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ABSTRACT 
The flow of blood past an axisymmetric thrombus in an  
in-vitro geometry is computed through the solution of the 
three-dimensional (3D) Navier-Stokes equations. A 
spectral-element solver coupled with an azimuthal Fourier 
expansion forms the 3D spatial discretisation scheme. 
Particle tracking is used to simulate the flow of 
thrombocytes (platelets) through the geometry at 
appropriate distances from the wall. The thrombus is 
shown to experience significant increases in local shear 
rate (up to 300%) over the Poiseuille flow conditions. A 
significant variation in both the maximum shear rate 
achieved in the vicinity of the thrombus, and the local 
shear behaviour, is observed as the thrombus increases in 
size within the channel.  
 

NOMENCLATURE 
AR Aspect ratio 
H Depth of channel 
V Derivative tensor 
HT  Height of thrombus 
hT Nondimensional thrombus height 
L Radial size of mesh 
P Kinematic pressure 
S Strain tensor 
rT Radius of curvature of the thrombus 
γ Shear rate 
u Velocity (vector form) 
τ Shear force 
λ Principal strains 
χ Normalized shear 
υ Kinematic viscosity 

INTRODUCTION 
Heart disease is the leading cause of death in Australia 
and many Western nations. Heart disease is a generic term 
covering a multitude of cardio-vascular diseases and 
disorders which can range in severity from mild to fatal.  
Studies have long shown that there are flow dependent 
effects on the vascular system (Caro et al., 1969) 
particularly regarding thrombosis. Thrombosis is the 
process of occlusion of vascular vessels via the formation 
of a blood clot (a thrombus). Thrombosis is commonly 
associated with stroke and heart disease (Wootton and Ku, 
1999). In general, a thrombus is an aggregate of blood 
cells and proteins which bond together at an injury site on 
a blood vessel wall.  The thrombus structure is dominated 
by bonding between platelets and the appropriate proteins. 
As a result, the activation and adherence of platelets is a 
critical factor in the formation of a thrombus (Eisenberg 

and Ghigliotti, 1999). An important question may be 
posed; after forming an initial thrombus structure at the 
site of vessel wall damage, what interactions mediate 
platelet aggregation, adhesion and activation after the 
isolation of the injury site from the flow (Hathcock, 
2006)? These processes may be triggered by a variety of 
chemical agonists (Wootton and Ku, 1999). However, 
biomechanical interactions, particularly the effect of  
shear forces to which the platelets are exposed to are 
thought to affect platelet-thrombus interactions (Kroll et 
al., 1996). 
 
The interaction of these processes is complex, yet recent 
studies have shown that the initial tether formation 
between platelets and the adhering surfaces are shear rate 
(γ) dependent (Dopheide et al., 2002; Maxwell et al., 
2007). Additionally Gonclaves et al. (2005) showed 
temporal variations in shear affect the activation rate of 
platelets. The shear environment in these papers was 
controlled by using micro-slides to form a perfusion 
channel. Recent work such as Tolouei et al. (2008) and 
Nesbitt et al. (2009) has placed heavy emphasis on the fact 
that variations in shear occur around thrombotic growths 
in these channels. Additionally artificial disturbances in 
shear introduced into the channel in Nesbitt et al (2009) 
were shown to trigger platelet aggregation. The 
aggregation was attributed to spatial “micro gradients” in 
shear rate. It was noted (Fouras, 2008) that these thrombi 
reach a steady state size within the perfusion channel, 
suggesting a change in shear behaviour may occur during 
thrombus growth. 
 
This study seeks to model a thrombus in a perfusion 
channel by  matching the experiments of Tolouei et al. 
(2008) and Nesbitt et al. (2009); paying particular 
attention to the changes in behaviour of the shear forces 
both on and in the local vicinity of a thrombus as it gets 
larger within the channel.  Attention is to be payed  to the 
effect the variation of thrombus height has on the shear 
rate maximum as well as the spatial and temporal 
gradients of shear rate. 

MODEL DESCRIPTION 
The model and parameters established for this study are 
based on the two papers stated in the introduction. These 
papers considered in-vitro geometries, due to the lack of 
control provided by in-vivo systems. As a result this study 
models the experimental geometries where the 
biochemical effects are tightly controlled. The geometry 
of the thrombus is axisymmetric in shape and 
geometrically similar as it grows in the channel. We note 
at this stage that the experimental studies use a chemical 
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agonist to stimulate the initial formation of the thrombus. 
As a result of this control, the thrombus can be considered 
to always be adhered to the lower surface of the channel.  
 

 
Figure 1: Schematic diagram of micro-channel geometry. 
The red surface represents a thrombus on the lower 
surface of the channel. Arrows designate the flow through 
the channel. 
 
The shape is idealized as a partial protrusion of a sphere 
(in 3D) or a circle (in 2D) through the centreline of the 
lower wall of the channel, as illustrated in figure 1. The 
protrusion is defined as a ratio of thrombus height HT to 
the radius of the sphere defining it rT. This ratio was fixed 
at 0.25 in this study to maintain geometric similarity. 
 
The  micro-slide channel is a long rectangular duct and the 
thrombus is considered to be far away from entrance 
effects. The channel aspect ratio AR = W / H based on the 
channel width W and height H was set at 10 to match the 
experimental conditions.  
 
This geometry produces a flow field which is three-
dimensional. Two-dimensional approximations of this 
system result in more dramatic changes in area, and as a 
result, an over-estimation of changes in velocity and 
pressure.  A Newtonian fluid solver is considered to be an 
acceptable model for all the simulations in this study as 
the flow conditions are steady state (Rodkiewicz et al., 
1990). 
 
In studies of vascular flow, shear forces are considered to 
be an important physical stimulus both on blood cells and 
the vessel walls. Shear rate is commonly used instead of 
shear force. Under the Newtonian assumption, the shear 
rate is directly proportional to the shear force τ through 
the dynamic viscosity. 
    
The shear rate at the walls for these perfusion channel 
geometries is commonly calculated using two-dimensional 
Poiseuille flow conditions.  This produces a Reynolds 
number based on the wall (maximum) shear, defined as  

υ
γ

4

2H
Re wall= .      

 
This definition for Reynolds number and shear rate was 
derived based on the 2D Poisuille flow assumption. As the 
system has a limited aspect ratio a more sophisticated 
definition is required. In this case the solution of laminar 
duct flow (Appendix A) is used to calculate a maximum 
shear, which occurs at the channel wall centreline. This is 

consistent with the position where the thrombus occurs in 
the experimental studies. 
 
The peak Poiseuille shear rate γwall forms the basis for a 
nondimensionalization of the shear rate in this problem. A 
non-dimensional shear rate χ is defined as the ratio of the 
local shear rate to the Poiseuille shear rate, 

wallγ
γχ =        

The thrombus height (HT) is considered the characteristic 
dimension for this study; consequently it is non-
dimensionalized by the channel height (H), providing a 
height ratio, 

                             
H
Hh T

t = .      

Parameter space 
A single Reynolds number ( Re = 6.84 ) is considered in 
this study, which matches the shear rate (γ = 1800) 
measured in the experimental studies. A range of 21 cases 
were investigated between 0.02 ≤ ht ≤ 0.8. Lagrangian 
particle tracking (Sheard et al. 2007) was conducted in 
each case. 

NUMERICAL METHODOLOGY 
A spectral-element method forms the basis of the spatial 
discretization technique for this study. The formulation is 
a Newtonian flow solver (Karniadakis and Sherwin, 
1999). The two-dimensional mesh consists of quadrilateral 
macro elements with a tensor product of Lagrangian 
polynomials as the shape functions evaluated at nodal 
points. 
 
While the geometry is axisymmetric, the flow is not. As a 
consequence a formulation of the spectral-element/Fourier 
(SEF) technique is used. An SEF technique uses a Fourier 
expansion to discretize the flow in the third dimension. 
Blackburn and Sherwin (2004) described a technique for 
an azimuthal expansion for the third dimension; in 
addition the change of variable imposed in this method 
decouples the Fourier modes allowing efficient 
parallelization. Significantly this solver permits flow 
through the axis of the expansion. The result is a solver 
which achieves spectral convergence through two 
independent control methods, the number of Fourier 
modes used and the number of nodes evaluated for the 
Lagrangian polynomials. 
 
While the flow asymptotes to a steady state, the solution is 
obtained by evolving the time-dependent incompressible 
Navier-Stokes equations,  
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from a non-physical initial condition. The time stepping 
scheme converges to the steady state solution in this 
problem via a third-order operator splitting scheme. It is 
noted that for steady-state solutions, the time splitting 
errors are zero for any stable time-step (Karniadakis et al., 
1991). 
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Grid Geometry 
The grid geometry was specified to align with the 
geometry as considered in the model description section. 
The z axis passes vertically through the centre of the 
thrombus, and the (radial) edge was set such that the mesh 
“touched” the micro-channel wall at its extremity.  This 
imposes a mesh radial length (L) on height ratio (H) which 
is half of the aspect ratio, AR. The mesh, shown in figure 2 
is a meridonal half plane, on which the spectral-element 
grid is defined. This matching of the radial dimension to 
the channel width was considered a sufficient domain size 
for the Reynolds number considered. Care was taken to 
minimize the skewing of elements in all cases. The 
number of macro elements in the grid ranged between 120 
and 170 depending on the height ratio hT. Elements 
employing a polynomial degree of 10 were used and 40 
Fourier modes were employed, which resolved the flow 
within numerical precision error for the technique. 
Resolution studies were conducted both in space and time 
to ensure consistency and accuracy of the solution. 
   
 

 
Figure 2:  Mesh Geometry of the spectral element grid. A 
single r-z plane representing the axisymmetric geometry. 
The dashed red line represents the z-axis (axis of 
revolution). Bold lines mark the spectral-elements and 
faint lines represent the nodal evaluation points. The 
number of nodes per element depicted was reduced for 
clarity. 

POST PROCESSING TECHNIQUES 

Particle Tracking 
In addition to solving the flow field, a number of passive 
particles are introduced. These particles simulate the flow 
of platelets through the channel, thus capturing the spatial 
and temporal history of shear rate on the platelets. The 
method, a variation that proposed by Coppola et al. 
(2001), uses the high order accuracy of both the Fourier 
modes and Lagrangian polynomials. A fourth order 
Runge-Kutta technique is used to advance the particles 
within elements, and linear sub-steps are employed to 
traverse element interfaces. Particle tracking provides 
high-order space-time histories of platelet motion under 
the assumption that the platelets do not disturb the flow 
field. As the flow-field converges to a steady state 
solution the particle tracking algorithm is employed on a 
frozen base flow solution, where only the particle tracks 
are evolved and not the flow field. This allows rapid and 
efficient computation of the particle tracks.  
 

Shear rate calculation in three dimensions 
In a two-dimensional channel, the shear rate for Poiseuille 
flow reduces to  

22
      ,

.8 HzH
h

zU peak ≤≤−=
•

γ ,    

where H is defined as the channel height and UPeak the 
peak flow velocity. The simplicity of this equation is due 
to the steady state flow which is constant in the flow 
direction. Fluidic strain rate and shear rate are analogous 
to strain and shear in solid mechanics. Most importantly, 
given a set of spatial derivatives (strains and shears), at 
any point principal strains and shears may be found. 
Given the unknown relationship for shear/strain 
interaction for platelet adherence and activation, the 
principal shears and strains are considered the relevant 
parameters.  
The principal strains λ can be defined as the eigenvalues 
of the strain rate tensor S, written in Cartesian tensor 
notation as 
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The principal shear is the difference between the 
maximum and minimum principal strains, 

minmax λλγ −= .      
Calculated in this fashion, only the magnitude of the shear 
rate is determined. An additional level of complexity is 
introduced due to the solver formulation using a 
cylindrical coordinate system. The shear rate is solved 
using the cylindrical velocity gradient tensor V (Appendix 
B) which is used to calculate the strain tensor as, 

( )TVVS += 5.0 ,     
which can be solved for its eigenvalues and consequently 
the shear rate. It is noted that at the axis, the solution is 
singular despite the existence of a finite strain at that 
point. This has no effect on the solver due the formulation 
of Blackburn and Sherwin (2004). Thus the principal 
shear rate may be calculated at all points in the domain 
with the exception of the axis (r=0).   

RESULTS 

Peak shear rate for an increasing thrombus size 
The peak shear rate was calculated by finding the 
maximum shear rate at the nodal evaluation points. No 
extrapolation or high order interpolation was used. In all 
cases the shear maxima were located on the surface of the 
thrombus. The shear rate minima has not been displayed, 
this is as large number of minima are present, a result off 
the shear rate at the centreline of a Poiseuile flow, the 
imposed boundary conditions, is zero. Local minima and 
maxima occur at the leading and trailing stagnation points 
of the thrombus. These occur along the thrombus 
centreline, at the intersection of the thrombus and the 
surface.   
 
Figure 3 shows the peak shear rate which was observed 
through the study. The figure shows the shear rate peaking 
as ht approaches zero, suggesting that a single platelet 
adhered to the wall generates the maximum shear rate 
increase of  280% from the Poiseulle inlet conditions at 
the smallest thrombus size considered. The peak shear rate 
decreases with increasing hT to hT = 0.5, before again 
gradually increasing. 
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Figure 3: The maxima of non dimensional shear rate over 
the entire mesh volume versus the nondimensional 
thrombosis height. 

Peak shear rate location and structure 
We observed that the shear rate maximum was always 
occurring on the surface of the thrombus. This is 
consistent with steady Poiseuille flow where the 
maximum shear rate occurs on the walls. The contour 
plots of figure 4 illustrate the behaviour of the forces as 
the height of the bump is increased.  Figure 4(a) 
demonstrates a near symmetry in the flow direction. This 
symmetry is consistent with a Stokesian flow locally 
around the bump. The Reynolds number of the channel 
Re=6.84 is well above Stokes flow conditions. However, a 
Reynolds number ReT based on the thrombus height HT 
where the velocity UPeak    is defined as the peak inlet 
velocity, yields a range of 0.12 ≤ ReT ≤ 5.84 where the 
lower end is consistent with creeping flow regime Re 
<<1. 

      
The effect of convection can be seen though the 
movement of the peak forward on the centreline, away 
from a Stokesian symmetry in figure 4b. The most 
interesting behaviour is the transition from a single shear 
rate peak to dual peaks in figures 4c and 4d. This is seen 
to be of significant interest, as it suggests a change in the 
behaviour and pattern of thrombus growth. Platelets 
experiencing the peak shear will no longer be passing over 
the top, rather around the side of the thrombus. 
 
Figure 5 shows a consequence of the transition to dual 
peaks. The position of peak shear always occurs on the 
thrombus, thus we can define this in terms of the height 
above the surface. Before the transition to dual peaks the 
shear rate maxima height increases linearly with the 
height increase. At transition hT =0.3 the height of 
maximum shear plateaus rapidly. 

Platelet shear rate history via particle tracking 
Multiple particle tracks were examined for all computed 
flow fields. A selection of the data is presented in this 
paper. Platelets were introduced at approximately one 
platelet diameter away from the wall (2μm) equating to 
1%  of the domain height. 
 

 
(a) 

 
(b) 

 
(c)  

 
(d) 
Figure 4:  Contour plots of shear rate at even intervals. 
Contours are on the lower surface (including the 
thrombus) with flow travelling left to right across the 
page. The white ring represents the edge of the thrombus. 
In each case the size has been scaled for clarity. Doted 
contour is a half sized interval to visualize the peaks 
clearly. White contour colouring represents χ = 1. Blue 
and red contours represents negative and positive 
variations from that level.  The following are the 
associated cases for each contour: (a) ht = 0.09., (b) ht = 
0.25.  (c) ht = 0.3.. (d) ht = 0.8. 
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Figure 5: Location of maximum shear (z-displacement). 
The x-axis represents the nondimensionalised height of 
the thrombus, the vertical axis represents the scaled height 
of maximum shear hM. The dashed line represents the case 
where hM =ht. 

 
Figure 6: Temporal variation of shear along particle 
tracks. Nondimensional shear rate χ is plotted against 
time. Time is normalized by a shift such that the peah 
shear occurs at t = 0. The black solid track represents the 
case ht = 0.09, the blue short dashes represent case ht = 
0.25 and the red long dashes represent ht = 0.5 
 
Figure 6 shows the variation of shear in terms of time 
history for each of the flows. A selected particle track at 
the axis is shown for 3 cases. The location and magnitude 
of the shear rate peak in the particle tracks is consistent 
with that recorded from the calculations over the domain. 
It can be seen immediately that for small thrombus sizes 
the temporal rate change of shear rate is extremely large 
compared with the larger thrombus sizes. This very large 
scale in differences may point to the potential cause of 
stability in thrombus size in-vivo.   

DISCUSSION 
The introduction of a thrombus into an in-vitro geometry 
is shown to produce large variations in shear local to the 
thrombus. As activation/adherence of the platelets is 
believed to be shear dependent, the significant decay in 
peak shear as the thrombus increases in size is significant. 
When considering this fact, and relating it to an in-vivo 

geometry, the effect of vessel occlusion is not modelled. 
Even for the largest sized thrombus in this case the 
occlusion of the geometry is relatively small, (<15 %). 
 
The change in the behaviour of shear forces around a 
thrombus as it grows is the significant outcome of this 
study. The transition from a near Stokesian solution to a 
solution affected by convection (from figure 4a to 4b), 
does not significantly affect the paths the platelets 
experiencing maximum shear. However, the transition to 
twin peaks of shear (figure 4b to 4d) moves the peak shear 
away from the centreline. As a result, platelets which 
move around rather over the top of the thrombus will 
experience peak shear. We hypothesise that this transition 
will trigger a change in pattern in platelet activation and 
adherence, leading to a change in thrombus shape. 
 
From the observations of both the peak shear rate and the 
pattern of shear observed at the thrombus, there is a 
number of contributing effects to the location and level of 
peak shear. The curvature of the thrombus regulates shear: 
as the curvature increases so too does the shear. The 
second effect is the relative size in the channel: as the 
thrombus increases in size, it moves through the parabolic 
profile. This is the effect which leads to the transition 
from a single shear peak to the twin peaks system. 
 
A combination of these two effects explains the gradual 
increase at ht ≥ 0.5. A decrease in curvature is offset as the 
thrombus grows into the high shear region on the 
opposing wall.  A more dramatic increase in shear would 
be expected from lower aspect ratios observed in in-vivo 
geometries when compared with the  in-vitro geometry. 
This is due to the higher occlusion which happens in lower 
aspect ratio geometries. 
 
One key result is obtained from the particle tracks. As the 
thrombus size increases, the temporal variation in shear 
decreases significantly. This decrease is non-linear with 
respect to thrombus size. This is an interesting result as it 
illustrates a connection between the earlier work of 
Goncalves et al. (2005) and the recent work of Nesbitt et 
al. (2009). The spatial shear rate “micro gradients” 
observed in Nesbitt et al. (2009) may not directly cause 
thrombus growth, but rather be a limited form of the 
temporal shear variation observed in Goncalves et al. 
(2005). Additionally it is a potential explanation of 
thrombus growth in vessels where shear is much lower 
than the peak through the entire vascular system, 
illustrating that how rapidly the shear rate varies in time 
may be as important as the peak shear itself. This 
reduction in temporal shear change with increasing 
thrombus size may explain the stability of thrombus in-
vivo.  At this time it is unclear whether spatial or temporal 
gradients drive platelet activation, however, evidence 
presented in this paper suggests that temporal gradients 
may  contribute more than shown in Nesbitt et al. (2009). 

CONCLUSION 
A numerical investigation employing three-dimensional 
direct numerical simulations examines the flow past an 
axisymmetric thrombosis in an experimental geometry. 
For a geometrically similar thrombosis, as the size 
changes within the channel, a significant variation in peak 
shear rate occurs. An initial decrease in shear from the 
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maximum occurs as ht increases from 0 to 0.5. Following 
that there is a gradual increase as the thrombosis grows 
towards the opposing wall. This growth sees transitions in 
the behaviour of shear rate in the vicinity of the thrombus. 
A significant transition occurs where the peak shear 
moves from one to two peak locations on the thrombosis. 
This transition accompanied by a plateau of the peak shear 
location in the vertical direction. As platelets are shear 
activated this represents a significant change in the 
activation pattern and resulting growth of the thrombus. 
Additionally, a transition to creeping flow conditions in 
the vicinity of the thrombus as hT approaches zero 
represents a limiting factor for the potential increase in 
shear with decreasing thrombus size. This increase is 
limited by the “single platelet” clot, which the smallest 
case considered is a close approximation to. 
 
Passive particle tracking verified that high temporal 
gradients in shear rate occur in the proximity of the 
thrombus. It is noted that even though the difference 
between the minimum and maximum shear rate increase 
as ht ≥ 0.5  The shear rate change (temporally) on a 
platelet is still decreasing. Further work is required to 
quantify whether spatial or temporal gradients are the 
dominant criterion for platelet activation. 
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APPENDIX A: LAMINAR DUCT FLOW 
The boundary conditions for the inflow-outflow boundary 
in the study were represented by an analytic solution to 
rectangular duct flow (White 1991). This equation, 
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is a reduction of the system which defines the velocity in 
terms of channel size a flow rate. It is convenient as it 
eliminates viscosity from the solution. The equation is 
imposed on a domain where –a ≤ y ≤ a, –b ≤ z ≤ b and Q 
is the volumetric flow rate through the channel. 

APPENDIX B: CYLINDRICAL VELOCITY 
GRADIENT TENSOR 
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