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ABSTRACT 

Horizontal convection in a rectangular enclosure driven by 

a linear temperature profile along the bottom boundary is 

investigated numerically using a high-resolution spectral-

element discretization in space and a third-order time 

integration scheme for velocity and temperature fields.  A 

Boussinesq approximation is employed to model 

buoyancy. 

The emphasis of this study is on the scaling of Nusselt 

number and boundary layer quantities with aspect ratio 

and Rayleigh number. 

At low Rayleigh number, Nusselt number and boundary-

layer thickness are found to be independent of Rayleigh 

number, but do vary with enclosure aspect ratio. At higher 

Rayleigh numbers, convective flow dominates, and 

Nusselt number, boundary layer thickness and peak 

boundary layer velocity become independent of the 

enclosure aspect ratio.  In this regime, the Rayleigh-

number scaling of these quantities agrees well with 

exponents predicted by theory, with trends consistent with 

exponents of 1/5, -1/5 and 2/5 for Nusselt number, 

boundary-layer thickness and boundary-layer velocity, 

respectively, being found.  Unsteady flow develops at a 

critical Rayleigh number independent of aspect ratio, and 

the development of unsteady flow is found to lead to an 

increase in the Nusselt number scaling exponent from 0.2 

to approximately 0.3, which is closer to the theoretical 

upper bound than has yet been reported in the study of 

horizontal convection flows.  

NOMENCLATURE 

cp specific heat capacity 

D height of enclosure 

FT heat flux 

g acceleration due to gravity 

𝐠 gravity vector 

𝐠  unit vector in the direction of gravity 

hthermal height of thermal boundary layer 

hvelocity height of velocity boundary layer 

L width of enclosure 

Nu Nusselt number 

p kinematic pressure 

Pr Prandtl number 

Ra Rayleigh number 

s scalar field representing temperature 

T temperature 

t time 

u velocity vector 

umax maximum velocity in boundary layer 

x horizontal coordinate 

y vertical coordinate 

α thermal expansion coefficient 

𝛿𝑇 maximum temperature difference along bottom 

κT thermal diffusivity 

0 reference density of fluid 

υ kinematic viscosity 

INTRODUCTION 

Horizontal convection refers to the heat and fluid flows 

established in an enclosure due to differential heating 

along just one horizontal boundary (Hughes & Griffiths 

2008).  This is in contrast with other forms of convection 

which are often driven by a temperature differential 

imposed between two opposite boundaries (see, for 

instance, Niemela & Sreenivasan 2003).  Whether 

horizontal convection is achieved by an applied horizontal 

temperature gradient or by an applied heat flux, unstable 

convective flow is forced in one side of the enclosure 

while the rest of fluid is convectively stable.  Therefore, in 

contrast to the extensively studied Rayleigh-Bénard 

convection, whereby both cooling and heating promote 

convective overturning, the strength of overturning in 

horizontal convection is ultimately limited by heat 

diffusion. 

Motivation for the study of horizontal convection comes 

from geophysical and geological flows.  For example, 

despite heavy simplifications, studies into horizontal 

convection are providing understanding and insight into 

meridional (North-South) overturning circulation in the 

oceans, where they are heated and cooled along a thin 

horizontal layer.  Interest in horizontal convection is also 

emerging amongst researchers including engineers, 

applied mathematicians and oceanographers.  For reviews 

which discuss recent advances and outstanding questions 

in this subject, the readers are referred to Hughes & 

Griffiths (2008); Wunsch & Ferrari (2004), as well as 

references therein. 

In their review article Hughes & Griffiths (2008) describe 

horizontal convection in detail, but a brief overview is 

included here.  At low Rayleigh numbers, horizontal 

convection flow is dominated by diffusion, and is stable in 

time.  It comprises a nearly symmetrical overturning 

circulation of fluid driven by a buoyancy destabilization 

on the heated boundary with flow moving along the 

bottom boundary from the cold end to the hot end (or the 

hot to cold end if the top boundary is the heated 

boundary).  Buoyant fluid then rises (or descends) in a 

narrow vertical plume, before returning to complete the 
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circulation in a diffusive horizontal return flow.  As the 

Rayleigh number is increased, studies have shown that 

convective effects begin to dictate the fluid and heat 

transfer behaviour, with thermal and velocity boundary 

layers developing along the heated boundary.  Beyond 

some critical Rayleigh number, the flow eventually 

becomes unsteady, which is particularly visible in the 

vicinity of the vertical plume (Mullarney, Griffiths & 

Hughes 2004).  A scaling analysis by Paparella & Young 

(2002), in which dissipation was shown to vanish as 

kinematic viscosity and thermal diffusion go to zero, was 

used to present an argument that horizontal convection 

was inherently non-turbulent.  Regardless of whether the 

flow is defined as turbulent, it does feature small-scale and 

irregular, unsteady flow structures convect from the heated 

wall boundary layer into the vertical plume beyond some 

critical Rayleigh number. 

Experiments by Mullarney et al. (2004) with water in an 

enclosure with height-to-width aspect ratio of 0.16 showed 

that beyond the diffusion-dominated regime, the Nusselt 

number scaled with approximately the 1/5th power of 

Rayleigh number.  Siggers, Kerswell & Balmforth (2004) 

used a variational analysis to determine that an upper 

bound on Nusselt number scaling was a 1/3rd power of 

Rayleigh number, though to the authors’ knowledge, 

scaling exponents above 1/5th have not been detected in 

horizontal convection experiments. 

Chiu-Webster, Hinch & Lister (2008) studied horizontal 

convection in the infinite-Prandtl-number limit relevant to 

very viscous fluids, at a range of aspect ratios and 

Rayleigh numbers.  That study also found the Nusselt 

number to scale with the 1/5th power of Rayleigh number, 

and presented evidence of an aspect-ratio-independence 

beyond Rayleigh numbers of approximately 107. 

Despite these past investigations, the aspect-ratio-

dependence of features such as the transition to the 

convection-dominated regime, and the onset of unsteady 

flow remain poorly understood.  In this paper we 

investigate the effect of the aspect ratio of the enclosure on 

the scaling relationships for heat transfer, boundary layer 

thicknesses, boundary-layer velocities, and the transition 

to unsteady flow. 

MODEL DESCRIPTION 

Problem Definition 

The problem considered in this paper is the two-

dimensional horizontal convection of fluid in a rectangular 

enclosure of width L and height D.  The flow is driven by 

a linear temperature profile applied along the bottom wall 

of the enclosure, as illustrated in figure 1.  The side and 

top walls are insulated (a zero temperature gradient is 

imposed normal to the walls), and a no-slip condition is 

imposed on the velocity field on all walls. 

A Boussinesq approximation of the fluid buoyancy is 

employed, whereby density differences in the fluid are 

neglected with the exception of the gravity contribution.  

A scalar field representing the fluid temperature (which 

relates linearly to the density via a thermal expansion 

coefficient, α) is evolved via an advection-diffusion 

operation in conjunction with the velocity field. 

Governing Equations and Parameters 

The equations governing a Boussinesq fluid may be 

written as 

 

Figure 1: A schematic diagram of the system.  The origin 

of the coordinate system is positioned at the bottom-left 

corner, gravity acts vertically downward, and a 

temperature difference of δT is imposed along the bottom 

wall. 

∂𝐮

∂𝑡
= − 𝐮 ⋅ ∇ 𝐮 − ∇𝑝 + 𝑃𝑟∇2𝐮 − 𝑃𝑟𝑅𝑎𝐠 𝑠, 

∇ ⋅ 𝐮 = 0,         (1) 

∂𝑠

∂𝑡
= − 𝐮 ⋅ ∇ 𝑠 + ∇2𝑠, 

where u is the velocity vector, p the kinematic static 

pressure, t is time, Ra is the Rayleigh number, Pr the 

Prandtl number, 𝐠  a unit vector in the direction of gravity, 

and s is a scalar field representing temperature.   

In equation (1), lengths have been scaled by the enclosure 

width L, velocities by L/κT (where κT is the thermal 

diffusivity of the fluid), time by κT/L2, and temperature by 

𝛿𝑇 (the imposed temperature difference imposed across 

the bottom wall).  The (horizontal) Rayleigh number is 

defined as 

𝑅𝑎 =
𝑔𝛼𝛿𝑇𝐿3

𝜐𝜅𝑇
, 

where g is the acceleration due to gravity and υ is the 

kinematic viscosity of the fluid.   

If a heat flux is defined as 

𝐹𝑇 = 𝜅𝑇𝜌0𝑐𝑝
𝜕𝑇

𝜕𝑦
, 

where 0 is a reference fluid density, cp the specific heat 

capacity of the fluid, 𝜕𝑇 𝜕𝑦  is the mean temperature 

gradient along the bottom wall over 0 ≤ x ≤ L/2, then a 

flux Rayleigh number may be defined as 

𝑅𝑎𝐹 =
𝑔𝛼𝐹𝑇𝐿

4

𝜌0𝑐𝑝𝜅𝑇
2𝜐
. 

In the experimental study by Mullarney et al. (2004), 

horizontal convection was driven by applying a heat flux 

over half of the bottom wall, and a constant temperature 

along the other half.  Those flows were conveniently 

scaled using the flux Rayleigh number, whereas the 

horizontal Rayleigh number (Ra) is more appropriate to 

use for horizontal convection driven using a linear 

temperature profile as applied in the present study. 

The relationship between fluid viscosity and thermal 

diffusivity is parameterized by the Prandtl number 

𝑃𝑟 =
𝜐

𝜅𝑇
. 
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 (a) 

 

(b) 

 

(c) 

 

Figure 2: Contour plots of temperature overlaid with 

velocity streamlines for horizontal convection in an 

enclosure with D/L = 0.625 at Rayleigh numbers Ra = 

(a) 1.43 × 103, (b) 1.43 × 108 and (c) 1.43 × 109.  Light 

and dark shading represents cool and warm fluid, 

respectively, and contour levels are arbitrarily chosen to 

elucidate flow features in the enclosure. 

 

Throughout this study the Prandtl number is maintained at 

Pr = 6.14, consistent with water at room temperature. 

Finally, the Nusselt number represents the ratio of 

convective to conductive heat transfer, and may be defined 

as 

𝑁𝑢 =
𝐹𝑇𝐿

𝜌0𝑐𝑝𝜅𝑇𝛿𝑇
. 

Numerical Approach 

The Boussinesq flow described by equation (1) is 

computed using a high-order in-house solver which 

employs a spectral-element method for spatial 

discretization and a third-order backward multi-step 

method for time integration (Sheard et al. 2007; Sheard, 

Fitzgerald & Ryan 2009).  This scheme is used to evolve 

both the velocity and scalar (temperature) fields.  The 

present study spans a very wide range of Rayleigh 

number, which for higher Rayleigh number placed 

considerable limitations on permissible time steps.  

Beyond Ra ≈ O(105), the maximum allowable time step in 

the computations scaled approximately with 1/Ra.  

Following the boundary- and thermal-layer scaling 

analysis of Mullarney et al. (2004), higher spatial 

resolution was also required as fluid scales reduced with 

increasing Ra. 

RESULTS 

With an increase in Rayleigh number, the horizontal 

convection flow passes from a diffusion-dominated regime 

to a steady-state convection-dominated regime, before 

subsequently developing unsteady flow, which is 

concentrated in the vicinity of the vertical plume rising 

from the hot end of the heated boundary.  Figure 2 plots 

temperature contours and streamlines for horizontal 

convection in an enclosure with D/L = 0.625 in each of 

these regimes. 

The same progression through these regimes was found 

for all enclosure proportions in the range investigated, 

0.16 ≤ D/L ≤ 2, though the Rayleigh numbers marking the 

transition between neighbouring regimes do exhibit a 

dependence on D/L, which will be explored subsequently.  

Flows are computed in this study over a wide range of 

Rayleigh numbers 4.36 × 10-4 ≤ Ra ≤ 8.52 × 1011 

The quantities of most interest in horizontal convection are 

the Nusselt number, the thermal and velocity boundary-

layer thicknesses, and the peak velocity within the 

boundary layer adjacent to the heated boundary.  

Mullarney et al. (2004) proposed scalings for these 

quantities with flux Rayleigh number (RaF), given as 

Nu ~ RaF
1/6, 

UL/κT ~ RaF
1/3, 

h/L ~ RaF
-1/6. 

In the present study, convection is controlled not by the 

flux Rayleigh number, but by the horizontal Rayleigh 

number Ra, and thus the expected scaling are recast as  

Nu ~ Ra1/5, 

UL/κT ~ Ra2/5, 

h/L ~ Ra-1/5. 

The Nusselt number may be calculated in the present 

configuration after calculating the heat flux (FT) along the 

cooler half of the heated boundary, as defined in the 

Introduction.  The calculated Nusselt numbers are plotted 

against Rayleigh number in figure 3.  The plot shows that 

at low Rayleigh number, the Nusselt number is 

independent of Rayleigh number, but is a function of D/L, 

with Nu decreasing with decreasing D/L.  As Ra is 

increased, the data for each aspect ratio collapse onto a 

single trend, which is nearly linear on a log-log plot, with 

a gradient of 1/5.  This gradient is consistent with the 

theoretical scaling from Mullarney et al. (2004).  The 

trend in figure 3 exhibits a slight increase in gradient 

beyond approximately log(Ra) ≈ 9.5.  It is noted that this 

corresponds to the development of unsteady flow in the 

enclosure. 
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Figure 3: A plot of log(Nu) against log(Ra), for D/L = 2 

(□), 1 (Δ), 0.625 (◊), 0.333 (∇), and 0.16 (○).  Akima 

splines are fitted to the data for guidance.  A dotted line 

shows the empirical trend proposed by Mullarney et al. 

(2004).  Note that a base-10 logarithm is used in all plots 

in this study. 

 

 

 

Figure 4: A plot of the gradient of the log(Nu)-log(Ra) 

curves from figure 3.  Gradients are calculated from finely 

discretized Akima splines fitted to the data.  A dotted line 

illustrates the theoretical gradient of 1/5 reported by 

Mullarney et al. (2004), and a dash-dot line shows the 

theoretical upper bound proposed by Siggers et al. (2004). 

 

To further elucidate the scaling of the data shown in 

figure 3, gradients were computed by fitting Akima 

splines to the data (Akima splines are less susceptible to 

the wiggle artefacts which affect other curve-fitting 

functions such as polynomial interpolation or cubic 

splines), and calculating the gradients using finite 

differences.  This data is plotted in figure 4.  In enclosures 

with approximately D/L ≥ 1, the gradient increases from 

zero to 1/5 at log(Ra) ≈ 4.  With decreasing D/L, the 

collapse to the gradient of 1/5 occurs at higher Ra; i.e., at 

D/L = 0.16, log(Ra) ≈ 8. 

 

 

Figure 5: A plot of log(hthermal/L) against log(Ra) for 

various D/L.  Symbols are as per figure 3.  The dotted line 

shows the empirical trend proposed by Mullarney et al. 

(2004) , and a gradient of -1/5 is provided for comparison 

with theory. 

 

 

 

 

Figure 6: A plot of log(hvelocity/L) against log(Ra) for 

various D/L.  Symbols are as per figure 3, and a gradient 

of -1/5 is provided for comparison with theory. 

 

 

Figure 4 confirms that beyond log(Ra) ≈ 9.5, the 

calculated gradients increase from approximately 0.2 to 

values in the range 0.25 to 0.30.  This is a significant 

observation, as such a gradient was not detected in the 

measurements of Mullarney et al. (2004), yet Siggers et al. 

(2004) performed an analysis which proposed an exponent 

of 1/3 as the upper bound on Nu-Ra scaling for horizontal 

convection.  The elevated gradients detected in these 

simulations may signify a transition to a previously 

undetected regime of horizontal convection.  The 

simulations performed in this study employ a higher 

spatial resolution than that employed in the numerical 

simulations conducted by Mullarney et al. (2004), which 

may explain why that study did not report scaling 
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Figure 7: A plot of log(umaxL/κT) against log(Ra) for 

various D/L.  Symbols are as per figure 3.  The dotted line 

shows the empirical trend proposed by Mullarney et al. 

(2004), and a gradient of 2/5 is provided for comparison 

with theory. 

 

exponents beyond 1/5.  The increase in gradient detected 

here occurs as unsteady flow develops in the enclosure 

shows that heat transfer is enhanced by the development 

of unsteady flow in this configuration. 

Thermal and velocity boundary layer thicknesses are 

calculated at x = L/2.  These quantities are plotted against 

Rayleigh number in figures 5 and 6.  The thermal 

boundary layer thickness is taken to be the point at which 

the temperature is 5% less than the temperature at the top 

wall, and the velocity boundary layer thickness is taken to 

be at the point of maximum velocity in the boundary layer. 

In the low-Rayleigh-number diffusion regime, the 

boundary layer thicknesses are independent of Rayleigh 

number.  In this regime, enclosures with larger D/L have a 

larger boundary-layer thickness.  With increasing Ra, the 

hthermal/L data overshoots the empirical trend measured by 

Mullarney et al. (2004), before collapsing onto a single 

trend with a gradient of approximately -1/5, consistent 

with theory.  Similar Rayleigh-number dependence and 

collapse behaviour is observed for hvelocity/L in figure 6. 

The peak boundary layer velocity on the centreline of the 

enclosure displays two regimes of linear behaviour with 

Rayleigh number on a log-log plot as shown in figure 7.  

For all D/L, a unit gradient is found in the low-Ra regime, 

which persists to approximately log(Ra) ≈ 3.5 to 6.5 for 

D/L ≈ 2 down to 0.16.  At higher Rayleigh numbers, the 

data again collapses to a linear trend, this time with a 

gradient of 2/5, which is consistent with theory.  

Furthermore, the data in this convective regime agrees 

very well with the empirical trend reported by Mullarney 

et al. (2004). 

To characterize the enclosure aspect ratio dependence on 

transition from the diffusion-dominated regime to the 

convective regime, a criterion was established whereby 

deviation of more than 5% from the Ra-independent 

values of Nu and hvelocity/L identified the critical Rayleigh 

number.  Figure 8 plots the critical Rayleigh numbers as a 

function of D/L for the data shown in figures 3 and 6.  It is 

found that for Nu, the critical Rayleigh number denoting 

transition to convective flow is insensitive to enclosure 

 

 

Figure 8: A plot of the logarithm of critical Rayleigh 

number against D/L, for Nu (□) and hvelocity/L (○) data. 

Curves are spline fits to the data for guidance. 

 

aspect ratio above D/L ≈ 1.  At lower aspect ratios, the 

critical Rayleigh number increases hyperbolically as 

D/L → 0.  This trend is shared for the boundary-layer 

thickness data, though at consistently higher critical 

Rayleigh numbers, with the exception that above D/L ≈ 1, 

the critical Rayleigh number is seen to decrease 

appreciably with increasing D/L.  Due to the sparsity of 

the original data (hvelocity/L was computed at power-of-10 

Ra intervals), it is unclear whether the Racrit data point at 

D/L = 0.333 undershoots an otherwise hyperbolic trend, or 

whether the low- D/L values of 0.16 and 0.333 form a 

separate branch to the data at D/L ≥ 0.625. 

It is known that beyond some Rayleigh number in the 

convective regime, the horizontal convection flow 

develops unsteady flow.  An example of this can be seen 

in figure 2 c, where the vertical plume in the bottom-right 

corner of the enclosure exhibits a time-dependent pulsing.  

Similar observations can be made in the visualizations in 

Mullarney et al. (2004).  Analysis of time histories of heat 

flux through the bottom wall permitted the temporal 

characteristics of the saturated flows computed in this 

study to be determined.  It was found that somewhere in 

the range 3.5 × 108 < Ra < 8.5 × 108, the flow transitioned 

from a steady to a time-dependent state.  Figure 9 plots the 

log(Ra)-D/L parameter space computed in this study, 

identifying steady and time-dependent cases.  It is found 

that there exists little or no aspect-ratio dependence on the 

transition Rayleigh number for unsteady flow.  Given that 

the Nu and boundary-layer data at various D/L have been 

shown to collapse onto a single curve, implying 

independence on D/L, it is interesting to observe that a 

similar independence on enclosure aspect ratio is found for 

the transition to unsteady flow.  This result strongly 

suggests that the mechanism leading to the transition to 

unsteady flow is closely tied to the thermal and velocity 

boundary layers along the heated boundary.  

CONCLUSION 

Horizontal convection has been computed at high spatial 

resolution using a spectral-element method, over a wide 

range of Rayleigh numbers and enclosure aspect ratios, at 

a Prandtl number of 6.14, which is consistent with water at 

room temperature. 
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Figure 9: A plot of the log(Ra)-D/L parameter space 

computed in this study.  Symbols denote points at which 

data was acquired, with open and filled symbols showing 

steady and unsteady solutions, respectively.  Solid and 

dash-dot lines reproduce the critical Rayleigh number 

curves given in figure 8 for comparison, and a dashed line 

marks the approximate boundary between steady and 

unsteady regimes. 

 

At low Rayleigh number, the Nusselt number and 

boundary layer thickness demonstrate Rayleigh-number 

independence, though they do vary with aspect ratio.  

Above some critical Rayleigh number, all simulated 

scalings for Nusselt number, boundary layer thickness, 

and boundary layer velocity each collapse to single curves 

independent of aspect ratio, and in agreement with theory, 

i.e. Nu ~ Ra1/5, h/L ~ Ra-1/5, and UL/κT ~ Ra2/5, 

respectively (see figures 3, 5, 6, 7). 

At higher Rayleigh numbers there is evidence for 

transition to the theoretical upper bound of 1/3 for the 

Nusselt number scaling exponent (see figure 4).  This 

increase in the exponent for Nusselt number scaling with 

Rayleigh number from 0.2 towards 1/3 occurs with the 

development of unsteady flow in the enclosure.  Unsteady 

flow develops above a critical Rayleigh number in the 

range 3.5 × 108 < Ra < 8.5 × 108, which is independent of 

aspect ratio (see figure 9). 

In enclosures with large aspect ratios D/L > 1 (i.e. tall, 

slender enclosures), the critical Rayleigh number for 

transition from diffusion dominated to convection 

dominated flow is independent of aspect ratio.  This likely 

occurs as a result of the top boundary being sufficiently far 

from the bottom boundary to wield no influence on the 

horizontal convection quantities monitored in this study. 
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