form of momentum equations in PISO algorithm in

Section 2.2.2 , needs to include the solid acceleration term in the

right. Thus, Eqs. (4) , (6) , and (9) become; 

A u 

∗ = H( u 

∗) − ∇p n + ẍ c 
(n +1) 

, (22)

A u 

∗∗ = H( u 

∗) − ∇p ∗ + ẍ c 
(n +1) 

, (23)

and 

A u 

∗∗∗ = H( u 

∗∗) − ∇p ∗∗ + ẍ c 
(n +1) 

, (24)

respectively. Due to the new term in the momentum equation,

pressure equation also needs to be modified accordingly. Thus,

Eqs. (7) and (10) become 

∇ 

(∇p ∗

A 

)
= ∇ ·

(
H( u 

∗) + ẍ c 
(n +1) 

A 

)
(25)

and 

∇ 

(∇p ∗∗

A 

)
= ∇ ·

(
H( u 

∗∗) + ẍ c 
(n +1) 

A 

)
. (26)

Step 04 [Calculate the fluid forces] With u 

n +1 and p n +1 found

from the PISO algorithm, calculate fluid forces exerted on the

sphere, f l 
(n +1) . 

Step 05 [Loop from step 02b to step 04] . Proceed to the next iter-

ation (to step 02b) with the newly calculated fluid forces, f l 
(n +1) .

When it completes step 04, calculate the relative errors of fluid

forces, e f , and solid acceleration, e a . Break the iterative loop if both
 f and e a are less than the desired error tolerance, as shown in

q. (21) . If none of the convergence criteria is met, then continue

ntil it reaches the maximum number of iterations. 

tep 06 [Update boundary conditions and write motion data]

nce the iterative process is complete, update the boundary con-

itions and write the solid motion data ( x c , ˙ x c and ẍ c ) and force

oefficients in all three direction to a csv file. Then, proceed to the

ext time step. 

Only the asymptotic state of a simulation was used for the anal-

ses presented in this article. Sometimes, simulations need a long

ime to reach the asymptotic state. However, there is a run-time

imitation of a maximum of 1 day on the supercomputer system

sed for the FIV cases. Therefore, in such a case, it is required to

estart from the previously stopped time. In these circumstances,

he vivIcoFoam solver writes the necessary solid-motion data of

he last three time steps to an OpenFOAM file called lastMotion-

ata in the system directory (a sample of this file also given in

ppendix A ). The solver updates this file at the time it writes the

esults for the fluid to a time directory. 

.4. Computational time 

Simulations of flow-induced vibration of a bluff-body, in gen-

ral, take longer than for a fixed body. Usually, a simulation takes

 considerable amount of time to fully develop the vibration re-

ponse and reach the asymptotic state. In addition, to accurately

redict the time-average parameters, such as response amplitude,

rag and lift coefficients, and the frequency of the vibration, the

imulation was required to be extended for a number of vibration

ycles sufficient for statistical averaging, once an asymptotic state

ad been reached. For highly periodic response, 10 oscillation cy-

les are found to be sufficient. However, if the response is not fully

eriodic or aperiodic, simulations are required to run for a larger

umber of oscillation cycles. The time taken for FIV simulations,

epends on many parameters, for example, mass ratio, reduced ve-

ocity, Reynolds number, and the nature of the vibration. 

To provide an idea of the computational time taken for 2 D sim-

lations discussed in Section 3.5.1 , simulations were carried out on

hree levels of grids with a non-dimensional time step of 0.005,

t U 

∗ = 5 . 5 . At this U 

∗, the cylinder vibrated sinusoidally with a

arge vibration amplitude. Table 2 tabulates the results obtained

rom each grid and the computational time utilized to run for 10
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Fig. 3. Flow-chart of the FIV solver of an elastically mounted body. The number of non-orthogonal and orthogonal PISO iterations were set to 2 while the number of FSI 

iterations was set to 15. 
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hedding cycles (10 cycles are sufficient as the response is sinu-

oidal). The medium grid (29,296 cells) is fine enough for the sim-

lations, as the results obtained with each grid have a good agree-

ent. In the medium grid, it took only 3.41 h in real time to run

or 10 shedding cycles, which is approximately equivalent to a non-

imensional simulation time of 55. 

The 3 D simulations conduced with a sphere (1.23 million cells)

ere run parallel on the Pawsey centre supercomputer Magnus
sing 48 computer cores. A simulation of an elastically mounted

phere of m 

∗ = 3 took around 1–2 days, while a simulation of a

ethered sphere of m 

∗ = 0 . 8 took on average 1–3 days. The longer

omputational time of the tethered sphere case is mainly due to

mall mass ratio of the sphere. When the body is light, the system

s intrinsically unstable and relaxation of the solution is required

o stabilize the algorithm. Also, the FSI algorithm requires to cycle

hrough a large number of corrector steps. 
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Fig. 4. Vortex-induced vibration response of a circular cylinder. Comparison of the present results, •, with the results of [24] . 
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3.5. Results and validations 

3.5.1. Vortex-induced vibration of a circular cylinder 

A set of 2 D simulations were conducted with an elastically

mounted circular cylinder of mass ratio, m 

∗ = 10 over the reduced

velocity range U 

∗ = [3 , 8] , by fixing the Reynolds number and the

damping ratio at Re = 200 and ζ = 0 . 01 , respectively. These pa-

rameters were chosen to compare the results with the observations

of [24] and validate the vivIcoFoam solver. Fig. 4 compares present

predictions of maximum vibration amplitude, A 

∗
m 

, the maximum

fluctuation amplitude of the lift coefficient, C ′ 
l,m 

, frequency ratio,

f ∗ = f/ f n , and the average phase angle between the lift force and

the cylinder displacement, φ, with the results of [24] . As the fig-

ure shows, the current predictions are almost identical with their

findings with very minor differences (the percentage errors of A 

∗
m 

,

 

′ 
l,m 

, f ∗, and φ are −8% , −8% , 1.8%, and 3.6%, respectively). 

At this low Reynolds number, soon after the initial vibration

branch (4.2 ≤ U 

∗ ≤ 4.7), the lower branch appeared without a trace

of the upper branch . Vibrations of the cylinder in the lower branch

were highly periodic with a large vibration amplitude. Further-

more, the frequency ratio, f ∗, at this branch was close to 1, indi-

cating the resonance behaviour (see Fig. 4 (b). To strengthen this

validation study, the wake behind the cylinder was visualized us-

ing the vorticity field. Fig. 5 provides a comparison of our results

with the vortical structures observed by [24] at the beginning of

the lower branch for the reduced velocities U 

∗ = 5 . 0 , 5.2, 5.4, and

5.6. At U 

∗ = 5 . 0 , the shed vortices took a stable double-row config-

uration close to the rear of the cylinder, as [24] observed. The for-

mation of this double-row configuration was delayed at U 

∗ = 5 . 2 .

It was pushed further downstream at U 

∗ = 5 . 4 , and at U 

∗ = 5 . 6 ,

vortex loops were formed in a single-row configuration near the

cylinder. This variation of the wake pattern matches closely with

the findings of [24] . 

At this point, it is worth comparing the current predictions with

the results of [32] , who investigated the vortex-induced vibration

of a circular cylinder by varying the Reynolds number from Re = 60

to 200. Although this study was conducted by varying the Reynolds

number, the amplitude response curve they observed is identical

to that of ours. In their study, the lower branch was from Re = 86

to 140. Similar to the current predictions, Prasanth and Mittal re-

ported a double-row configuration in the vorticity field at the be-

ginning of the lower branch and a gradual transition to a single-

s  
ow configuration, as the Reynolds number increased [32] , Fig. 9 .

he strong resemblance of our findings of other studies, the valid-

ty of the vivIcoFoam solver is proven. 

.5.2. Vortex-induced vibration of a sphere 

Vortex-induced vibration of an elastically and transversely

ounted sphere was examined at the Reynolds number of Re =
0 0 0 . The mass ratio of the sphere and the damping ratio were

et to m 

∗ = 3 and ζ = 0 , respectively, while the reduced velocity

as varied in the range 3.5 ≤ U 

∗ ≤ 10. This mass ratio was chosen

o minimize the cost of computations since one order of magni-

ude higher or lower mass ratio increases the computational cost

ubstantially. This is because when the body is heaving, it takes

 longer time to reach the asymptotic state, and when the body

s light, the system is intrinsically unstable and needs to cycle

hrough a large number of corrector steps of the FSI algorithm. The

amping ratio of ζ = 0 was chosen to enable the highest possible

phere response amplitude. Simulations were run for at least 10 vi-

ration cycles after the asymptotic state was attained, to enhance

he accuracy of the results, and the latter part of the signal was

sed for the statistical calculations. 

In the literature of flow-induced vibration of a sphere, four dif-

erent vibration modes, namely modes I–IV, have been identified.

he first two modes of vibration occur as a result of the synchro-

ization of the vortex shedding behind the body and areknown

s vortex-induced vibration. These two modes usually appear in

he range of 5 � U 

∗ � 14 with a smooth mode transition. [12] and

35] discuss differences of these two modes in detail. In short,

ode I is the resonance response which is excited when the nor-

alized velocity, (U 

∗/ f ∗) St = 1 , and mode II can be observed for

 < ( U 

∗/ f ∗) St � 2. Fig. 6 (a) compares the present predictions of the

phere response amplitude, A 

∗
rms = 

√ 

2 A rms /D, plotted against the

ormalized velocity, with the experimental results of [12] obtained

ith a transversely vibrating sphere of m 

∗ = 7 . As can be seen,

he amplitude response curve strongly resembles that of [12] . In

he synchronization regime, the time-averaged drag coefficient in-

reased roughly by 90% from the value for a stationary sphere (see

ig. 6 (b)), as reported by [46] using a tethered sphere. 

[12] were the first to visualize the wake behind vibrating

pheres. Using the digital particle image velocimetry (DPIV) tech-

ique, they found that the wake consists of a chain of two-sided

airpin loops for both modes I and II. Consistently, in our previous

tudies [34–36] , we also observed two-streets of interlaced hairpin
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Fig. 5. Comparison of the vortical structures of the wake of vortex-induced vibration of a cylinder at U ∗ = 5 . 0 , 5.2, 5.4, and 5.6 shown in (a), (b), (c), and (d), respectively, 

with the observations of [24] . Flow is from left to right. Formation of the double-row configuration is delayed, as the reduced velocity increased. 

Fig. 6. Vortex-induced vibration response of a sphere ( m 

∗ = 3 and Re = 20 0 0 ) as a 

function of the normalized velocity, ( U ∗/ f ∗) St : (a) comparison of the sphere rms am- 

plitude with the results of [12] with a sphere of m 

∗ = 7 and (b) the time-averaged 

drag coefficient, C d . 
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Fig. 7. Effect of the Reynolds number on the wake behind the sphere when it has 

synchronized vibrations at U ∗ = 9 . Flow is from left to right and the wakes were 

visualised with iso-surfaces at Q = 0 . 003 . The second column shows the peak to 

peak vibration amplitude for each case. 
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ortex loops behind the sphere. To analyse further the effects of

he Reynolds number on the characteristics of the wake, a num-

er of simulations were conducted by varying the Reynolds num-

er from Re = 300 to 20 0 0 and at the reduced velocity U 

∗ = 9 . 

Fig. 7 compares the wake structures visualised with iso-surfaces

f the Q criterion, at Re = 30 0 , 80 0, 120 0, and 20 0 0. At Re = 300 ,

wo-streets of regular hairpin loops form the wake. Only large

cale loops were visible, and each loop was accompanying with a

ail. As the hairpin loops move downstream, they gradually con-
erted into rings. The wake was symmetric through the plane

ade by the direction of sphere vibration and the streamwise

irection. This clear wake was modified in several ways, as the

eynolds number increased. First, the distance between the two

ortex streets increased with increasing Re , indicating an incre-

ent in the vibration amplitude. Consistently, the sphere vibra-

ion amplitude gradually increased from A 

∗
rms = 0 . 3 to 0.8, as Re

ncreased from 300 to 20 0 0. Second, the hairpin loops converted

nto rings more quickly, with increasing Reynolds number. Third,

s the Reynolds number increased, the large scale vortex loops in

he wake were slightly distorted; in addition, small scale structures

ere visible in the wake. This was more prominent at Re = 20 0 0 ,

s expected at this higher Reynolds number. Finally, the vortex

oops in the wake were slightly twisted about the streamwise di-

ections, for Re ≥ 800 case. 
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Fig. 8. Schematic of the tethered sphere. Two coordinate systems were used to model the system; Cartesian coordinate, < i, j, k > , and spherical coordinates, < e r , e θ , e φ > . 
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4. FIV solver of a tethered body 

As the dynamic nature of the solid body attached to the end

of a tether is different from an elastically mounted body, another

FSI solver was developed to study the flow-induced vibration of

a tethered body. The set-up is simply a tethered body in a uni-

form flow field, as the schematic shown in Fig. 8 . The tether was

assumed to be massless, rigid and inextensible. The last two as-

sumptions restrict the motion of the solid body to lie in a spher-

ical surface whose radius is the tether length. As the tether is as-

sumed to be rigid, the orientation of the solid body stays fixed.

Moreover, with this holonomic constraint, the number of equations

required to describe the sphere dynamics reduces to two, even

though the sphere has three degrees of freedom. Moreover, the

tethered sphere undergoes pure rotation around the base point of

the tether. Therefore, a 3D Rotation Group SO(3) can also be used

to obtain the equations of motion of the sphere, as used by [33] .

However, for simplicity, Newtonian Mechanics principles are used

here, as described below. 

4.1. Problem formulation 

A spherical coordinate system, S ( e r , e θ , e φ), was employed to ob-

tain the dynamic equation of motion of the solid body, as shown

in Fig. 8 . However, fluid equations were derived with a Cartesian

coordinate system C ( i , j , k ), attached to the centre of mass of the

solid body. The unit vectors i , j , and k are aligned with x, y , and

z directions, respectively. The mapping between these two coordi-

nate systems is bijective and can be elaborated with parameters,

θ ∈ [0, 2 π ) and φ ∈ [0, π ] as: 

M : 

( 

e r 
e θ
e φ

) 

= 

( 

cos θ sin φ sin θ sin φ cos φ
− sin θ cos θ 0 

cos θ cos φ sin θ cos φ − sin φ

) ( 

i 
j 
k 

) 

, (27)

M 

−1 : 

( 

i 
j 
k 

) 

= 

( 

cos θ sin φ − sin θ cos θ cos φ
sin θ sin φ cos θ sin θ cos φ

cos φ 0 − sin φ

) ( 

e r 
e θ
e φ

) 

, (28)

where θ is the angle of tether to the xz plane and φ is the angle

of the tether to the z direction. Let x s , ˙ x s , and ẍ s represent the po-

sition, velocity, and acceleration of the tethered body in spherical

ẍ s = L 
(
−
(

˙ θ2 sin 

2 φ + 

˙ φ2 
)

e r + 

(
θ̈ sin φ + 2 

˙ θ ˙ φ cos φ
)

e θ + 

(
− ˙ θ2 sin

( 

θ̈

φ̈
0 

) 

= 

L 

I 

( − sin θ/ sin φ cos θ/ sin φ 0 

cos θ cos φ sin θ cos φ − sin φ
0 0 0 

) ( 

F d 
F ly + B 

F lz 

) 

+ 

⎛
⎝

oordinates. Then, the position of the body is simply, 

 s = L e r , 

here L is the tether length. Then, ˙ x s and ẍ s can be obtained by

ifferentiating the position and the velocity of the sphere w.r.t.

ime, as given in Eqs. (29) and (30) , respectively. 

˙  s = L 
(

˙ θ sin φ e θ + 

˙ φ e φ
)
. (29)

os φ + φ̈
)

e φ
)
. (30)

Three types of forces are acting on the tethered body; a ten-

ion force of the tether, T ; a buoyancy force, B ; and fluid forces F d ,

 ly and F lz , which denote the components in the streamwise ( x ),

ateral ( y ) and transverse ( z ) directions, respectively; see Fig. 8 for

ore information. The summation of the forces acting on the teth-

red body is T e r + F d i + (F ly + B ) j + F lz k . Using the map M given

n Eq. (27) , the summation of forces can be converted in to spher-

cal coordinates as: 
 

F = 

(
F d cos θ sin φ + (F ly + B ) sin θ sin φ + F lz cos φ − T 

)
e r 

−
(
F d sin θ − (F ly + B ) cos θ

)
e θ

+ 

(
F d cos θ cos φ + (F ly + B ) sin θ cos φ − F lz sin φ

)
e φ. (31)

As the tether is assumed to be massless, the tethered body can

e considered as an isolated mass. Now, with the information of

cceleration of the body and forces acting on it, the dynamic equa-

ions of the solid body can be easily obtained by the angular mo-

entum balance, i.e. I ̇  ω = 

∑ 

x s × F , where I is the inertia of the

olid body at the base of the tether and I = m (D 

2 / 10 + L 2 ) for a

olid sphere and ˙ ω = ẍ s /L is the angular acceleration of the body.

he component equations are 

 

(
θ̈ sin φ + 2 

˙ θ ˙ φ cos φ
)

= −L 
(
F d sin θ − (F ly + B ) cos θ

)
(32)

nd 

 

(
φ̈ − ˙ θ2 sin φ cos φ

)
= L 

(
F d cos θ cos φ + (F ly + B ) sin θ cos φ − F lz sin φ

)
. 

(33)

he above two dynamics equations can be converted into a matrix

orm by rearranging the terms as 

 

˙ θ ˙ φ cot φ

in φ cos φ
0 

⎞ 

⎠ . (34)

t this point, it is important to note that there is a singularity as-

ociated with φ = 0 . However, it is not a problem for the current
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imulations, since φ can never be 0 because the buoyancy force

s much higher than the fluid forces and, therefore, the tether can

ever be aligned to the transverse direction ( z direction). 

Similar to the elastically mounted case, the Newtonian fluid is

ssumed incompressible and viscous, and modelled in a Cartesian

oordinate system whose origin is the centre of mass of the solid

ody. As discussed in Section 3 , the acceleration of the solid body

hould be included in the momentum Navier-Stokes equations, as

he frame of reference is a non-inertial reference frame. Since the

olid motion is modelled in a spherical coordinate system, the ac-

eleration of the solid, ẍ s , given in Eq. (30) first needs to be con-

erted into Cartesian coordinates. This can be easily done by using

he mapping M given in Eq. (27) by 

¨ c = M ẍ s . (35) 

inally, the coupled fluid-solid system can be described by the fluid

quations given in (36) and (37) and the sphere motion equations

iven in (34) together with Eqs. (27) , (30) , and (35) : 

∂ u 

∂t 
= −( u · ∇ ) u − ∇ p + ν ∇ 

2 
u − ẍ c , (36) 

 · u = 0 . (37) 

s a reminder, here p is the kinematic pressure, i.e., the static pres-

ure divided by the density. 

.2. FSI solver for a tethered sphere 

Similar to the vivIcoFoam solver for FIV problems of elastically

ounted bodies, a fully coupled FSI solver was developed for FIV

roblems of tethered bodies, based on the dynamic equations pre-

ented in the previous subsection. This solver was named as teth-

redVivIcoFoam and developed similar to the vivIcoFoam solver us-

ng a predictor-corrector iterative method. The only difference be-

ween this solver and the vivIcoFoam solver is the way it ob-

ains the solid acceleration. The tetheredVivIcoFoam solver first

olves the angular accelerations in spherical coordinates, and then

onverts them into the linear accelerations, while the vivIcoFoam

olver directly solves for the linear accelerations. The iterative pro-

ess of the tetheredVivIcoFoam solver at the (n + 1) th time step

an be elaborated as follows: 

he predictor iteration 

Initially, the angular accelerations of the sphere, ( ̈θ φ̈) T , are

redicted explicitly using a third-order polynomial interpolation by

θ̈

φ̈

)(n +1 , p) 

= 3 

(
θ̈

φ̈

)(n ) 

− 3 

(
θ̈

φ̈

)(n −1) 

+ 

(
θ̈

φ̈

)(n −2) 

. (38) 

Then, the angular velocities, ( ˙ θ ˙ φ) T , and tether angles, ( θ φ) T ,

re estimated using a third-order Adams–Moulton method, by in-

egrating the angular accelerations and angular velocities to obtain

˙ θ
˙ φ

)(n +1 , p) 

= 

(
˙ θ
˙ φ

)(n ) 

+ 

δt 

12 

(
5 

(
θ̈

φ̈

)(n +1 , p) 

+ 8 

(
θ̈

φ̈

)(n ) 

−
(

θ̈

φ̈

)(n −1) )
(39) 

nd 

θ
φ

)(n +1 , p) 

= 

(
θ
φ

)(n ) 

+ 

δt 

12 

(
5 

(
˙ θ
˙ φ

)(n +1 , p) 

+ 8 

(
˙ θ
˙ φ

)(n ) 

−
(

˙ θ
˙ φ

)(n −1) )
, (40) 

espectively. Then, the acceleration of the solid, ẍ s 
(n +1 , p) 

, is ob-

ained by Eq. (30) with the predicted angles, angular velocities and

ngular accelerations. After that, ẍ s 
(n +1 , p) is converted into Carte-

ian coordinates, ẍ c 
(n +1 , p) 

, using the mapping given in Eq. (27) . At

he end of the predictor step, the Navier–Stokes equations given in

qs. (36) and (37) are solved with the predicted ẍ c 
(n +1 , p) and the

orces exerted on the sphere, (F d F ly F lz ) 
(n +1 , p) , are calculated. 
 corrector iteration 

Initially, angular accelerations of the sphere, ( ̈θ φ̈) T , are cor-

ected by Eq. (34) with the values obtains for θ , φ, ˙ θ, ˙ φ, F d , F ly 
nd F lz at the predictor iteration (or at the last corrector iteration).

hen, from the second corrector iteration onwards, the corrected

ngular accelerations are relaxed to improve the convergence char-

cteristics by 

θ̈

φ̈

)(n +1 , c i ) 
′ 

= 

(
θ̈

φ̈

)(n +1 , c i −1 ) 

+ γ

((
θ̈

φ̈

)(n +1 , c i ) 

−
(

θ̈

φ̈

)(n +1 , c i −1 ) 
)

, 

(41) 

here γ is the relaxation parameter, and c i represents the values

alculated at the i th corrector iteration. The tetheredVivIcoFoam

olver becomes unstable, especially for small mass ratio spheres

nd low Reynolds number flows in the absence of any relaxation.

he convergence of the method can be improved by the choice of

, depending on the parameter combination. 

Once the angular accelerations are obtained and relaxed, the

ngular velocities and angles can be obtained by integrating the

ngular accelerations and the angular velocities, similar to the pre-

ictor step. Then, the linear acceleration of the sphere in Cartesian

oordinates, ẍ c 
(n +1 , c i ) is obtained and the Navier–Stokes equations

re solved, similar to the predictor step. Finally, the fluid forces ex-

rted on the solid, (F d F ly F lz ) 
(n +1 , c i ) , are calculated to use in the

ext corrector iteration. Termination of the iterative process is sim-

lar to the vivIcoFoam solver. 

Once the predictor-corrector iterative process is completed, the

elocity boundary conditions of the inlet patches need to be ad-

usted according to the solid linear velocity, ˙ x c = M ̇ x s . This is be-

ause the fluid flow is modelled in the moving frame of reference

hich is attached to the centre of mass of the solid body. 

.3. Validation of the tetheredVivIcoFoam solver 

To examine the validity of the newly built tetheredVivIcoFoam

olver, a set of simulations were conducted at Re = 20 0 0 using a

ethered sphere of mass ratio m 

∗ = 0 . 8 and tether length ratio l ∗ =
 . 5 by varying the reduced velocity over the range, U 

∗ ∈ [3.5, 32].

ig. 9 (a) shows a comparison of sphere response amplitude with

he results of [18] at the same mass ratio and higher and vary-

ng Reynolds numbers. The current predictions reasonably agree

ith the observations of [18] . As shown in the figure, we observed

ode I type response around U 

∗� 5 and large amplitude mode II

ype response just after the mode I response. Both of these re-

ponses were highly periodic. Consistent with their observations,

he sphere response amplitude transitioned smoothly from mode

 to mode II with a local peak at the mode I. Moreover, the peak

mplitudes observed at modes I and II were ≈ 0.55 D and ≈ 0.9 D .

owever, the response curve we observed was slightly shifted to

ower reduced velocities compared to their observations. This may

e possibly due to the effect of Reynolds number. In their exper-

mental study, the Reynolds number is varying with the reduced

elocity while we fixed the Reynolds number at 20 0 0. If the am-

litude response was to be plotted against the normalized velocity,

nstead of the reduced velocity, the response curves might match

etter, as seen for the elastically mounted sphere (shown in Fig. 6 ).

owever, it is not quite possible to generate this plot, as the f ∗ and

t values of jauvtis et al.’s study are not given. 

After the peak of mode II, the current predictions indicate a de-

reasing trend of response amplitude. At higher reduced velocities

 U 

∗ � 15), the sphere response was aperiodic at this small mass ra-

io and showed mode IV type intermittent bursts of vibrations (see

he time histories shown in Fig. 9 for 10 oscillation cycles at each

ode). 
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Fig. 9. Flow-induced vibration response of a tethered sphere at Re = 20 0 0 : (a) comparison of the amplitude response with the experimental results of [18] at higher and 

varying Reynolds numbers and (b) time-averaged drag coefficient. The mass ratio of the sphere and the tether length ratio are 0.8 and 9.5, respectively. 

Fig. 10. Wake structures observed at mode I and II with a tethered sphere at Re = 20 0 0 . Flow is from left to right. 
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Fig. 9 (b) plots the time-averaged drag coefficient, C d , against

U 

∗. Two peaks were found in the drag coefficient plot, which cor-

respond to mode I and II vibrations. The maximum increment of

 d was roughly 90% of the value calculated for a stationary sphere,

consistent with the results of an elastically mounted sphere dis-

cussed in Section 3.5.2 . A comparison of the wake structures visu-

alised using the isosurfaces of the Q criterion ( Q = 0 . 006 ) in modes

I and II is given in Fig. 10 . In the wake of mode I, two large-scale

loops were shed per oscillation cycle, along with small scale loops.

As the mode transitioned from mode I to mode II, multiple loops,

which were interconnected, were shed per oscillation cycle. 

5. Conclusions 

Flow-induced vibration of a bluff body is a vibrational phe-

nomenon of a structure induced by forcing from the surrounding

fluid flow. Examining the FIV of a bluff body is a complicated pro-

cess, as it is a fluid-structure interaction (FSI) problem. Finding an

analytical solution to a practical FIV problem is nearly impossible.

As a result, it should be investigated with physical experiments or
omputer simulations. Compared to experimental studies, a fewer

umber of numerical studies have been reported on FIV of a bluff

ody. This is because developing an efficient and accurate numeri-

al methodology is challenging. Conforming grid methods like arbi-

rary Lagrangian-Eulerian methods and non-conforming grid meth-

ds like immersed boundary methods enable solving FSI prob-

ems. However, these FSI algorithms are less suitable for the flow-

nduced vibration problems, as they are highly time consuming

r produce low accuracy predictions, especially for cases involv-

ng large body displacements. In this article, we present two fully-

oupled FSI solvers to efficiently and accurately investigate FIV

roblems of bluff bodies mounted in two different ways: mounted

ith elastic supports and mounted with a tether. 

These FSI solvers were developed in the OpenFOAM environ-

ent. OpenFOAM is a widely used CFD package based on the

nite-volume method. OpenFOAM facilitates the solution for a

ide variety of flow problems with pre-built flow solvers and li-

raries. It also allows a user to develop their own solvers and

ibraries depending on their requirements. The FSI solvers pre-

ented in this paper were initially developed based on the pre-
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uild icoFoam solver for incompressible and laminar flows. How-

ver, these solvers can be easily adapted for turbulent flows, as

penFOAM already has different prebuilt flow solvers that allow

ifferent choices of RANS and LES turbulence models. 

In each of the two FSI solvers presented, the fluid flow was

odelled in a reference frame attached to the centre of mass of

he solid body, so that a non-deforming grid can be employed.

he fluid equations were coupled with the dynamic equations of

he solid body through the acceleration of the frame and the

uid forces acting on the solid body. For the case of an elasti-

ally mounted body, the motion of the solid was modelled as a

pring-mass-damper system; while for the case of a tethered body,

he dynamic equations were obtained using angular momentum

alance based in a spherical coordinate system. In each solver, a

redictor-corrector iterative procedure was used to solve the cou-

led equations over each time step. This iterative process is third-

rder accurate, and typically it required two to three corrector

teps for convergence. As a non-deforming grid is used and the

terative process converges quickly, this method is considerably

ore efficient than arbitrary Lagrangian-Eulerian methods and im-

ersed boundary methods for the class of problems only involv-

ng the motion of a single body. Moreover, it produces an accurate

nswer since the strong Dirichlet boundary condition is applied

n the solid boundary, in contrast to immersed boundary meth-

ds which are required to use a weak formulation of the Dirichlet

oundary condition on the fluid-solid interface. 
Although the predictor-corrector iterative method is third-order

ccurate the entire FSI algorithm is second-order accurate, as the

ISO algorithm used in the flow solver is second-order accurate.

t should be noted that this method can only be used for flow-

nduced vibration problems of single, rigid bodies, since the fluid

ow is been modelled in a frame attached to the centre of mass of

he body. Each of the solvers was validated by comparing predic-

ions obtained against previously published results. 

cknowledgments 

The support from Australian Research Council Discovery Grants

P150102879 and DP170100275 , and computing time from the 

ational Computational Infrastructure (NCI) and the Pawsey Super-

omputing Centre through merit grants N67 and D71 are gratefully

cknowledged. 

ppendix A. Additional files required for a FIV simulation 

system/solidMotionaData 

https://doi.org/10.13039/501100000923
https://doi.org/10.13039/100010582


14 M.M. Rajamuni, M.C. Thompson and K. Hourigan / Computers and Fluids 196 (2020) 104340 

 

 

R

 

 

 

system/lastMotionaData 

constant/boundaryToUpdate 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.compfluid.2019.

104340 . 
eferences 

[1] Bearman PW . Vortex shedding from oscillating bluff bodies. Annu Rev Fluid

Mech 1984;16(1):195–222 . 
[2] Bearman PW . Circular cylinder wakes and vortex-induced vibrations. J Fluids

Struct 2011;27(5–6):648–58 . 
[3] Blackburn H , Henderson R . Lock-in behavior in simulated vortex-induced vi-

bration. Exp Thermal Fluid Sci 1996;12(2):184–9 . 

https://doi.org/10.1016/j.compfluid.2019.104340
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0003


M.M. Rajamuni, M.C. Thompson and K. Hourigan / Computers and Fluids 196 (2020) 104340 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

[  

 

 

 

 

[  

[  

 

 

[  

 

[

[  

 

 

[  

 

[  

 

[  

 

 

[  

[  

[  

 

 

 

[  

 

 

[  

[  

[  

[  

 

[  

[  

 

[  

 

 

[4] Blackburn HM , Karniadakis GE , et al. Two-and three-dimensional simulations
of vortex-induced vibration or a circular cylinder. In: The third international

offshore and polar engineering conference. International Society of Offshore
and Polar Engineers; 1993 . 

[5] Borazjani I . Fluid–structure interaction, immersed boundary-finite element
method simulations of bio-prosthetic heart valves. Comput Methods Appl

MechEng 2013;257:103–16 . 
[6] Constantinescu GS , Squires KD . Les and des investigations of turbulent flow

over a sphere at Re = 10,0 0 0. Flow Turbul Combust 2003;70(1–4):267–98 . 

[7] Dillon R , Fauci L , Fogelson A , Gaver III D . Modeling biofilm processes using the
immersed boundary method. J Comput Phys 1996;129(1):57–73 . 

[8] Ding L , Bernitsas MM , Kim ES . 2-d URANS vs. experiments of flow induced
motions of two circular cylinders in tandem with passive turbulence control

for 30,0 0 0 < Re < 105,0 0 0. Ocean Eng 2013;72:429–40 . 
[9] Ern P , Risso F , Fabre D , Magnaudet J . Wake-induced oscillatory paths of bodies

freely rising or falling in fluids. Annu Rev Fluid Mech 2012;44:97–121 . 

[10] Facchinetti ML , De Langre E , Biolley F . Coupling of structure and wake oscilla-
tors in vortex-induced vibrations. J Fluids Struct 2004;19(2):123–40 . 

[11] Giacobello M , Ooi A , Balachandar S . Wake structure of a transversely rotating
sphere at moderate Reynolds numbers. J Fluid Mech 2009;621:103–30 . 

[12] Govardhan RN , Williamson CHK . Vortex-induced vibrations of a sphere. J Fluid
Mech 2005;531:11–47 . 

[13] Griffith BE , Luo X , McQueen DM , Peskin CS . Simulating the fluid dynamics of

natural and prosthetic heart valves using the immersed boundary method. Int
J Appl Mech 2009;1(01):137–77 . 

[14] Habchi C , Russeil S , Bougeard D , Harion J , Lemenand T , Ghanem A , Della
Valle D , Peerhossaini H . Partitioned solver for strongly coupled fluid–structure

interaction. Comput Fluids 2013;71:306–19 . 
[15] Hou G , Wang J , Layton A . Numerical methods for fluid-structure interaction a

review. Commun Comput Phys 2012;12(2):337–77 . 

[16] Hughes TJR , Liu WK , Zimmermann TK . Lagrangian-eulerian finite element for-
mulation for incompressible viscous flows. Comput Methods Appl MechEng

1981;29(3):329–49 . 
[17] Issa RI . Solution of the implicitly discretised fluid flow equations by opera-

tor-splitting. J Comput Phys 1986;62(1):40–65 . 
[18] Jauvtis N , Govardhan R , Williamson CHK . Multiple modes of vortex-induced

vibration of a sphere. J Fluids Struct 2001;15(3):555–63 . 

[19] Johnson TA , Patel VC . Flow past a sphere up to a Reynolds number of 300. J
Fluid Mech 1999;378:19–70 . 

20] Kamensky D , Hsu MC , Evans JA , Schillinger D , Aggarwal A , Bazilevs Y ,
Sacks MS , Hughes TJR . An immersogeometric variational framework for flu-

id–structure interaction: application to bioprosthetic heart valves. Comput
Methods Appl MechEng 2015;284:1005–53 . 

[21] Kim D , Choi H . Immersed boundary method for flow around an arbitrarily

moving body. J Comput Phys 2006;212(2):662–80 . 
22] Lee H , Hourigan K , Thompson MC . Vortex-induced vibration of a neutrally

buoyant tethered sphere. J Fluid Mech 2013;719:97–128 . 
23] Leontini JS , Stewart BE , Thompson MC , Hourigan K . Predicting vor-

tex-induced vibration from driven oscillation results. Appl Math Model
2006;30(10):1096–102 . Special issue of the 12th Biennial Computational Tech- 

niques and Applications Conference and Workshops (CTAC-2004) held at The
University of Melbourne, Australia, from 27th September to 1st October 2004. 

[24] Leontini JS , Thompson MC , Hourigan K . The beginning of branching be-

haviour of vortex-induced vibration during two-dimensional flow. J Fluids
Struct 2006;22(6):857–64 . 

25] Mittal R , Iaccarino G . Immersed boundary methods. Annu Rev Fluid Mech
2005;37:239–61 . 

26] Morsi SA , Alexander AJ . An investigation of particle trajectories in two-phase
flow systems. J Fluid Mech 1972;55:193–208 . 

[27] Ota K , Suzuki K , Inamuro T . Lift generation by a two-dimensional symmetric

flapping wing: immersed boundary-lattice Boltzmann simulations. Fluid Dyn
Res 2012;44(4):045504 . 
28] Pantazopoulos MS . Vortex-induced vibration parameters: critical review. Tech-
nical Report. American Society of Mechanical Engineers, New York, NY (United

States); 1994 . 
29] Parkinson G . Phenomena and modelling of flow-induced vibrations of bluff

bodies. Progr Aerosp Sci 1989;26(2):169–224 . 
30] Peskin CS . Flow patterns around heart valves: a numerical method. J Comput

Phys 1972;10(2):252–71 . 
[31] Poon EKW , Ooi ASH , Giacobello M , Iaccarino G , Chung D . Flow past a trans-

versely rotating sphere at Reynolds numbers above the laminar regime. J Fluid

Mech 2014;759:751–81 . 
32] Prasanth TK , Mittal S . Vortex-induced vibrations of a circular cylinder at low

Reynolds numbers. J Fluid Mech 2008;594:463–91 . 
[33] Rajamuni MM , Aulisa E , Ghosh BK . Optimal control problems in binocular vi-

sion. IFAC Proc Volumes 2014;47(3):5283–9 . 19th IFAC World Congress. 
34] Rajamuni MM , Thompson MC , Hourigan K . Transverse flow-induced vibrations

of a sphere. J Fluid Mech 2018;837:931–66 . 

[35] Rajamuni MM , Thompson MC , Hourigan K . Vortex dynamics and vibration
modes of a tethered sphere. J Fluid Mech 2018 . Under review. 

36] Rajamuni MM , Thompson MC , Hourigan K . Vortex-induced vibration of a
transversely rotating sphere. J Fluid Mech 2018;847:786–820 . 

[37] Rajamuni MM , Thompson MC , Hourigan KH . Vortex-induced vibration of elas-
tically-mounted spheres: a comparison of the response of three degrees of

freedom and one degree of freedom systems. J Fluids Struct 2019 . 

38] Sakamoto H , Haniu H . A study on votex shedding from sphere in a uniform
flow. Trans ASME 1990;112:386–92 . 

39] Sarpkaya T . A critical review of the intrinsic nature of vortex-induced vibra-
tions. J Fluids Struct 2004;19(4):389–447 . 

40] Silva ALFLE , Silveira-Neto A , Damasceno JJR . Numerical simulation of two-di-
mensional flows over a circular cylinder using the immersed boundary

method. J Comput Phys 2003;189(2):351–70 . 

[41] Soti AK , Bhardwaj R , Sheridan J . Flow-induced deformation of a flexible thin
structure as manifestation of heat transfer enhancement. Int J Heat Mass

Transfer 2015;84:1070–81 . 
42] Tezduyar TE , Behr M , Mittal S , Liou J . A new strategy for finite element com-

putations involving moving boundaries and interfacesthe deforming-spatial–
domain/space-time procedure: ii. computation of free-surface flows, two-liq-

uid flows, and flows with drifting cylinders. Comput Methods Appl MechEng

1992;94(3):353–71 . 
43] The-OpenFOAM-Foundation, Openfoam v6 user guide, 2018, ( https://cfd.direct/

openfoam/user-guide ). 
44] Tomboulides AG , Orszag SA . Numerical investigation of transitional and weak

turbulent flow past a sphere. J Fluid Mech 20 0 0;416:45–73 . 
45] Uhlmann M . An immersed boundary method with direct forcing for the simu-

lation of particulate flows. J Comput Phys 2005;209(2):448–76 . 

46] Williamson CHK, Govardhan R. Dynamics and forcing of a tethered sphere in
a fluid flow. J Fluids Struct 1997;11(3):293–305. doi: 10.10 06/jfls.1996.0 078 . 

[47] Williamson CHK , Govardhan R . Vortex-induced vibrations. Annu Rev Fluid
Mech 2004;36:413–55 . 

48] Williamson CHK , Govardhan R . A brief review of recent results in vortex-in-
duced vibrations. J Wind Eng IndAerodyn 2008;96(6):713–35 . 

49] Wu W , Bernitsas MM , Maki K . RANS simulation versus experiments of
flow induced motion of circular cylinder with passive turbulence control at

35,0 0 0 < Re < 130,0 0 0. J Offshore Mech Arctic Eng 2014;136(4):041802 . 

50] Wu X , Ge F , Hong Y . A review of recent studies on vortex-induced vibrations
of long slender cylinders. J Fluids Struct 2012;28:292–308 . 

[51] Xu WH , Wu YX , Zhong JX , Zeng JH , Yu JX . A new wake oscillator model
for predicting vortex induced vibration of a circular cylinder. J Hydrodyn

2010;22(3):381–6 . 

http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0042
https://cfd.direct/openfoam/user-guide
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0044
https://doi.org/10.1006/jfls.1996.0078
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0047
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0047
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0047
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30920-4/sbref0050

	Efficient FSI solvers for multiple-degrees-of-freedom flow-induced vibration of a rigid body
	1 Introduction
	2 Simulations in openfoam
	2.1 Governing equations of non-FIV simulations
	2.2 The icoFOAM flow solver for non-VIV simulations
	2.2.1 Outline of the PISO algorithm
	2.2.2 PISO algorithm used in the icoFoam solver

	2.3 Numerical discretization and solver algorithms
	2.4 Validation studies of flow past a bluff body

	3 FIV solver of an elastically mounted body
	3.1 Governing equations
	3.2 The fluid-structure solver
	3.2.1 Termination of the iterative algorithm

	3.3 Implementation of the vivIcoFoam solver in OpenFOAM
	3.3.1 vivIcoFoam algorithm

	3.4 Computational time
	3.5 Results and validations
	3.5.1 Vortex-induced vibration of a circular cylinder
	3.5.2 Vortex-induced vibration of a sphere


	4 FIV solver of a tethered body
	4.1 Problem formulation
	4.2 FSI solver for a tethered sphere
	4.3 Validation of the tetheredVivIcoFoam solver

	5 Conclusions
	Acknowledgments
	Appendix A Additional files required for a FIV simulation
	Supplementary material
	References


