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This article presents a revised formulation of the generation and transport of vorticity
at generalised fluid–fluid interfaces, substantially extending the work of Brøns et al.
(J. Fluid Mech., vol. 758, 2014, pp. 63–93). Importantly, the formulation is effectively
expressed in terms of the conservation of vorticity, and the latter is shown to hold
for arbitrary deformation and normal motion of the interface; previously, vorticity
conservation had only been demonstrated for stationary interfaces. The present
formulation also affords a simple physical description of the generation of vorticity
in incompressible, Newtonian flows: the only mechanism by which vorticity may be
generated on an interface is the inviscid relative acceleration of fluid elements on
each side of the interface, due to pressure gradients or body forces. Viscous forces
act to transfer circulation between the vortex sheet representing the interface slip
velocity, and the fluid interior, but do not create vorticity on the interface. Several
representative example flows are considered and interpreted under the proposed
framework, illustrating the generation, transport and, importantly, the conservation of
vorticity within these flows.

Key words: vortex interactions

1. Introduction
Vorticity, and vortex structures, have long been understood as one of the most

important aspects describing a fluid flow (Küchemann 1965; Brøns et al. 2014).
Many flow structures, including boundary layers, wakes and turbulence, are more
easily understood, visualised and interpreted in terms of vorticity, rather than velocity.
The power of vorticity dynamics was not lost on Lighthill (1963), who observed
that while both vorticity and momentum considerations are able to describe the
detailed development of boundary layers, vorticity dynamics is necessary to place the
boundary layer in the flow as a whole, and to describe the wake structures formed
when the boundary layer separates.

It is well understood that, in incompressible flow, all vorticity has its origins at fluid
boundaries (Morton 1984). Despite this, the mechanisms that drive the generation of
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(a) (b)

FIGURE 1. Vorticity contours of flow past a cylinder near a free surface, at a Reynolds
number of Re= 180, and with Froude number and gap-diameter ratios of (a) Fr= 0 and
G/D= 0.125 (Brøns et al. 2014), and (b) Fr= 0.6 and G/D= 0.25 (Reichl, Hourigan &
Thompson 2005). Figures reproduced with permission.

vorticity at fluid boundaries are often poorly understood (Brøns et al. 2014), and have
been much debated in the literature. Recently, Brøns et al. (2014) have presented a
formulation of vorticity generation at general fluid–fluid interfaces in two-dimensional
flows, including both no-slip and stress-free boundaries. By including the jump in
tangential velocity across an interface as part of the total circulation distribution, as an
‘interface vortex sheet’, they find that vorticity may be generated by a net pressure
gradient across the interface, or by normal motion of the interface, generalising
Morton’s (1984) description of vorticity generation at solid, no-slip boundaries.

Brøns et al.’s (2014) formulation enables a description of the conservation of
vorticity, providing a unique insight into flow behaviour. In many flow configurations,
there is no net external pressure gradient, so that if the boundaries are stationary, the
total circulation in the flow is conserved. Vorticity (circulation) may be transferred
between the fluid interior and the interface velocity jump, but the area-integrated
vorticity remains constant. This description of vorticity generation generalises the
work of Lundgren & Koumoutsakos (1999), who had previously described a similar
conservation principle for free-surface flows in both two and three dimensions.

The original motivation for Brøns et al. (2014) arose from considering the
two-dimensional flow past a submerged circular cylinder near a free surface (Sheridan,
Lin & Rockwell 1997; Reichl et al. 2005; Bozkaya et al. 2011), depicted in figure 1.
At low Froude numbers, where the interface remains relatively flat, clockwise-oriented
vorticity generated on the solid cylinder ‘disappears’ into the free surface, while
at high Froude numbers, where the interface becomes highly curved, a jet of
anti-clockwise vorticity streams out of the free surface. This behaviour is easily
explained by Brøns et al.’s formulation: the zero shear-stress condition provides
a Dirichlet boundary condition for vorticity at the free surface, and circulation is
exchanged between the interface vortex sheet and fluid elements on the boundary to
maintain this condition. For a flat free surface, the zero shear-stress condition requires
ω = 0 on the free surface. Any vorticity that diffuses to the interface from the fluid
interior disappears into the interface vortex sheet to maintain the shear-free condition,
as seen in figure 1(a). However, when the interface is curved, the vorticity boundary
condition is equivalent to solid-body rotation of fluid elements (Longuet-Higgins
1998). The appearance of anti-clockwise oriented vorticity on the free surface to
maintain this condition, demonstrated in figure 1(b), is balanced by a change in the
interface circulation, so that the total circulation in the flow is conserved. While other
descriptions of vorticity generation at free surfaces (Rood 1994b; Cresswell & Morton
1995) can explain this behaviour without reference to the interface circulation, these
descriptions do not readily generalise to arbitrary fluid–fluid interfaces. Furthermore,
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FIGURE 2. Interaction of a vortex pair with a viscous interface, resulting in unsteady
deformation of the interface. Such unsteady behaviour is typical of vortex–interface
interactions. Here, the Froude number is Fr= 0.2, the Reynolds number is Re= 100 and
the interface density jump is ρ2/ρ1 = 2. For more details, see § 3.4.

Brøns et al. (2014) remark that a description allowing conservation of circulation is
beneficial, as conservation of a physical quantity provides a powerful analysis tool.

For this reason, the generation of vorticity due to normal motion of the interface
which appears in Brøns et al.’s (2014) analysis is problematic. In typical vortex–
surface interactions, unsteady motions of the interface are expected, severely limiting
the range of flows to which vorticity conservation may be applied. For example,
consider the (two-dimensional) interaction between a vortex pair and a free surface
(Sarpkaya & Henderson 1984; Ohring & Lugt 1991; Dommermuth 1993), or a
viscous fluid–fluid interface as is depicted in figure 2. As the vortex pair approaches
the interface, the induced velocity field produces normal motion of the interface,
elevating the interface in the region above the vortex pair, and producing a depression,
or ‘scar’, in the immediate neighbourhood of the vortex pair. According to Brøns
et al.’s (2014) analysis, such normal motion of the interface generates circulation in
the interface vortex sheet kinematically, making this description more cumbersome
to use than other ‘non-conservation’ descriptions, at least when applied to actively
distorting surfaces.

Furthermore, the surface deformation term proposed by Brøns et al. (2014), in
their equation (2.19), is not Galilean invariant. Since net circulation is independent
of the reference frame, this result is clearly non-physical. Consider, for example,
the two-dimensional periodic travelling wave illustrated in figure 3. When viewing
this wave from a stationary reference frame, where the mean fluid velocity is
zero, significant normal motion of the interface occurs, indicating the generation
of circulation. However, the interface is stationary when viewed from a reference
frame translating at the wave velocity, suggesting that no circulation is generated.
Clearly, the amount of circulation generated cannot be affected by a change in
reference frame, and therefore the surface deformation term, in the form proposed by
Brøns et al. (2014), cannot be a physically distinct source of vorticity.

These issues prompted a review of the vorticity generation terms presented in
Brøns et al. (2014), where it was found that the derivation contained in that paper
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u · n̂ ≠ 0 u · n̂ = 0

(a) (b)

FIGURE 3. Viscous gravity wave viewed from (a) a stationary reference frame and (b) a
moving reference frame. Normal motion of the interface is observed in the stationary
reference frame, suggesting the generation of circulation on the interface. However, as the
surface is stationary in the moving reference frame, no circulation can be generated.

is not applicable to flows featuring normal motion of the interface. (We remark that
Brøns et al.’s original formulation remains applicable to flows which feature distorted,
but stationary, surfaces, such as the flow depicted in figure 1b.) A revised derivation
is presented in the present article, which demonstrates that surface deformation
(normal motion) is not a direct source of vorticity. Vorticity may be conserved at
both stationary and moving interfaces and free surfaces, generalising the findings of
Lundgren & Koumoutsakos (1999) to a large variety of interfaces. Furthermore, the
present formulation may be interpreted as an extension of Morton’s (1984) description
of vorticity generation to general interfaces in two-dimensional flows, both stationary
and deforming. The only mechanism by which circulation can be generated on an
interface is an inviscid relative acceleration between fluid elements on both sides of
the interface, by either pressure or body forces. Under the proposed interpretation,
viscous forces act to transfer circulation between the interface and the fluid, but do
not generate circulation on the interface.

This article is laid out as follows: a brief review of vorticity dynamics on boundaries
is presented in the first section. In the second section, a revised formulation of Brøns
et al.’s (2014) total circulation balance is given. We provide a description of the
generation of vorticity at the interface between two generalised incompressible fluids
in a two-dimensional flow, which is valid for any tangential boundary conditions
on the interface, and may be applied to both solid boundaries and free-surfaces.
Application of this general formulation to viscous no-slip interfaces and free surfaces
will be discussed in this section. Finally, a range of example flows are considered in
the third section, demonstrating the generation, transport and conservation of vorticity
and circulation at moving interfaces and free surfaces.

1.1. Preliminary theory
We now present a brief review of some important aspects of boundary vorticity
dynamics. Unless otherwise stated, results in this section apply equally to both two
and three-dimensional flows.

Vorticity is defined mathematically as the curl of the velocity field,

ω=∇× u(r, t), (1.1)

where u is the fluid velocity at a point r in space, and at time t. Physically, vorticity
may be understood as twice the mean rotation rate of material lines in the fluid, or,
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Vorticity generation on deforming interfaces in 2-D 890 A5-5

equivalently, as twice the local angular velocity of a fluid element (Truesdell 1954).
Vorticity is related to the circulation through Stokes’ theorem,

Γ =

∮
C

u · dl=
∫

S
ω · dS, (1.2)

where S is any surface bounded by a closed contour C. In this sense, circulation is
a measure of global fluid rotation, and vorticity may be considered as a measure of
‘circulation density’.

An evolution equation for the vorticity field – the Helmholtz vorticity equation
– is obtained by taking the curl of the Navier–Stokes equations, which, for an
incompressible homogeneous fluid, gives

∂ω

∂t
+ (u · ∇)ω= (ω · ∇)u+ ν∇2ω. (1.3)

As discussed by Morton (1984), there is no true vorticity source term in this equation,
and hence the source of all vorticity in the flow lies at fluid boundaries. The left-hand
side of (1.3) is the material derivative of vorticity, while the first term on the
right-hand side represents amplification and rotation of the vorticity vector due to
vortex stretching and tilting. While vortex stretching and tilting is an important aspect
of three-dimensional flows, the present article is concerned with two-dimensional
flows, where this term is equal to zero. The final term represents diffusion of
vorticity by viscous forces, which both Lighthill (1963) and Morton (1984) stress
should be understood as a consequence of the diffusion of linear momentum.

Lighthill (1963) identifies solid boundaries as sources of vorticity, recognising the
boundary vorticity flux,

σ = νn̂ · ∇ω, (1.4)

as the rate at which vorticity enters the fluid from the solid boundary due to viscous
diffusion. Here, n̂ is the unit normal vector directed out of the fluid domain. Lighthill
also recognises that the vorticity flux may be related to the tangential pressure gradient
at the surface through the momentum equation. Wu & Wu (1993) extend Lighthill’s
equation for the vorticity flux to three-dimensional solid boundaries, while Wu (1995)
provides the general form of this equation as

σ = n̂× a+ n̂×∇
(

p
ρ
+ gz

)
+ ν(n̂×∇)×ω, (1.5)

where a= du/dt is the fluid acceleration, p is the pressure and gz is the body-force
potential.

Equation (1.5) is an expression of the momentum equation, leading Lundgren
& Koumoutsakos (1999) to remark that it is not an equation that determines the
boundary vorticity flux, but rather an expression for the acceleration of fluid elements
on the boundary. The vorticity flux appears in (1.5) in place of the tangential
viscous acceleration, and Rood (1994b) argues that the boundary vorticity flux is a
consequence of this viscous acceleration. We provide the following clarification: since
the vorticity field is kinematically linked to the velocity field, the tangential boundary
acceleration and the boundary vorticity flux do not represent physically distinct
processes. The viscous acceleration of boundary fluid elements is due to the diffusion
of linear momentum by viscous stresses; the boundary vorticity flux describes the
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890 A5-6 S. J. Terrington, K. Hourigan and M. C. Thompson

effects of the diffusion of linear momentum on the vorticity field. Viscous forces are
responsible for both the viscous boundary acceleration and the boundary vorticity
flux, and these two effects always occur simultaneously.

While equation (1.5) can be used to determine the rate of vorticity creation on
solid boundaries, Morton (1984) remarks that this equation alone does not provide
a mechanism for the generation of vorticity. Batchelor (1967), who recognised that
the behaviour of vorticity on boundaries must be related to the velocity boundary
condition, attributes the creation of vorticity on solid boundaries to the no-slip
condition. Morton (1984) provides an alternative description, where vorticity is
generated on a solid boundary by the inviscid relative acceleration between the
fluid and the solid boundary, by either external acceleration of the solid wall, or by
pressure gradients in the fluid. Viscosity, and the no-slip condition, play no role in the
generation of vorticity under Morton’s interpretation, however, are responsible for the
diffusion of vorticity into the fluid once it has been generated. Specifically, circulation,
rather than vorticity, is generated on the boundary by the inviscid relative acceleration,
and this circulation is then diffused into the fluid by the viscous boundary vorticity
flux. Morino (1986) presents a similar inviscid mechanism for the generation of
vorticity, while Wu & Wu (1993) and Wu (1995) argue that the vorticity generation
process must be a viscous process.

The generation of vorticity at a free surface has been discussed by Longuet-Higgins
(1953, 1992, 1998), Batchelor (1967), Lugt (1987), Rood (1994a,b), Cresswell
& Morton (1995), Sarpkaya (1996), Peck & Sigurdson (1998, 1999), Lundgren
& Koumoutsakos (1999) and Brøns et al. (2014). Tangential vorticity appears
spontaneously on the free surface to satisfy the zero shear-stress (stress-free) condition,
which requires, on a stationary free surface in a two-dimensional flow,

ωs = 2κ(u · t̂), (1.6)

where t̂ is the unit tangent vector to the free surface and κ is the curvature of
the free surface. The unsteady three-dimensional form of this equation is given by
Longuet-Higgins (1998) and Peck & Sigurdson (1998). Physically, this condition
requires that fluid elements on the boundary rotate with the same angular velocity
as the unit normal to the free surface (Peck & Sigurdson 1998), a condition often
described as being equivalent to ‘solid-body rotation’ of boundary fluid elements
(Longuet-Higgins 1998).

Vorticity that appears on the free surface can diffuse into the fluid interior along
vorticity gradients (Cresswell & Morton 1995), under the action of viscous stresses.
The flux of vorticity into or out of the free surface required to enforce the stress-
free condition is associated with a tangential viscous acceleration of the surface fluid.
Lundgren & Koumoutsakos (1999) interpret this interaction as a transfer of circulation
between the fluid and an interface vortex sheet, with conservation of total circulation.
The description given by Brøns et al. (2014) extends this result to general, albeit
stationary, fluid–fluid interfaces in two-dimensional flows.

Wu (1995) investigates the generation of vorticity on no-slip, viscous, fluid–fluid
interfaces and finds that the generation mechanism on the interface is a combined
viscous–baroclinic effect. Wu identifies two conditions that drive the behaviour of
vorticity on the interface: the interface shear-stress balance, which provides a jump
condition on vorticity; and the no-slip condition, which gives the vorticity creation
rate when combined with the momentum equation. While Brøns et al. (2014) identify
the net creation rate at no-slip interfaces, the influence of the shear-stress balance on
driving the vorticity field across the interface is not discussed. The jump in vorticity
across the interface due to the shear-stress balance is also discussed by Dopazo,
Lozano & Barreras (2000).
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Vorticity generation on deforming interfaces in 2-D 890 A5-7

C1

C�
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C�
2
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b
I

t̂

n̂
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FIGURE 4. Control volumes A1 and A2, sandwiching an interface, I, between two fluids.
The unit normal and tangent vectors to the interface are denoted n̂ and t̂, respectively.
Each control volume Ai is bounded by two curves; C′i, the portion of the boundary curve
coincident with the interface, and Ci, the portion of the boundary in the fluid interior.
Outward normal vectors to each control volume are denoted by ˆ̄n.

2. Integral vorticity balance

In this section, a revised formulation of the total circulation balance for two-
dimensional interfacial flows is presented, where it is demonstrated that the only
mechanism by which vorticity is generated on an interface is the inviscid relative
acceleration of fluid elements on either side of the interface. In contrast with the
formulation of Brøns et al. (2014), normal motion of the interface does not generate
circulation directly.

We first provide a derivation of the general formulation, which is valid for
two-dimensional flows of incompressible, Newtonian fluids, with continuity of normal
velocity the only boundary condition applied on the interface. In particular, the
no-slip condition is not enforced, and the velocity jump across a free-slip interface
is included as an ‘interface vortex sheet’ in the total circulation balance. Following
the development of the general theory, application of this formulation to both viscous
no-slip interfaces and free surfaces is discussed. While solid boundaries can also be
discussed under the present framework, the description is identical to that given by
Brøns et al. (2014), and will not be examined in this paper.

2.1. Generalised formulation
Consider the interface between two incompressible fluids in a two-dimensional flow, as
depicted in figure 4. In each fluid region i= 1, 2 exists a control volume Ai, bounded
by two curves: C′i – a portion parallel to the interface, and Ci – the outer boundary.
We take the limit as the control-volume boundaries approach the interface, C′1,C′2→ I,
and consider a single control volume, A = A1 ∪ A2, bounded by the outer boundary
curve C = C1 ∪ C2. The curves C1 and C2 must intersect the interface at the same
points, a and b, so that C′1 and C′2 coincide with the same portion of the interface.
Control volumes (technically control areas, as flow is two-dimensional) are used in
preference to material volumes, due to relative sliding of material volumes that would
occur when there is a slip velocity on the interface.
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890 A5-8 S. J. Terrington, K. Hourigan and M. C. Thompson

Following the notation in Brøns et al. (2014), a subscript θi denotes the value of
property θ in fluid i, especially on the boundary. Furthermore, JθK= θ2− θ1 indicates
the jump in θ across the interface.

The total circulation in A may be written as

Γ =

∮
C

u · ds= Γ1 + Γ2 +

∫ b

a
γ ds, (2.1)

where Γi =
∮

Ci+C′i
ui · ds is the circulation contained in Ai, and γ = Ju · t̂K is the

density of circulation contained in the interface slip velocity, so that
∫ b

a γ ds is the
total circulation contained in the interface due to the slip velocity. The total circulation
in the fluid-interface system includes both circulation in the fluid and the interface
circulation. It must be stressed that circulation contained in the interface vortex sheet
arises from a velocity jump across the interface, and is not a modelling of the vorticity
distribution near the interface. The primary motivation for including the interface
circulation in this manner is Morton’s (1984) description of vorticity generation on
solid boundaries, where the slip velocity created by the relative acceleration between
fluid elements and the boundary is treated as a net circulation across the boundary.
Furthermore, including a slip velocity on the interface allows a general description of
vorticity dynamics, applicable to both no-slip and free-slip interfaces.

Using Stokes’ theorem (1.2), the circulation in each fluid can be related to the
integral of vorticity,

Γ =

∫
A1∪A2

ω dA+
∫ b

a
γ ds. (2.2)

Here,
∫

A1∪A2
ω dA is shorthand for

∑2
i=1

∫
Ai
ωi dA, and ωi=ωi · k̂ is the scalar vorticity

(in two-dimensional flows, vorticity is always normal to the plane of motion, and may
be treated as a scalar).

Taking the time derivative of (2.2) yields an expression for the rate of change of
circulation,

dΓ
dt
=

d
dt

∫
A1∪A2

ω dA+
d
dt

∫ b

a
γ ds. (2.3)

Applying the Reynolds transport theorem to the vorticity terms gives

d
dt

∫
Ai

ω dA=
∫

Ai

∂ω

∂t
dA+

∮
Ci∪C′i

( ˆ̄n · vb)ω ds, (2.4)

where ∂ω/∂t is the time derivative in an Eulerian reference frame, and vb is
the velocity of the control-volume boundary in the Eulerian frame. Using the
two-dimensional form of (1.3), and after applying the divergence theorem, this
expression becomes

d
dt

∫
Ai

ω dA=
∫

Ci

ν ˆ̄n · ∇ω ds+
∫

C′i

ν ˆ̄n · ∇ω ds+
∫

Ci

ˆ̄n · (vb
− u)ω ds. (2.5)

In addition to the diffusive vorticity flux, an advective flux is also present when a
control-volume formulation is used. Note that since n̂ · u= n̂ · vb along the interface
(the control volume remains attached to the interface), there is no advective flux into
or out of the interface.
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Vorticity generation on deforming interfaces in 2-D 890 A5-9

Substituting the expression in (2.5) into (2.3) yields

dΓ
dt
=

∮
C
ν ˆ̄n · ∇ω ds+

∮
C

ˆ̄n · (vb
− u)ω ds+

∫ b

a
(σ1 + σ2) ds+

d
dt

∫ b

a
γ ds, (2.6)

where σ1= νn̂ · ∇ω1 and σ2=−νn̂ · ∇ω2 are the diffusive fluxes of vorticity from the
interface into fluids 1 and 2, respectively. Note that this expression is equivalent to
(2.6) in Brøns et al. (2014), apart from the inclusion of advection terms due to the
use of control volumes rather than material volumes.

2.1.1. Rate of change of interface circulation
We now turn our attention to the rate of change of interface circulation. Brøns et al.

(2014) had assumed the total derivative could be taken inside the integral as

d
dt

∫ b

a
γ ds=

∫ b

a

dγ
dt

ds. (2.7)

This assumption is problematic for the following reasons. First, the order of
differentiation and integration cannot, in general, be interchanged. Second, the material
derivative of interface circulation is not well defined, since velocity is discontinuous
across the interface (Lundgren & Koumoutsakos 1999). Instead, we express the
interface circulation as the sum of two line integrals,

d
dt

∫ b

a
γ ds=

d
dt

∫ b

a
u2 · ds−

d
dt

∫ b

a
u1 · ds. (2.8)

In order to evaluate these integrals, the interface is parametrised as y(s′, t), where
s′ is such that the bounds of integration, s′a and s′b, are constant. This differs from s,
the arc-length parameter, since the length of the curve a− b may not remain constant.
Points of constant s′, y(s′ = const., t), are neither material points, nor fixed Eulerian
reference points, but arbitrary reference points which move along the interface with
the control-volume boundary, at a velocity vb. Note that while the normal component
of vb is equal to the normal velocity at the interface, the tangential component is
arbitrary, except at the endpoints, a and b.

Under this parametrisation, the bounds of integration are constant, and the derivative
may be taken inside the integral,

d
dt

∫ b

a
u · t̂ ds=

d
dt

∫ b

a
u(y, t) ·

∂y
∂s′

ds′ =
∫ b

a

∂u
∂t

∣∣∣∣
s′
·
∂y
∂s′

ds′ +
∫ b

a
u ·

∂2y
∂t∂s′

ds′, (2.9)

where the subscript s′ indicates that partial time derivatives are taken at a constant s′.
Since ∂y/∂t= vb, this expression becomes

d
dt

∫ b

a
u · ds=

∫ b

a

∂u
∂t

∣∣∣∣
s′
· t̂ ds+

∫ b

a
u ·
∂vb

∂s
ds. (2.10)

The partial derivative for a constant s′ can be related to the material derivative
through ALE (arbitrary Lagrangian–Eulerian) theory (Donea et al. 2004), which is
typically applied in numerical methods,

∂u
∂t

∣∣∣∣
s′
=

du
dt
− (u− vb) · ∇u. (2.11)
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890 A5-10 S. J. Terrington, K. Hourigan and M. C. Thompson

Since (u− vb) · n̂= 0, we can express the tangential component of this equation as

∂u
∂t

∣∣∣∣
s′
· t̂=

du
dt
· t̂− (u− vb) ·

∂u
∂s
. (2.12)

On substituting this result into (2.10), one obtains

d
dt

∫ b

a
u · ds=

∫ b

a

du
dt
· ds−

∫ b

a
(u− vb) ·

∂u
∂s

ds+
∫ b

a
u ·
∂vb

∂s
ds. (2.13)

The term containing du/dt represents changes to the integral due to acceleration
of the surface fluid, the second term represents the advective transport of tangential
velocity (momentum) along the interface, while the final term represents the effects
of variations in the length of the integration curve.

Substituting the result of (2.13) into (2.8), one obtains

d
dt

∫ b

a
γ ds =

∫ b

a

(
du2

dt
−

du1

dt

)
· t̂ ds+

∫ b

a

[
(vb
− u2) ·

∂u2

∂s
− (vb

− u1) ·
∂u1

∂s

]
ds

+

∫ b

a

[
u2 ·

∂vb

∂s
− u1 ·

∂vb

∂s

]
ds. (2.14)

Using the product rule, the various terms under the last two integrals may be written

∂

∂s
(vb
· (u2 − u1))−

∂

∂s

(
1
2

u2 · u2 −
1
2

u1 · u1

)
. (2.15)

Furthermore, since u1 · n̂= u2 · n̂= vb · n̂, this expression is written succinctly as

∂

∂s
(γ vb
· t̂)−

∂

∂s

s
1
2
(u · t̂)2

{
, (2.16)

where we remind the reader that double square brackets J K indicate the jump in some
quantity across the interface.

Substituting this expression into (2.14) gives

d
dt

∫ b

a
γ ds=

∫ b

a

s
du
dt

{
· t̂ ds+ γ (vb

· t̂)|b − γ (vb
· t̂)|a +

1
2
J(u · t̂)2Ka −

1
2
J(u · t̂)2Kb.

(2.17)
The first term on the right-hand side of (2.17) represents the change in interface
circulation due to the relative acceleration between fluid elements on both sides
of the interface. Terms involving γ (vb · t̂) represent the effects of translation and
stretching of the curve a− b along the interface, while the J(u · t̂)2K terms represent
the change in interface circulation due to a difference in advective transport of
tangential velocity (momentum) on both sides of the interface. These effects can be
considered as the transport of circulation along the interface, either due to tangential
motion of the control-volume boundary, or due to advection of tangential momentum,
and do not contribute to the generation of interface circulation. Interface circulation
may only be generated by a relative acceleration between fluid elements on each side
of the interface.
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Vorticity generation on deforming interfaces in 2-D 890 A5-11

2.1.2. Vorticity flux and the boundary acceleration
The boundary vorticity flux may be related to the boundary acceleration through

the momentum equation. The two-dimensional equivalent of (1.5) is (see Lundgren &
Koumoutsakos 1999; Brøns et al. 2014),

σ1 =
du1

dt
· t̂+

1
ρ1

∂p1

∂s
− g1 · t̂, (2.18a)

σ2 =−
du2

dt
· t̂−

1
ρ2

∂p2

∂s
+ g2 · t̂, (2.18b)

where the orientation of n̂ and t̂ has been taken into account in (2.18b). Note that
the pressure (p) and body forces (g) do not individually contribute to the vorticity
flux, but rather the vorticity flux is proportional to the viscous acceleration, and is
in fact driven by viscous stresses in the fluid. Equations (2.18a) and (2.18b), may be
combined to yield an expression for the net vorticity flux out of the interface,

σ1 + σ2 =−

s
du
dt

{
· t̂−

∂

∂s

s
p
ρ

{
−
∂

∂s
JΦgK, (2.19)

where Φg is the body-force potential, g=−∇Φg. Note we are assuming a conservative
body force; non-conservative body forces introduce an additional source term in (1.3).

Equation (2.19) expresses the fact that the net vorticity flux out of the interface is
equal to the difference in viscous acceleration of fluid elements on each side of the
interface. As an expression of the momentum equation, this equation should be recast
as a force balance,

s
du
dt

{
· t̂=−(σ1 + σ2)−

∂

∂s

s
p
ρ

{
−
∂

∂s
JΦgK, (2.20)

demonstrating that the relative acceleration of fluid elements on each side of the
interface includes contributions from the viscous forces, accompanied by a flux of
vorticity into the fluid, and the inviscid pressure and body forces.

This result may be substituted into (2.17), to give

d
dt

∫ b

a
γ ds = −

∫ b

a
(σ1 + σ2) ds−

s
p
ρ

{

b

+

s
p
ρ

{

a

− JΦgKb + JΦgKa

+ γ (vb
· t̂)|b − γ (vb

· t̂)|a +
1
2
J(u · t̂)2Ka −

1
2
J(u · t̂)2Kb. (2.21)

Interface circulation is generated by the relative acceleration of fluid elements on both
sides of the interface. This may be due to inviscid forces (pressure or body forces), or
due to viscous forces. However, the viscous acceleration of the boundary is associated
with a flux of vorticity into the main body of the fluid, so that no net circulation is
generated by viscous effects. When equation (2.21) is substituted into the expression
for the rate of change of total circulation (2.6),

dΓ
dt
=

∮
C
ν ˆ̄n · ∇ω ds+

∮
C

ˆ̄n · (vb
− u)ω ds−

s
p
ρ

{

b

+

s
p
ρ

{

a

− JΦgKb + JΦgKa

+ γ (vb
· t̂)|b − γ (vb

· t̂)|a +
1
2
J(u · t̂)2Ka −

1
2
J(u · t̂)2Kb, (2.22)
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890 A5-12 S. J. Terrington, K. Hourigan and M. C. Thompson

terms related to the viscous acceleration/vorticity flux on the interface disappear,
confirming that viscous effects do not generate a net circulation on the interface. The
transport terms in (2.22) indicate that vorticity may enter or exit the control volume
by diffusion and advection of vorticity across the outer boundary, or by the advective
transfer of circulation along the interface. These effects do not generate circulation,
but merely redistribute it throughout the flow.

2.1.3. Summary of the general formulation
Equations (2.21) and (2.22) provide a complete description of the generation of

circulation at general interfaces in two-dimensional flows. Circulation is generated
in the interface by the inviscid relative acceleration of fluid elements on either side
of the interface, by either pressure gradients or body forces. Viscous forces transfer
circulation between the interface vortex sheet and the fluid interior, but do not
generate a net circulation across the interface. This description may be viewed as an
extension of Morton’s (1984) theory of vorticity generation at solid boundaries: at
solid boundaries vorticity (circulation) is generated by the inviscid relative acceleration
between the solid boundary and the fluid, and viscous effects are only responsible
for the diffusion of the created vorticity away from the wall.

2.2. Conservation of circulation
Both Lundgren & Koumoutsakos (1999) and Brøns et al. (2014) observe that in many
cases, far field boundary conditions will be such that there is no net generation of
circulation along the interface. When there is no net external pressure gradient or
body force (Jp/ρKb= Jp/ρKa and JΦgKb= JΦgKa), the net circulation generated on the
interface is zero, and circulation is conserved in the sense that total circulation may
change only by the flux of circulation out of the control-volume boundary. If the outer
boundary extends to an undisturbed far field, then no loss of circulation occurs through
the control-volume boundary, and total circulation in A is constant,

Γ =

∫
A
ω dA+

∫ b

a
γ ds= const. (2.23)

Circulation may be transferred between the interface and the two fluids, however, the
total circulation remains constant.

It is important to note that this conservation principle is a global statement,
and local generation on the interface is likely to occur in many cases where total
circulation is conserved – generation of circulation on one section of the interface
is balanced by generation of an equivalent amount of opposite-signed circulation
elsewhere on the interface. This may lead to the appearance of vortical motion
in initially irrotational flows, even when the boundary conditions do not provide
an influx of vorticity. The growth of a Rayleigh–Taylor instability, for example, is
associated with the generation of vorticity by pressure gradients along the interface.
The absence of a net pressure gradient along the boundary does not imply that this
flow cannot exist, for local pressure gradients generate both positive and negative
circulation, with the total circulation remaining equal to zero.

Importantly, the surface deformation term in Brøns et al.’s (2014) equation (2.18)
does not appear in the present formulation, so conservation of circulation is not
restricted to flows with stationary boundaries. The description of vorticity generation
and conservation presented by Brøns et al. remains valid for flows featuring stationary
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Vorticity generation on deforming interfaces in 2-D 890 A5-13

interfaces, since the problematic surface deformation term is equal to zero. The present
formulation demonstrates that this description extends to deforming interfaces, without
the kinematic generation of circulation by normal motion of the interface.

We should, at this point, return to Brøns et al.’s (2014) analysis of the flow past
a cylinder near a free surface, to determine whether their findings hold under the
revised formulation. Their conclusions in regard to the generation and conservation
of vorticity under a flat free surface (their § 4.1) are unchanged, as the problematic
normal motion term plays no role. Brøns et al. also consider deforming interfaces in
their § 4.2, including cases where normal motion of the interface is likely to occur.
However, their discussion of these flows is centred around the appearance of vorticity
on a curved free surface, which is unchanged under the revised formulation. No
mention of either the conservation of vorticity, or the generation of circulation by
normal motion of the free surface, is made in the discussion of the flow featured in
their figure 17 – our revised formulation demonstrates that no circulation is generated
on the free surface, and the conservation of circulation extends to this flow. The
‘detached jet’ wake state, featured in our figure 1(b), and in Brøns et al.’s figure
18, features a nearly stationary (quiescent) surface (Sheridan et al. 1997). Brøns
et al. invoke the conservation of circulation in their analysis of this flow, implicitly
assuming disturbances of the interface to be negligible. Our revised formulation
demonstrates that this analysis holds, even when unsteady motion of the interface
occurs, as surface deformation is not a source of circulation.

2.3. No-slip viscous interfaces
The generation of vorticity at no-slip viscous fluid–fluid interfaces is discussed in
this section. For such interfaces, two additional boundary conditions – the no-slip
condition, and continuity of shear stress – are applied to the interface, in addition
to the continuity of normal velocity. Wu (1995) has presented a description of the
generation and behaviour of vorticity on such interfaces, however, it may be useful
to investigate these conditions under the present framework. Brøns et al. (2014) notes
that both solid boundaries and free surfaces can be interpreted as limiting cases of
the no-slip interface, the former as ν2 → ∞ and the latter as ν2, ρ2 → 0, so that
viscous no-slip interfaces remain a generalisation of most interfaces and boundaries
encountered in fluid dynamics.

The no-slip condition requires that no interface circulation can exist. For γ = 0, the
circulation balance in (2.22) reduces to

dΓ
dt
=

d
dt

∫
A
ω dA=

∮
C
ν ˆ̄n · ∇ω ds+

∮
C

ˆ̄n · (vb
− u)ω ds

−

s
p
ρ

{

b

+

s
p
ρ

{

a

− JΦgKb + JΦgKa. (2.24)

Once again, viscosity does not appear in the vorticity generation terms, and circulation
may only be generated on the interface by pressure and body forces.

Applying the no-slip condition to (2.19) gives an expression for the net vorticity
flux out of the interface,

σ1 + σ2 =−
∂

∂s

s
p
ρ

{
−
∂

∂s
JΦgK. (2.25)
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890 A5-14 S. J. Terrington, K. Hourigan and M. C. Thompson

Following the discussion of (2.22), this equation represents the local vorticity
generation rate on the interface due to the inviscid relative acceleration of fluid
elements on either side of the interface. This ‘inviscid’ relative acceleration is the
acceleration that would occur if only the inviscid pressure and body forces were
applied. Viscous forces oppose this relative acceleration, ensuring the no-slip condition
is satisfied. These viscous forces produce a flux of vorticity into the fluid interior, so
that all circulation generated by the inviscid mechanism appears as a boundary flux
on the interface.

Conceptually, this description is similar to some fractional step algorithms used in
numerical solution of the Navier–Stokes equations, where the ‘viscous’ and ‘pressure’
velocity updates are artificially decoupled. Lighthill (1963), for example, describes
how the amount of vorticity generated on a solid boundary during a short time
interval may be ascertained by first considering an ‘inviscid’ update of the velocity
field, where the viscous diffusion of vorticity is ignored. A slip velocity typically
appears on the boundary during the pressure update (i.e. the inviscid generation of
circulation), which is eliminated during the viscous substep, along with the diffusion
of vorticity into the fluid interior.

Wu (1995) has argued that the vorticity generation mechanism on no-slip interfaces
must be a viscous effect, since the no-slip condition is assumed in (2.25). Indeed,
for no-slip interfaces, one could consider the viscous torques applied to boundary
fluid elements as responsible for the generation of vorticity. However, if the no-slip
condition does not apply, equations (2.21) and (2.22) demonstrate that the amount of
circulation generated does not depend on either viscosity or the no-slip condition, so
long as the ‘interface circulation’ is included in the total circulation balance.

Wu & Wu (1993) argue that as vorticity corresponds to rotation of fluid elements,
the velocity jump across a free-slip boundary does not represent a sheet of vorticity
on the interface. Under their description, vorticity is not generated by the ‘inviscid
relative acceleration’, but by viscous forces which drive the boundary vorticity
flux. The ‘interface circulation’ presented here is not vorticity carried by rotating
fluid elements, but rather a circulation contained in the velocity jump between
boundary fluid elements. This is included in the total circulation balance, as it allows
the boundary vorticity flux to be described as a conservative process, transferring
circulation between the interface vortex sheet and vorticity in the fluid interior. Our
description of vorticity dynamics is further justified by the Biot–Savart integral,
where the ‘interface vortex sheet’ is necessary to describe a velocity jump across the
interface (Morino 1986).

The form of (2.24) indicates that the conditions required for conservation of
circulation are the same as for the general interface. If there is no net external
pressure gradient or body force, then the total circulation generated at the interface
is zero. Circulation may be transferred across the interface, and local generation of
circulation may occur if balanced by generation of opposite-sign vorticity elsewhere.
If the outer control-volume boundary is in an undisturbed free stream, so that no
vorticity diffuses through the control-volume boundary, then the total circulation
within the control volume remains constant. Normal motion and deformation of the
interface do not appear in the total circulation balance, and have no direct effect on
the conservation of circulation.

While the net vorticity flux is determined by the inviscid relative acceleration
and the no-slip condition, this does not determine the values of the individual
vorticity fluxes σ1 and σ2. Expressions such as (2.18a) and (2.18b), or the integral
equivalents, such as (2.26) in Brøns et al. (2014), are not useful here, since the
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Vorticity generation on deforming interfaces in 2-D 890 A5-15

tangential acceleration of the boundary is not determined by the no-slip condition
alone. For viscous interfaces, the shear-stress balance is necessary to fully determine
the acceleration of the interface, and hence, the vorticity fluxes. Wu (1995) finds that
the shear-stress balance constrains the jump in tangential vorticity across the interface.
For a two-dimensional flow, this relationship may be expressed as

JµωK= JµK
(

2κ(u · t̂)− 2
∂

∂s
(u · n̂)

)
. (2.26)

The underlying physics behind this condition can be understood more clearly when
the expression is written as

µ2

µ1
=
τw/µ1

τw/µ2
=

ω1 −

[
2κ(u · t̂)− 2

∂

∂s
(u · n̂)

]
ω2 −

[
2κ(u · t̂)− 2

∂

∂s
(u · n̂)

] , (2.27)

where τw = µi(n̂ · ∇ui · t̂ + t̂ · ∇ui · n̂) is the tangential shear stress on the interface.
The term 2κ(u · t̂)− 2∂(u · n̂)/∂s= 2t̂ · dn̂/dt is twice the angular velocity of the unit
normal vector of a fluid element on the interface (Peck & Sigurdson 1998), so that
we can consider a decomposition of the boundary vorticity into two components,

ωi =ωτ ,i +ωr, (2.28a)
ωτ ,i = τw/µi, (2.28b)

ωr = 2κ(u · t̂)− 2
∂

∂s
(u · n̂). (2.28c)

The parameter ωr shall be termed the ‘rotational vorticity’, and is equivalent to
solid-body rotation of a boundary fluid element. The 2κ(u · t̂) term in ωr indicates
rotation of fluid elements as they follow the curvature of the interface, while
the ∂(u · n̂)/∂s term indicates rotation of fluid elements as the interface rotates.
Importantly, these two terms are not independent of the reference frame, and thus
should not be considered separate effects. The rotational component of vorticity does
not contribute to the interface shear stress.

The shearing vorticity, ωτ ,i, is the component of vorticity which produces a shear
stress on the interface. Equation (2.27) indicates that total vorticity must be distributed
across the interface by the boundary fluxes in a manner that ensures the shearing
vorticity is balanced in proportion to the ratio of dynamic viscosity. This condition
applies to vorticity generated on the interface, as well as vorticity which diffuses to the
interface from the fluid interior. The shear-stress balance may also drive the transfer
of vorticity across the interface, even when the local generation rate is zero.

Continuity of normal stresses across the interface is a final boundary condition that
must be considered for viscous interfaces. This condition can be expressed in terms
of the jump in pressure across the interface (Brøns et al. 2014),

JpK=−2
s
µ

(
∂

∂s
(u · t̂)+ κ(u · n̂)

){
− Tκ, (2.29)

where T is the interface surface tension, and κ the curvature of the interface. Note
that the u · n̂ term was inadvertently cancelled by Brøns et al. (2014) in their
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890 A5-16 S. J. Terrington, K. Hourigan and M. C. Thompson

equation (2.15). Although u1 · n̂ = u2 · n̂, the term Jµ(u · n̂)K does not vanish in
general. When the no-slip condition is enforced, the jump in pressure is given by

JpK=−2JµK
(
∂

∂s
(u · t̂)+ κ(u · n̂)

)
− Tκ. (2.30)

This can be recast in terms of the pressure generation term (Brøns et al. 2014),

∂

∂s

s
p
ρ

{
=−2

JµK
ρ2

(
∂2

∂s2
(u · t̂)+

∂

∂s
(κ(u · n̂))

)
−

1
ρ2

∂

∂s
(Tκ)+

s
1
ρ

{
∂p1

∂s
. (2.31)

This expression indicates three factors which may influence generation of vorticity
by pressure gradients. The final term, J1/ρK∂p1/∂s, is due to the difference in inertia
of fluid elements across the interface. Even if the pressure gradient is equal in both
fluids, pressure forces still act to drive an inviscid relative acceleration as the less
dense fluid will experience a larger acceleration. The remaining terms represent the
effects of a jump in pressure across the interface. Viscous stresses and the surface
tension force do not directly generate circulation, however, these effects can cause a
jump in the pressure gradient across the interface, and this can induce an inviscid
relative acceleration. Interface circulation is then generated in the usual manner.

In general, interfaces may be contaminated by surfactants, and the surface tension
coefficient will not be constant along the interface (Sarpkaya 1996). Peck & Sigurdson
(1998) provide a modified version of the interface stress balance, including the effects
of both a finite density surface film and gradients in surface tension. For contaminated
interfaces, these effects need to be included in (2.27) and (2.29). Surfactants and
surface tension are only indirectly responsible for the generation of vorticity on
viscous interfaces, through the normal and shear-stress boundary conditions, and will
not be considered in the example flows treated in § 3.

2.4. Free surface
The free-surface approximation is often used to describe idealised water–air interfaces,
where it is assumed, due to the low density and viscosity of air, that the upper fluid
does not exert any stress on the lower fluid. In this section, the generation of vorticity
in a range of free-surface models is investigated using our general formulation:
the zero-density free-surface limit, the inviscid upper fluid model of Lundgren &
Koumoutsakos (1999), and a technical free surface.

Wu (1995) considers the conditions for which a viscous interface may be
approximated by a free surface, requiring that the upper fluid have negligible density
and both negligible kinematic and dynamic viscosity compared to the lower fluid.
Unfortunately, the kinematic viscosity of air is greater than that of water, and air–water
interfaces cannot be considered free surfaces in this manner.

Here, we take the limit as ρ2 → 0 and µ2 → 0, while keeping ν2 constant (but
not equal to zero), as an approximation of air–water interfaces. From the momentum
equation in the upper fluid,

du2

dt
=−

1
ρ2

∂p2

∂s
+ ν∇2u2 + g2, (2.32)

the pressure in the upper fluid must become constant to ensure pressure accelerations
remain finite. However, the limit value of (1/ρ2)∂p2/∂s will typically be non-zero, and
both viscous and pressure accelerations will be significant in the upper fluid.
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Vorticity generation on deforming interfaces in 2-D 890 A5-17

The normal and shear-stress boundary conditions reduce to (Brøns et al. 2014;
Lundgren & Koumoutsakos 1999)

p1 = p2 + Tκ − 2µ1

(
∂

∂s
(u · t̂)+ κ(u · n̂)

)
, (2.33)

ω1 = 2κ(u · t̂)− 2
∂

∂s
(u · n̂), (2.34)

which are the standard free-surface boundary conditions. The vorticity and pressure
in the lower fluid are independent of motion in the upper fluid, since the upper fluid
cannot exert any stress on the lower fluid. For real water–air interfaces, the upper
surface may still exert a shear stress on the lower fluid if velocity gradients in the
upper fluid are sufficiently large, as occurs in wind-driven waves.

The flux of vorticity into fluid 1 is fully determined by the boundary condition in
(2.34). Vorticity appears spontaneously at the interface to ensure the zero shear-stress
condition is satisfied, and vorticity subsequently diffuses into the fluid interior along
vorticity gradients. Pressure gradients and body forces drive a relative acceleration
between the upper and lower fluid, generating a net circulation on the interface. The
remaining balance of vorticity not sent into fluid 1 must be diffused into fluid 2, with
the flux of vorticity into the upper fluid given by

σ2 =−
du1

dt
· t̂−

∂P2

∂s
+ g2 · t̂, (2.35)

where P2= limρ2→0[(p2− p2,0)/ρ2], and p2,0 is the uniform limit value of p2. Although
viscous stresses in the upper fluid play no role in the interface shear-stress balance,
viscous accelerations in the upper fluid are not negligible, and viscous diffusion of
vorticity in the upper fluid cannot be ignored.

In many cases where the free-surface approximation is applied, we are not interested
in the behaviour of flow above the interface. Lundgren & Koumoutsakos (1999) treat
the free surface as the interface between a viscous fluid, and an inviscid potential flow
with zero density. Their formulation may be obtained from (2.22) by using a potential
flow in the upper fluid,

dΓ
dt
=

∫
C1

ν ˆ̄n · ∇ω ds+
∫

C1

ˆ̄n · (vb
− u1)ω ds+

p1

ρ1

∣∣∣∣
b

−
p1

ρ1

∣∣∣∣
a

+Φg,1|b −Φg,1|a

+
∂Φ2

∂t

∣∣∣∣
b

−
∂Φ2

∂t

∣∣∣∣
a

+ γ vb
· t̂|b − γ vb

· t̂|a +
1
2

u1 · u1

∣∣∣∣
b

−
1
2

u1 · u1

∣∣∣∣
a

. (2.36)

A net circulation may only be generated by an inviscid relative acceleration between
the upper and lower fluids. Viscous stresses may transfer circulation between the
interface vortex sheet and the lower fluid, to maintain the stress-free condition at the
free surface. Under Lundgren & Koumoutsakos’ description, no vorticity is diffused
into the upper fluid. Lundgren & Koumoutsakos’ result is similar to Wu’s (1995)
high-Reynolds-number approximation to the boundary layer of a viscous interface,
suggesting that the interface vortex sheet can be interpreted as the circulation that
would be found in the ‘air’ boundary layer above the free surface.

One difficulty in applying equation (2.36) lies in computing the potential flow above
the interface. At a true free surface, one does not consider a second fluid above the
interface, but that the free surface represents the boundary of a single fluid domain.
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890 A5-18 S. J. Terrington, K. Hourigan and M. C. Thompson

Rood (1994b) argues that at such boundaries, there is no need for vorticity to be
conserved – vorticity may spontaneously ‘appear’ or ‘disappear’ at the free surface
to satisfy the stress-free condition. However, by including the ‘interface circulation’,
−
∫ b

a u · t̂ ds, in the total circulation balance, Brøns et al. (2014) provide a description
of the conservation of total circulation at stationary free surfaces.

The integral conservation law for a single fluid domain partially bounded by a free
surface may be written as

d
dt

∫
A1

ω1 dA=
∫

C1

ν ˆ̄n · ∇ω ds+
∫

C1

ˆ̄n · (vb
− u1)ω1 ds+

∫ b

a
σ1 ds, (2.37)

where a − b is the segment of the control-volume boundary along the free surface.
Relating the vorticity flux to the tangential force balance (2.18a), this becomes

d
dt

∫
A1

ω1 dA =
∫

C1

ν ˆ̄n · ∇ω ds+
∫

C1

ˆ̄n · (vb
− u1)ω1 ds+

∫ b

a

du1

dt
· t̂ ds

+
p1

ρ1

∣∣∣∣
b

−
p1

ρ1

∣∣∣∣
a

+Φg,1|b −Φg,1|a. (2.38)

Finally, by substituting (2.13), we have

d
dt

(∫
A1

ω dA−
∫ b

a
u1 · ds

)
=

∫
C1

ν ˆ̄n · ∇ω ds+
∫

C1

ˆ̄n · (vb
− u1)ω1 ds+

p1

ρ1

∣∣∣∣
b

−
p1

ρ1

∣∣∣∣
a

+Φg,1|b −Φg,1|a +
1
2

u1 · u1|b −
1
2

u1 · u1|a − u1 · vb
|b + u1 · vb

|a. (2.39)

Here, we allow the integral −
∫ b

a u1 · ds to be treated as a storage of ‘interface
circulation’. This can be understood as the circulation contained between surface fluid
and a nominally zero velocity in the empty region above the free surface. Taking
this approach, interface circulation is generated by the inviscid acceleration of fluid
elements on the free surface due to pressure gradients and body forces. Tangential
viscous acceleration of the boundary fluid, associated with a boundary vorticity flux,
transfers circulation between the interface and the fluid to maintain the shear-stress
balance, but does not generate a net circulation. When the interface circulation is
included in this manner, total circulation in the system is conserved, given appropriate
far-field boundary conditions. Circulation may be transferred between the interface
vortex sheet and the fluid interior, but the total circulation remains constant.

Note that this approach does not fundamentally disagree with that of Rood (1994b),
who argues against the principle of ‘vorticity conservation’. Rood argues against
the misconception that conservation of vorticity is related to the conservation of
angular momentum – vorticity is not angular momentum, so conservation of angular
momentum has no bearing on the conservation of vorticity. Rood finds that vorticity
may simply appear or disappear at the free surface. We adopt an alternative approach
here, where the surface velocity integral is included in the total circulation, noting that
the conservation law this affords may prove useful in analysing and understanding
the behaviour of vorticity in various free-surface flows.
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C1 C2 C1 C2

C1 C2

a1 b2
a1 b2

b1 a2

a1 b2

b1
a2

b1 a2Fluid 1 Fluid 1

Fluid 1

Fluid 1

Fluid 2 Fluid 2

Fluid 2

(a) (b)

(c)

FIGURE 5. Suggested control volumes for a splitting bubble. The circulation balance for
C1 ∪ C2 can be expressed in terms of quantities defined on the outer boundary only, as
all internal fluxes cancel on interior boundaries.

2.5. Changes to the interface topology
The analysis provided in this section is valid for a control volume spanning a
single, continuous stretch of interface, topologically equivalent to figure 4. It is not
immediately clear that all conclusions drawn apply to flows featuring more complex
topology, such as a triple-contact point, or flows featuring topology changes, such as
drop formation or wave breaking.

Equation (2.22) describes the circulation balance in terms of quantities defined
only on the outer control-volume boundary. A combination of such control volumes
features a ‘telescoping’ property, where contributions from internal boundaries cancel,
and the balance of circulation for the whole system of control volumes includes
contributions only from the outer boundaries. Therefore, if the flow can be covered
by smaller control volumes, topologically equivalent to figure 4, the theory developed
in this section may be applied. Figure 5 illustrates such a system of control volumes
for the case of a splitting bubble. Although the global control volume (C1 ∪ C2)
does not resemble figure 4, and the interface topology changes as the flow develops,
each sub-volume remains equivalent to figure 4. We anticipate that most systems can
be described by a similar arrangement of control volumes, so that our formulation
remains sufficiently general.

2.6. Summary of theoretical findings
Based on the preceding analysis and discussion, and from previous descriptions of
interfacial vorticity dynamics, we present the following summary of the generation,
transport and conservation of vorticity in two-dimensional interfacial flows. For a
given control volume, which may contain an interface between two fluids, a boundary
with a solid body, or a free surface,
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890 A5-20 S. J. Terrington, K. Hourigan and M. C. Thompson

(i) The total circulation within the control volume varies due to generation of
circulation on the interface, and due to the flow of circulation through the
control-volume boundary. Circulation leaves the control-volume boundary by
viscous diffusion and advection in the fluid interior, and by the transport of
circulation along the interface.

(ii) Circulation is generated on the interface by an inviscid relative acceleration
between fluid elements on each side of the interface. This acceleration may be
due to pressure gradients or body forces. There is no other mechanism by which
vorticity may be generated in two-dimensional, incompressible flows.

(iii) If the tangential velocity is not continuous across the interface, circulation is
contained in the interface vortex sheet. Viscous forces are responsible for the
transfer of circulation between the interface vortex sheet and the fluid interior,
via the boundary vorticity flux, but do not generate a net circulation in the
system.

(iv) If the no-slip condition applies on the interface, no circulation is stored in the
interface vortex sheet. All vorticity generated via the inviscid mechanism is sent
into the fluid interior by viscous forces which enforce the no-slip condition.

(v) On no-slip viscous interfaces, the shear-stress balance governs how vorticity
generated on the interface is distributed into each fluid. This condition is also
responsible for driving the transfer of circulation across the interface.

(vi) At a free surface, the zero shear-stress condition mandates that the surface
vorticity must be equivalent to solid-body rotation of fluid elements on the
boundary. Vorticity is exchanged between the boundary fluid and the interface
circulation to maintain this condition.

(vii) If there is no global pressure gradient across the interface, total circulation
within the flow is conserved. Local generation of vorticity along a portion of
the interface is balanced by generation of an equal quantity of opposite-sign
vorticity elsewhere.

3. Example flows
In this section, several example flows are considered, demonstrating the insights

into flow behaviour afforded by the theoretical developments outlined in the
previous section. First, the role of the shear-stress balance on the generation and
transport of vorticity is demonstrated by considering flows featuring stationary flat
and axisymmetric interfaces. Then, the generation and conservation of vorticity at
deforming interfaces is considered in the analysis of periodic travelling waves and
vortex–interface interactions.

Transient solutions for the one-dimensional flow problems were obtained using an
orthogonal decomposition technique, described in Özışık (1968) and based on the
method of Bulavin & Kashcheev (1965). Examples featuring deformable interfaces and
free surfaces were solved numerically, using a finite-difference method. A projection
method due to Brown, Cortez & Minion (2001) was used, which allows second-order
accuracy at solid boundaries. Boundary conditions for Brown’s algorithm were adapted
to suit free-surface and viscous interface flows. A boundary-fitted grid was used, to
enable direct measurement of the boundary vorticity flux. Interface tracking and mesh
motion is achieved through use of an ALE method (Donea et al. 2004). The normal
velocity of nodes on the interface is determined by requiring these nodes track the
interface. The tangential velocity of boundary nodes is adjusted to ensure adequate
grid spacing. Nodes in the fluid interior are free to move, independently of the fluid.
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U1

U2

h1

h2

x
y

Solid boundary

Fluid 2

Fluid 2

Interface

Fluid 1 Fluid 1

Solid
disk

Solid boundary Solid boundary

G = -dp/dx

Ø2

Ø1

rs r2r1

(a) (b)

FIGURE 6. Geometry for (a) planar and (b) axisymmetric two-fluid flows. Flow in the
planar channel may be driven by motion of the upper and lower solid boundaries, or by a
streamwise pressure gradient. Flow in the axisymmetric arrangement is driven by rotation
of the inner or outer solid disks.

y = h2

y = 0

y = -h1

u2(y) ø2(y) †(y)

ø1(y)u1(y)

(y ± hi) + Ui

øi(y) = -A/µi

†(y) = A

U2 - U1

(3.1a)

(3.1b)

(3.1c)

µi

h1/µ1 + h2/µ2
A =

ui(y) = A

FIGURE 7. Schematic diagram illustrating the important features of two-fluid plane
Couette flow. The steady-state vorticity profile is uniform in both fluids, and the jump
in vorticity across the interface satisfies the shear-stress balance. This corresponds to a
linear velocity profile in both fluids, and a uniform shear stress throughout the flow.

Once the boundary nodes have been updated, internal mesh points are updated using
the modified interpolated control function (MICF) approach (Hansen, Douglass &
Zardecki 2005). Here, the position of internal nodes is governed by solution of an
elliptic partial differential equation. The control functions that were used generate
grid lines which are orthogonal to the boundaries. Elements are concentrated near the
interface, and cell growth rates were set to zero on the boundary, to ensure accurate
resolution of the boundary vorticity flux.

It should be noted that this finite-difference scheme obtains solutions in terms of
the primitive variables, and that our formulation of vorticity dynamics is not enforced
directly, but arises naturally as part of the solution. While the global conservation of
circulation is often guaranteed by the boundary conditions, accurate resolution of flow
near the boundary was necessary to ensure the source terms in (2.24) were balanced.
This then raises the question of whether numerical schemes which automatically
satisfy conservation laws such as (2.24) can be constructed, and if there is any
benefit in doing so. Conservation of circulation is a natural consequence of Lundgren
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FIGURE 8. Dimensionless (a) velocity and (b) vorticity profiles at a range of time steps
for transient two-fluid Couette flow. Initially stationary flow is driven by an impulsive
acceleration of the lower boundary. For this example, h1/h2 = 1, ν1/ν2 = 1, µ1/µ2 = 2
and U2 = 0. τ = t/(h̄2/ν̄) is the dimensionless time, where overbars indicate mean values
across both fluids.

& Koumoutsakos’ (1999) vorticity-based scheme for free-surface flows, for example,
and the theory outlined in the present article may prove useful in developing a similar
scheme applicable to other kinds of interfaces. Such considerations are outside the
scope of this article.

3.1. Flat interface

Two-fluid Poiseuille–Couette flow is investigated in this section, illustrating the role of
the shear-stress balance on the transport of vorticity across stationary, flat interfaces.
This flow configuration provides the simplest description of the shear-stress balance,
as the rotational vorticity is equal to zero. Two fluid regions are separated by a flat
interface, and bounded by solid boundaries, as depicted in figure 6(a). Couette flow is
driven by a velocity difference between the upper and lower solid boundaries, while
Poiseuille flow is driven by a pressure gradient along the interface. In general, flow
may be a linear combination of these two basic configurations.

3.1.1. Couette flow
Plane Couette flow occurs when there is no pressure gradient driving the flow. In

this configuration, no vorticity generation occurs on the interface, and all vorticity
in the flow has its origins on the upper or lower solid boundaries. The steady-state
solution to the velocity, vorticity and shear-stress distributions are given by (3.1), and
the general features of these distributions are illustrated in figure 7. The steady-state
behaviour can be understood quite simply in terms of the total circulation and the
shear-stress balance. The total circulation per unit length in the fluid is determined by
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Vorticity generation on deforming interfaces in 2-D 890 A5-23

the difference in velocity between the solid boundaries,∫ h2

−h1

ω dy=U1 −U2. (3.2)

Gradients in shear stress result in the diffusion of vorticity throughout the flow, until
the vorticity profile is uniform in each fluid. Since the interface is flat, the shear-stress
balance (2.27) reduces to

ω2

ω1
=
µ1

µ2
, (3.3)

and is maintained by the transport of vorticity across the interface throughout the
transient flow development. The uniform steady-state vorticity in each fluid must
satisfy equation (3.3).

y = h2

y = 0

y = -h1

u2(y) ø2(y) †(y)

ø1(y)u1(y)

ui(y) =     [Ay - y2/2] + U0

øi(y) =         [y - A]

†i(y) = G [A - y]

µ1(h2/h1) - µ2(h1/h2)

(3.4a)

(3.4b)

(3.4c)

h2 + h1

µi
G

µi
G

1
2

G
2

µ1/h1 + µ2/h2
A =

µ1/h1 + µ2/h2
U0 =

FIGURE 9. Schematic diagram illustrating the important features of two-fluid Poiseuille
flow. The steady-state vorticity profile is linear in each fluid, with parabolic velocity
profiles. The shear-stress distribution is linear, but continuous across the interface.

External acceleration of the upper/lower solid boundaries results in the generation
of vorticity on the boundary, and a change in the total circulation. The generated
vorticity diffuses away from the boundary and spreads throughout the flow until a new
steady-state profile is reached. This process is illustrated in figure 8, which presents
transient velocity and vorticity profiles for a two-fluid Couette flow driven from rest
by an impulsive acceleration of the lower boundary. An animation of the velocity and
vorticity profiles is also provided in the supplementary material (movie 1) available
at https://doi.org/10.1017/jfm.2020.128. Vorticity generated on the lower boundary
diffuses across the interface, seemingly against the vorticity gradient on the interface.
While diffusion across the interface and into the region with higher surface vorticity
may be counter-intuitive, it should be remembered that one may only describe the
diffusion of vorticity along vorticity gradients within a single fluid domain. The
transfer of circulation across an interface is governed by the viscous acceleration of
boundary fluid elements, which adjusts the velocity gradients (vorticity) on each side
of the interface, so that the shear-stress balance is maintained. There is no reason
this process cannot be directed into the fluid with higher boundary vorticity.

3.1.2. Poiseuille flow
Two-fluid Poiseuille flow occurs when flow is driven by a pressure gradient G =
−∂p/∂x, while the upper and lower walls are held stationary, U1=U2= 0. Vorticity is
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890 A5-24 S. J. Terrington, K. Hourigan and M. C. Thompson

continuously generated on the upper and lower solid boundaries, and at the interface,
by inviscid relative accelerations due to pressure gradients. The vorticity fluxes on the
upper and lower solid boundaries are given by

σb,1 =
1
ρ1

∂p
∂x
, (3.5a)

σb,2 =−
1
ρ2

∂p
∂x
, (3.5b)

while the rate of vorticity creation at the interface is

σi,1 + σi,2 =

(
1
ρ2
−

1
ρ1

)
∂p
∂x
. (3.6)

The net rate of vorticity creation across both solid boundaries and the interface is zero,

σb,1 + σb,2 + σi,1 + σi,2 = 0, (3.7)
so that the total amount of circulation in the system remains constant, and is equal to
zero.

The general features of steady-state Poiseuille flow are illustrated in figure 9, with
analytic solutions to the velocity, vorticity and shear-stress profiles given by (3.4). The
vorticity profile in each fluid is linear, indicating a constant rate of diffusion in each
fluid. Vorticity is continually generated on the solid boundaries and diffuses into the
fluid interior. The vorticity flux out of each side of the interface is equal and opposite
to the vorticity flux on the corresponding solid boundary, maintaining the steady-state
equilibrium.

While the vorticity generation rate determines the net vorticity flux out of the
interface, the vorticity flux into each fluid must ensure the shear-stress balance is
maintained on the interface. Consider transient development of two-fluid Poiseuille
flow in an initially stationary fluid, depicted in figure 10, and for which a transient
animation is provided in movie 2 (supplementary material). Initially, most vorticity
remains in boundary layers of thickness

√
νt, and vorticity generated on the solid

boundaries has a negligible effect on the interface shear-stress balance. The ratio of
initial vorticity fluxes into each fluid from the interface is equal to

σ1,i

σ2,i
=
µ2

µ1

√
ν1

ν2
, (3.8)

and depends on the ratio of boundary vorticity required to satisfy the shear-stress
balance, and the rate at which vorticity diffuses away from the interface. For the
example in figure 10 the higher rate of diffusion in the lower fluid is balanced by the
requirement of a higher surface vorticity in the upper fluid, and the initial vorticity
fluxes on both sides of the interface are equal.

As flow develops, the ratio of interface vorticity fluxes is affected by vorticity
generated on the solid boundaries. For the example in figure 10, negative vorticity
generated on the lower boundary acts to reduce the interface boundary vorticity
in fluid 1, while positive vorticity generated on the upper boundary reinforces the
interface vorticity in fluid 2. To maintain the shear-stress balance, a larger proportion
of the positive vorticity generated on the interface is diffused into the lower fluid. The
flux of vorticity into fluid 2 decreases, eventually becoming negative. This process
continues until a steady state is approached, where the solid boundary fluxes are
balanced by the interface vorticity fluxes in each fluid. Note that the net vorticity
flux on the interface does not change, only the distribution of fluxes into each fluid.
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FIGURE 10. (a) Transient vorticity profiles and (b) time history of the interface and
boundary vorticity fluxes for two-fluid Poiseuille flow with h1/h2=1, µ1/µ2=2, ν1/ν2=4,
and Gh3/(µ̄ν̄) = 10. τ = t/(h̄2/ν̄) is the dimensionless time, while overbars indicate the
mean values across both fluids. ρ̂ = µ̄/ν̄ is the mean density. Dashed lines in (b) indicate
the steady-state asymptotes.

3.2. Axisymmetric interface
In the planar interface flows considered thus far, the rotational vorticity is zero, greatly
simplifying the shear-stress balance. The influence of rotational vorticity on the shear-
stress balance is highlighted in the analysis of two-fluid Taylor–Couette flow, which
is described by the geometry in figure 6(b). As with plane Couette flow, vorticity
is generated by acceleration of the inner or outer solid boundaries. Total circulation
across both fluids is determined by the boundary velocities, taking the circumference
of each boundary into account,∫

A
ω dA= 2π(Ω2r2

2 −Ω1r2
1). (3.9)

Gradients in viscous stresses diffuse vorticity throughout the flow, producing a uniform
steady-state vorticity profile in each fluid.

The main difference between axisymmetric and plane Couette flow is the influence
of rotational vorticity on the interface shear-stress balance. The distribution of vorticity
on each side of the interface must satisfy equation (2.27), which reduces to

µ1

µ2
=
ω2 − 2uθ,s/rs

ω1 − 2uθ,s/rs
, (3.10)

where uθ,s is the azimuthal velocity on the interface, and ωr= 2uθ,s/rs is the rotational
vorticity. Although the shearing vorticity, ωτ ,i =ωi −ωr, must be of the same sign in
each fluid, the total vorticity need not.

This is demonstrated by the transient vorticity profiles presented in figure 11, for
which an animation is provided in movie 3. Negative (clockwise-oriented) vorticity is
generated by impulsive acceleration of the inner disk, radially beneath an interface
with a viscosity ratio of µ1/µ2= 5. As this negative vorticity begins to diffuse across
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FIGURE 11. Normalised vorticity contour plots at several instants for two-fluid Taylor–
Couette flow, with r2/r1 = 3, rs/r1 = 2, µ1/µ2 = 5, ν1/ν2 = 1 and Ω2 = 0. τ = t/(r̂2/ν̄) is
the dimensionless time, where r̂= (r2 − r1)/2 and ν̄ = (ν1 + ν2)/2.

the interface, positive vorticity appears on side 1 of the interface, and begins to diffuse
into the lower fluid. Negative vorticity continues to diffuse out of the interface into
fluid 2, balanced by an equal flux of positive vorticity into fluid 1. In the steady
state, fluid 1 is a region of uniform positive vorticity, while fluid 2 has a uniform
distribution of negative vorticity.

Appearance of positive vorticity in fluid 1 can be explained by the shear-stress
balance (3.10). Figure 12(a) presents the vorticity on each side of the interface, along
with the decomposition into rotation and shearing components. Diffusion of negative
vorticity across the interface is associated with an acceleration of the interface,
producing a positive rotational vorticity on the interface. Due to the reasonably high
viscosity ratio, the (negative) shearing vorticity in fluid 2 must be much larger than
the shearing vorticity in fluid 1. The required negative shearing vorticity in fluid 1 is
smaller than the positive rotational vorticity, so the surface vorticity in fluid 1 must
be positive.

The total circulation balance for this flow is presented in figure 12(b). There is no
pressure gradient or body force along the interface, so no net circulation is generated
on the interface. The flux of positive vorticity out of the interface into fluid 1 is
balanced by an equal flux of negative circulation into the upper fluid, and the total
circulation remains constant. If the circulation contained in the inner solid disk is
included in the total circulation balance, then circulation is also conserved during the
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FIGURE 12. Time histories of the (a) normalised interface boundary vorticity, including
decomposition into shear and rotation components, and (b) total circulation balance, for
the flow displayed in figure 11.

initial generation of vorticity on the solid boundary (Brøns et al. 2014). The quantity
of negative circulation diffused into the fluid is balanced by the appearance of an equal
quantity of positive circulation in the solid disk.

The example considered in this section bears much similarity to the flow induced
by a rotating cylinder beneath an axisymmetric stress-free boundary, studied by Brøns
et al. (2014), and illustrated in their figure 10. Negative vorticity generated on the
solid disk ‘disappears’ into the free surface, accompanied by acceleration of the
free-surface fluid. Positive vorticity appears on the boundary to satisfy the stress-free
condition, and diffuses into the fluid. When the solid disk and interface circulation
are included in the total circulation balance, total circulation is conserved throughout
the initial acceleration of the solid boundary and subsequent interaction of vorticity
with the free surface. The loss of negative vorticity, and appearance of positive
vorticity, on the free surface is balanced by the appearance of negative circulation in
the interface. The similarities in the circulation balance for Brøns et al.’s free-surface
flow, and the present two-fluid case, support the interpretation of ‘interface circulation’
as circulation that would be found on the ‘air’ side of a free-surface flow.

3.3. Periodic travelling wave
We now turn our attention to the generation and transport of vorticity across
deformable interfaces. The first example considered is that of a periodic travelling
wave on either a viscous interface or a free surface. As discussed previously, these
flows may be analysed in a frame of reference travelling at the wave velocity, where
normal velocity of the interface is negligible. Although the wave amplitude decays
due to viscous dissipation, the time scale associated with this process is much
longer than the wave period, leading to a quasi-steady interface in the moving frame.
While the description of vorticity generation given by Brøns et al. (2014) correctly
describes the flow when viewed from the moving reference frame, it cannot explain
flow behaviour when using the stationary reference frame. An important result of the
present formulation is that the description of vorticity generation and conservation it
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Solid boundary

Solid boundary

Fluid 1

Fluid 2

¬

A
x

y y = ˙(x)

h1

h2

FIGURE 13. Initial problem set-up for a periodic travelling wave on the viscous interface
between two fluids. The initial wave of amplitude A and wavelength λ is an irrotational,
two-fluid Stokes wave. Periodic boundary conditions are enforced at the left and right
boundaries. The solid boundaries are assumed to be sufficiently far from the interface that
they do not significantly influence the vorticity field. For the free-surface case, the upper
fluid is ignored, and the interface replaced by a free surface.

Case A B C D

ρ1/ρ2 2 10 100 Free surface
Re= cλ/ν1 5.87× 104 8.12× 104 1.01× 105 1.02× 105

Fr= c/
√

gλ 0.232 0.321 0.400 0.404
A/λ 0.025 0.025 0.025 0.025
ν2/ν1 1 1 1 1
H1/λ 2.5 2.5 2.5 2.5
H2/λ 2.5 2.5 2.5 2.5

TABLE 1. Parameter space investigated for viscous travelling waves. c is the wave speed,
estimated using irrotational Stokes wave theory.

affords does not depend on either the frame of reference, or normal motion of the
interface. The following analysis remains unchanged if the waves are viewed from the
stationary reference frame, where significant normal motion of the interface occurs.

Figure 13 demonstrates the geometry for this problem, while the parameter set
investigated is provided in table 1. Irrotational Stokes waves are used as the initial
conditions, using Fenton’s (1985) fifth-order solution for the free-surface case, and
Tsuji and Nagata’s (1973) fifth-order solution for interfacial waves. The primary
variable considered is the density ratio, which ranges from ρ1/ρ2 = 2 to free-surface
conditions. The wave steepness, gravitational strength and viscosity were held constant
across all cases; these variables will affect the quantity of vorticity generated, but
the general flow structure will not be significantly altered. As the wave speed, c,
changes with density ratio, the respective Reynolds (Re) and Froude (Fr) numbers
also vary with the density ratio. Because of the quasi-steady nature of this flow,
results presented for τ = t/(λ/c) = 10 represent the general flow behaviour. The
effects of surface tension are not considered here.
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FIGURE 14. Vorticity contours and velocity vectors for periodic travelling waves along
(a) a free surface, and (b) a viscous interface with ρ1/ρ2= 2. The vertical scale is greatly
exaggerated for clarity. Contours are presented at a dimensionless time τ = t/(λ/c)= 10,
where c is the wave speed.

3.3.1. Free-surface wave
Vorticity contours and velocity vectors for the free-surface wave are presented in

figure 14(a), and an animation of this flow is provided in movie 4. Longuet-Higgins
(1960) discusses the formation of vorticity in the boundary layer of a free-surface
wave. Most of the vorticity is located within a thin layer of alternating-sign vorticity,
of thickness O(

√
νT), where T is the wave period. The stress-free condition requires

that boundary fluid elements rotate at a rate equivalent to solid-body rotation on
the free surface, requiring positive (anti-clockwise) vorticity at the wave crest, and
negative (clockwise) vorticity at the wave trough. When viewed from the moving
reference frame, this rotation is due to fluid elements following the curvature of the
wave; from the stationary reference frame, fluid elements rotate as the wave travels

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

10
 A

pr
 2

02
0 

at
 0

3:
15

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
12

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.128


890 A5-30 S. J. Terrington, K. Hourigan and M. C. Thompson

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0.02

0.01

0

-0.01

-0.02

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

x/¬ x/¬

®1/®2 = 2

®1/®2 = 10

®1/®2 = 100

Free-surface

ß/
(c

2 /¬
)

(a) (b)

FIGURE 15. Distribution of the interface vorticity flux into the lower fluid (σ1) along
(a) free-surface and (b) viscous interface waves with a range of density ratios.

along the interface. A fluid element will encounter a flux of positive vorticity as it
approaches the wave crest (or the wave crest approaches it), and a flux of negative
vorticity as it approaches the wave trough, to maintain this condition. The free-surface
vorticity flux profile in figure 15(a) reflects this behaviour. A positive vorticity flux is
observed between x/λ ≈ 0.8 to 0.4, as surface fluid approaches the wave crest. The
vorticity flux is negative in the remaining regions, as fluid approaches the trough. It
is stressed that the boundary vorticity flux beneath the free surface is due to viscous
stress gradients in the fluid, and acts to ensure the condition of zero shear stress is
satisfied on the free surface.

Positive vorticity from the wave crest is carried by advection to the wave trough,
where it suffers cross-diffusive annihilation with the negative vorticity that appears
there. Similarly, negative vorticity from the wave trough is annihilated by positive
vorticity from the wave crest. The time scale associated with this process is the wave
period, T , so cross-diffusive annihilation of vorticity occurs over a length scale of
√
νT . Due to an imbalance in the quantity of negative and positive vorticity diffused

into the boundary layer, a net amount of negative circulation ‘survives’ this cross-
annihilative process. This results in a growing layer of negative ‘streaming vorticity’,
which is clearly visible in movie 4.

This behaviour can be also be observed in the circulation time history presented in
figure 16(a). As flow develops, a net amount of negative circulation is diffused into the
fluid. However, if the interface circulation is included in the total circulation balance,
then the total circulation is conserved. Due to the periodic boundary conditions
employed, no net circulation is generated in the interface. The net flux of negative
circulation into the fluid is balanced by a viscous acceleration of the free-surface
fluid, and the appearance of positive circulation in the interface.

3.3.2. Interfacial wave
Vorticity contours and velocity vectors for the viscous interface wave, with

ρ2/ρ1= 2, are presented in figure 14(b), and the corresponding animation is provided
in movie 5. Local pressure gradients result in the generation of vorticity along
the interface, with positive vorticity observed on both sides of the interface at the
wave crest, and negative vorticity in both fluids at the wave trough. As with the
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FIGURE 16. Time histories of total circulation for the (a) free-surface and (b) viscous
interface waves depicted in figure 14.

free-surface wave, most of this vorticity remains within a thin boundary layer on the
interface. The vorticity generated at one section of the wave suffers cross-diffusional
annihilation with alternate-signed vorticity generated elsewhere as vorticity is carried
by fluid elements along the interface (or, when viewed from the stationary frame, as
successive wave crests/troughs travel past a particular fluid element on the interface).

Figure 16(b) presents the net circulation balance for the interfacial wave described
in figure 14(b). Although local generation of vorticity by pressure gradients occurs, the
periodic boundary condition ensures that the net vorticity generated is zero – positive
vorticity generated along one section of the interface is balanced by an equal amount
of negative circulation generated elsewhere. However, the net flux of vorticity into
each fluid is not zero. A negative net circulation is diffused into the lower fluid,
balanced by an equal quantity of positive circulation diffused into the upper fluid. In
a manner similar to flow beneath a free-surface wave, most of the vorticity generated
on the interface is eliminated by cross-diffusive annihilation within a boundary layer
of thickness O(

√
νT). There is a second-order net flow of negative circulation into the

interior of the lower fluid, and a net flow of positive vorticity into the upper fluid.
The second-order streaming vorticity in both free-surface and viscous interface

waves can be explained by the rate at which vorticity diffuses away from the
boundary. If the boundary vorticity on one side of the interface is depleted more
rapidly by viscous diffusion, the flux of vorticity into that fluid must be increased to
maintain the shear-stress balance. Concave geometry, such as beneath the wave crest
or above the wave trough, restricts the diffusion of vorticity away from the boundary,
while convex geometry allows greater diffusion of vorticity into the fluid interior. In
the lower fluid, the negative vorticity flux at the wave trough will exceed the positive
vorticity flux near the wave crest, sending a net negative circulation into this fluid.
This argument is reversed in the upper fluid, yielding a net flux of positive vorticity.

While the net generation of vorticity on the interface is zero, local vorticity
generation by pressure gradients along the interface still occurs. The interface pressure
profiles presented in figure 17(a) indicate that the wave trough is a region of increased
pressure, compared to the lower pressure in the wave crest. Although pressure
gradients are approximately equal on both sides of the interface, the difference in
inertia of fluid elements either side of the interface results in an inviscid relative
acceleration, and the generation of circulation on the interface. The local vorticity
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FIGURE 17. (a) Pressure distribution along the surface of interfacial waves with a range
of density ratios. The jump in pressure across the interface is negligible. (b) Local vorticity
generation rate along the interface. Solid lines in (b) indicate the net vorticity flux, σ1+σ2,
while dash-dotted lines indicate the flux into the upper fluid, σ2.

generation rates along the interface, given in figure 17(b), can be explained by
the interface pressure gradient. Fluid elements on the interface are accelerated by
the favourable pressure gradient between x/λ = 0.5 and 1.0. This pressure gradient
acts to accelerate the upper fluid at a greater rate than the lower fluid, generating
anti-clockwise (positive) circulation in the interface. An equal quantity of clockwise
(negative) circulation is generated by the adverse pressure gradient along the rear half
of the wave. Note that viscous forces which enforce the no-slip condition prevent
any actual relative acceleration between fluid elements, diffusing all circulation into
the fluid interior via the associated boundary vorticity fluxes.

While pressure gradients on the interface decrease as the density ratio is increased,
the rate of vorticity generation increases. The decrease in inertia of the upper fluid is
more significant than the decrease in pressure gradient, producing a greater inviscid
relative acceleration of fluid elements. While the net vorticity generation rate increases
with the density ratio, the shear-stress balance requires that a larger proportion of this
vorticity be diffused into the upper fluid. As a result, vorticity fluxes into the lower
fluid decrease as the jump in density is increased. As demonstrated in figure 15(b),
the vorticity flux into the lower fluid approaches the free-surface distribution as the
density ratio is increased. The limiting distribution of σ1 is not zero, but instead takes
on the value required to maintain the stress-free condition on the free surface.

The shear-stress balance constrains how circulation generated on the interface
is distributed into each fluid. Surface vorticity profiles for viscous interfaces with
ρ1/ρ2 = 2 and ρ1/ρ2 = 100 are presented in figure 18, including the decomposition
into shearing and rotational vorticity. For low values of the density ratio, the shearing
vorticity dominates the rotational vorticity, and the shear-stress balance may be
approximated as

ω2

ω1
≈
µ2

µ1
=
ρ2

ρ1
. (3.11)

As the density/viscosity ratio is increased, a larger proportion of vorticity generated
on the interface must be diffused into the upper fluid, and the boundary vorticity
in the lower fluid decreases. Figure 19 compares the surface vorticity in the lower
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FIGURE 18. Surface vorticity profiles, including the decomposition into rotation and
shearing vorticity, for viscous interface waves with (a) ρ1/ρ2 = 2 and (b) ρ1/ρ2 = 100.
Solid lines represent total vorticity, while dashed lines indicate the shearing vorticity
(nearly indistinguishable from the total vorticity).
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FIGURE 19. Surface vorticity in the lower fluid for periodic waves on (a) a free surface,
and (b) a viscous interface with ρ1/ρ2= 100. Rotation and shear vorticity components are
provided for the viscous interface case.

fluid, for ρ1/ρ2= 100, to the free-surface distribution. As the interface approaches the
free-surface limit, the shearing vorticity in the lower fluid decreases, and the surface
vorticity approaches the rotational vorticity. However, for any finite density ratio there
will be a typically non-zero residual shearing vorticity, ωτ ,1 =ω1 −ωr, which has the
following approximate relationship to the vorticity in the upper fluid,

ω2 ≈
µ1

µ2
[ω1 −ωr]. (3.12)

The results presented in this section suggest the following description of vorticity
generation at high-density-ratio interfaces, such as the typical air–water interface.
Under the free-surface approximation, the flux of vorticity on the lower side of the
interface is determined by viscous stress gradients in the lower fluid, independent
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890 A5-34 S. J. Terrington, K. Hourigan and M. C. Thompson

of motion in the upper fluid. If velocity gradients in the upper fluid are sufficiently
high, such as for wind-driven waves, a non-zero shearing vorticity in the lower
fluid, proportional to the vorticity in the upper fluid, should also be considered.
The upper fluid will suffer a greater ‘inviscid’ acceleration due to pressure forces
than the lower fluid, generating circulation in the interface. The majority of this
circulation will be diffused into the boundary layer on the air side of the interface,
with only a small portion sent into the lower fluid to maintain the shear-stress balance.
The similarities between the total circulation balances in figure 16 suggest that the
‘interface circulation’ above a free surface is indicative of the circulation that would
be found on the air side of the interface.

The importance of flow structures on the air side of a water–air interface has been
highlighted by Buckley & Veron (2017, 2019), who suggest that turbulent vortex
structures above wind-driven water waves are responsible for increased momentum
and mass transport across the ocean surface. These turbulent structures form when
boundary layer vorticity, generated along the windward side of the wave, separates at
the wave crest. The generation of vorticity in the boundary layer is easily understood
under the present formulation, and the description is identical to the previous examples
considered in this section. Moreover, the influence of these airflow structures on the
vorticity field beneath the wave can be readily discussed under our description, by
making use of the shear-stress balance on the interface.

3.4. Vortex-pair interactions with a free surface or viscous interface
While the viscous waves examined in § 3.3 can be analysed in a reference frame
where the surface is approximately steady in time, the present description of vorticity
generation does not require a stationary interface, and the same mechanisms of
vorticity generation apply in flows featuring moving interfaces as for those where
the interface remains stationary. The interaction of a vortex pair with a free surface
or viscous interface presents a typical case of vortex–surface interactions where the
interface cannot be described as stationary in any reference frame. Although normal
motion of the interface occurs, under the present formulation the generation and
conservation of vorticity can be described just as easily as the previous examples
featuring stationary interfaces.

Here, we consider the flow configuration described by figure 20. A pair of
counter-rotating vortices, of strength k, radius rm and separated by a distance, a,
is initially positioned at a depth, H, beneath an undisturbed interface. For numerical
simulations, a symmetry boundary condition is applied at the centre plane. The
semi-infinite domain is made finite by the inclusion of solid upper and lower
boundaries, positioned 10a above and below the undisturbed surface, and a stress-free
right boundary, situated a distance of 10a from the centre plane.

Following Ohring and Lugt’s (1991) investigation of the interaction of a vortex
pair with a free surface, the following dimensionless parameters are sufficient to
describe the flow: the Froude number, Fr= k/

√
ga3, the Reynolds number, Re= k/ν1,

the dimensionless vortex depth, δ = H/a and the dimensionless vortex radius, rm/a.
For the viscous interface problem, the interface jump ratios ρ1/ρ2 and ν1/ν2 are also
required. All results presented here are for Re= 100, δ= 3, rm/a= 0.25, ν1/ν2= 1 and
Fr = 0.2, unless stated otherwise. The main variable considered is the density ratio,
which ranges from ρ1/ρ2= 2 to free-surface conditions. These conditions were chosen
to enable comparison with the Fr = 0.2 flow in Ohring & Lugt (1991). Changes to
Re, δ and rm/a all have a broadly similar effect (Ohring & Lugt 1991), which is not
considered here.
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Vorticity generation on deforming interfaces in 2-D 890 A5-35
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FIGURE 20. Geometry of a vortex pair beneath a viscous interface. The vertical centre
line is a symmetry plane. C is a circulation contour bounding the semi-infinite domain to
the right-hand side of the symmetry plane.

Surface tension is not considered in any of the examples presented in this section.
For the free-surface case, surface tension acts to reduce the curvature and deformation
of the interface, thereby reducing the flux of vorticity out of the free surface (Ohring
& Lugt 1991). For the viscous interface flows, surface tension may also affect the
rate of vorticity generation through the Laplace pressure gradient, as demonstrated
by (2.31).

The initial velocity field is described by a pair of Lamb vortices, each with a
velocity profile

vφ,i =
2πk

ri
[1− exp(−(ri/rm)

2)], (3.13)

where vφ,i is the azimuthal velocity about vortex i, and ri is the distance to the centre
of each vortex. The velocity at any point is the sum of contributions from both
vortices.

Vorticity contours for the free-surface flow are presented in figure 21(a), for a
selection of flow times. Animations for both the free-surface and viscous interface
flows are provided in movie 6. Ohring & Lugt (1991) have previously discussed the
generation of vorticity during the interaction of a vortex pair with a free surface. In
particular, note the similarity of figure 21(a) with Ohring and Lugt’s figure 8, which
are for identical Froude numbers. As the vortex approaches the surface, fluid above
the centre of the vortex pair is elevated, accompanied by the appearance of a sharp
depression, or ‘scar’, in the surrounding fluid. Circulation is transferred between the
interface vortex sheet and the fluid to ensure the shear-free condition is satisfied, as
determined by rotation and curvature of the interface.

The majority of vorticity generated on the boundary has positive (anti-clockwise)
orientation, and is of sign opposite to that of the primary vortex. This secondary
vorticity is drawn away from the free surface by the primary vortex. Ohring & Lugt
(1991) find that for higher Froude number flows, sharper curvature of the interface
results in a greater quantity of vorticity generated, and the appearance of a secondary
vortex which orbits the primary vortex. In our simulations, overturning of the free
surface was found to occur at much lower Froude numbers than reported by Ohring
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FIGURE 21. Vorticity contours depicting the interaction of the right half of a vortex pair
with (a) a free surface, and (b) a viscous interface with ρ1/ρ2=100. Fr=0.2 in both cases.
τ = t/(a2/k) is the dimensionless flow time. Non-dimensional vorticity contour levels are
plotted for ω/(k/a2)= . . . ,−3,−1,+1,+3, . . ..

and Lugt, restricting our boundary-fitted grid to low Froude numbers. A linearised
small-angle approximation was used by Ohring and Lugt in their free-surface boundary
conditions, which is clearly not applicable at higher Froude numbers. While we do
not present flows featuring breaking of the interface in this article, the mechanisms
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FIGURE 22. Vorticity contours for the interaction of a vortex pair with a viscous interface,
with ρ1/ρ2 = 2, for (a) Fr = 0.2 and (b) Fr = 0.1, at τ = 3.5. Note the similarity in
the vorticity field, despite the stark differences in interface curvature. Non-dimensional
vorticity contour levels are plotted for ω/(k/a2)= . . . ,−3,−1,+1,+3, . . ..

of vorticity generation, and the principle of vorticity conservation, presented here still
apply to such flows.

Vorticity contours for the viscous interface interaction, with a density ratio of
ρ1/ρ2 = 100, are presented in figure 21(b). The shape of the interface, and the
vorticity field below the interface, are nearly identical to the free-surface case. The
free-surface flow is thus a suitable approximation to the flow beneath an interface
with large density and dynamic viscosity ratios. The low viscosity in the upper fluid
ensures that the shearing vorticity in the lower fluid is small. Rotational vorticity
dominates the shear-stress balance in the lower fluid and the flux of vorticity into
this fluid ensures boundary fluid elements rotate at a rate equivalent to solid-body
rotation.

Circulation is generated along the interface by inviscid relative accelerations caused
by pressure gradients along the interface. This relative acceleration occurs in the
same manner as discussed for interfacial waves, and can be inferred directly from
the vorticity contours in figure 21(b). These contours suggest that along most of the
interface, positive circulation is generated as the interface pressure increases from
low pressure at the symmetry plane, to a higher far-field pressure. The lower-density
fluid elements in the upper fluid suffer a greater inviscid acceleration towards the
symmetry plane due to pressure gradients than the lower fluid, and this inviscid
relative acceleration generates positive circulation in the interface. Only near the crest
of the scar is the pressure gradient reversed, generating some negative circulation
locally. The majority of circulation generated on the interface appears to be diffused
into the upper fluid, with a comparatively smaller surface vorticity required in the
lower fluid to satisfy the shear-stress balance.

While the influence of shearing vorticity in the lower fluid may be neglected for
large density (dynamic viscosity) ratios, this is not the case when the density (and
dynamic viscosity) ratios are smaller. As for the viscous wave, a significant portion
of circulation generated on the interface must be distributed into the lower fluid,
to maintain the shear-stress balance. This is illustrated by the vorticity contours for
flows with ρ1/ρ2 = 2, presented in figure 22. Compared to the high-density-ratio
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flow (figure 21b), a much larger quantity of vorticity is diffused into the lower fluid.
As the shearing vorticity dominates the shear-stress balance, the flux of vorticity
in the lower fluid no longer depends significantly on rotation or curvature of the
interface. The Fr = 0.1 flow in figure 22(b) features a similar quantity of positive
vorticity drawn away from the interface by the primary vortex as the Fr = 0.2 case
in figure 22(a). This stands in contrast to the free-surface flow, where the quantity of
secondary vorticity generated varies significantly with the interface curvature (Ohring
& Lugt 1991).

3.4.1. Net circulation
Total circulation in both viscous interface and free-surface flows is constant,

and equal to zero, as a consequence of flow symmetry. The vorticity field to
the left of the symmetry plane is a mirror image of the vorticity on the right,
providing equal and opposite contributions to the total circulation balance. Thus
the total vorticity in each fluid, and total circulation in the interface, are all zero.
Conservation of total circulation also follows from considering a circulation contour
around the entire undisturbed far field. At a sufficiently great distance from the
initial vortex pair, diffusion of vorticity across this outer boundary is negligible.
Furthermore, as the far-field pressure on each side of the interface are equal, no
net circulation is generated on the interface, and total circulation is conserved. This
second consideration also implies the conservation of circulation for non-symmetric
vortex–interface flows, such as the oblique vortex-pair interactions considered in Lugt
& Ohring (1992)

Consider the reduced ‘semi-infinite’ circulation contour, C, shown in figure 20,
containing all fluid to the right-hand side of the symmetry plane. Total circulation
about this contour is typically not conserved due to two factors. First, vorticity may
diffuse out of this contour along the symmetry plane. Loss of circulation from the
right-hand contour is balanced by an equal loss of opposite-sign vorticity from the
left-hand contour, with cross-diffusive annihilation of opposite-sign vorticity occurring
at the symmetry plane. Second, since the interface pressure at the symmetry plane
will generally differ from that at the far field, a net circulation will be generated by
pressure gradients along the portion of the interface contained in C. An equal amount
of opposite-signed vorticity is generated along the portion of the interface to the left
of the symmetry plane, so net generation along the entire interface is still zero.

In terms of (2.24), we write the total circulation balance as

dΓ
dt
=

∫
Sym.

ν ˆ̄n · ∇ω ds−
s

p
ρ

{

B

+

s
p
ρ

{

A

, (3.14)

illustrating these two effects. For the free-surface case, the circulation balance (2.39)
may be written

dΓ
dt
=

∫
Sym.

ν ˆ̄n · ∇ω ds+
p1

ρ1

∣∣∣∣
B

−
p1

ρ1

∣∣∣∣
A

+Φg,1|B −Φg,1|A +
1
2

u1 · u1|B. (3.15)

Since only the lower fluid contributes to the free-surface interface circulation, terms
related to gravitational acceleration, as well as changes to the circulation integral due
to stretching of the interface, appear in the total circulation balance in addition to
pressure gradients.

Time histories of the circulation contained in the right half of the symmetry
plane, for both free-surface and viscous interface flows, are presented in figure 23.
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FIGURE 23. Time histories of total circulation contained in the right-hand side of the
symmetry plane, for the (a) free-surface and (b) viscous interface flows presented in
figure 21.
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FIGURE 24. Contributions of each source term in (3.14) and (3.15) to the total circulation
balance for the (a) free-surface and (b) viscous interface flows. These curves were
obtained by cumulatively integrating each source term over the duration of the flow.

The viscous flow considered is that depicted in figure 21(b), with a density ratio
of ρ1/ρ2 = 100. Strong similarities in the total circulation balance are present,
demonstrating how the free-surface flow may be used to approximate viscous
interfaces with large density and viscosity ratios. Initially, all circulation is found
in the vortex pair, located in the lower fluid. As flow develops, the amount of
negative circulation in the lower fluid decreases due to diffusion across the symmetry
plane, and due to the flux of negative vorticity into, or positive vorticity out of, the
interface. For the viscous interface flow, circulation in the upper fluid increases due to
the flux of positive vorticity out of the interface. As the net generation on the portion
of the interface contained in C is not zero, the flux of vorticity out of the lower
fluid does not balance the vorticity flux into the upper fluid, and the total circulation
in C increases (becomes less negative) throughout flow development. Figure 24(b)
illustrates the contributions to the total circulation balance due to each source term
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in (3.14). Cross-diffusive annihilation at the symmetry plane plays only a minor role,
with most of the change in circulation due to pressure gradients along the interface.

For the free-surface flow, interface circulation plays a role similar to the circulation
above the viscous interface. The various source terms in (3.15) generate a net
positive interface circulation, as illustrated in figure 24(a). Some of this circulation
is transferred into the lower fluid by the boundary vorticity flux, however, a large
amount of the positive circulation generated remains in the interface.

While figure 23 suggests that the interface circulation is indicative of the circulation
that would be found on the ‘air’ side of a ‘free’ surface, contributions from the various
source terms to the generation of interface circulation in figure 24 are significantly
different. The dominant source of circulation in the viscous interface is acceleration of
the upper fluid due to pressure gradients. If we had used Lundgren & Koumoutsakos’
description (2.36), this would also be the case for the free-surface flow (the pressure
acceleration is rewritten using the transient Bernoulli equation). As our free-surface
formulation ignores motion in the upper fluid, pressure accelerations are no longer the
dominant source of interface circulation: gravitational acceleration of fluid elements on
the free surface accounts for most of the circulation generated.

As stated previously, these ‘vorticity generation’ terms are a local phenomenon.
Generation of vorticity to the right-hand side of the symmetry plane is balanced by
equal generation of opposite-sign vorticity to the left of the symmetry plane, leading
to conservation of total circulation within the flow.

3.4.2. Application to other flows
The vortex-pair interactions presented here are for high density ratios and low

Froude numbers, where deformation of the interface is fairly mild, and overturning
of the free surface does not occur. Nevertheless, the generation mechanisms for
vorticity in more complex flows are the same as discussed here, so long as the flow
remains two-dimensional. Sarpkaya & Henderson (1984) observe two kinds of surface
deformations due to a vortex pair impinging on a free surface: ‘scars’, which run
parallel to the vortex pair; and ‘striations’ which lie perpendicular to the vortex pair.
Dommermuth (1993) relates the appearance of striations to the formation of helical
vorticity in a three-dimensional instability of the vortex pair. While the wide range
of flows which are inherently three-dimensional provide a strong motivation for the
formulation of a fully three-dimensional theory, it appears that even the simplest
of two-dimensional free-surface flows suffer three-dimensional deformation of the
interface. Extension of the present two-dimensional theory to three-dimensions is
not trivial, however, preliminary research into a fully three-dimensional description
of vorticity generation suggests that the inviscid relative acceleration discussed
in the context of two-dimensional flows can explain all vorticity generated in
three-dimensional flows. Further development of this three-dimensional theory will be
the subject of a future publication.

4. Conclusions
We have presented a revised formulation of the generation of vorticity at generalised

interfaces between incompressible, Newtonian fluids in two-dimensional flows.
Importantly, we have demonstrated that normal motion of the interface is not a direct
source of vorticity, and that the revised formulation enables a description of the
conservation of vorticity at both stationary and deforming interfaces and free surfaces.
Under the present description, the only mechanism by which a net circulation may be
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generated on an interface is the inviscid relative acceleration between fluid elements
on each side of the interface, due to pressure gradients or body forces. Viscous
forces act to transfer circulation between the slip velocity on the interface and the
fluid interior, via the boundary vorticity flux, but do not generate vorticity on the
boundary. When there is no global pressure gradient or body forcing, the net rate of
vorticity generation on the interface is zero, and the total circulation within the flow
is constant. Local generation of vorticity is observed to occur in many cases where
circulation is conserved globally.

This description does not depend on the tangential boundary conditions at the
interface, and may be applied to a wide range of interfaces and boundaries, including
no-slip and stress-free solid boundaries, viscous no-slip interfaces and free surfaces.
At viscous interfaces, all vorticity generated at the interface is diffused into the
flow by viscous forces which enforce the no-slip condition, while the distribution of
vorticity across the interface is governed by the shear-stress balance. At a free surface,
circulation is transferred between the interface vortex sheet and fluid elements on the
free surface, to ensure that the condition of zero shear stress is maintained on the
free surface.

The generation, distribution and conservation of vorticity has been demonstrated in
several example flows: flat and axisymmetric stationary interfaces, periodic travelling
waves on viscous interfaces and free surfaces and the interaction of a vortex pair with
a free surface or viscous interface. These examples highlight the local generation of
vorticity on the interface due to the inviscid relative acceleration of fluid elements, and
the role of the shear-stress balance in the redistribution of vorticity across the interface.
Conservation of total circulation was demonstrated in each example considered,
including cases where significant deformation of the interface was observed.
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