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a b s t r a c t

This study reports on an experimental investigation of the effect of mass ratio on the
transverse flow-induced vibration (FIV) response of an elasticallymounted square cylinder
placed at three different incidence angles: two symmetric with respect to the centreplane,
α = 0◦ and 45◦; and one asymmetric at 20◦. These three angles display different dominant
FIV phenomena: transverse galloping and combined vortex-induced vibration (VIV) and
galloping for α = 0◦, VIV for α = 45◦, and higher branch subharmonic (period-doubled)
VIV for α = 20◦ (Nemes et al., 2012). The mass ratio is defined as the ratio of the total
oscillating mass (m) to the displaced fluid mass (md), m∗

= m/md. The present results
show that the mass ratio (m∗

= 2.64 – 15.00) has a significant influence on the structural
vibration response for all FIV phenomena, and can dictate whether two of these modes
exist at all. Three primary observations are presented: for the α = 0◦ case, the combined
VIV–galloping response is diminished as themass ratio is increased, and it ceases to exist for
m∗ ⩾ 11.31; for the α = 45◦ case, the peak values of the normalised oscillation amplitude
during VIV are only reduced marginally with increasing m∗, however the body oscillation
amplitude in the desynchronised regions is significantly attenuated; for the α = 20◦ case,
there exists a criticalmass ratio (m∗

crit ≃ 3.50) abovewhich the higher branch subharmonic
VIV does not persist.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-induced vibration (FIV) of bluff bodies has motivated a significant amount of research in the past half-century, due
to its importance in a large variety of engineering applications, such as oil risers and offshore structures in ocean currents,
wind turbine towers, bridges and high-rise buildings in winds. There are two phenomena typical of FIV of bluff elongated
structures in cross-flow: vortex-induced vibration (VIV) and galloping (see Blevins, 1990; Naudascher and Rockwell, 2005).
Fundamentally, VIV is caused by the vortex shedding into the wake of a body, which in turn exerts fluctuating forcing on the
structure, causing it to vibrate at a primary frequency similar to that of the vortex shedding. Since the pioneering experiments
by Brooks (1960), a circular cylinder with a single degree of freedom (SDOF or 1-DOF) constrained to oscillate transversely
in a free stream has been adopted as the idealised model for fundamental research on VIV (e.g. Feng, 1968; Williamson and
Roshko, 1988; Khalak and Williamson, 1996; Govardhan and Williamson, 2000; Carberry et al., 2001; Klamo et al., 2005;
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Leontini et al., 2006; Zhao et al., 2014a). One reason for this is its axial symmetry that prohibits the influence of other forms
of FIV. On the other hand, structures with axial asymmetry (e.g. a square cross-sectional cylinder) may be susceptible to
transverse galloping, as opposed to, or in addition to, VIV. Fundamentally, galloping is caused by the asymmetric long-time
aerodynamic force arising from the body motion in a fluid flow and so typically occurs at a frequency much less than the
vortex shedding. It should be noted that galloping is not the only aeroelastic instability possible — for example, flutter can
also occur for the combined plunge-pitch instability of airfoil structures (see Blevins, 1990). Galloping is thus categorised
as movement-induced excitation (MIE), whereas VIV in caused by the vortex shedding in the wake of a body and thus is
categorised as instability-induced excitation (IIE) (see Naudascher and Rockwell, 2005). These FIV phenomena are of great
practical concern, due to their potential leading to undesired vibration, fatigue damage of structures or even structural
failures (e.g. the Tacoma Narrows Bridge collapse in 1940). Comprehensive reviews of previous extensive research on FIV
have been given by Bearman (1984), Sarpkaya (2004), Williamson and Govardhan (2004) and books by Blevins (1990),
Naudascher and Rockwell (2005), Païdoussis et al. (2010), among others.

Previous studies have shown that the mass ratio, defined as the ratio of the total mass of the oscillating system (m) to the
mass of the displaced fluid (md), namely m∗

= m/md, is an important parameter affecting the FIV response of a system. For
the circular cylinder, a comparison of highmass ratio wind tunnel experiments withm∗

= O(100) by Feng (1968), to a series
of studies by Khalak andWilliamson (1996, 1997a,b, 1999) of a hydro-elastic systemwith lowmass ratio (m∗

= O(1)) shows
that the low-mass-ratio system exhibits a much wider ‘‘lock-in’’ region and substantially larger oscillations (with the peak
amplitude up to one diameter of the body). The low-mass-ratio system also has three (the ‘‘initial’’, ‘‘upper’’ and ‘‘lower’’, as
named by Khalak andWilliamson (1996, 1997a,b, 1999)) branches and a desynchronised region as a function of the reduced
velocity. Note that the reduced velocity is defined by U∗

= U/(fnH), where U is the free-stream velocity, fn is the natural
frequency of the system in quiescent fluid, and H is the frontal projected width of the body (e.g. the cylinder diameter D).

A critical mass ratio also appears to exist, below which the cylinder exhibits large amplitude oscillations at a frequency
near the Strouhal frequency regardless of U∗. This critical mass is typically m∗

crit ⩽ 0.54, but the exact value is Reynolds
number (Re) dependent (see Govardhan and Williamson, 2002; Branković, 2004; Ryan et al., 2005). Note that the Strouhal
frequency, denoted by fSt in this study, refers to the vortex shedding frequency of the stationary body, and its normalised
form, the Strouhal number, is defined by St = fStH/U; the Reynolds number is defined by Re = UH/ν, where ν is the
kinematic viscosity of the fluid. Clearly, the mass ratio has a significant, and non-trivial, influence on the VIV response.

Although there have been a considerable amount of studies conducted on FIV of a square cylinder that has been widely
adopted as the canonical model for transverse galloping, little attention has been paid to the effect of mass ratio in this
problem. Following the pioneering study of Den Hartog (1932) who first proposed a criterion for the onset of galloping of
ice-coated cables in winds, Parkinson and Smith (1964) developed a quasi-steady theory to predict the amplitude response
of a square cylinder undergoing galloping. In general, this quasi-steady theory has been successfully implemented in aero-
elastic systems with relatively high mass and damping ratios, where the galloping oscillation frequency is much lower than
the vortex shedding frequency. With a low-damping system in wind tunnel experiments, Bearman et al. (1987) observed
that,while the amplitude response could be generally predicted using the quasi-steady theory of Parkinson and Smith (1964),
a ‘‘kink’’ region in the amplitude response occurred at U∗

≈ 6π , with a noticeable third-harmonic frequency of the body
vibration present in the frequency components of the transverse lift. This indicates that in some circumstances galloping is
still affected by the vortex shedding. Luo and Bearman (1990) noted that the quasi-steady theory of galloping was able to
predict the fluctuating lift on a transversely oscillating square cylinder at high reduced velocity, but not at intermediate to
low reduced velocity, due to the influence of vortex shedding and fluid inertia forces. Theoretical analysis of the effect of
the vortex shedding on the galloping response was performed by Bokaian and Geoola (1984). Later, Corless and Parkinson
(1988, 1993) proposed amodel for the combined effects of VIV and galloping. These attempts, however, had limited success.

The experimental investigation on the influence of angle of attack (α) of a square cylinder with lowmass ratio (m∗
= 2.2)

from Nemes et al. (2012) identified three α regimes; one dominated by galloping at low angles of attack 0◦ ⩽ α ≲ 7.5◦, a
second with combined VIV–galloping at medium angles of attack 10◦ ≲ α ⩽ 22.5◦, and a third dominated by VIV at high
angles of attack 25◦ ⩽ α ⩽ 45◦. They observed a new higher branch (HB) over themediumα range, where the body oscillation
amplitudes are significantly larger than those seen in the upper branch associated with pure VIV, but with a oscillation
frequency component locked onto approximately the first subharmonic of the Strouhal frequency, fSt/2. Subsequently, Zhao
et al. (2014b) conducted an in-depth investigation for three representative cases α = 0◦, 20◦ and 45◦, employing accurate
force measurements and flow visualisations based on particle image velometry (PIV) measurements, and revealed that: the
α = 0◦ case exhibited odd-integer (i.e. 1:1, 1:3, 1:5) synchronisations between the galloping frequency and the vortex
shedding frequency; the α = 45◦ case in general was characterised by VIV response but comprised of a number of distinctly
different regimes; the α = 20◦ case underwent a transition from a typical VIV upper branch to a higher branch, which was
associated with a change in the wake from a 2S mode to a 2(2S) mode. More recently, Zhao et al. (2018c.) provided a further
analysis using continuous wavelet transforms and recurrence plots on the dynamical states associated with synchronisation
regimes at the aforementioned three α values.

While most of the previous studies of FIV of a square cylinder have been conducted with high mass ratio at zero angle of
attack (e.g. Parkinson and Smith, 1964; Bearman et al., 1987; Amandolèse and Hémon, 2010; Manzoor et al., 2010; Sheikh
et al., 2014), limited attention has been given to the effect of mass ratio on the FIV response of a square cylinder. Zhao
et al. (2013) numerically investigated the VIV of a square cylinder with m∗

= 3 at α = 0◦, 22.5◦ and 45◦ in a laminar
flow at Re = 100. Joly et al. (2012) showed that galloping of a square cylinder at low Reynolds numbers only occurred for
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Fig. 1. A definition sketch for FIV of a square cross-sectional cylinder with variable angle of attack α. The square cylinder is allowed to oscillate freely only
in the transverse direction y, to the oncoming flow U in the stream-wise direction x. Note that H is the frontal projected length of the cylinder. A square
cylinder at α = 0◦ is referred to as a square orientation, while α = 45◦ as a ‘‘diamond’’ orientation.

Re > 140, and that galloping amplitude decreased abruptly for decreasingm∗ values close to 3 at Re = 200, whereas Jaiman
et al. (2016) observed, at the same Re, that the galloping amplitude decreased as m∗ was increased from 0.1 to 1, but then
increased as m∗ was increased from 3 to 10. In their low-Reynolds-number (50 ⩽ Re ⩽ 250) numerical study of a square
cylinder (α = 0◦), Sen and Mittal (2015, 2016) reported that the onset reduced velocity of galloping decreased as m∗ was
increased. Miyanawala and Jaiman (2018) showed that their numerical results (at α = 0◦) at subcritical Reynolds numbers
agreed generallywith the benchmark study of Zhao et al. (2014b), in terms of the amplitude response. Using a computational
scheme based of a variational formulation and incorporating a subgrid turbulence model to simulate the fluid–structure
interaction, they also predicted the ‘‘odd’’ synchronisation regions and associated wake modes originally observed by Zhao
et al. (2014b). However, the effect of mass ratio on the FIV response of a square cylinder at various angles of attack is still
largely unknown, particularly for high Reynolds numbers. Thus, the present study aims to extend the previous work of Zhao
et al. (2014b) to examine the effect of mass ratio on the structural response of a freely vibrating square cylinder at the three
aforementioned representative angles of attack α = 0◦, 20◦ and 45◦, in a high Re range, where the FIV response is likely to
be relatively insensitive to Reynolds number.

While themass ratio impacts all of the response regimes to some degree, it is shown that three of the previously reported
response regimes are most severely impacted. For the α = 0◦ case, the combined VIV–galloping response is diminished as
the mass ratio is increased, and it completely disappears form∗ ⩾ 11.31 — this observation quantifies the observation that
the VIV and galloping dynamics do not interact when the mass ratio is high and there time scales are well separated. For the
α = 45◦ case, the amplitude of the response during VIV is only marginally reduced, however it is significantly attenuated in
the desynchronised region. For the asymmetric α = 20◦ case, is shown the higher branch subharmonic VIV which produces
the largest amplitudes of oscillation only exists below a critical mass ratio ofm∗

crit ≃ 3.50.
The paper proceeds by describing the experimental details in Section 2. The results and discussion, including the vibration

amplitude and frequency responses, and analyses of the fluid forcing and phasing, are presented in Section 3. Finally,
conclusions are drawn in Section 4.

2. Experimental method

2.1. Fluid–structure system modelling

A schematic of the transverse FIV of a square cylinder with a variable angle of attack is shown in Fig. 1, which defines
key parameters of the system. The elastically mounted cylinder is allowed to oscillate freely in only one direction transverse
to the oncoming free stream. The body dynamics are governed by the linear second-order mass–spring–damper oscillator
equation:

mÿ(t) + cẏ(t) + ky(t) = Fy(t) , (1)

where c is the structural damping of the system, k is the spring constant, y(t) is the body displacement, and Fy(t) represents
the transverse fluid force (lift).

The present fluid–structure system was modelled using a low-friction air bearing system in conjunction with the free-
surface recirculating water channel of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash
University. This water channel facility has a test section of 4000mm in length, 600mm in width and 800mm in depth.
The free-stream velocity in the present experiments was varied continuously in a range of U = 45–450 mm s−1, and the
free-stream turbulence level was found to be less than 1%. More details of the air bearing system and the water channel
facility can be found in Nemes et al. (2012), Zhao et al. (2014a,b).

The rigid square cylinder model used, made from aluminium square cross-sectional tubing, had a side width of 24.6mm.
The immersed length was L = 620mm, giving an aspect ratio range of 17.8 ⩽ AR = L/H ⩽ 25.2. The displaced mass
of water was found to be md = ρD2L/4 = 373.2 g with ρ the density of water, resulting in a minimum achievable mass



J. Zhao, J. Leontini, D.L. Jacono et al. / Journal of Fluids and Structures 86 (2019) 200–212 203

Table 1
The experimental parameters of the total mass, the natural frequencies in both quiescent air and water, and the structural damping ratio for different mass
ratios.
m∗ m [g] md [g] fna [Hz] fnw [Hz] ζ

2.64 985.4 373.2 0.803 0.648 2.58 × 10−3

3.00 1119.6 373.2 0.753 0.618 2.51 × 10−3

3.50 1306.2 373.2 0.700 0.587 2.46 × 10−3

3.60 1347.8 373.2 0.669 0.580 2.59 × 10−3

4.00 1492.8 373.2 0.654 0.557 2.54 × 10−3

5.00 1866.0 373.2 0.586 0.515 2.46 × 10−3

7.50 2799.0 373.2 0.656 0.603 1.70 × 10−3

10.00 3732.0 373.2 0.570 0.530 1.57 × 10−3

11.31 4220.9 373.2 0.647 0.610 2.69 × 10−3

15.00 5598.0 373.2 0.565 0.544 1.31 × 10−3

ratio of m∗
= 2.64 for the present experiments. The mass ratio was tested in the range of 2.64 ⩽ m∗ ⩽ 15.00, which was

varied by adding extra weights on top of the air bearing rig. The natural frequencies in air (fna) and in quiescent water (fnw)
were individually measured by conducting free-decay tests. Details of the parametric values of the structural properties
(m∗,m,md, fna, fnw, ζ , etc.) are given in Table 1, noting that ζ = c/(2

√
k(m + mA)) denotes the structural damping ratio with

consideration of the added mass mA = ((fna/fnw)2 − 1)m. In order to maintain U∗ and Re in similar ranges for different m∗

cases, the number of extension spring pairswas also varied depending on the totalmass. To reduce end effects of the cylinder
and also to promote parallel vortex shedding, an end conditioning platform techniquewas used (see Khalak andWilliamson,
1997a; Zhao et al., 2014a,b; Wong et al., 2017, 2018; Zhao et al., 2018a,b). This platform had a height of 165mm and a top
plate with dimensions of 600mm × 400mm × 5mm. A small gap of approximately 1mm (∼ 4%H) was set between the
cylinder free end and the platform top plate.

2.2. Measurements

The cylinder displacement was measured using a non-contact magnetostrictive linear variable differential transformer
(LVDT) that was capable of a measurement range of 250mm with an accuracy of ±0.01% (or 0.001H) (see Nemes et al.,
2012; Zhao et al., 2014b). Simultaneously with the cylinder displacement, the lift and drag forces acting on the cylinder
were measured using a two-component force balance based on sensitive semiconductor strain gauges configured in a full
Wheatstone bridge circuit. To recover the transverse lift, the inertia force due to the cylinder’s acceleration was taken into
account, and thus the instantaneous transverse lift can be determined by

Fy = FSG + mBÿb , (2)

where FSG is the calibrated force output from the corresponding channel of the strain-gauge force balance,mB is the bottom
part of the system’s mass consisting of half the force balance sting and the entire cylinder model, and ÿb is the cylinder
acceleration. The lift coefficient is defined by Cy = Fy/( 12ρU

2HL) in the present study. The instantaneous relative phase angle
between the lift and the body displacement was calculated using the Hilbert transform (see Hahn, 1996). More details of the
force measurement technique and validation have been given in Zhao et al. (2014b).

Furthermore, the measurements at each reduced velocity were sampled at 100Hz for 300 s (for more than 100 body
vibration cycles), using a data acquisition system (DAQ) based on a PCI DAQ card (model: PCI-6221, National Instruments,
USA) interfacedwith customised LabVIEW (National Instruments) programs that were also used to control the flow velocity.
Further experimental details of the experimental setup and validation can be found in the study of Zhao et al. (2014b). The
reduced velocity range investigated was 3 < U∗ < 26, and the corresponding Reynolds number range was 1000 < Re <
12 300.

3. Results and discussion

3.1. The impact of m∗ for α = 0◦

Fig. 2 shows the normalised amplitude response (A∗

10) together with the normalised logarithmic-scale power spectral
density (PSD) contours of frequency response of the body vibration (f ∗

y ) as a function of reduced velocity for various mass
ratios, m∗

= 2.64, 5.00, 11.31 and 15.00. Fig. 3 shows the corresponding PSD contours of the transverse lift (f ∗

Cy ). The
frequency PSD contour plots were constructed by stacking together the power spectra of the time series of the cylinder
vibration for each U∗ (see Zhao et al., 2014b). As can be seen, all the m∗ cases in general exhibit an increasing trend in A∗

10
increasing with U∗ for U∗ above some threshold value. This threshold value increases withm∗, i.e. U∗

≈ 3 form∗
= 2.64 and

U∗
≈ 4.5 for m∗

= 15.00. Of particular interest are the ‘‘kink’’ regions in the amplitude response. As noted in the previous
study of Zhao et al. (2014b), for m∗

= 2.64, the first kink occurs around U∗
= 6. This small regime is characterised by a VIV

response, where the body vibration is highly periodic, with the dominant frequency synchronised with the vortex shedding
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Fig. 2. The normalised amplitude response (a) and the logarithmic-scale frequency power spectrum contours (b)–(e) of the body vibration for α = 0◦ with
various mass ratios. The vertical dashed lines represent boundaries of the ‘‘odd’’ synchronisation regimes. Note that the case of m∗

= 2.64 is reproduced
from Zhao et al. (2014b).

frequency, as in a 1:1 synchronisation. The second kink occurs over a much wider range of 11 ≲ U∗ ≲ 16, in which both f ∗
y

and f ∗

Cy responses exhibit a third harmonic frequency component, as shown in (b) of Figs. 2 and 3. Zhao et al. (2014b) have
shown that this is a 1:3 synchronisation associated with a 3(2S) wake mode comprising three cycles of two opposite-signed
single vortices shed per body oscillation cycle. Similarly, the third kinkwith aweak 1:5 synchronisation occurs over a narrow
reduced velocity range centred around U∗

= 22.
While the general trend of classical galloping response is encountered in all the m∗ cases (amplitude approximately

linearly increasing with flow speed), the amplitude response decreases as themass ratio is increased. There is also an impact
ofm∗ on the synchronisation regimes. Moving fromm∗

= 2.64 tom∗
= 5.00 the frequency response in Fig. 2(c) shows that

the 1:1 synchronisation region disappears, the range of U∗ for the 1:3 synchronisation region shrinks to 13 ≲ U∗ ≲ 16, and
the 1:5 synchronisation also occurs over a noticeably narrower U∗ range. Furthermore, the dominant galloping frequency is
f ∗
y ≈ 0.75, slightly higher than f ∗

y ≈ 0.6 seen form∗
= 2.64. A similar trend is also seen in the f ∗

Cy response shown in Fig. 3(c),
but the harmonic frequency components are relatively stronger, indicating that the vortex shedding process is faster than
the body vibration.
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Fig. 3. The normalised amplitude response in (a) and the logarithmic-scale PSD contours of the transverse lift frequency (f ∗

Cy ) in (b)–(e) for α = 0◦ with
various mass ratios. Note that the case ofm∗

= 2.64 is reproduced from Zhao et al. (2014b).

For the higher mass ratio cases m∗
= 11.31 and 15.00, the amplitude responses appear to be almost identical. Although

a kink is observed over 15 < U∗ < 18, it is difficult to identify the aforementioned synchronisations from the f ∗
y responses

in Fig. 2(d, e). Moreover, the dominant galloping frequency is found to be f ∗
y ≈ 0.93. On the other hand, the f ∗

Cy responses of
these twom∗ cases becomedominated gradually by a frequency at three times of the galloping frequency forU∗ > 15, similar
to the galloping response of a D-section cylinder for high U∗ values reported by Zhao et al. (2018a). These results indicate
that, asm∗ is increased, the synchronisation regions can be significantly shrunk, and the galloping frequency approaches fnw.

3.2. The impact of m∗ for α = 45◦

Fig. 4 shows the A∗

10 and f ∗
y responses as a function of U∗ for the α = 45◦ case with various mass ratios,m∗

= 2.64, 3.00,
4.00, 7.50, 10.00 and 15.00. Clearly, all the m∗ cases at α = 45◦ exhibit a VIV response over the entire U∗ range tested. As
m∗ is increased, the region of periodic body oscillations, which is bounded by the vertical dashed lines in the f ∗

y response
plots, becomes narrower, i.e. from 3 < U∗ < 7.5 for m∗

= 2.64 to 3.5 < U∗ < 6.4 for m∗
= 15.00. Moreover, while the A∗

10
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Fig. 4. The A∗

10 responses as a function of U∗ are plotted for the α = 45 orientation with various m∗ values in (a), and the f ∗
y responses for selected m∗

cases are plotted in (b) – (e). The vertical dashed lines represent the boundaries of the regions where periodic body oscillations occur. Note that the case of
m∗

= 2.64 is reproduced from Zhao et al. (2014b).

peak tends to decrease slightly, the U∗ at which the A∗

10 peaks also tends to occur at a lower value, i.e. from A∗

10 ≃ 0.77 at
U∗

= 5.7 form∗
= 2.64 to A∗

10 ≃ 0.70 at U∗
= 5.1 form∗

= 15.00.
Of further interest is how the A∗

10 values decrease in the desynchronised regions (the regions beyond the synchronisation
regions) for increasing m∗. Compared to the A∗

10 peak reduction in the synchronisation regions, much larger attenuation is
seen in the desynchronisation regions, from A∗

10 ≈ 0.4 for m∗
= 2.64 to A∗

10 ≈ 0.1 for m∗
= 15.00. A representative case

of U∗
= 16 in the desynchronisation region has been chosen to investigate scaling of the amplitude with m∗. As shown in

Fig. 5, it seems that A∗

10 scales with 1/m∗. Furthermore, as can be seen from Fig. 4(b− e), while the f ∗
y response for a low-m∗

system (i.e. m∗
= 2.64) exhibits the dominant component at the Strouhal frequency (St ≃ 0.178) in this region, despite of

the appearance of broadband noise, it exhibits a progressively stronger component close to fnw asm∗ is increased. The above
results indicate that the mass ratio has a significant effect on the desynchronised region for the diamond orientation.

Fig. 6 shows the root-mean-square (rms) coefficient of the transverse lift (C rms
y ), together with the variation of the total

phase (φtotal), as a function of U∗ for all the m∗ cases at α = 45◦. Note that the total phase is defined as the relative phase
angle between the transverse lift to the body displacement. As shown by Zhao et al. (2014b) that the switch of φtotal from
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Fig. 5. Variation of A∗

10 withm∗ at U∗
= 16 in the desynchronisation region for α = 45◦ . The red line represents the linear fitting of A∗

10 through all them∗

cases.

Fig. 6. (a) The A∗

10 values for the α = 45◦ case revisited, along with (b) the r.m.s. coefficient of the transverse lift and (c) the total phase as a function of U∗

for a series of mass ratiosm∗ . Note that the case ofm∗
= 2.64 is reproduced from Zhao et al. (2014b).

0◦ to 180◦ indicates a transition regime leading to the fluid–structure desynchronisation, it is found that the onset of this

transition regime tends to occur at a lower U∗ value as m∗ is increased. In general, all the m∗ cases exhibit similar variation

trends in both C rms
y and φtotal. Since a detailed discussion has been provided by Zhao et al. (2014b) on the five different flow

regimes for the case of m∗
= 2.64, we focus here on the effect of m∗ on the fluid forcing C rms

y in the desynchronisation

region. Noting that the body vibration amplitude decreases with increasingm∗, there are two trends in the variation of C rms
y :

for m∗ ⩽ 4, C rms
y tends to increase withm∗, while for the cases ofm∗ ⩾ 7.5, C rms

y is almost constant withm∗.
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These trends fit with the prediction of a highly idealised force balance. If it is assumed that the vortex shedding exerts a
sinusoidal force on the body, it can be shown via Eq. (1) that

A
Fy

=
[
(k − mω2)2 + (ωc)2

]−1/2
(3)

where ω is the angular oscillation frequency. Two conclusions can be drawn from this equation:

• For cases where U∗ is large, k → 0, and so the ratio A/Fy ∝ 1/m. This implies that as m (or equivalently m∗ if all other
parameters are constant) is increased, the amplitude should decrease and/or the lift coefficient should increase, as is
observed for the lowm∗ cases oscillating at a frequency close to the Strouhal frequency

• For cases where the oscillation frequency is close to the natural frequency, ω ≃ ωn ≃
√
k/m, and A/Fy ∝ 1/(ωc). Since

this is not directly dependent on m or m∗, the amplitude of the oscillation and lift coefficient should be essentially
constant with respect tom∗, as is observed for the highm∗ cases.

While the argument above is based on a simplified model, the predictions it provides match with measurements. It
therefore seems useful to aid in the interpretation of the dynamics.

3.3. The impact of m∗ for α = 20◦

Fig. 7 shows the amplitude A∗

10 and frequency f ∗
y responses, as a function of U∗ for various m∗ values at α = 20◦. Two

features are immediately apparent. Firstly, there exists a critical value m∗

crit = 3.5, above which the higher branch is not
encountered. Secondly, the body vibration amplitude is significantly attenuated in the desynchronisation regions as m∗ is
increased, similar to the diamond orientation case.

The dependence of the higher branch onm∗ can be understoodwhen the complex vortex formation and shedding process
that occurs for the higher branch, as described by Zhao et al. (2014b), is considered. The associated subharmonic vortex
shedding process consists of vorticity production on the rear face, then the lateral faces of the body, to produce the vortices
that create the driving force to cause the structural vibration. The body therefore needs to respond quickly to changes in
vortex locations and therefore the driving force. Thismeans the vortex sheddingmode is sensitive to the instantaneous phase
between the generated force and the body motion. Once the body exceeds a given weight, the lag between the generated
force and the body motion is too great, and as a result the subharmonic synchronisation cannot be maintained. This can be
demonstrated in Fig. 9(c). For m∗ ⩽ 3.5, the total phase first drops to φtotal ≃ 0◦ with the onset of the higher branch, and
then increases with U∗ before undergoing an abrupt jump to above 90◦ when the fluid–structure desynchronisation occurs
at the end of the higher branch.

In a similarmanner, it is perhaps not surprising that the body vibration amplitude in the desynchronisation region quickly
reduces with an increase in the mass of the system. With no correlated force to drive the motion, the phase lag between the
driving force arising from the vortex shedding process and the body motion is too great for a heavy body to oscillate at any
appreciable amplitude. Similar to the diamond orientation case, Fig. 8 demonstrates that the vibration amplitude scales with
1/m∗ at a representative reduced velocity, U∗

= 16, for this α case.
It can be seen from Fig. 9 that both C rms

y and φtotal collapse in the upper branch (e.g. occurring in the range of 4.4 ≲
U∗ ≲ 6.4) for all the m∗ cases, suggesting that the fluid forcing is essentially insensitive to m∗ in this branch, despite some
dependence of the vibration amplitude onm∗.

Similar to the α = 45◦ case, C rms
y tends to increase with m∗ for m∗ ⩽ 4 in the desynchronisation region, while it is close

to constant with respect tom∗ form∗ ⩾ 7.5.

3.4. An overview of the impact of m∗ on the A∗

10 response for α = 0◦, 20◦ and 45◦

To summarise the impact of m∗ on the vibration amplitude response, Fig. 10 shows an overview of the A∗

10 contours as a
function of U∗ andm∗ for the three incidence angles, α = 0◦, 20◦ and 45◦. As can be seen in the α = 0◦ case, the ‘‘odd’’ (1:1,
1:3 and 1:5) synchronisation regions, which are a combined VIV–galloping response, only occur at m∗ lower than certain
values, while the global growth of the galloping oscillation amplitude persists as U∗ is increased, despite changes inm∗. This
quantifies the previous observations that galloping and VIV do not interact when the mass ratio is high and the time scales
of the two oscillations are well separated — the measurements summarised in Fig. 10 indicate m∗ ⩾ 11.31 will ensure the
twomodes do not interact. For the case of α = 20◦, the VIV lock-in (1:1) region, occurring over the reduced velocity range of
4.5 ≲ U∗ ≲ 6.3 (bounded by dashed lines), appears to be very robust over the m∗ range tested; however, the higher branch
(HB) region, which leads to even higher amplitudes of oscillation, exists only at m∗ ⩽ 3.50 over the reduced velocity range
of 7.9 ≲ U∗ ≲ 9.4; moreover, outside of the regions of the 1:1 VIV lock-in and the higher branch, the A∗

10 response decreases
rapidly towards a stable region for U∗ > 7.5 and m∗ > 5. For the VIV case of α = 45◦, the A∗

10 contours in both the 1:1
lock-in and desynchronisation regions appear to be very similar to those of the α = 20◦, while its lock-in region tends to
shrink slightly with increasingm∗.
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Fig. 7. The A∗

10 and f ∗
y responses showing the existence of a critical mass ratio of m∗

crit = 3.50 for the presence of the higher branch is observed for the
α = 20◦ orientation. Note that (b) – (e) present the selected f ∗

y responses ofm∗
= 2.64, 3.0, 3.50, and 3.60, respectively. The vertical dashed lines represent

the boundaries of the 1:1 VIV synchronisation region.

4. Conclusions

The effect of mass ratio on the transverse FIV response of an elastically mounted square cylinder has been experimentally
investigated for three representative angles of attack, α = 0◦, 20◦ and 45◦, in the reduced velocity range of 3 < U∗ < 25.

For α = 0◦, all the m∗ cases exhibited a galloping response at high U∗ values. However, it was found that, as the mass
ratiowas increased, the ‘‘odd’’ synchronisation regions shrunk significantly and even diminished, i.e. the 1:1 synchronisation
disappeared at m∗

= 5, while the 1:3 synchronisation became difficult to identify at m∗
= 11.31. On the other hand,

significant influence ofm∗ was also observed on the galloping frequency, which tended to approach fnw with increasingm∗.
Moreover, the onset U∗ for the occurrence of significant body oscillations increased withm∗. In general, the FIV response at
high mass ratios (i.e. m∗

= 11.31 and 15.00) is consistent with the classical galloping response previously reported in the
literature.
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Fig. 8. Variation of A∗

10 withm∗ at U∗
= 16 in the desynchronisation region for α = 20◦ . For more details, see the caption of Fig. 5.

Fig. 9. (a) The A∗

10 values for the α = 20◦ case revisited, along with (b) the r.m.s. coefficient of the transverse lift and (c) the total phase as a function of U∗

for a series of mass ratiosm∗ . Note that the case ofm∗
= 2.64 is reproduced from Zhao et al. (2014b).

For α = 45◦, the largest impact of m∗ was found on the vibration response in the desynchronisation region, where
significant attenuation was observed in the A∗

10 response with increasing m∗. It was showed that A∗

10 scaled with 1/m∗ for a
given U∗ in the desynchronisation region.

For α = 20◦, two striking features were observed that could be associated with the influence of m∗. First, there existed
a critical mass of m∗

crit = 3.50, below which the higher branch was observed. Second, similar to the α = 45◦ case, the mass
ratio also had a significant reduction effect on the vibration amplitude response in the desynchronisation region, with A∗

10
scaling with 1/m∗. The findings suggest that these effects of m∗ on the higher branch and the desynchronised region are
associated with a phase lag between the fluid forcing and the body motion.
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Fig. 10. The A∗

10 contours are plotted as a function of U∗ and m∗ for (a) α = 0◦ , (b) α = 20◦ and (c) α = 45◦ . Note that the dashed lines represent the
boundaries of synchronisation regions, and the horizontal solid lines represent the projected regimes from the measurements.

While the effect of mass ratio has been studied for the range of 2.64 ⩽ m∗ ⩽ 15.00 within the capability of the present
experimental set-up, future work should investigate the FIV responses with even lowerm∗ values to answer two particular
questions:

• can the 1:1 and 1:3 synchronisation regions interact for α = 0◦, by increasing the upper U∗ bound for the 1:1 mode
and decreasing the lower U∗ bound for the 1:3 mode?

• does the higher branch associated with sub-harmonic VIV occur for infinite U∗ for m∗ below a threshold value, as the
VIV upper branch of a circular cylinder does?
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