Wake Transition of Oscillating Bluff Bodies

MARK C. THOMPSON, KERRY HOURIGAN AND JUSTIN LEONTINI

Fluids Laboratory for Aeronautical and Industrial Engineering (FLAIR)
Department of Mechanical Engineering
PO Box 31, Monash University, Clayton, 3800, Victoria, AUSTRALIA.
mark.thompson@eng.monash.edu.au, kerry.hourigan@eng.monash.edu.au
justin.leontini@eng.monash.edu.au

Introduction

It has long been assumed that even relatively modest transverse oscillation can provide a stabilising effect on the wake on two-dimensional cylindrical bodies, considerably delaying three-dimensional transition. Experiments with an elongated cylinder by Berger (1967) showed that suitable transverse oscillations extended the upper limit of the laminar shedding regime from the non-oscillating limit until Reynolds number $Re = 300 \sim 350$. Koopman (1967) and Griffin (1971) both performed forced oscillation experiments at $Re \leq 300$ based on the assumption that a laminar shedding regime persisted at this Reynolds number. The visualisations of vortex filaments shed from an transversely oscillating cylinder by Koopman (1967) at $Re = 200$ show no spanwise variation. Importantly, it has been established both experimentally and theoretically, that three-dimensional wake transition for a stationary circular cylinder occurs at $Re \approx 190$ (Williamson, 1996; Barkley & Henderson, 1996).

While the sequence of transitions leading to three-dimensional flow in a bluff body wake depends on body geometry (Ryan et al. (2005), Thompson et al. (2006)), it appears that the analogues of the circular cylinder modes play a part in transition process. For a circular cylinder Williamson (1996, 1988) produced very clear visualisations of the first two transition modes - mode A and B - and documented their spatio-temporal symmetry. These modes have a spanwise wavelength of about 4 and 1 cylinder diameter, and undergo transition at $Re_c \approx 190$ and 260, respectively. Barkley & Henderson (1996) theoretically quantified aspects of these modes and observed signs of a further quasi-periodic mode (QP), lying at an intermediate wavelength. Blackburn & Lopez (2003) showed that this mode does not become unstable until much higher Reynolds numbers ($Re \approx 377$). It has been observed in two-dimensional simulations that moderate amplitude transverse oscillation leads to a unsymmetrical "P+S" state; i.e., for each shedding cycle the wake consists of a pair of vortices on one side of the centerline and a single vortex on the other side (Leontini et al., 2006; Blackburn & Henderson, 1999). Three-dimensional experiments tend not to show the P+S state, but rather a mean 2P wake state is generally observed (Williamson & Roshko, 1988).

Some of the open questions in this area have been: (1) How much does finite-amplitude transverse oscillation delay the onset of three-dimensional wake transition? (2) Is there a change in the sequence of transitions leading to a fully three-dimensional wake and what effect does this have on the transition to turbulent flow? (3) Why is the P+S mode not observed experimentally, at least for moderate Reynolds numbers, while the 2P mode is? (4) Even post-transition, does oscillation produce a much more coherent (i.e. two-dimensional) wake? This paper will focus on these issues.
Results

The two-dimensional flow state was determined, using a validated spectral-element flow/stability code (Thompson et al., 1996, 2001), as a function of Reynolds number and oscillation amplitude. The stability map is shown in Figure 1. Over the range of parameters studied, the two-dimensional wake can be in either the 2S state at lower amplitudes, or the P+S state at higher amplitudes. At higher Reynolds numbers, the (two-dimensional) transition from 2S to P+S occurs at lower amplitudes. Both base states become unstable to three-dimensional perturbations as the Reynolds number is increased. There are 4 possible three-dimensional transitions depending on amplitude. For low amplitude oscillation, \(|A| < 0.3 \), the wake becomes three-dimensionally unstable through the subcritical mode A transition, as with a stationary cylinder. Between \(0.3 < |A| < 0.55 \), the first transition is through the supercritical mode B. At slightly higher amplitudes, \(0.55 < A < 0.72 \), the base flow is the P+S state prior to three-dimensional transition. Indeed for \(0.55 < A < 0.67 \), the transition is via the 2S to P+S transition, which is immediately unstable three-dimensionally. Here, a subharmonic mode, mode S, is responsible for the initial three-dimensional transition. At higher amplitudes, the transition is through a different subharmonic mode, dubbed mode SS. Notably, for an amplitude of \(A = 0.55 \), the three-dimensional transition is delayed until \(Re \approx 280 \), thus increasing the critical Reynolds number by approximately 90 over the non-oscillating case. A more detailed picture of aspects of wake transition will be presented at the conference.

References

