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a b s t r a c t

Slipstream, which is the induced air movement generated by a high-speed train (HST)
as it passes, is both a safety hazard to commuters and trackside workers, and can cause
damage to infrastructure along track lines. Bogies have been shown to exert a strong
influence on HST aerodynamics by altering the underbody flow, and their effects have been
extensively studied previously from the perspectives of ballast flight and drag reduction. In
contrast, the effect of bogies on slipstream characteristics, and especially on the structure
of the wake, is less well understood. This study explicitly investigates the effect of bogies
on HST slipstream characteristics based on two generic train configurations: a Simplified
Train Model (M1) with the bogies covered by a flat surface, and a Full-featured Train
Model (M2) with simplified bogie-sets. The bogie effects are revealed through a systematic
comparison of flow structures, slipstream characteristics and aerodynamic forces between
these configurations. Remarkably, this study discovers that the generation of the strong
spanwise oscillation of the wake, observed especially in the presence of bogies, can be
interpreted as due to seeding and amplification of a natural instability of the time-mean
pair of counter-rotating vortices behind the tail, rather than through direct side-to-side
vortex shedding from the bogie geometry. This paper also documents how the alteredwake
flow affects slipstream characteristics through statistical and gust analyses, and the effect
of the bogies on aerodynamic loading by comparing the train surface pressure distributions
between the configurations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

High-speed trains (HSTs) have proven to be a viable intercity transportation method because of their high transportation
efficiency, both in time and energy use. During the initial development of high-speed trains, much of the focus was
improvements of electric motors and the reduction of frame weight, rather than improved train aerodynamics. Indeed,
progress in these two areas has resulted in a remarkable speed increase over the past decades. The aerodynamic performance
of a HST, which was of less importance when travelling at lower speeds, now becomes a limiting factor as speed is further
increased. Specifically, for a train travelling in the open-airwithout cross-winds, good aerodynamic performancemeans both
theminimisation of aerodynamic drag and the induced disturbance to the surrounding air. This flow disturbance induced by
the passing of a HST is known as slipstream, which is a combined effect of multiple flow features: the head pressure pulse,
boundary-layer development along the train body, flow under the bogies and the wake behind the train.
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Research into investigating the aerodynamic characteristics of bogies has mainly been initiated for the following two
reasons. Firstly, the bogies are a significant source of aerodynamic drag; thus, improving their aerodynamic performance
is beneficial to energy efficiency. For example, for a streamlined HST travelling at cruising speed, aerodynamic resistance
contributes to 75%∼80% of the total resistance, and 38%∼47% of that is caused by the bogies and associated interference
drag (Raghunathan et al., 2002). Therefore, measures have been applied to optimise bogies for drag reduction. Mancini et
al. (2001) showed that installing fairings on the existing bogies of an ETR 500 HST could reduce the drag by approximately
10%, and further reductionwas expected by retrofitting the bogies. Secondly, the bogies can significantly alter the underbody
flow,which is strongly correlatedwith the ballast flight phenomenon. The underbody flow can be characterised as a turbulent
Couette flow, and García et al. (2011) have proposed an analytical solution for a simplified case. By studying a more realistic
trainmodel, Kaltenbach et al. (2008) reported that the ideal Couette flow could be regularly interrupted by the passing bogies
and inter-carriage gaps. For example, the ‘‘funneling’’ of the flow into the rear of the first bogie cavity can introduce a strong
secondary flow structure and further affect the downstream flow. As shown in Kaltenbach et al. (2008), the underbody flow
is strongly dependent on the geometry of the bogies; Jönsson et al. (2014) explicitly studied the bogie effect by comparing
the underbody flowwith and without bogies. The comparison concluded that the bogies significantly increased the velocity,
velocity gradient and turbulence intensity of the underbody flow (Jönsson et al., 2014). Ballast flight, where ballast particles
become airborne during the passage of a train, is due to the combined effect of mechanical and aerodynamic loadings (Quinn
et al., 2010). Therefore, fluid acceleration caused by the bogies could worsen the ballast flight phenomenon (Quinn et al.,
2010). Specifically, Soper et al. (2017) determined that bogies significantly alter the horizontal instead of vertical velocities,
and concluded that any effects on ballast flight are likely to occur from a shear-type flow. Additionally, the alteration to the
underbody flow is also profound under crosswind conditions. Cooper (1981) determined that under cross-wind conditions,
the bogies partially blocked the underbody flow and introduced a strong local pressure field, which resulted in a significant
increase in the forces and moments. Copley (1987) further investigated the mechanisms affecting the aerodynamic loading,
and discovered that without the bogies, the vortical wake was like a three-dimensional Karman Vortex Street, with vortices
being shed from successive points on both the roof and the under side of the train. However, when wheels were simulated,
the vortices shed from the underside of the train were disrupted and reduced in strength, which increased the overall force
components on the train (Copley, 1987).

As can be seen from these investigations, the bogie effect has been investigated mainly either to determine the
aerodynamic loading exerted on the train surface for the purpose of drag reduction, or to determine the alteration to the local
underbody flow for the purpose of ballast flight analysis. In comparison, less research has been undertaken on bogie effects
on HST slipstream, and especially on the wake structures. By studying the slipstream of a full-scale HST, Pii et al. (2014)
identified the development of left-to-right pressure fluctuations along the train, which were caused by the presence of the
bogies, and further inferred that the bogie-induced fluctuations actually trigger the wake’s spanwise motion. Alternatively,
from the correlation between the pressure fluctuation at the side surface of the tail and the wake’s spanwise motion, Bell et
al. (2016a) proposed that the origin of the spanwise motion could also be vortex shedding from the tail, although this does
not necessarily rule out the bogie generation hypothesis.

The spanwise oscillation of a HST wake has been identified as a typical HST slipstream characteristic, but its initiation
is still not fully understood. Reviewing the methodologies used to study HST slipstream through computational analysis
indicates that numerical set-ups, both with bogies (Muld et al., 2012a; Yao et al., 2013) andwithout bogies (Östh et al., 2015;
Pereira and André, 2013), have been adopted. However, since the effects of bogies on HST slipstream characteristics are not
yet fully understood, this makes to it unclear what the effect on predictions will be if bogies are ignored. Specifically, the
impact on the wake caused by the presence of the bogies have not been fully documented and characterised, and this is the
rationale for undertaking the current study.

Therefore, effort is needed to understand and quantify the effects of bogies onHST slipstream characteristics, for example,
the causes of spanwise oscillation of the wake. To isolate the bogie effects, this study systematically studies and compares
the slipstream characteristics of two otherwise identical generic train models, with the only difference being whether the
bogies are fully featured. Unlike previous studies, whichmainly focused on ballast flight or drag reduction, the current study
investigates bogie effects from a slipstream perspective. For this reason, the flow field is naturally divided into two regions:
the flow development region (covering the length of the train) and the wake region, and the effects of bogies on each region
are studied and discussed separately. Beyond this, the influences on slipstreamvelocity assessment and aerodynamic loading
are also investigated.

2. Methodology

2.1. Geometry

The numerical train model used in this study is based on the 1/10th Deutsche Bahn Inter-City-Express 3 (ICE3) high-speed
trainmodel, which is a widely operated trainmodel in European and Asian countries. ICE3 has a representative HST external
shape, and its Computer-Aided Design (CAD) model is freely available from the DIN Standards Railway Committee (DIN
Standards Committee Railway, 2018). This makes ICE3 an ideal HST model for train slipstream investigation.

To achieve the primary aim of explicitly studying the effects of bogies on HST slipstream characteristics, two numerical
models are constructed: a Simplified Train Model (denoted as Model 1, or M1) and a Full-featured Train Model (denoted as
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Fig. 1. The comparison between the underbody structure between the flat-underbody model and the full-featured model.

(a) Top view. (b) Front view.

Fig. 2. Schematics of the computational domain: (a): top-view; (b): front-view (Not to scale).

Model 2, or M2), as illustrated in Fig. 1. The overall geometrical features of the two models are identical; for example,
the length-width-height ratio of approximately 50:3:4, the ground clearance of 381 mm (in full-scale), and the inclusion
of a snowplough. The only difference between M1 and M2 geometries is that the former covers the bogie-sets with a flat
surface, while the latter includes four bogie-sets. For implementing this fundamental investigation, the bogie-sets have been
simplified by only retaining the generic large-scale geometric features including the axles and wheels, but omitting fine-
scale geometry details; there are studies in the literature that have considered more realistic bogie-sets, e.g., Kaltenbach
et al. (2008) and Sima et al. (2008). The comparison of the underbody structures between M1 and M2 is highlighted
in Fig. 1. The numerical train model is positioned on a single-track ballast configuration. The dimensions of the ground
configuration are specified according to CEN guidelines (European Committee for Standardization (CEN), 2009). Compared
with the dimensions specified by CEN (European Committee for Standardization (CEN), 2009), the thickness of the rails is
extended from 50mm to the wheel width of 135mm (in full-scale) in order to represent a realistic contact between the rails
and wheels.

2.2. Computational domain and boundary conditions

The layout of the computational domain is identical for both cases, for which the train model is positioned on a single
ballast track in a computational domain consisting of hexahedral elements, and the ballast is extended through the entire
domain, i.e., from the inlet to outlet. Therefore, a cross-section through the computational domain for M2 is used as an
example here to illustrate the numerical set-up, with its schematic presented in Fig. 2. For the discussion, spatial dimensions
are generally normalised by the train width (W ) in the spanwise direction (y-direction), or by the length (L) of the train in
the streamwise direction (x-direction). The origin of the coordinate system is positioned in the spanwise mid-plane, at the
height of the top surface of the rails, with x = 0 corresponding to the tail tip.

The boundary conditions are tabulated in Table 1. A uniform velocity boundary condition with a turbulence intensity
of 1% is applied at the inlet. The Reynolds number (based on W ) is 7.2 × 105. These values are chosen for consistency for
a comparison with wind-tunnel experiments, but noting that they are not representative of a full-scale train operation. A
zero static pressure condition is applied at the outlet boundary. A no-slip wall boundary condition is applied to all train
surfaces, except for the wheels, which is not applicable for M1. Symmetry boundary conditions are applied at the top and
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Table 1
The list of boundary conditions.

Boundary conditions Simplified train model (M1) Full-featured train model (M2)

Train surfaces No-slip stationary wall No-slip stationary wall
Wheels (include axles) N/A No-slip rotational wall
Ground No-slip moving wall No-slip moving wall
Inlet Uniform velocity Uniform velocity
Outlet Zero static pressure Zero static pressure
Sides and roof Symmetry Symmetry

Fig. 3. The visualisation of grid refinement around the train based on M2: (a): centre-plane; (b): cross-section.

sides of the computational domain. Note that for a clearer visualisation of the computational setup and domain dimensions,
Fig. 2 is not drawn to scale. To simulate the realistic condition of a moving train travelling through still air, where no relative
motion exists between the air and the ground, a no-slip moving-wall condition at the freestream velocity (U∞) is applied
to the ground, including the ballast and rails. The axes of the rotating wheel-sets are along the centrelines of the axles, and
the wheels rotate at a constant angular velocity, with the speed at the rim equal to the speed of the moving ground. All
no-slip wall boundaries, including the train and ground, adopt default roughness parameters (i.e. the Roughness Height and
Roughness Constant of 0 and 0.5 respectively), which represent a smooth wall condition (Fluent, 2006). Obviously in the
full-scale scenario, the roughness of the train surface and ground is different and may alter the local flow field near the wall,
especially when we take the sleepers into consideration. However, as a preliminary study focusing on the effects of bogies
on slipstream and wake, the potential influences due to wall roughness are isolated by applying an identical value for M1
and M2.

2.3. Meshing strategy

The two models use an identical meshing strategy, which is based on the predominately-Cartesian cut-cell approach,
allowing substantially increased mesh concentration around the train and in the wake, together with a relatively smooth
transition to lower resolution away from the train. This mesh concentration is accomplished by applying virtual refinement
zones at target regions. For example, in this study, multiple levels of refinement zones are utilised to achieve higher
accuracy around the train and within the wake, as illustrated in Fig. 3. To ensure all important flow features are captured,
the dimensions of the refinement regions were determined based on preliminary simulations. This method achieves a
high uniform resolution in the slipstream measurement regions, and aids in accurately capturing the boundary layers and
induced-flow separation generated by smaller-scale geometrical features. Inflation layers are applied to all wall boundaries
to capture the boundary layer development. A smooth transition is established between adjacent cells, including between
the outer inflation layer and the hexahedral grid, and at the interface of two refinement zones, as illustrated in Fig. 3.

A mesh independence study was undertaken in a previous related study (Wang et al., 2017) examining the effect of
different turbulence models on slipstream prediction. In that study, the performance of three sequentially refined grids
(coarse,mediumand fine) for predictingHST slipstreamwere evaluated, showing that drag and slipstreampredictions varied
by less than 1% and 2% between the fine and medium grids. This study adopts the equivalent mesh settings of the fine grid,
for which the key meshing parameters are listed in Table 2. Based on these settings, the number of cells for M1 and M2 is
25.1 and 27 million, respectively.
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Table 2
Key meshing parameters.

Cell size

Train surface mesh 0.00625H∼0.025H
Under-body refinements 0.00625H∼0.0125H
Wake refinements 0.0125H∼0.05H
Far-field refinements 0.1H∼0.4H

No. of inflation layers 10

Train surface wall y+ 1∼20

2.4. Solver description

The numerical solver utilised in this research is the commercial CFD code FLUENT, which is part of the ANSYS 16.2 software
suite. A pressure-based transient solver is utilised for predicting the highly turbulent flow. Detached Eddy Simulation (DES) is
used to capture the large-scale turbulent flow structures, and specifically, a variant know as Improved-Delayed DES (IDDES) is
utilised in this study. DES is a hybrid turbulencemodel that blends Reynolds-AveragedNavier–Stokes (RANS)modelling near
boundarieswith Large Eddy Simulation (LES) for the outer flow. IDDES is a type of DESmodel that applies an improved delayed
shielding function to achieve a higher accuracy within the RANS-LES blending region. This also improves the wall-modelling
capability. Similar to the classic DES blending technique, IDDES also utilises RANS to approximate the boundary layer and
applies LES to capture the time-dependent turbulent flow away from boundaries. Shear-Stress Transport (SST) k−ω model is
used for the RANS part within the IDDESmodel, due to its superior performance onmodelling the near-wall boundary-layer
regionswith undefined separation points. IDDES has been extensively adopted to study the train aerodynamics, for example,
the study of the slipstream assessment (Huang et al., 2016) and underbody flows (Zhang et al., 2016). A fuller description
of the IDDES model is given in Spalart (2009). To start the time-dependent simulation, the flow field is initialised with a
second-order accurate steady-state RANS simulation based on the SST-RANS model. The flow is then solved with the IDDES
turbulence model.

The solver timestep was chosen as 0.0025Tref to maintain the Courant number of typical smallest cells less than unity,
which is suggested for DES-type simulations. Because of this, the Fractional-Step SchemewithNon-Iterative Time Advancement
can be used to integrate forward in time. The bounded second-order implicit formulation is applied for transient simulations.
For the spatial discretisation, except for the momentum equation for which bounded central differencing is utilised, all other
flow equations are discretised with the second-order upwind scheme. Unsteady statistics results are collected after the flow
field has reached an asymptotic statistical state, which is checked through comparisons with predictions from shorter
averaging periods. It is useful to define a reference time scale based on the train height and freestream velocity given by
Tref = H/U∞. Unsteady statistics are sampled over 195 Tref . This is equivalent to the time taken for the fluid to advect
through the entire domain 3 times, or to pass the length of the train approximately 15 times.

2.5. Validation

Validation of the numerical model was presented in a previous study (Wang et al., 2017), which systematically evaluated
the effects of the key numerical settings for predicting the slipstream, including the selected turbulence model, the grid
resolution and the time-step, and provided guidelines for selection of those settings. The current research utilises the best
choice numerical setting derived from that study (Wang et al., 2017). The validationwas carried out by comparing the results
of time-averaged and dynamic flow features between numerical simulation andwind-tunnel experiments (Bell et al., 2016a,
b). As an example, the slipstream profiles obtained from the experimental measurements and numerical simulations are
plotted in Fig. 14. The wind-tunnel experiment was conducted in theMonash University 1.4 MW closed-circuit wind tunnel,
and a full description regarding the experimental set-up and results can be found in Bell et al. (2017). The geometry in this
current study is identical (M2) or even simpler (M1) than that used for the validation study, and the flow conditions are
very similar. However, the ground boundary condition varies: the previous study utilised a stationary ground configuration
to replicate the wind-tunnel experimental environment, while this study adopts a moving ground configuration to match
the actual relative velocity between the ground and the train. The feasibility of applying the present numerical method
on resolving the slipstream with different ground conditions has been verified by the authors in another study (Wang et al.,
2018), and the flow changes that are introduced by the stationary ground boundary layerwere investigated and documented
as well. According to that study (Wang et al., 2018), the moving-ground condition of this study eliminates the ground
boundary layer development and growth. The underlying assumption is that numerical settings that are capable of capturing
the growth of the ground boundary layer and its interaction with the train-induced wake structures, are also appropriate for
the simpler case in which the stationary ground boundary layer is not present.

3. Results and analysis

This study investigates the effects of bogies from three perspectives: wake flow structure (Section 3.1), slipstream
assessment (Section 3.2) and aerodynamic loading (Section 3.3). To begin with, the influence of the bogies on slipstream



476 S. Wang et al. / Journal of Fluids and Structures 83 (2018) 471–489

Fig. 4. Classification of the two flow regions visualised by U slipstream at z = 0.05H , and the slipstream assessment location is represented by the dotted lines.

development is investigated, in terms of statistical wake-flow features and wake dynamics. Following that, how the altered
wake flow further alters slipstreammeasurements is studied in accordance with Technical Specifications of Interoperability
(TSI) specification. The TSI specification is issued by the European Railway Agency, which provides guidelines for the trains
operating across European countries. Lastly, the impact of the bogies on the overall aerodynamic force components is
presented by comparing the train surface pressure between two models.

3.1. Flow structures

The strength of slipstream is quantified by the slipstream velocity (Uslipstream), which is defined through the horizontal
components of train-induced air movement. As slipstream velocity is defined in a ground-fixed (GF) stationary reference
frame, while CFD simulations are based in the train-fixed (TF) reference frame; thus a change of frame is required. Therefore,
Uslipstream is defined by

Uslipstream =

√(
U2
GF + V 2

GF

)
, (1)

where

UGF = U∞ − UTF , VGF = VTF . (2)

In Eqs. (1) and (2), the subscriptsGF and TF indicate ground-fixed and train-fixed reference frames, respectively. Velocities,
including slipstreamvelocities, quoted in this study are typically normalised by the freestreamvelocity (U∞). Again, note that
slipstream is only based on the downstream (U) and transverse (V ) components of the velocity, while the vertical velocity
component is ignored. According to the TSI specifications (European Union Agency for Railways, 2014), the slipstream
velocity measurement should be undertaken 3 m (in full-scale) away from the centreline of the train and at two different
heights, i.e. trackside height (z = 0.05H) and platform height (z = 0.35H).

To explicitly study the effects of bogies as the slipstream develops, the flow field is divided into two regions: the flow
development region (covering the train) and the wake region. A schematic of the two regions is illustrated in Fig. 4, based on
the time-averaged slipstream velocity (U slipstream) at the trackside height, and the black dotted-lines represent the slipstream
assessment location under TSI specifications.

The flow development region extends from the train head to the tail, and the wake region starts from where the wake
structures separate from the tail to the downstream location where slipstream becomes negligible. The flow development
region covers where there is direct local disturbance caused by the presence of bogies, and the wake region focuses on
how the altered upstream flow influences the formation and propagation of the wake structures. However, note that as the
slipstream development along the train is a continuous process, there is no definite boundary between the two regions. This
is especially true around the tail, where the wake structures are formed and separate from the train surface. Fig. 4 shows
that the bogies increase the underbody slipstream velocity, and widen the wake behind the train. A detailed analysis of the
bogie effect in each region is presented in Sections 3.1.1 and 3.1.2.

3.1.1. Flow development region
Unsurprisingly, the flow development region is identified as the region where the flow develops as it passes over the

HST, arbitrarily taken from the nose to the tail. The bogie influence within this region is visualised in Fig. 5 by the turbulent
kinetic energy (TKE), and the time-averaged y-vorticity (ωy), in the vertical spanwise centre-plane.

As can be seen in Fig. 5, the bogies within this region only locally alter the underbody flow, while the flow over the upper
train surface remains almost unaffected. The mechanism of the bogies interfering with slipstream development is to alter
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Fig. 5. The bogies effects within the flow development region illustrated by TKE and ωy with in-surface projected velocity streamlines at y = 0W .

the underbody flow by restricting it through blockage, and to increase the TKE level through flow separation from the bogies.
According to the TKE contours in Fig. 5, the bogies not only locally increase the turbulence level around the bogies, but also
the effect advects into the wake.

For the time-averaged flow features, an identical boundary layer growth is seen by the positiveωy layer over the train top
surface. In contrast, a significantly altered underbody flow is apparent. A thin boundary layer develops on the flat bottom
surface in M1, while the bogies introduce high local ωy magnitude regions in M2. The main downstream alteration to the
flow caused by the bogies is identified between the train tail tip and ballast, which is highlighted by ωy and time-averaged
in-surface projected velocity streamlines in the lower images of Fig. 5. This figure illustrates that a pair of coherent time-
averaged recirculation regions are formed in M2, while these do not occur in the M1 near wake. A possible explanation
for this is that the twin vortices are formed due to the significant kinetic energy difference between the strong downwash
from the train top surface and low-speed underbody flow. Specifically, the lower energy fluid passing under the train is not
sufficient to prevent the high-energy fluid passing over the train separating at the trailing nose. Combined with separation
of the underbody flow at the snowplough, this leads to the two local counter-rotating recirculation regions. In comparison,
the high momentum underbody stream in M1 is sufficient to cause the flow to remain attached to the point of the trailing
nose.

3.1.2. Wake region
Thewake region is defined as the region downstream of the tail, where the vortical flow structures that separate from the

train surface propagate downstream. Consistent with wind-tunnel experimental results (Bell et al., 2016a, b), the dominant
time-mean wake structure is a pair of longitudinal counter-rotating vortices.

In this study, it makes sense to further divide the development and evolution of the wake into two sub-regimes: the
wake-formation regime and the wake-propagation regime, in accordance with the formation and evolution of the time-mean
coherent longitudinal vortical structures as illustrated in Fig. 6.

The development of the time-mean and instantaneouswake structure behind the tail is depicted through an iso-surface of
the Q-Criterion (Q = 2) in Fig. 6, where positive Q highlights rotation-dominated flow structures. Additionally, to indicate
the origin of the longitudinal vorticity in the trailing vortices, the Q -criterion iso-surface is coloured by x-vorticity (ωx).
The streamwise vorticity is calculated based on the normalised spanwise and transverse velocities. The instantaneous flow
structures in the right-hand column of Fig. 6 illustrate that the turbulent wake structures are more concentrated towards
the centreplane when they are separated from the tail of M1, while the bogies introduce multi-scale flow structures at a
higher turbulence level. According to the comparison between the time-averaged flow structures in Fig. 6, the alteration to
the underbody flow significantly affects the near-wake formation of the time-mean wake vortices. In M2, the downwash
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Fig. 6. The comparison of the bogie effects on the development of the wake structure at the tail, visualised by an iso-surface of Q -criterion coloured by ωx .

from the tail dominates the underbody stream, and generates a pair of longitudinal trailing vortices (denoted as vortex pair
C) behind the tail. This pair is a coherent, persistent wake structure, and initiates from the curved edge between the top and
side surfaces of the tail, in a similarway to the (C-)pillar vortices identified in vehicle aerodynamics. Additionally, from theωx
contours, it can be seen that the longitudinal vorticity of the trailing vortices originates from the twisting effect at the C-pillar,
which is caused by the pressure difference between the tail side and top surface. This is further illustrated in Section 3.3. In
comparison, with the flat underbody configuration (M1), apart from the primary pillar vortices (denoted as vortex pair A), a
pair of secondary vortices (denoted as vortex pair B) is formed at the snow-plough due to the highermomentum streamlined
underbody flow. Note that vortex B2 is not visible in Fig. 6 as it is behind vortex A2. As the wake propagates downstream,
the two vortex pairs, A and B, meet at approximately x = 1H , and then merge into one vortical structure (denoted as vortex
pair C), which is analogous to the coherent trailing vortices in M2. Beyond this point, the wake structures of M1 and M2 are
qualitatively identical.

The formation and propagation of the time-averaged wake structures are quantitatively depicted by ωx, in-surface
projected velocity vectors and the vortex boundaries, on six consecutive vertical planes between x = 0.5H and 5H , as
presented in Fig. 7. As the time-averaged flow structure is symmetric about the mid-plane, only the left half of the flow field
is presented. The boundary of the trailing-vortex structure is depicted through an iso-line of Γ2 = 2/π , which is a method
often chosen by experimentalists to mark the extent of a vortex-dominated region (Graftieaux et al., 2001). In addition, the
core of a vortex is indicated by a green asterisk, which is determined by themaximum local value of Γ1 (again see Graftieaux
et al., 2001). The crosses (‘‘+’’) and circles (‘‘o’’) in Fig. 7 represent the trackside (z = 0.05H) and platform (z = 0.35H)
slipstreammeasurement location respectively, based on the TSI specifications (European Union Agency for Railways, 2014).

According to Fig. 7, when the bogies are included, a pair of trailing vortices (C) is formed immediately behind the tail
(x = 0.5H), and as it propagates downstream, it rolls over the rails and moves away from the spanwise centre-plane. In
comparison, two discrete pairs of vortices (A and B) are identified at x = 0.5H in M1, and they start to merge to form a
single vortical structure (C) at x = 1H . This description is consistent with the wake-structure evolution illustrated in Fig. 6.
In comparison with M2, M1 shows that vortex pair C stays closer at the centre-plane. Additionally, as the underbody stream
pushes against the downwash vortex A, and the cores of C in M1 are slightly shifted upwards.

In this study, the strengths of vortices are quantified through the circulation, which is calculated by the surface integral
of ωx within the vortex boundaries using Stokes’ Theorem. The strengths of vortex A and B in M1 are 1.41 × 10−3U∞/H and
1.02 × 10−3U∞/H , respectively. This indicates that the downwash vortices formed from the top surface are approximately
32.1% stronger than the vortices generated from underneath. For completeness, the strength of coherent counter-rotating
vortex pair C is described by themean vortex circulation at x = 2H , which is 2.24×10−3U∞/H forM1 and 3.41×10−3U∞/H
for M2. This shows that the bogies can alter the strength of trailing vortices by about 30%.

The decay of the wake structure is quantified by the change of ωx at the vortex core, and the results are plotted in Fig. 8.
Fig. 8 shows that M2 has a significantly higher decay rate within the near-wake compared to that further downstream. This
is expected due to the higher turbulence level caused by the perturbations from the bogies. Note that the core vorticity ωx
for M1 model between x = 1 and 3H cannot well represent the vortex strength as the coherent single vortex pair C is not
yet fully formed.
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Fig. 7. The comparison of the wake development downstream based on six consecutive vertical planes between x = 0.5 and 5H . Here, ‘‘◦’’: platform
slipstream assessment location; ‘‘+’’: trackside slipstream assessment location. The vortex boundaries, shown by the black lines, are identified by the Γ2
criterion. The vortex centres (‘‘∗’’) are identified using local maximum values of Γ1 (see Graftieaux et al., 2001).

In the following, the dynamics of the near-wake flow structures, i.e. vortex pairs A, B in M1, and the vortex pair C in
M2, are investigated based on the static pressure in the vortex cores at x/H = 0.5. The core coordinates ([y-coordinate, z-
coordinate]) for vortex A, B and C at x/H = 0.5 are ([±0.133W , 0.275H]), ([±0.133W , 0.0875H]) and ([±0.2W , 0.1375H]),
respectively. The frequency spectra and cross-correlation coefficients between adjacent structures are illustrated in Fig. 9,
where the frequency is quantified by the non-dimensional Strouhal number (StW ) based on the train width (W ).

According to the power spectral density (PSD) profiles in Fig. 9(a), the pillar vortices, i.e. vortex pair A in M1 and vortex
pair C in M2, demonstrate identifiable dominant frequencies of 0.75 and 0.58, respectively. In comparison, the lower vortex
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Fig. 8. The comparison of the wake decay rate based on the change of vortex core ωx .

Fig. 9. The comparison of dynamic response of the near-wake structures: (a): the frequency content within the vortex cores; (b): the correlation between
the vortex structures. Note here the vortex pairs A, B are in M1, and the vortex pair C is in M2.

pair B in M1 shows a broad frequency response without a clear peak frequency. In addition to the frequency responses of
individual structures, the interactions between two adjacent structures are studied by the cross-correlation between the
core pressure, and the results are presented in Fig. 9(b). The cross-correlation coefficient of 1 represents an in-phasemotion,
while−1 indicates an out-of-phasemotion. The time-lag is normalised by Tref . This figure indicates that for each vortex pair,
no significant correlation exists for vortex pairs A and B of M1; however, the trailing vortex pair C of M2 shows a strong
out-of-phase correlation. This implies that the spanwise wake oscillation is initiated immediately behind the tail in M2,
while it is not established in either vortex pairs inM1, even for the equivalent-origin downwash pillar vortex A. On the other
hand, a strong correlationwith aπ/2 phase difference is identified between the legs of the pillar vortex pair A and secondary
vortex B beneath. This implies that the higher and lower vortices of M1 on the same side demonstrate a stronger vertical
dependency, even though there is no spanwise dependency.

Additionally, the dynamic wake features can be understood through Proper Orthogonal Decomposition (POD), especially
the detailedmakeup of transientwake structures. This study utilises the Snapshot PODmethod, initially proposed by Sirovich
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Fig. 10. The comparison of dominant transient wake features resolved by POD for the near- and intermediate-wake region.

(1987), due to its strength in extracting coherent flow features (denoted as modes), from a turbulent flow field, and ranking
them according to their energy proportion. In this study, the components of the dominant transient flow features at the
near- and intermediate-wake region are illustrated by the two most energetic POD modes resolved at x/H = 1 and 5. The
POD analysis in the current study is based on the total pressure.

Fig. 10 shows that the dominant transient feature within the M1 wake formation region is a simultaneous energy
increase/decrease centred on the vortices, corresponding to a longitudinal pulsing of the vortices. Additionally, the impulses
of the vortex A and B are out-of-phase, which represents a vertical energy fluctuation. The second energetic mode depicts
an out-of-phase oscillation within each vortex pair, which associates with the left-to-right oscillation. In comparison, both
modes in M2 within the near-wake region are associated with the spanwise energy fluctuation. In the intermediate-wake
region (x = 5H), the first two most energetic modes between M1 and M2 become qualitatively identical, which are an out-
of-phase spanwise oscillation and an in-phase wake pulsing. Quantitatively, M2 shows a larger energy fluctuation region
due to the wider unsteady wake.

Additionally, the effect of the bogies on the downstreamwake development, especially on the spanwise wake oscillation,
is studied based on a horizontal plane at a height at z = 0.15H , as shown in Fig. 11. The instantaneous flow structures are
visualised by contours of Uslipstream at an arbitrary time instant.

Firstly, the coherence of the spanwise oscillation is quantitatively described by the cross-correlation of the lateral velocity
component (VGF ) based on an array of points from x = 0∼10H that are plotted aswhite circles in Fig. 11. The cross-correlation
is calculated between each pair of points that are symmetric across the centreplane at 0.33W apart, and the downstream
distance between two adjacent pairs is 0.25H . Hence, a total of 50 pairs between x = 0 and 10H are utilised to capture
the development of the wake’s spanwise motion with downstream distance, and the cross-correlation profiles for each pair
along the longitudinal direction are illustrated in Fig. 12(a).

As the profiles of cross-correlation coefficient against time lag are symmetric at zero time lag, only the positive time
lag portion is presented. According to Fig. 12(a), a peak cross-correlation coefficient is determined at zero time lag (except
for the pairs within the wake formation region of M1), and its positive value implies the spanwise oscillation. Therefore,
the cross-correlation coefficients at zero time-lag for the pairs ranging from x = 0 to 10H are plotted in Fig. 12(b) for
a quantitative description of the coherence of spanwise motion for the wake. Fig. 12(b) shows that without the bogies,
the spanwise oscillation cannot be identified until approximately x = 4H . This is consistent with the wake dynamics, as
illustrated in Figs. 9 and 10, in which the dominant transient feature within the M1 wake formation regime is the vertical
interaction between primary pillar vortices (vortex pair A) and secondary vortices (vortex pair B) beneath, instead of a
spanwise oscillation. As the wake propagates downstream after the formation of vortex pair C, the spanwise correlation
between the trailing legs then gradually develops. In comparison, the spanwise wake oscillation is immediately established
behind the tail for M2, which is coincident with the formation of twin vortices immediately in the near wake. This indicates
that spanwise motion can be identified in both cases once the vortex pair C is properly formed, regardless the presence of
the bogies. Together with the similar spanwise oscillation frequency in both cases, this suggests that the bogies are not the
ultimate cause of the spanwise oscillation, instead, the wake oscillation is an intrinsic convective instability of the trailing
vortices.
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Fig. 11. The wake propagation visualised by the instantaneous Uslipstream (‘‘◦’’: an array of point pairs for spanwise motion identification; ‘‘△’’: the probe for
measuring the shedding from the bogie; ‘‘+’’: the probe for measuring near-wake dynamics; ‘‘∗’’: the probe for measuring intermediate-wake dynamics).

Fig. 12. The cross-correlation of VGF at point pairs (presented as ‘‘◦’’ in Fig. 11) for investigating the wake’s spanwise oscillation: (a): the cross-correlation
profiles per pair; (b): a comparison of the cross-correlation coefficient at zero time lag.

This hypothesis is further studied by analysing the characteristics of the shedding from the bogies in the near and inter-
mediate wake, and investigating the correlation in between. The characteristics of the spanwise shedding at the bogies, near
and intermediate wake are represented by the VGF at three typical points whose the locations ([x-coordinate, y-coordinate])
are highlighted by the triangle (‘‘△’’), cross (‘‘+’’) and asterisk (‘‘∗’’), with the coordinates ([−0.825H, −0.5W ]), ([1H,

−0.1667W ]) and ([6H, −0.1667 W ]) respectively, as shown in Fig. 11. Firstly, the frequency response at each point is
presented in Fig. 13(a).

Fig. 13(a) illustrates that no dominant shedding frequency can be identified from the bogies. Instead a broad spectral
response between StW = 0.2∼2 is identified within the near-wake region, which is likely due to the various length scales
introduced by the bogies generating a range of different frequencies. In the intermediate-wake region, where the short
length-scale turbulence structures are dissipated and the coherent counter-rotating vortices are fully established, a clear
peak frequency at StW = 0.6 results. Additionally, this dominant frequency is identical to the one in M1, again which
suggests that the frequency of the spanwise motion is a characteristic of the pair of counter-rotating vortices due to an
inherent instability, regardless of the presence of the bogies. This hypothesis is further supported by the fact that an identical
train model demonstrates a same spanwise oscillation frequency with different ground boundary conditions (Wang et
al., 2018). Furthermore, the correlations between the points located near the bogie, and the near and intermediate wake
are plotted in Fig. 13(b). The strong correlation between the near and intermediate wake points with a time-lag, which
approximately equals to the wake advection time between the two points, implies that it is an identical flow feature that
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Fig. 13. The characteristics of the shedding from the bogies and spanwise wake oscillation, and the correlation between per two flow features based on
VGF : (a) the frequency response; (b) the cross-correlation between flow features.

convects downstream. Even though the shedding from the bogies is correlated to the near wake over a wide time-lag, it is
not correlated with the intermediate wake. Therefore, instead of directly introducing the coherent spanwise oscillation at a
particular frequency, the bogies demonstrate a global influence on the near-wake flow field through perturbing the flow over
a wide frequency range. Additionally, our analysis suggests that the effects introduced by the bogies and the way that local
flow disturbances interacts with the wake is general, although some variationmay exist with different bogie configurations.
Themain reason for this view is that the shedding of flow structures introduced by the bogies shows no dominant frequency,
but rather a broad frequency spectrum, and this frequency content is only locally correlated with the near wake region,
while further downstream the wake propagation region is dominated by a spanwise oscillation with a frequency that does
not match.

3.2. Slipstream assessment

In this section, the slipstream velocity is studied from two perspectives: based on (1) statistical slipstream profiles and
(2) gust analysis. The statistical slipstream profiles illustrate the time-average and standard derivation of the slipstream
velocity at the TSI specified assessment locations, and hereby, derive the maximum slipstream velocity (Uslipstream,max) based
on a 95% confidence interval assuming Normally distributed statistics. Gust analysis tries to artificially replicate the field
measurements of full-scale testing to obtain an ensemble average of the temporal slipstream data under TSI specifications
(European Union Agency for Railways, 2014).

3.2.1. Statistical slipstream profiles
In this study, the statistical slipstream assessment is taken at the TSI specified trackside height (z = 0.05H) and platform

height (z = 0.35H), over the streamwise range x = −15H∼30H . The time-averaged and standard deviation profiles of the
slipstream velocity (Uslipstream), and their streamwise (UGF ) and spanwise (VGF ) velocity components at the twomeasurement
heights are plotted in Fig. 14, and critical points are listed in Table 3. Also plotted in this figure are experimental wind-tunnel
measurements and numerical predictions from Wang et al. (2018) for a setup with a stationary ground with stationary
wheels for comparison. This is partially to provide confidence in the numerical model, noting that the numerical predictions
are close to the experimental results, with upstream deviations most likely due to background wind-tunnel turbulence,
and also to provide a point of comparison to a case with a stationary ground/stationary wheel setup as is often necessarily
the case for wind-tunnel testing. Further details concerning the comparison of experimental measurements and numerical
predictions for this related case are provided inWang et al. (2018). Themaximumexpected slipstreamvelocity (Uslipstream,max),
which is defined as U slipstream + 2σslipstream, predicts the upper limit of slipstream velocity under 95% confidence interval
assuming Normally distributed samples. As illustrated in Fig. 14, the bogies alter the slipstream profiles in the samemanner,
but their influence is more significant at the trackside height; thus, the discussion of the bogie effects on slipstream profiles
focuses on the influence at the trackside height.

Over the train and in the near wake, it can be seen that M1 and M2 have qualitatively near identical U slipstream profiles,
which include the head pulse and a local peak around the tail. After the air passes over the tail, it accelerates and to achieve a
maximumvelocity before gradually decreasing. This is a typical HST slipstreamprofile,whichhas been identified for different
train geometries with various techniques (Bell et al., 2016a; Huang et al., 2016; Baker, 2010; Bell et al., 2015). Quantitatively,
the time-averaged velocity (UGF , V GF ) profiles prior to the tail region are identical, except for local fluctuations caused by
the bogies captured for M2.
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Table 3
The critical values in the statistical slipstream profile analysis.

M1 M2

Maximum Location (x/H) Maximum Location (x/H)

Trackside height (z = 0.05H)

U slipstream 0.076 −12.63 0.078 −12.63
σslipstream 0.028 14.28 0.063 5.61
Uslipstream,max 0.096 20.01 0.190 6.61

Platform height (z = 0.35H)

U slipstream 0.087 −12.57 0.089 −12.57
σslipstream 0.015 24.79 0.0263 18.06
Uslipstream,max 0.087 −12.57 0.089 −12.57

Within region around the tail (x = −1H∼1H), both models show peaks in UGF and V GF , with the flat underbody
amplifying the magnitude of this disturbance. Hence, M1 demonstrates a higher local peak of U slipstream around the tail. The
reason for this difference is that with a smoother train surface, the flow over the tail is more streamlined and results in a
higher magnitude effect at the measurement locations.

The figure also shows that U slipstream initially drops in wake region before recovering further downstream. For M1, after
the flow passes the tail, U slipstream drops to approximately 0.005 at x = 3H , and then slowly increases to reach a maximum of
0.04 at x = 25H . In contrast, M2 shows amuch steeper increase ofU slipstream starting from x = 2H , and achieves itsmaximum
of 0.07 at x = 7H . According to UGF and V GF , it can be seen that, the difference in U slipstream between M1 and M2 is caused by
the change to UGF . The underlying mechanism is that a sideways shift of the vortical wake structures, which contain lower
momentum fluid, can significantly affect the local slipstream velocity. Details of time-mean wake structure were presented
in Section 3.1.

In M2, both σUGF and σVGF show a gradual increase along the train due to the unsteadiness introduced by the bogies, while
for M1 the standard deviations are negligible. Additionally, the perturbation caused by the bogies significantly intensifies
σslipstream within the wake region, which results in an increase of maximum σslipstream from 0.028 to 0.063. According to the
combined effects of U slipstream and σslipstream, Uslipstream,max is predicted to occur at 20H and 7H with the magnitude of 0.1 and
0.19, respectively, for M1 and M2. Therefore, although the head pulse causes a maximum U slipstream, the wake region is more
critical in terms of maximum potential slipstream velocity due to the high turbulence level within the wake region, leading
to considerable excursion from the mean behaviour.

3.2.2. Gust analysis
The TSI regulations (European Union Agency for Railways, 2014) define how the slipstream velocity should be measured

under field testing, and the procedure of calculating the maximum slipstream velocity (also known as the TSI value) is
briefly described here. The slipstream should be measured at two fixed positions: the trackside (z = 0.05H) and platform
(z = 0.35H) height, as introduced before. The entire flow disturbance, including the train passing and the wake, needs
to be recorded. Additionally, a 1-s Moving Average (1 s MA) filter is required to be applied to the raw data, and the peak
slipstream velocity of the filtered data is taken as onemeasurement. The distance between two independent measurements
has to be more than 20 m, and a minimum of 20 independent measurements is required for calculating the maximum
slipstream velocity (the TSI value). The TSI value is calculated as themean of the peak velocities plus two standard deviations,
which indicates the statistical maximum slipstream velocity of the HST within a 95% confidence level, and this assessment
is integrated into the HST acceptance procedure.

Numerically, Gust Analysis tries to artificially replicate the field measurements of full-scale testing to obtain an ensemble
average of the temporal slipstream data based on the above procedure. This study utilises the Moving Probe Technique to
conduct the gust analysis, and the results are presented in Fig. 15. This technique was initially proposed by Muld et al.
(2012b) to study slipstream, and was adopted by Wang et al. (2017, 2018) to investigate the performance of turbulence
models on HST slipstream prediction and the effect of the ground boundary condition on HST slipstream. A full description
of theMoving Probe technique can be found in Wang et al. (2017, 2018).

The Uslipstream disturbance recorded by each probe is plotted as a function of time as a light grey line, and the peak value of
each measurement is highlighted by a black dot. The results with a 1s MA filter are plotted as blue lines, for which the peak
values are highlighted by blue points. Similar to the full-scale testing (Baker et al., 2014) andmoving-model experiments (Bell
et al., 2015), gust analysis shows a large run-to-run variance. Consistentwith the statistical results presented in Section 3.2.1,
the difference is more significant at the lower height (z = 0.05H). In M2, a shape increase of Uslipstream after the tail passage is
identified, and the peak slipstream velocities (Upeak) within the wake region demonstrate a strong left-skewness. In contrast,
M1 shows that peak slipstream velocities have a lowermagnitude and their occurrence is significantly delayed downstream.
This difference is due to thewider andmore turbulentwake structure caused by the bogies, which is discussed and presented
in Section 3.1. As presented in Table 4, the TSI value assessment is sensitive to the presence of the bogies, especially at a lower
height. Table 4 determines that the effect of bogies on the wake structures can significantly vary the slipstream assessment,
i.e. the presence of bogies can alter the TSI value up to 20% at the trackside height.
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Fig. 14. The comparison of statistical slipstream profiles between M1 and M2 at trackside (z = 0.05H) (left column) and platform (z = 0.35H) (right
column) heights. The wind-tunnel measurements (Bell et al., 2017) and associated numerical validation (Wang et al., 2017) added to the figures in the left
column are for a different setup of a stationary ground with stationary wheels. These are provided for validation and reference.

Table 4
The critical values from the gust analysis. The numbers in the brackets are
the raw data before applying a 1 s moving average.

Trackside Platform

Upeak 0.050 (0.090) 0.031 (0.088)
M1 σUpeak 0.021 (0.018) 0.009 (0.002)

UTSI,max 0.092 (0.126) 0.049 (0.091)

Upeak 0.079 (0.175) 0.045 (0.100)
M2 σUpeak 0.018 (0.065) 0.013 (0.023)

UTSI,max 0.114 (0.303) 0.072 (0.145)
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Fig. 15. The results of gust analysis based on theMoving Probe Technique under TSI specifications.

Fig. 16. The comparison of the aerodynamic loading on the train surface based on the pressure coefficient (CP ).

3.3. Aerodynamic loading

In the final section, the bogie effect on the aerodynamic loading is presented according to the changes induced on the
train surface pressure and force integral. The surface pressure is visualised by the pressure coefficient (CP ) as presented in
Fig. 16, where CP is defined by

CP =
P − P∞

1
2ρ∞V 2

∞

. (3)

Here, P is the surface static pressure, and reference values for the pressure, density and velocity are P∞, ρ∞ and V∞,
respectively. Fig. 16 shows that the top and side surface pressure distributions are qualitatively identical, and a more
quantitatively comparison is obtained by the pressure profiles on the train centreplane surfaces in Fig. 17.

A high pressure region due to the impact of the oncoming flow is captured at the head, and the negative pressure region
along the curved surface is caused by local flow acceleration. Additionally, a positive pressure region can be identified for
bothmodels at the tail due to the reversed flow, while the area of this region for M2 is reduced towards the lower height due
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Fig. 17. The centreplane pressure profiles at each train section for a quantitative comparison of the bogie effects on the aerodynamic loading.

Table 5
The comparison of the drag (CD) and lift (CL) estimation betweenM1 andM2.

M1 M2

CD
Mean 0.157 0.283
Standard deviation 9.11 × 10−4 9 × 10−3

CL
Mean −0.078 0.051
Standard deviation 0.0039 0.016

to the alteration to the flow caused by the bogies. Clearly, the major differences occur over the bottom surface. Comparing
the streamlined M1 bottom surface, the bogies not only increase drag through the introduction of blockage, the cavity
flow within the bogie cut-outs also produce a positive pressure on the bottom surface, which affects the lift force. From
the CP distribution over the train surface, both the drag (CD) and lift (CL) coefficients are calculated and listed in Table 5.
Not surprisingly, due to the altered surface pressure, the presence of the bogies can alter CD by almost a factor of 2 (from
CD = 0.157 to 0.283). This is consistent with the results of a previous study concluding that bogies are a major aerodynamic
drag source, even though the train length-to-height ratio in this study is reduced (Raghunathan et al., 2002). The formation
of positive pressure regions on the bottom surface alters CL from a negative value of −0.078 to a positive value of 0.051.
Additionally, the local flow shedding introduced by the bogies amplifies the unsteadiness of the aerodynamic loading on the
train and results in a significant increases of the standard deviations of CD and CL, as shown in Table 5.

3.4. Summary of key findings

In this study, the effects of bogies on HST slipstream characteristics are investigated based on two generic train models:
a Simplified Train Model (M1) without the bogies, and Full-featured Train Model (M2) with the simplified bogies. Through a
direct comparison of the time-mean and instantaneous flow structures between M1 and M2, the mechanism of how the
bogies alter the slipstream characteristics around the train is elucidated. The origin of the altered flow is that the bogies
partially block the underbody flow stream and increase its unsteadiness due to the significant introduced flowperturbations.
Without the bogies, a high momentum flow stream from underneath forms a time-mean secondary vortex pair (vortex pair
B) around the snowplough, which is not identified in the M2model. This vortex pair is about 32.1% weaker than the primary
downwash pillar vortices (vortex pair A). Additionally, no significant correlation is determined between oscillations of the
vortices from each side; instead, a strong correlation between trailing vortices from the two vortex pairs on the same side is
identified indicating a near-wake vertical energy oscillation.Without the presence of vortex pair B, the downwash flow from
the top of the tail inM1 forms a pair of counter-rotating vortices (vortex pair C), immediately behind the tail, and establishes
a spanwise oscillation. The pillar vortices in the near wake (x/H = 0.5) for both M1 and M2 show similar identifiable peak
frequencies of StW = 0.75 and 0.6 based on the pressure signal, while vortex pair B for M1 shows a wider spectrumwith no
clearly identifiable dominant frequency. As the flow advects downstream, the vortex pairs A and B of M1merge into a single
coherent vortex pair (vortex pair C), similar to the case for M2. The strength of each vortex of C for M2 is 30% greater than
that for M1, while the bogies cause a higher wake decay rate due to the unsteadiness introduced into the wake.

The appearance of a spanwise wake oscillation is found to be correlated with the presence of counter-rotating vortices of
vortex pair C, instead of the presence of bogies, according to the following observations. Firstly, the spanwise oscillation has
an similar frequency of approximately StW ≃ 0.6 based on spanwise velocity, regardless of the presence or absence of bogies.
Secondly, the delay in the establishment of the spanwisewake oscillation is consistentwith the longerwake formation region
of M1, until vortex C forms. Furthermore, the shedding/turbulent flow from the bogies shows a wide frequency spectrum,
which feeds into the near-wake. Therefore, this studyproposes that the spanwisemotion is not directly triggered by shedding
from the bogies; instead, thewide spectrum turbulence generated perturbs the forming counter-rotating vortex pair (vortex
pair C) which responds at a preferred convective instability frequency as a spanwise oscillation. Even though the bogies do
not directly generate the spanwise motion, they may affect the spanwise oscillation by altering the near wake turbulence
level, which deposits energy into the intrinsic instabilitymode, and also the altering strength of the counter-rotating vortices.
In terms of this analysis, it needs to be pointed out that the train geometry used for this study consists of only two carriages,
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so it is much shorter than typical high-speed trains. It is possible that the increased number of bogies of longer trains may
have a stronger influence on downstream wake development than is seen here.

As the wake convects downstream, the pair of counter-rotating vortices moves apart from each other in the spanwise
direction. In M2, the strength of the trailing vortices is stronger and they are closer to the slipstream assessment location.
Because of this, U slipstream is increased due to the increment of UGF , especially within the wake region. Additionally, the
unsteadiness introduced by the bogies increases the standard deviation of velocity components, and result in a significantly
greater prediction of Uslipstream,max. Even though this effect occurs at both slipstream assessment heights, the impact is more
significant at the trackside height of x = 0.05H than the platform height of x = 0.35H . Similar influences are determined
based on the gust analysis, which shows that the TSI value at the trackside height is increased from 0.092 to the 0.114 due to
the presence of bogies. The bogies also alter the train surface pressure distribution especially on the bottom surface, which
results in a significant increase in CD from 0.157 to 0.283, and a change in CL from −0.078 to 0.051. The unsteadiness caused
by the bogies is also reflected in increases of the standard deviations of the aerodynamic loadings.

4. Conclusion

In conclusion, the mechanism of how bogies alter the slipstream characteristics is uncovered by analysing the effects
on the wake structures including the time-averaged flow features, and their dynamic responses at each stage of the flow
development. This study shows that by altering the underbody flow condition, the bogies predominantly change the
wake formation topology by generating a pair of recirculation zones under the train tail region. Dynamically, the bogies
significantly increase both the underbody flow and wake’s turbulence level due to the unsteadiness from induced flow
perturbations. This study determines the inter-relationship between the bogies and spanwise wake oscillation. Specifically,
by showing that the spanwisemotion of thewake occurswithout the presence of the bogies at the sameoscillation frequency,
this study argues that the bogies do not directly cause this oscillation; instead, the present study proposes that the spanwise
motion is due to a natural convective instability of the trailing vortex pair. The presence of the bogies merely generates
the turbulence that leads to the early detection of the oscillation as it is amplified downstream. Both statistical and gust
analyses show that the alteration of wake flow structures due to the bogies can further increase slipstream, especially
at a lower reference height. Additionally, the variation of the train surface pressure due to the bogies can significantly
alter the prediction of aerodynamic loading. Above all, this study has provided insight into bogie effects on HST slipstream
characteristics by systematically comparing the flow features between train models with and without bogies.
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