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Introduction

If computer speed and storage keeps increasing at the present
rate a three dimensional numerical code modelling the exact
equations governing general relativistic collapse will soon be
possible; however, at present it is necessary to use simplifying
approximations. Provided the general relativistic effects are
limited to a ‘small’ perturbation, the post-Newtonian equations
of Chandrasekhar (1965) should be adequate. These equations
take the form of the Newtonian equations for a self gravitating
fluid with extra terms to incorporate the 1/¢* contributions,
where c is the speed of light. The numerical solution of these
equations can be achieved using any method.appropriate for
three dimensional Newtonian hydrodynamics.

Two applications come to mind. Consider firstly a binary
system in which one of the members is a white dwarf. If this
star can accrete enough matter from its companion star so that
it reaches the Chandrasekhar limiting mass (M..i0),
approximately 1.4 M, for a carbon-oxygen core, then the
pressure forces can or may not lead to complete disruption of
the body depending on details of the initial structure (Canal ef
al, 1982). The second case is the core collapse of a star of
eight of more solar masses. Again, the ‘burnt out’ core grows
to a stage when degenerate electron gas pressure can no longer
support it, and then gravitational collapse must ensue. Both of
these cases can be modelled as the collapse of a body slightly
in excess of M.,.. Except in the spherically symmetric case
little is known about the evolution of the core. If the core is
rotating the collapse will be non-axisymmetric and it has been
suggested (Wheeler and Ruffini 1971) that the core will flatten
and fragment. Numerical computations are needed to
determine whether or not the core will evolve in this way. The
purpose of this paper is to examine the dynamical collapse of a
rotating body, (with M>M....), from white dwarf densities
down towards neutron star densities, hoping to resolve some
of the effects of rotation on the evolution.

Method

The post-Newtonian equations for continuity and momentum
(Chandrasekhar 1964) for a perfect fluid are modelled with the
smoothed particle hydrodynamics (SPH) of Gingold and
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Monaghan (1982). The details will be given elsewhere. The
method has been well tested by the above mentioned authors.
They have used the method to model such things as polytropic
gas spheres (Gingold and Monaghan 1977), fission of damped,
rotating barotropic stars (Gingold and Monaghan 1979) and
collapse of rotating, isothermal gas clouds (Gingold and
Monaghan 1981). The version of the code used conserves both
linear and angular momentum exactly.

In order to test the SPH method for post-Newtonian
hydrodynamics two cases were examined. Firstly general
relativistic polytropes were modelled. The exact solutions were
derived by Tooper (1964). The relativity content is measured
by o, the ratio of central pressure to central energy density,
and this is closely related to the specific thermal energy and
potential through the virial theorem. It is found that the SPH
and the true solutions are very close to each other if ¢ is less
than 0.10. For ¢=0.10, the maximum difference between the
SPH and exact solution is about ten percent of the difference
between the exact relativistic and non-relativistic solution.
However, with a ¢ greater than about 0.15 the method will not
even converge to give a solution. This indicates that results will
be valid if the effects of general relativity are limited to be less
than a ten percent perturbation.

Perihelion shift provides a dynamical test. To allow the
precession to show up numerically it is necessary to use a
moderately relativistic case. Typically, a point mass of 0.0025
M, was placed in an elliptical orbit around a 0.25 M, neutron
star at a distance 4.0 10°cm. The ellipticity was 0.2. For such
a case the classical general relativistic approximation gives a
precession rate of 9 degrees per revolution while the measured
rate was 8 degrees per revolution. Relativistic effects here are
quite large so neither result is exactly right.

Collapse Calculations

The equation of state used for the collapse calculations is that
of ‘cold’, catalysed matter, where the pressure is due to
electron and neutron degeneracy only, i.e. the zero point
momentum of these species. The form of the equation used is
due to Baym, Pethick and Sutherland (see Canuto 1974). There
is no thermal pressure included. This is an accurate
representation of the physics provided the temperature is low
enough. For white dwarf densities it needs to be limited to
10%3K, while the limit for neutron stars is around 10'*°K. (e.g.
Misner, Thorne and Wheeler page 599) These limits will not be
strictly adhered to during the collapse but it represents a first
approximation.

A very important feature of the equation of state is the
sudden increase in the compressibility at 10'4g/cm?. At this
point neutrons spontaneously begin to drip out of the highly
complex nuclear species until the fluid becomes just a sea of
neutrons, electrons and protons. The compressibility drops to
below 0.5 here, which should be compared to the limit for
gravitational stability, requiring it to be greater than 4/3.

The starting model for the collapses was a 1.1 M, white
dwarf which is just in excess of the limiting mass for this
equation of state. This was artificially supported by raising the
pressure by ten percent. At the start of the collapse the
pressure was reduced to its correct value.
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For the uniformly rotating case centrifugal mass shedding
will occur at the equator if the ratio «, the rotational to
potential energy, is greater than about 0.05. A case with
a=0.01 will be examined. (This corresponds to a surface
velocity of about 3000 km/s, which is-certainly much greater
than the observed rotation rate for white dwarfs, being
typically less than 100 km/s, but should enable the effects of
rotation to show themselves.) This rotation rate is imposed on
the body at the start of the collapse phase.

The collapses are performed with 1000 particles. (An SPH
particle is different from those found in the usual particle
codes.) Initially the central density is approximately 2 x 10°
g/cm?® and the radius 3 X 10° cm. The collapse proceeds
smoothly at first until the central density reaches the neutron
drip point. Then the pressure no longer presents a barrier to
collapse, so the central region of the star contracts much faster
than the outer envelope, leading to a very centrally condensed
configuration. The central density builds up until it reaches
10+ gm/cm?, before particles begin to penetrate the plane of
symmetry. This takes 80 s (real time) to occur compared to the
spherically symmetric case which takes 70 s. At this stage the
star is in the form of a pancake with the approximate width to
height ration of 4:1. The parameter « is then slightly in excess
of 0.30. The maximum potential and velocity squared are both
limited to about 0.06, (in units where G =c = 1), thus the post-
Newtonian equations are probably adequate to describe the
evolution. The distended nature of the fluid body makes the
modelling very difficult from here on. There are two length
scales involved; that of the compact core, and that of the
diffuse envelope. The difference in scales is about a factor of
four yet the numerical method only uses a single resolution
length. The scale length is mainly determined by the core size.
This means that the outside envelope will be modelled as a
cloud of particles rather than a continuous fluid unless the
smoothing length again grows to a much greater value. (To
some extent this does happen later on in the collapse as the
core oscillates.) Timestep reduction due to the Courant
condition means that the evolution almost stops after the
maximum density is reached. On the VAX computers used for
this calculation it takes about five hours processor time to
reach the maximum density and then a further fifteen hours to
evolve the system a further four seconds real time. In this time
the pancake oscillates, but perturbations in the envelope do not
show any sign of growing. It was pointed out by Wheeler
(1966) that gravitational radiation damping will take place on
a timescale of 1 s and unless the perturbations grown on a
timescale smaller than this the star is unlikely to fragment. It
seems much more likely that the star will die a quiet death, by
gradual loss of angular momentum and energy, as
perturbations develop slowly. This result is fare from
conclusive with the current resolution of the scheme. To treat
the problem properly one would need to look at the core and
the envelope using a different scale length for each. Higher
resolution in the core is also necessary to examine the
formation of shock waves and to stop the SPH particles
interpenetrating, while the diffuse nature of the other region
neccessitates a much larger particle number to model the fluid
well statistically. The major amount of processor time used in
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the calculation is due to the gravitational force calculation. At
present it increases as the particle number squared since it is
found by a direct summation over particles. An improvement
to the code would be the use of a grid Poisson solver, in which
the increase is more like the particle number. This should
allow more reliable results to be obtained.

In the future the effects of differential rotation will be
examined. This will enable the use of large rotational energies
while keeping the surface velocities to more realistic values.
Also the modelling should be considerably more accurate
because the central regions should no longer collapse much
faster than the outside, due to the different distribution of
angular momentum.
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Introduction

In recent years, a large amount of work has been directed
towards understanding the process of star formation.
However, despite these efforts, there still remain areas largely
unexplored, where theories are only justified by approximate
qualitative arguments rather than fully three dimensional
calculations.



