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a b s t r a c t

This paper reports on an extensive numerical investigation of the effects of pivot
location and mass ratio (m∗

= solid/fluid mass) on flow-induced vibration (FIV) of
a foil undergoing fully passive two-degree-of-freedom (2-DOF) plunging and pitching
motion in a two-dimensional free-stream flow. Here, the normalised pivot location is
defined by x = xp/c , with c the foil length and xp the distance to the foil leading edge.
A comprehensive set of numerical simulations were conducted employing an Immersed
Boundary Method at a Reynolds number of 400. By analysing the FIV dynamics for three
selected mass ratios, m∗

= 5, 20 and 200, at two pivot locations, x = 0.35 and 0.50, it
is found that there are two types (type-I and type-II) of FIV responses, one is primarily
a driven static instability while the other is strongly associated with vortex shedding.
Interestingly, for x = 0.50, which is close to the mass centre, increasing the mass ratio
can favour suppression of the chaotic response. Importantly, it is shown that there exists
a critical mass ratio, above which the foil oscillations are suddenly suppressed. The
findings indicate that the combined effects of eccentricity and mass ratio on the foil
dynamics can be profound.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-induced vibration (FIV) is a vibration phenomenon resulting from the coupled interaction between the structure
nd the surrounding fluid flow (also known as fluid–structure interaction). FIV finds its importance in a broad range of
ngineering applications. For example, undesirable effects of FIV may lead to structural damage or complete failure in
eat exchanger tubes of nuclear plants, offshore oil risers, high-rise buildings and bridges, and they may also threaten
he structural fatigue life and safety of aero-engine blades and aircraft. In contrast to these detrimental effects, on the
ther hand, FIV has recently been demonstrated as a potential source of renewable energy extracted through harnessing
ignificant structural oscillations, e.g. vortex-induced vibration (VIV) of cylinders (see Soti et al., 2018), and passive motions
f flapping foils (see Wang et al., 2017). Over the last few decades, both practical and fundamental perspectives of the
roblem have motivated a large body of studies that aim to better understand the fluid–structure mechanisms, predict
tructural vibration characteristics, and develop vibration control approaches. Comprehensive reviews on the subject of
IV, predominantly for bluff bodies, can be found in the articles of Griffin et al. (1973), Bearman (1984), Sarpkaya (2004),
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illiamson and Govardhan (2004) and Gabbai and Benaroya (2005), and the books of Blevins (1990), Naudascher and
ockwell (2005) and Paidoussis et al. (2010).
Compared to bluff bodies, however, the fundamentals of FIV of flapping foils has received much less attention. The

ajority of early studies of flapping foils in a fluid flow have focused on determining the energy extraction performance;
he reader is referred to the recent reviews on this topic by Xiao and Zhu (2014) and Young et al. (2014). For example,
cKinney and DeLaurier (1981), inspired by the wings of birds, performed pioneering experiments to investigate energy
xtraction from a sinusoidally-driven wing. Since then, ongoing research has been conducted on the energy-harvesting
erformance of foils with 2-DOF motions of plunging and pitching. In general, flapping foils with 2-DOF motions are
lassified into three categories depending on their operational modes (see Xiao and Zhu, 2014; Young et al., 2014): (i)
ully forced systems that have both plunging and pitching motions fully prescribed, e.g. (see Kinsey and Dumas, 2008;
latzer et al., 2010; Ashraf et al., 2011; Zhu, 2012); (ii) semi-passive systems that usually have prescribed motion in one

DOF but allow free motion in the other e.g. (see Deng et al., 2015; Boudreau et al., 2019a,b); and (iii) fully passive systems
that have both plunging and pitching motions free, fully determined by the fluid–structure interaction (see Wang et al.,
2017; Veilleux and Dumas, 2017; Boudreau et al., 2018, 2020; Duarte et al., 2019).

More recently, Wang et al. (2017, 2020) conducted low-Reynolds-number (Re = 400) numerical simulations to
investigate the fundamentals of the FIV response of a foil undergoing fully passive 2-DOF motions of plunging and pitching,
as a function of reduced velocity and pivot location in a two-dimensional free-stream flow. Here, the reduced velocity is
defined by U∗

= U/(fnc), where U is the free-stream velocity, c is the foil chord length, and fn is the natural frequency
of both plunging and pitching motions (set equal); the pivot location (from the foil leading edge) is denoted by xp, and
its normalised form is given by x = xp/c; and the Reynolds number is defined by Re = Uc/ν, with ν being the kinematic
viscosity of the fluid. Wang et al. (2017) showed the dependence of the FIV response on the reduced velocity and the
pivot location over the ranges of 0 < U∗ ⩽ 7 and 0 ⩽ x ⩽ 1, and also demonstrated complex nonlinear dynamics
that could lead to very large structural vibrations. Furthermore, through detailed analyses of the dynamics and wake
states over an extended and finer x − U∗ space (0 < U∗ ⩽ 10 and 0 ⩽ x ⩽ 1), Wang et al. (2020) identified a variety
of FIV response regimes, including four regions that exhibited synchronisation or near-synchronisation responses and
four transition regimes that were associated with intermittent, switching or chaotic responses. These two studies have
indicated that the eccentricity effect due to the pivot location has an impact on the coupling between the 2-DOF motions
and thus the FIV dynamics.

On the other hand, the mass ratio, defined as the ratio of the total mass of a vibrating structure to the mass of displaced
fluid, has been shown to play a significant role affecting the FIV dynamics and response regimes of bluff bodies, such as
circular cylinders (see Feng, 1968; Khalak and Williamson, 1996; Govardhan and Williamson, 2000, 2002; Jauvtis and
Williamson, 2004), and square cylinders (see Nemes et al., 2012; Zhao et al., 2019). It has been demonstrated by Wang
et al. (2017, 2020) that the nonlinear coupling between the plunging and pitching motions of a foil is strongly associated
with the pitching inertial moment that is dependent on system mass and the offset of the pivot location from the centre
of mass. Thus, one would expect that the mass ratio can also have a impact on the dynamics of a fully passive foil. To date,
however, the effects of eccentricity and mass ratio on a flapping foil have been largely unknown and unexplored. Thus,
built upon the previous studies of Wang et al. (2017, 2020), this paper aims to investigate these effects by examining the
FIV response and dynamics of a foil as a function of reduced velocity at various pivot locations, specifically focusing on a
wide range of mass ratios.

The rest of this paper is organised as follows: the fluid–structure system modelling and the numerical method are
described in Section 2. It should be noted that validation studies of the present numerical method for the same physical
and computational setup are provided through the previous studies of Du et al. (2016a,b), Wang et al. (2017, 2020), and
so are not be repeated in this paper. In order to highlight the effects of eccentricity and mass ratio, results and discussion
are presented in Sections 3.1–3.5 in sequence, where the FIV dynamics are characterised as a function of the reduced
velocity, mass ratio and pivot location. Finally, conclusions are drawn in Section 4.

2. Numerical approach

The numerical method used here is adopted from Du et al. (2016a,b) and Wang et al. (2017, 2020). The fluid–structure
system consists of an elastically mounted NACA0012 foil with two degrees of freedom, namely plunge and pitch, in a free-
stream flow. Fig. 1 presents a schematic (top view) of the fluid–structure system, where key parameters are illustrated.
Here, the fluid density, dynamic viscosity and incoming flow velocity are denoted by ρ, µ and U , respectively; the foil
is free to undergo plunging (or heaving) motion transverse to the incoming flow and pitching motion about the axis
perpendicular to the direction of free-stream flow and the plunging axis; the instantaneous displacement in plunge is
denoted by h, and its normalised form is defined by h∗

= h/c; the displacement in pitch is denoted by θ , which is
measured in radians. The instantaneous transverse lift and pitching moment are denoted by Fh and Mθ , respectively. The
structural stiffnesses in plunge and pitch are specified by kh and kθ , respectively, while the corresponding damping factors
are ch and cθ , respectively. Note that both ch and cθ are set to zero here to simplify the system and examine the least
damped case. The distance from the leading edge to the pivot location is denoted by xp, and its dimensionless form (x) is
given by

x = x /c. (1)
p
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Fig. 1. Schematic (top view) of the fluid–structure system considered: a NACA0012 foil allowed to undergo 2-DOF fully passive plunging and pitching
otions.

The elastically mounted foil is considered as a linear mass–spring system, and its plunge and pitch motions are
overned by the second-order oscillator equations (2):

mḧ + chḣ + khh − mb cos θ · θ̈ + mb sin θ · θ̇2
= Fh

Iθ θ̈ + cθ θ̇ + kθθ − mb cos θ · ḧ = Mθ ,
(2)

where m and Iθ denote the mass and the (second moment of) inertia in pitch of the foil, respectively. The eccentricity
arising from the coupling of the plunge and pitch motions is evaluated by the product of mb in Eq. (2). The mass ratio,
defined as the ratio of the foil mass per unit length to the displaced fluid mass, is given by Eq. (3):

m∗
=

m
ρS

(3)

here S is the area of the cross section of the foil. Also, b denotes the distance between the pivot location and the mass
entre (the point o in Fig. 1). The reduced velocity is given by U∗

= U/(fnc), noting that the natural frequencies of the
2-DOF motions are set to be equal, fn =

√
kh/m/2π =

√
kθ/Iθ/2π . In the present study, the variation of U∗ is achieved

by changing the spring stiffness. The fluid forcing terms, Fh and Mθ , are obtained through solving the governing equations
of fluids. The fourth-order Runge–Kutta method is applied to obtain the numerical solution for Eq. (2). The dimensionless
coefficients of Fh and Mθ are given by Eqs. (4) and (5), respectively,

Ch =
Fh

1
2ρU

2c
(4)

Cm =
Mθ

1
2ρU

2c2
. (5)

The dimensionless coefficients of inertial forces due to the coupling effect of the 2-DOF motions are given by Eqs. (6)–(8):

CA
Ih =

mb cos θ · θ̈
1
2ρU

2c
(6)

CC
Ih = −

mb sin θ · θ̇2

1
2ρU

2c
(7)

CA
Im = −

mb cos ·ḧ
1
2ρU

2c2
, (8)

where CA
Ih represents the inertial force coefficient in plunge induced by the acceleration of pitch motion (or rotation), while

CC
Ih is contributed by the centrifugal force of pitch motion, and CA

Im represents the inertial moment coefficient induced by
he acceleration of plunge motion. To estimate the relative magnitudes of the inertial forces and the fluid forces, the
atios of the root-mean-square (rms) values of the coefficients of the inertial forces and the fluid forces are calculated by
qs. (9)–(11):

rAIh =
rms(CA

Ih)
rms(Ch)

(9)

rCIh =
rms(CC

Ih)
rms(Ch)

(10)

rIθ =
rms(CA

Im) . (11)

rms(Cm)

3
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he flow dynamics is solved by employing a two-dimensional incompressible Navier–Stokes solver. Detailed descriptions
f the numerical method can be found in previous studies of Du et al. (2016a,b) and Wang et al. (2017) so only a brief
utline is given here.
The continuity and momentum equations are written in dimensionless form as

∇ · V⃗ = 0,
∂V⃗
∂t

+ (V⃗ · ∇)V⃗ = F⃗ − ∇p +
1
Re

(∇ · ∇)V⃗ ,
. (12)

here V⃗ = (u, v) denotes the two-component flow velocity in the streamwise (u) and cross-flow (v) directions. The body
orce is denoted by F⃗ . The fluid pressure is denoted by p. The Reynolds number is denoted by Re, which is set to be 400
n the present study.

To characterise the interaction between the fluid and the boundary, F⃗ = (Fx, Fy) is calculated using an immersed
oundary (IB) method originally introduced by Peskin (1972, 1977). For the no-slip wall boundary condition, it can be
reated as a process of negative feedback:

f⃗ (xk, yk, t) = α

∫ t

0
[v⃗f (xk, yk, t ′) − v⃗s(xk, yk, t ′)]dt ′ + β[v⃗f (xk, yk, t) − v⃗s(xk, yk, t)], (13)

where (xk, yk) denotes the coordinates of the kth surface element on the solid boundary; v⃗f and v⃗s denote the velocity
of the fluid and the solid body at the kth surface element, respectively; α and β are feedback factors, noting that they
should be chosen carefully to avoid a sensitive response of feedback. In the present study, α = α0/∆t with α0 = 2.0, and
β is set to zero. In order to solve the flow equations, the body force constructed in the Lagrangian form is converted to
the Euler domain using the Dirac delta function:

F⃗ (x, y, t) =

∫
Γ

f⃗ (xk, yk, t)δ(x − xk)δ(y − yk)ds, (14)

where (x, y) represents a point in the Cartesian coordinates and Γ depicts the solid boundary. The Dirac delta function is
further approximated numerically following the method proposed by Peskin (2002): the singular Dirac function is replaced
by a continuous but segmented function:

Φr =

⎧⎨⎩
0 |r| ⩾ 2
(5 − 2|r| −

√
−7 + 12|r| − 4r2)/8 1 ⩽ |r| ⩽ 2

(3 − 2|r| +

√
1 + 4|r| − 4r2)/8 0 ⩽ |r| ⩽ 1,

(15)

here r = ∆x/∆h, with ∆x the distance between the boundary surface element and the nearest grid point in the fluid
omain, and ∆h the mesh width in the calculations. Validation studies can be found in Du et al. (2016a,b) and Wang et al.
2017, 2020).

. Results and discussion

To show the combined effect of eccentricity and mass ratio for a foil undergoing fully passive 2-DOF oscillations, this
ection is organised as follows. Section 3.1 presents the dynamic response as a function of reduced velocity, for a mass
atio of m∗

= 5 with the pivot location fixed at x = 0.5, including the oscillation amplitude responses, fluid forces, and
requency power spectrum density (PSD) contours. It should be noted that this pivot location is chosen to be close to
he mass centre, to minimise the eccentricity effect. Thus, the corresponding results can provide a benchmark for further
iscussions. The mass ratio effect at the same pivot location is then demonstrated in Section 3.2, by examining results at
igher mass ratios, i.e. m∗

= 20 and 200. In Section 3.3, the effects of eccentricity and mass ratio are further discussed
hrough the FIV responses at a different pivot location x = 0.35, a significant offset from the mass centre. To evaluate
he detailed effects of these parameters further, FIV responses as a function as m∗ and x are presented in Section 3.4 and
Section 3.5, respectively.

3.1. Responses with m∗
= 5 at fixed x = 0.50

3.1.1. Amplitudes and frequencies
Fig. 2 shows the mean of the top 10% amplitudes (A10) of the normalised displacements in plunge (Ah) and pitch (Aθ ),

together with the root-mean-square (r.m.s.) coefficients of the transverse lift (C rms
h ), and pitching moment (C rms

m ), as a
function of U∗, for three different mass ratios, m∗

= 5, 20 and 200. The corresponding frequency PSD contours are shown
in Fig. 3.

For m∗
= 5 in Fig. 2(a), three response regimes, demarcated by vertical lines, covering the ranges 1.63 ⩽ U∗ ⩽ 6.90,

7.21 ⩽ U∗ ⩽ 7.83 and 8.14 ⩽ U∗ ⩽ 20.0, can be identified based on the dynamic characteristics. In the first regime,
the 2-DOF oscillations, after excitement at U∗

= 1.63, develop rapidly with increasing U∗. Local amplitude peaks of
(A10, A10) = (1.75, 2.50) are observed at U∗

= 5.35, which are followed by a kink prior to an increasing trend, with U∗
h θ

4
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c

Fig. 2. The normalised amplitude responses of plunging (h∗) and pitching (θ ) vibrations, the coefficients of the transverse lift (Ch) and pitching
moment (Cm), in column (a) m∗

= 5, (b) m∗
= 20 and (c) m∗

= 200, as a function of U∗ , with fixed x = 0.50. The squares in black and the circles
in red denote the mean top 10% (A10) and the root-mean-square (Arms) oscillation amplitudes, respectively.

ontinuing until the end of the regime marked by a sudden drop in both A10
h and A10

θ responses at U∗
= 6.90. As can be

seen from the normalised frequency PSD plots in Fig. 3(a), the dominant oscillation frequencies of the oscillations and
fluid forcing components are found to be fairly stable at f ∗

≈ 0.45 (close to half of the natural frequency) over most
of this regime. According to Dowell (2015), the FIV response of a 2-DOF fully passive foil can be characterised by two
mechanisms in the linear range: static instability (or divergence), and dynamic instability (or flutter). The mechanism
of static instability is that the restoring moment provided by the elastic support in pitch cannot balance the pitching
moment applied by the flow, and the foil is thereby forced to rotate. Based on their experimental results, Boudreau et al.
(2018) suggested that the oscillations of a 2-DOF fully passive foil were driven by this static instability. This can also be
applied to explain the occurrence of the first regime in the present study. Further evidence for divergence instability will
be provided in Section 3.5.

To demonstrate the dynamics in the first regime of the m∗
= 5 case, sample time traces at U∗

= 2.87 and 3.80, as
representatives of the synchronisation and desynchronisation responses, are shown in Figs. 4(a, b), respectively. These
time traces display that the highly periodic oscillations are modulated by harmonics, especially the 3rd harmonic, as
clearly revealed by the corresponding frequency contours in Fig. 3(a). In an experimental study of transverse FIV of
a square cylinder, Zhao et al. (2014) found that profound harmonic synchronisation responses could be attributed to
a combined effect of galloping and vortex-induced vibration (VIV), where the dominant galloping frequency and the
vortex-shedding frequency were of odd-integer ratios, e.g. 1:3 and 1:5. The high-order harmonics in these synchronisation
responses were well related to the vortex shedding process, while the dominant oscillation frequency was related to the
galloping frequency. The wake pattern associated with the synchronisation response in the type-I regime is presented
in Section 3.1.2. Harmonic synchronisations can often result in an amplitude growth with increasing reduced velocity,
as can be seen in the present A10

h and A10
θ responses. In contrast, when U∗ is increased to 3.80, as shown in Fig. 4(b),

and the time traces can maintain their periodicity for several cycles and then suddenly become irregular, e.g. τ = 10
in Fig. 4(b). Correspondingly, the frequency contours in Fig. 3(a) also see obvious broadband noise, which is indicative of
desynchronisation. As detailed by Wang et al. (2020), such a variation of the time profiles was associated with intermittent
switching of wake patterns.

The second regime of m∗
= 5 covers the range of 7.21 ⩽ U∗ ⩽ 7.83, which is characterised as a narrow transition

regime featuring chaotic and irregular responses. The oscillation amplitudes reach their maximums in this regime,
5
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Fig. 3. The logarithmic-scale frequency power spectrum density contours of h∗ , θ , Ch and Cm at (a) m∗
= 5, (b) m∗

= 20 and (c) m∗
= 200, as a

unction of U∗ , with fixed x = 0.50. The frequency components are normalised by fn .

i.e., (A10
h , A10

θ ) = (2.03, 3.33) at U∗
= 7.52. Representative time traces at U∗

= 7.52 are shown in Fig. 4(c). It can be
seen that both the plunge and pitch oscillation equilibrium positions switch stochastically between two values, which are
symmetrical about the initial neutral positions (h∗

= 0 and θ = 0), indicating a chaotic characteristic. The corresponding
frequency contours for the second regime shown in Fig. 3(a) also display obvious broadband noise. Such chaotic responses
were also reported both in previous numerical and experimental investigations (see Duarte et al., 2019; Wang et al., 2020),
which could be attributed to mode competition between two states, as chaos has been observed in similar situations in
various fluid–structure systems (see Crawford and Knobloch, 1991; Leontini and Thompson, 2013; Zhao et al., 2018b).
However, when the mass ratio is increased to 200, the switching behaviour of equilibrium positions disappear, suggesting
that such a behaviour seemingly occurs only at low mass ratio, as will be discussed below.

The third regime is embedded in the reduced velocity range of 8.14 ⩽ U∗ ⩽ 20.0, where the magnitudes of the
foil oscillations and fluid forces exhibit only slight fluctuations as U∗ varies, while the dominant frequencies and their
harmonics tend to follow a linear relationship with U∗. It should be noted that broadband noise is still identifiable over
the range of 8.50 ⩽ U∗ ⩽ 12.5; however, as U∗ is further increased, all frequency components gradually become clearer.
To demonstrate the dynamics, sample time traces at U∗

= 15.04 are presented in Fig. 4(d), showing a periodic state.
he frequency contours as well as the sample time-trace profiles suggest that the third regime can be considered as a
ear-synchronisation regime. Note that in this regime non-zero equilibrium positions are consistently observed for both
lunge and pitch oscillations, whereas in the first regime the equilibrium positions are found to remain constantly close
o zero.

Wang et al. (2020) studied the flow-induced vibrations of a 2-DOF airfoil with m∗
= 2.0 over a wide (x,U∗) parameter

space, where four synchronous or nearly synchronous regimes were identified, namely S-I, S-II, S-III and S-IV. The three
regimes of m∗

= 5 at fixed x = 0.50 correspond to regimes S-I, T-II and S-III in Wang et al. (2020), respectively, which
occur in sequence as U∗ is increased in the present study. More detailed analyses for the response characteristics of
m∗

= 5.0 at x = 0.5, including the dynamics and wake patterns, can be referred to the corresponding discussion in Wang
et al. (2020). Despite comparison against a lower mass ratio of m∗

= 2 in their study, highly similar characteristics would
be expected for the present m∗

= 5 case. Rather than repeating similar results and discussion as in Wang et al. (2020),
the present study focuses on the effects of eccentricity and mass ratio, and thereby the case of m∗

= 5 will be considered
as a baseline case to reveal the mass ratio effect at this pivot location.
6
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Fig. 4. Time traces of the responses, including the displacements in plunge (h∗) and pitch (θ ), the coefficients of the transverse lift (Ch) and pitching
oment (Cm) at (a) U∗

= 2.87, (b) U∗
= 3.80, (c) U∗

= 7.52 and (d) U∗
= 15.04.

Furthermore, it will be demonstrated in the following subsections — as the pivot location or mass ratio is varied, the
ynamic characteristics of the first and third regimes can also be widely observed. For the convenience of the discussion,
he first and third regimes are herein referred to as type-I and type-II regimes, respectively. The type-I regime can be
haracterised by a general increasing trend in the amplitude response with increasing U∗, while the dominant oscillation
requencies are independent of U∗ over some discrete U∗ ranges, which are similar to the characteristics of response
ssociated with the transverse galloping of 1-DOF FIV systems (see Zhao et al., 2018a). For the type-II regime, the
mplitude responses only show minor variations through the regime, while the frequency components follow a linear
rowth trend with increasing U∗, as dominated by the vortex shedding process.

.1.2. Wake patterns associated with synchronisations
To further demonstrate the dynamic characteristics, typical wake patterns at (x,m∗) = (0.5, 5), as well as their

dependence on the oscillation amplitude and synchronisation state, will be discussed in this subsection. Wang et al. (2020)
presented a wake map in an x − U∗ parameter space for m∗

= 2, showing a variety of wake modes and intermittent
switching behaviours. Stable wake modes associated with synchronisation responses are also of great concern in the
7
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(

Fig. 5. A 2P wake pattern, which consists of two pairs (P) of opposite-signed vortices shed per foil oscillation cycle, is observed at (x,m∗,U∗) =

0.5, 5, 3.18).

Fig. 6. A 2T wake pattern, which consists of two triplets (T) of vortices shed per foil oscillation cycle, is observed at (x,m∗,U∗) = (0.5, 5, 4.11).

Fig. 7. A mP+P wake pattern, which consists of multiple pairs (mP) of vortices shed in one half foil oscillation cycle plus another pair (P) of vortices
shed in the other half cycle, is observed at (x,m∗,U∗) = (0.5, 5, 15.04).

present work. As can be seen from 3(a), a synchronisation regime (2.4 ⩽ U∗ ⩽ 3.3) is observed in the type-I regime, where
harmonic components appear to be clear in the frequency PSD contours. The corresponding wake mode at U∗

= 3.18, as
a representative for this synchronisation regime, is shown in Fig. 5. During one half oscillation cycle, a pair (P) of vortices
are shed into the wake and the following half cycle repeats the pattern (with opposite-signed vortices). Following the
nomenclature of Williamson and Roshko (1988) and Morse and Williamson (2009), this wake mode is termed as 2P. As
shown in Section 3.1.1, the foil response at U∗

= 3.18, which displays a galloping characteristic, is dominated by the first
harmonic (as the fundamental harmonic). The shedding of the 2P vortices induces multiple loading excitations on the
foil during one oscillation cycle, thus giving rise to the higher-order harmonics as seen in the corresponding frequency
PSD contours in Fig. 3(a). As U∗ is further increased, synchronisation responses (over the range of 4.0 ≤ U∗

≤ 4.6)
are observed again within the type-I regime. As can be seen from Fig. 6, a triple (T) of vortices is shed during one half
oscillation cycle at U∗

= 4.10 and this wake mode is thus named 2T pattern (see Williamson and Roshko, 1988; Morse
and Williamson, 2009). A comparison between the responses for U∗

= 3.18 and 4.10 shows that, with the increase in
the oscillation amplitudes in the type-I regime, more vortices will shed during one oscillation cycle, and correspondingly
high-order harmonic components are also found to be obvious in the fluid forces as shown by Fig. 3(a.iii− v). This trend
is similar to that observed in transverse galloping responses of single-DOF bluff bodies (e.g. Zhao et al., 2014, 2018a). For
the desynchronisation responses in the type-I regime, the vortex shedding is found to be unstable, which may switch
8
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ntermittently between different wake modes observed in the synchronisation response in the type-I regime. Detailed
iscussion on switching behaviours of wake modes can be found in Wang et al. (2020).
Fig. 7 illustrates a mP+P wake mode at U∗

= 15.04 for (x,m∗) = (0.5, 5), as a representative for the corresponding
type-II regime. This wake mode consists of multiple pairs of vortices shed in one half cycle plus another paired vortices
shed in another half cycle. Wang et al. (2020) reported that, in some synchronisation responses at high U∗ values, multiple
pairs (two or three) of vortices are shed one half cycle and this mode was referred to as multiple P (mP). Thus, wake pattern
in Fig. 7 is named mP+P. Note that in the case of m∗

= 2 in Wang et al. (2020), an mP mode was encountered when the
foil oscillated around a non-zero equilibrium position both in plunge and pitch. Similarly, this wake mode is observed in
the type-II regime at x = 0.5 and m∗

= 5 in the present study. Hence, the occurrence of the mP mode might be well
related to the variation of the equilibrium position in a 2-DOF foil system. Multiple pairs of vortices can result in multiple
loading excitations on the foil during one oscillation cycle and the higher-order harmonics thus play a significant role in
the fluid forces, as shown in Fig. 3(a.iii–v).

3.2. Responses with higher mass ratios at x = 0.50

The FIV responses of two higher mass ratio cases, m∗
= 20 and 200, are examined in this subsection. The amplitude

responses (Ah, Aθ ) and variations of the fluid forcing coefficients (C rms
h and C rms

m ) for these two mass ratios are plotted as a
function of U∗ in Fig. 2(b, c), and the corresponding frequency PSD contours are shown in Fig. 3(b, c). As can be seen, the
reduced velocities of onset for significant foil oscillations are found to be U∗

= 1.63, 3.18 and 9.69 for m∗
= 5, 20 and

200, respectively. Perhaps, it is not surprising that the onset of significant oscillations tends to occur at a higher U∗ as
m∗ is increased, as demonstrated in previous studies on 1-DOF transverse FIV of bluff bodies (e.g. Khalak and Williamson,
1996; Govardhan and Williamson, 2002; Zhao et al., 2019).

For m∗
= 20, the investigation is limited to the range of 0.0 < U∗ ⩽ 11.01. This is simply because reliable results

ecome unavailable beyond U∗
= 11.01, due to numerical divergence errors occurring in this m∗ case. As shown in

ig. 2(b), the varying trends of C rms
h and C rms

m for m∗
= 20 exhibit a type-I response, similar to that observed in the case

f m∗
= 5 in Fig. 2(a), where both C rms

h and C rms
m tend to increase rapidly with U∗. However, the present case sees much

arger amplitudes, i.e., (A10
h , A10

θ = 3.00, 4.95) at U∗
= 10.7. On the other hand, type-I frequency response can also be

een in the PSD contours in Fig. 3(b), where the dominant frequencies of the 2-DOF oscillations remains fairly constant
i.e. f ∗

h ≃ f ∗

θ ≈ 0.80) for U∗ up to 8.0 prior to a slight decrease for the higher U∗ range tested.
It should be noted that in addition to the dominant frequency, there are ‘‘odd’’ harmonics (i.e. at the 3rd and 5th)

xisting over most of the regime. Specifically, these harmonics are clearly observable over three U∗ ranges: 6.28 ⩽ U∗ ⩽
.52, 8.60 ⩽ U∗ ⩽ 9.00 and 9.69 ⩽ U∗ ⩽ 10.30, suggesting that harmonic synchronisation is encountered in these ranges.
n the contrary, mild broadband noise is presented in the frequency PSD contours at other U∗ locations. However, chaotic
ransition responses, as well as the type-II regime seen in the high U∗ range for m∗

= 5, have not been observed at
∗

= 20. This indicates that the foil oscillations are strongly influenced by the mass ratio – a higher mass ratio can result
n larger inertial forces, which may help suppress the chaotic response where the eccentricity effect is weak (i.e., when
he pivot location is close to the mass centre). Although oscillations with stable amplitudes have not been obtained for
∗ > 11.01, it could still be inferred from the oscillation amplitude evolutions at the initial stage of simulations that
igher oscillation amplitudes might be encountered for higher U∗ values. This feature is similar to that commonly seen
n transverse galloping of 1-DOF FIV systems (see Zhao et al., 2014; Seyed-Aghazadeh et al., 2017; Zhao et al., 2018a).

As m∗ is further increased to 200, as expected, a significant reduction is observed in the overall amplitude responses.
s shown in Fig. 2(c), both A10

h and A10
θ for m∗

= 200 experience a sudden jump from very small initial magnitudes to
A10
h , A10

θ ) = (1.44, 1.95) at U∗
= 10.0. For higher reduced velocities, A10

h fluctuates largely but still tends to decrease
ith increasing U∗, while, on the other hand, A10

θ decreases slightly. This response is distinctly different from the cases
f m∗

= 5 and 20.
To further examine the FIV responses for m∗

= 200, the corresponding frequency PSD contours are plotted in Fig. 3(c).
Synchronisation responses seem to dominate the whole U∗ range at m∗

= 200, as evidenced by the appearance of clear
harmonics with little noise. The dominant frequencies are found to be close to unity for all cases at m∗

= 200, similar to
the type-I regimes observed for lower mass ratios. However, the Ah and Aθ responses in the type-I regimes for m∗

= 5
and 20 are found to increase with U∗, while at m∗

= 200 the variations of Ah and Aθ responses appear to be complex.
Additionally, another difference is that two synchronisation regimes are always separated by a desynchronisation region
in the type-I regimes for m∗

= 5 and 20, whereas desynchronisation is not observed for m∗
= 200. Note that for m∗

= 200,
the foil oscillation frequency responses exhibit all (odd- and even-order) harmonics (i.e. the 1st, 2nd and 3rd harmonics),
while the fluid forcing frequency responses display only odd-order harmonics (i.e. the 1st 3rd harmonics), as shown in
Fig. 3(c.iii, c.iv). For example, after the oscillations are initially excited, even-order harmonics exhibit some intensities in
Ch and Cm until U∗

= 11.8, which coincides with the location of a local peak of A10
h . These even-order harmonics then

vanish after a further increase in U∗. This behaviour persists until U∗
= 13.6. Beyond this, the even-order harmonics recur

in Ch and Cm. In contrast, even-order harmonics are consistently found to be weak in the 2-DOF oscillations, where only
odd-order harmonics are observed over the whole U∗ range. Such a feature in the frequency PSD contours of Ch and Cm
can also be identified from the synchronisation regimes in the cases of m∗

= 5 or 20. In fact, the fluid forcing frequency

responses can be associated with wake modes, as demonstrated by Wang et al. (2020). For the responses induced by

9



Z. Wang, L. Du, J. Zhao et al. Journal of Fluids and Structures 100 (2021) 103170

n

s
r

a
f
r
o
U
i

o
r
a
c
i
t
s

3

x
f
P

o
H

Fig. 8. The main oscillation frequencies in plunge, f ∗

h,m , as a function of U∗ at different mass ratios ranging from 5 to 200. The frequencies are
ormalised by the natural frequency (fn). The range of type-I regime at each mass ratio is annotated by a pair of short vertical lines.

tatic instability, the corresponding wake modes are found to shed an odd number of vortices per half oscillation cycle,
esulting in an asymmetric forcing that can enhance the body oscillations (see Zhao et al., 2014).

For x = 0.50, it can be seen from Fig. 3(b, c) that for both m∗
= 5 and 20, the dominant oscillation frequencies

ppear to be fairly constant but much lower than unity over some U∗ ranges. To examine the mass ratio effect on the
requency response, Fig. 8 shows the dominant plunging oscillation frequency (f ∗

h,m) as a function of U∗ for various mass
atios ranging from 5 to 200. As can be seen, for each mass ratio there exists discrete U∗ ranges where f ∗

h,m is independent
f U∗. For example, over the range of 3.9 < U∗ < 6.3 for m∗

= 20, the oscillation amplitudes are found to increase with
∗ and the responses exhibit characteristics similar to those of transverse galloping in 1-DOF FIV systems. Generally, f ∗

h,m
s found to increase with m∗ at a fixed U∗ location for m∗ ⩽ 50. This is similar to the galloping-dominated vibrations
of a square cylinder studied by Zhao et al. (2019). For m∗ > 50, f ∗

h,m gradually approaches unity, consistent with the
added mass effect becoming negligible. Moreover, for m∗ ⩾ 5, multiple U∗-independent frequency response regimes are
bserved; however, f ∗

h,m tends to decrease in a higher U∗ range, e.g. f ∗

h,m is observed to be about 0.82 and 0.50 for the
anges of 3.9 < U∗ < 6.3 and 9.8 < U∗ < 11.4, respectively, at m∗

= 20. This decreasing trend becomes less obvious
s m∗ is increased. Interestingly, it should be noted that further increases in U∗ beyond the type-I regime at a fixed m∗

an result in two different types of variation of f ∗

h,m, depending on the mass ratio. For instance, for m∗ ⩽ 5 (e.g. m∗
= 2

n Wang et al., 2020), f ∗

h,m tends to increase linearly with U∗ in the high U∗ range, as shown in Fig. 8. Such a linear
rend indicates that a type-II regime is encountered where the 2-DOF oscillation frequencies are dominated by the vortex
hedding frequency.

.3. Responses with different mass ratios at x = 0.35

To further illustrate the combined effect of eccentricity and mass ratio, this subsection discusses the FIV responses at
= 0.35, a significant offset from the mass centre of the foil. Fig. 9 shows the amplitude responses as a function of U∗

or three different mass ratios of m∗
= 5, 20 and 200 with fixed x = 0.35, and Fig. 10 shows the corresponding frequency

SD contours.
For the cases of m∗

= 5 and 20 at x = 0.35, a type-I regime is firstly encountered upon the onset of significant
scillations, where both Ah and Aθ responses see a sharp rise from zero. This is very similar to the cases at x = 0.50.
owever, for x = 0.50, as m∗ is increased from 5 to 20, the type-I regime becomes widened, while for x = 0.35, the

same-type regime is found to shrink. For the type-I regime at both the two pivot locations, synchronisation responses can
be identified as the frequency PSD contours exhibit clear harmonics in some U∗ ranges, e.g. 4.5 ⩽ U∗ ⩽ 5.2 at m∗

= 5 as
shown in Fig. 10(a).

For both pivot locations investigated, when m∗ is increased to 200, the responses exhibit some differences from the
results obtained for the other lower mass ratios. For the case of x = 0.50 and m∗

= 200, although the frequency PSD
contours display some characteristics similar to the type-I regime, complex variation trends are observed for the amplitude
responses. On the other hand, for x = 0.35, similar to the cases of lower mass ratios, there are two response regimes
observed at m∗

= 200. In the first regime, significant body oscillations are encountered immediately after the oscillation
onset, and the amplitude responses are also found to increase with U∗, as shown in Fig. 9(c.i, c.ii). However, since the
corresponding frequency contours of the first regime in Fig. 10(c) exhibit significant broadband noise, this regime for
m∗

= 200 is also not termed as a type-I regime in the present study. To demonstrate the dynamic characteristics of this
10
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Fig. 9. The normalised response amplitudes at (a) m∗
= 5, (b) m∗

= 20 and (c) m∗
= 200, as a function of U∗ , with fixed x = 0.35. Further details

can be found in the caption of Fig. 2.

regime, Fig. 12(a) shows sample time traces at U∗
= 10.0 at m∗

= 200, as a representative for the first regime. The
envelope of time profile of the plunge oscillations, as shown in Fig. 12(a.i), displays a beating behaviour, indicating that
two close frequency components may coexist. On the other hand, the time traces of Ch and Cm are found to be highly
irregular, which is indicative of a desynchronisation or irregular vortex shedding. These features are not observed for the
cases at x = 0.50.

It is surprising that the maximum oscillation amplitudes in the first regime for m∗
= 200 at x = 0.35 appear to

be noticeably higher than those observed in the type-I regime of the lower mass ratio case of m∗
= 20. To reveal the

mechanism responsible for these unexpected larger amplitudes at a higher mass ratio, Fig. 11 shows the ratios between
the r.m.s magnitudes of the three inertial force coefficients, which are induced by the coupling of plunge and pitch, and
the fluid forces, as a function of U∗ at the three different mass ratios of m∗

= 5, 20 and 200. The three coefficient ratios
are denoted by rAIh, r

C
Ih and rIθ , given by Eqs. (6)–(8), respectively. Interestingly, the three coefficient ratios appear to be

much higher in the first regime for m∗
= 200 than other regimes. For m∗

= 200, the three coefficient ratios are found
to reach their peak values when the oscillations are initially encountered at U∗

= 6.7, and then decrease as U∗ varies.
The peak values of rCIh and rIθ are both higher than 1.0, indicating that the corresponding inertial forces are even stronger
than the fluid forces. When U∗ is further increased beyond the first regime, the oscillation amplitudes see rapid drops,
as shown in Fig. 9(c). Meanwhile, all the three coefficient ratios seem to approach a plateau at high reduced velocities.
Therefore, significantly large oscillation amplitudes at m∗

= 200 could be attributed to the much stronger inertial forces
ssociated with this eccentricity.
As U∗ is further increased beyond the first regime for all the three mass ratios, the oscillation amplitudes gradually

each plateaus at high reduced velocities, while, on the other hand, the oscillation frequencies increase in a linear
elationship with U∗. This indicates the formation of a type-II regime. At x = 0.35, the type-II response appears for all
ass ratios, whereas it is only observed for the lowest m∗ tested in the present study, i.e. m∗

= 5, at x = 0.5. This suggests
hat the existence of a type-II regime is strongly dependent on the eccentricity effect. Specifically, for m∗

= 20, the type-II
response is found over the range of 5.5 ⩽ U∗ ⩽ 20.0, where the frequency response displays some broadband noise, as
shown in Fig. 10(b). Another important feature of the type-II response at m∗

= 20 is that each harmonic seems to have
one accompanying component at least, with a frequency close to the harmonic. This can often result in beating patterns
in the time varying amplitude time traces. For instance, the normalised frequency difference between the harmonics and
11



Z. Wang, L. Du, J. Zhao et al. Journal of Fluids and Structures 100 (2021) 103170
Fig. 10. The logarithmic-scale frequency PSD contours as a function of U∗ for (a) m∗
= 5, (b) m∗

= 20 and (c) m∗
= 200 with fixed x = 0.35.

Further details can be found in the caption of Fig. 3.

their accompanying components for the plunging oscillations, denoted by ∆f ∗

har , are found to be approximately 0.62. To
further demonstrate this characteristic, sample time traces of the response at U∗

= 10.39 with m∗
= 20 are plotted in

Fig. 12(b), showing that the time traces exhibit quasi-periodic and beating patterns. Similar behaviour is also observed
in the type-I regime of m∗

= 200, as shown in Fig. 12(b.i). In fact, such a beating feature is found to widely exist in the
responses with fixed x = 0.35 for high m∗ values (i.e. m∗ > 5 in the present study).

Fig. 13 shows sample time traces of the normalised plunge displacement for various mass ratios (m∗
= 75, 105,

125 and 155) at U∗
= 8.0. Clearly, all cases display beating behaviour, and the beating patterns seem to be affected

significantly by m∗. In Fig. 13(a), the beating pattern appears to be periodic and well-modulated by two strong frequency
components. Nevertheless, such a periodic pattern becomes weaker gradually as m∗ is increased; e.g., the time trace in
Fig. 13(d) is found to be aperiodic and chaotic. As mentioned previously in Section 3.2, increasing the mass ratio could
help to suppress the chaotic behaviours when the pivot location is close to the mass centre and thereby the eccentricity
effect is insignificant. On the contrary, when the eccentricity plays a significant role in the response, i.e. at x = 0.35 in the
present case, increasing the mass ratio would result in a much stronger inertial coupling and thus enhance the chaotic
dynamics.

3.4. Responses as a function of m∗

From the results discussed above at the three different mass ratios, the variation of the mass ratio can result in distinctly
different response behaviours, especially when the pivot location is of significant offset from the mass centre. To further
demonstrate the effect of mass ratio, the 2-DOF amplitude responses are examined as a function of m∗ at the two fixed
pivot locations x = 0.35 and 0.50. Fig. 14 shows the amplitude responses for four different combinations of x and U∗,
which are selected as representatives for the type-I and type-II regimes at each pivot location.

For x = 0.35 shown in Fig. 14(a), where the eccentricity plays a significant role, increasing m∗ does not necessarily
attenuate the foil oscillations. Interestingly, for a very high m∗ (i.e. m∗ ⩾ 200) at a fixed U∗, the oscillation amplitudes are
observed to be fairly stable, and further increases in m∗ do not seem to have any significant effect on the amplitude
responses. However, m∗

= 75 appears to be a critical value for (x,U∗) = (0.35, 8.0), at which a sudden jump is
encountered in both A10 and A10 responses atm∗

= 75, as shown in Fig. 14(a). Form∗ < 75, A10 is found to increase linearly
h θ θ

12



Z. Wang, L. Du, J. Zhao et al. Journal of Fluids and Structures 100 (2021) 103170

w

w
w
a

Fig. 11. Comparisons of three coefficient ratios (a) rAIh , (b) rCIh , and (c) rIθ as a function of U∗ for three different mass ratios of m∗
= 5, 20 and 200,

ith fixed x = 0.35. The response regime with unexpected oscillation amplitudes at m∗
= 200 is annotated by the dash lines.

ith m∗, while the reverse trend is observed for A10
h . On the other hand, for m∗ ⩾ 75, a stable A10

θ response is achieved,
hile the A10

h response sees a slow decrease as m∗ is increased. This implies changes in the dynamic characteristics that
re associated with violent oscillations or unexpected amplitudes in the type-I regime at high mass ratios (e.g. m∗

= 200).
In addition, the comparisons of rAIh, r

C
Ih and rIθ in Fig. 11 suggest that such changes in the dynamic characteristics are well

related to the inertial forces induced by the coupling of plunge and pitch oscillations. To demonstrate this, Fig. 15(a, b)
show the variations of rAIh, r

C
Ih and rIθ as a function of m∗ for U∗

= 8.0 and 16.0, respectively, with x = 0.35. Note that these
two U∗ values are selected as representatives of the first and second regimes at m∗

= 200, respectively. It is interesting
to note that, in the range of m∗ < 75 with (x,U∗) = (0.35, 8.0), rIθ exhibits very minor variations with m∗, prior to an
increasing trend for m∗ ⩾ 75, as shown in Fig. 15(a). However, such a jump in the oscillation amplitude responses at
U∗

= 8.0 are not observed at U∗
= 16.0, as demonstrated in Fig. 14(b). In contrast, Fig. 15(b) shows that rIθ at U∗

= 16.0
reaches a local peak at m∗

= 55 and then decreases as m∗ is further increased.
For the case of x = 0.5, where b = 0.04 is close to zero, it can be seen that the eccentricity effect on the FIV

response is insignificant. Thus, similar to many other 1-DOF bluff body systems, increasing m∗ in this case can significantly
attenuate (in most situations) and even suppress the amplitude responses at a given U∗, as demonstrated in Fig. 14(c, d).
Additionally, the present study finds that there exists a critical mass ratio, m∗

c , above which the 2-DOF oscillations are
suddenly suppressed. The observed critical mass ratios for the two U∗ locations are illustrated in Fig. 14(c, d): m∗

c is found
to be 100 and 260 for U∗

= 7.0 and 11.0, respectively. It seems that m∗
c tends to increase with U∗ at x = 0.5.

3.5. Responses as a function of x

To further assess the effect of eccentricity, the oscillation responses as a function of x at a fixed combination of m∗ and
U∗ are discussed in this subsection, where x is examined in the range of 0.1 ⩽ x ⩽ 0.88, with a resolution of 0.025, while
13
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Fig. 12. Time traces of the responses at (a) (m∗,U∗) = (200, 10.0) and (b)(m∗,U∗) = (20, 10.39), with fixed x = 0.35. Further details can be found
n the caption of Fig. 4.

Fig. 13. Time traces of the normalised displacements in plunge with a beat characteristic at (a) m∗
= 75, (b) m∗

= 105, (c) m∗
= 125 and (d)

m∗
= 155, with U∗

= 8.0 and x = 0.35.

the mass centre remains at x = 0.46. As previous results have shown that the eccentricity effect becomes more obvious
at high mass ratio, the mass ratio is thereby set to be 200. The reduced velocity is 10.0 as a representative of the first
response regime for (x,m∗) = (0.35, 200), where significant foil oscillations are encountered.

Fig. 16 shows: (a) the A10
h and A10

θ responses; and (b) the ratios of fluid forcing coefficient magnitudes as a function of x.
As can be seen, significant oscillation amplitudes are observed within two ranges: 0.25 ⩽ x ⩽ 0.425 and 0.5 ⩽ x ⩽ 0.675,
while at other locations (including those close to the leading edge, trailing edges and mass centre) oscillations are found
to be negligible. As mentioned previously in Section 3.1, static instability is responsible for the generation of oscillations
14
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Fig. 14. A10
h and A10

θ as a function of m∗ at four fixed combinations of x and U∗: (a) x = 0.35 and U∗
= 8.0, (b) x = 0.50 and U∗

= 7.0, (c) x = 0.35
nd U∗

= 16.0, m∗
c = 100 and (d) x = 0.50 and U∗

= 11.0, m∗
c = 260. The type-I and type-II responses are highlighted by the grey and blue areas,

espectively. Note that m∗
c denotes the critical mass ratio, above which the oscillations are suppressed. (For interpretation of the references to colour

n this figure legend, the reader is referred to the web version of this article.)

Fig. 15. The coefficient ratios of rAIh , r
C
Ih and rIθ as a function of m∗ at x = 0.35 with (a) U∗

= 8.0 and (b) U∗
= 16.0.

n the present study, which can also be confirmed from the amplitude responses at x = 0.25 in Fig. 16(a). Following the
erivation given by Dowell (2015), the critical speed for the onset of static instability can be determined by

qSe
∂Ch

∂θ
− kθ = 0, (16)

here q is the critical dynamic pressure, S is the area of the foil, and e is the distance between the aerodynamic centre
nd the pivot location, which is positive if the aerodynamic centre is ahead of the pivot location. For a foil placed in a
wo-dimensional incompressible flow, its aerodynamic centre is located at the quarter chord. For a foil with zero angle
f attack, ∂Ch/∂θ is a positive value. Therefore, with q, S and kθ being positive, Eq. (16) fails if e becomes negative. This

suggests that static instability will not be observed below x = 0.25. The variations of A10
h and A10

θ with x in Fig. 16(a)
illustrate that the effect of the pivot location is nonlinear. For example, both A10

h and A10
θ are observed to be zero at

x = 0.45, while violent oscillations can be seen at other adjacent locations, e.g. x = 0.425. In addition, rapid drops
15
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Fig. 16. (a) A10
h and A10

θ , and (b) rAIh , r
C
Ih and rIθ , as a function of x at m∗

= 200 and U∗
= 10.0. Regimes with oscillations are highlighted by the

reas with colours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

bserved in both A10
h and A10

θ at x = 0.25 and 0.675 also suggest that the responses could be sensitive to the pivot
ocation. Moreover, the overall A10

h and A10
θ responses over the range of 0.5 ⩽ x ⩽ 0.675 appear to be lower than those in

the range of 0.25 ⩽ x ⩽ 0.43.
If the pivot location is moved from the mass centre to either of the two edges with other parameters fixed, A10

θ is firstly
bserved to reach a local peak and then decrease, while A10

h shows a reversed relation with x, as can be observed from
ig. 16(a). On the other hand, a larger distance between the pivot location to the mass centre can also result in higher rAIh,
C
Ih, indicating a stronger inertial effect in plunging induced by pitching. Note that if the pivot location is moved towards
he leading edge, the inertial effect in pitching will also be enhanced, as rIθ is also observed to become larger. However, if
he pivot location is moved towards the trailing edge, rIθ sees its maximum at x = 0.575 and starts to decrease with the
scillation amplitudes, suggesting that the inertial effect becomes weak in pitch for this situation. The decrease of rIθ also
imits the increase of rAIh and rCIh and the foil is found to be stationary after x becomes higher than 0.675. Interestingly, as
hown in Fig. 16, when A10

θ reaches a local peak on one side of the mass centre, a variation can also be observed for rCIh.
or example, on the left side of the mass centre, the variation curves of rCIh and rIθ intersect around x = 0.375, where rCIh
s observed to be larger than rIθ and A10

θ , then starts to decrease from its peak as the pivot location is moved towards the
eading edge. On the other hand, on the right side of the mass centre, a local peak can be seen for rIθ at x = 0.58. The
orrelation between the oscillation amplitudes and the inertial forces indicates that the competition between the inertial
orces associated with the eccentricity can play an important role affecting the oscillation responses.

. Conclusions

In the present study, effects of the eccentricity and mass ratio have been studied for a foil undergoing fully passive
scillations of plunge and pitch in a two-dimensional incompressible flow at Re = 400, by employing an immersed
oundary method.
The analysis shows that two types of FIV responses, labelled as type-I and type-II, can be identified for low mass

atios for two fixed pivot locations, x = 0.5 and 0.35, where the eccentricity effect plays an insignificant and a significant
ole, respectively. The type-I regime, which is driven by static instability, is mainly observed at low reduced velocities.
n a type-I regime, the oscillation amplitudes are found to increase with U∗ in most situations and the dominant
scillation frequencies exhibit slight dependences on U∗ in some specific U∗ ranges. Harmonic synchronisation responses
re encountered in some U∗ ranges, e.g. 6.28 ⩽ U∗ ⩽ 7.52 at m∗

= 20 and x = 0.50. On the other hand, a type-II response
s often encountered at high U∗ for the present two pivot locations, where the oscillation and fluid forcing frequencies
end to increase with U∗, while the oscillation amplitudes are fairly stable in the response regime.

In cases where the eccentricity effect is insignificant, i.e. at x = 0.5 close to the foil’s mass centre (x = 0.46), the type-I
egime widens as m∗ is increased in a low mass ratio range, e.g. 5 ⩽ m∗ ⩽ 20. However, when m∗ is increased to large
alues, e.g. m∗ ⩾ 200, the frequency response only exhibits characteristics of the type-I response, while the amplitude
esponses are found to be complex, with synchronisation responses observed regardless of U∗. On the other hand, a type-II
esponse can only be observed at low m∗. In addition, increasing the mass ratio favours suppression of chaotic responses.
nterestingly, it is found from the FIV responses as a function of m∗ at x = 0.5 that, for a fixed reduced velocity, there
xists a critical mass ratio, above which the foil oscillations will suddenly be suppressed. The critical mass ratio tends to
ncrease with increased reduced velocity.
16
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In cases where the eccentricity effect is significant, i.e. at x = 0.35, the type-I regime is found to shrink as m∗ is
ncreased in the low range. Further increase in m∗ can result in chaotic responses with violent oscillations in a lower
∗ range, where the inertial forces induced by the coupling between plunge and pitch play a significant role affecting
he dynamics. In addition, the amplitude responses as a function of m∗ with fixed x = 0.35 indicate that the oscillation
amplitudes become stable as m∗ is increased above a certain value.

Furthermore, the present study also confirms the occurrence of static instability as well as the nonlinear effect of
eccentricity. From the responses as a function of the pivot location, with fixed m∗ and U∗, it is found that when the
pivot location is moved close to either of the two edges, violent oscillations could suddenly be suppressed, while a small
change in the distance between the pivot location and the mass centre could result in violent oscillations. Moreover, the
foil experiences much more violent oscillations if the pivot location is moved towards the leading edge rather than the
trailing edge.

Analysis of the response dynamics in this work should be helpful for the parameter design of flow energy extraction
of 2-DOF flapping foils. Note that, higher oscillation amplitudes do not necessarily result in a better efficiency. Synchro-
nisation responses, with a good periodicity and optimal pitch-to-plunge phase (∼90◦) occurring around x = 0.35, are
preferable for the flow energy extraction. The present numerical study shows that the combined effects of eccentricity
and mass ratio can result in profound FIV phenomena for a foil subject to two degrees of freedom of plunge and pitch.
Thus, it would be of interest to investigate and confirm the observed effects in future experiments.
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