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A study investigating the flow around a cylinder rolling or sliding on a wall has been
undertaken in two and three dimensions. The cylinder motion is specified from a set
of five discrete rotation rates, ranging from prograde through to retrograde rolling.
A Reynolds number range of 20–500 is considered. The effects of the nearby wall
and the imposed body motion on the wake structure and dominant wake transitions
have been determined. Prograde rolling is shown to destabilize the wake flow, while
retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above
those observed for a cylinder in an unbounded flow.

Two-dimensional simulations show the presence of two recirculation zones in the
steady wake, the lengths of which increase approximately linearly with the Reynolds
number. Values of the lift and drag coefficient are also reported for the steady flow
regime. Results from a linear stability analysis show that the wake initially undergoes a
regular bifurcation from a steady two-dimensional flow to a steady three-dimensional
wake for all rotation rates. The critical Reynolds number Rec of transition and the
spanwise wavelength of the dominant mode are shown to be highly dependent on,
but smoothly varying with, the rotation rate of the cylinder. Varying the rotation
from prograde to retrograde rolling acts to increase the value of Rec and decrease the
preferred wavelength. The structure of the fully evolved wake mode is then established
through three-dimensional simulations. In fact it is found that at Reynolds numbers
only marginally (∼5 %) above critical, the three-dimensional simulations indicate that
the saturated state becomes time dependent, although at least initially, this does not
result in a significant change to the mode structure. It is only at higher Reynolds
numbers that the wake undergoes a transition to vortex shedding.

An analysis of the three-dimensional transition indicates that it is unlikely to be due
to a centrifugal instability despite the superficial similarity to the flow over a backward-
facing step, for which the transition mechanism has been speculated to be centrifugal.
However, the attached elongated recirculation region and distribution of the spanwise
perturbation vorticity field, and the similarity of these features with those of the flow
through a partially blocked channel, suggest the possibility that the mechanism is
elliptic in nature. Some analysis which supports this conjecture is undertaken.

† Email address for correspondence: stewart.bronwyn01@gmail.com
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1. Introduction
The flow past a stationary cylinder, placed transverse to a free stream, has been the

subject of research for many decades, motivated by wide-ranging relevance to building
construction, offshore engineering, aerodynamics and vortex-induced vibration, to
name just a few examples. The present investigation examines the flow around a
cylinder moving along a wall, with a range of imposed rotation rates. Particular
attention is paid to the steady and unsteady structures that develop in the wake. By
studying the two- and three-dimensional transitions, it is also possible to determine in
what way these flows are altered by the combined effects of translation and rotation
when the body is in near contact with a wall. A clearer understanding may then be
gained of the fundamental mechanisms that govern the flow.

When the flow around a cylinder in a free stream is steady and separated, the
downstream length of the recirculation region has been found to increase linearly with
Reynolds number Re (Taneda 1956; Kawaguti 1966; Tamaki & Keller 1969; Dennis &
Chang 1970; Fornberg 1985). As these steady recirculation zones grow in length, small
convective oscillations of the flow begin in the downstream wake for 30<Re < 45
(Taneda 1956). As the Reynolds number is increased, the attached recirculation region
becomes absolutely unstable at Re > 46 (e.g. Roshko 1954; Jackson 1987; Provansal,
Mathis & Boyer 1987; Henderson 1997). The vortex shedding behind the cylinder
then takes the form of the Bénard–von Kármán vortex street.

The unsteady two-dimensional wake undergoes a transition to three-dimensional
flow at Re ≈ 190; the form of the instability is described by Williamson (1988)
and referred to as mode A. This instability manifests in the formation of pairs of
counter-rotating streamwise vortices with a spanwise wavelength of approximately
four diameters (Williamson 1996; Henderson 1997; Barkley, Tuckerman & Golubitsky
2000).

When a cylinder in a free stream is subjected to an imposed rotation, several effects
become apparent. Not surprisingly, the rotation creates an asymmetry in the wake
that becomes more pronounced as the rotation rate increases (Tang & Ingham 1991).
This imposed rotation furthermore has a strong influence on the lift and drag forces
experienced by the cylinder, as well as having the ability to suppress the unsteady
flow. Throughout the present investigation, the non-dimensional rotation rate is given
by α and is defined as the ratio of tangential velocity on the surface of the cylinder
divided by the free-stream velocity.

At Reynolds numbers Re � 60, investigations of the cylinder in an unbounded
flow have shown that imposing a cylinder rotation results in a steady flow which
differs significantly from that behind a non-rotating cylinder. Numerical simulations
show that the body rotation is able to eliminate one or both of the recirculation
zones behind the cylinder, and at higher Reynolds numbers, unsteady flow may
be suppressed (Ingham 1983; Tang & Ingham 1991). Jaminet & Van Atta (1969)
explained the mechanism for suppression of unsteady flow as the merging on both
sides of the vortex street when one side is displaced into the other via the cylinder
rotation. This results in suppression of shedding from both sides of the cylinder
simultaneously.

As for the case of the non-rotating cylinder, increasing the Reynolds number of
the flow results in a transition to unsteady flow behind the rotating cylinder. At
small rates of rotation, the shedding takes the form of the Bénard–von Kármán
vortex street (Jaminet & Van Atta 1969; Dı́az et al. 1983; Mittal & Kumar 2003).
The asymmetry of the rotational effects results in the shedding and boundary layer
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separation tending to favour the side of the cylinder with motion opposing the free
stream (i.e. with an imposed flow reversal; Dı́az et al. 1983). The effect of varying
rotation rate on the wake frequency is still not well understood, as experimental
studies by Van Atta (1997), Jaminet & Van Atta (1969) and Barnes (2000) found
the Strouhal number St to increase steadily with the rotation rate, while the two-
dimensional numerical investigation of Mittal & Kumar (2003) found a very slight
decrease in St . Furthermore, the results of Kang, Choi & Lee (1999) showed negligible
change.

For the Reynolds numbers considered in the present study, the greatest contribution
to the lift for the rotating cylinder (for α � 1) is given by the pressure, rather than the
frictional (viscous) forces (Tang & Ingham 1991; Chen, Ou & Pearlstein 1993; Kang
et al. 1999; Mittal & Kumar 2003). However, for the drag force the frictional drag is
found to be of the same order of magnitude as the pressure drag. Tang & Ingham
(1991) and Kang et al. (1999) cited values of the coefficient of lift due to the pressure
components as being greater than 90 %. The percentage of this contribution appears
to increase with Re.

For 0 <α < 2.5, Kang et al. (1999) found that the pressure and frictional components
of the drag change in dominance. At lower magnitudes of rotation, the pressure drag
dominates. However, as the rotation increases, this contribution decreases, and at
α ≈ 1.5, the frictional drag provides the greatest contribution to the total drag on the
cylinder. Interestingly, in the present study in which the cylinder is rotating near the
wall, the frictional drag only dominates over a small range of negative α.

Early studies by Taneda (1965) showed that the presence of a stationary wall near
a stationary cylinder acts to stabilize the flow. Steady flow around a wall-mounted
obstacle is typified by a single recirculation zone, which has a separation point on the
body and a reattachment point on the downstream wall, such as that over a backward-
facing step (Armaly et al. 1983). In the current study, the plane wall has been given an
imposed velocity that eliminates boundary layer effects. Arnal, Goering & Humphrey
(1991) found, in their investigation of the flow around a wall-mounted square cylinder,
that the introduction of a relative wall velocity creates a second recirculation zone,
positioned behind the body, between the primary recirculation zone and the wall.
Furthermore, they found that the presence of the wall delays the onset of unsteady
flow until higher Re compared with the body in a free stream.

When the cylinder is positioned near (but not in contact with) the moving wall,
the fluid passing through the gap is accelerated (Kano & Yagita 2002; Huang &
Sung 2007; Nishino, Roberts & Zhang 2007), and Nishino et al. (2007) found that
the length of the recirculation zone behind the cylinder increases dramatically as the
distance between the cylinder and the wall goes to zero.

One significant way in which the wall proximity is able to alter the flow is via
the suppression of vortex shedding when the wall distance is below some critical
value (Lei, Cheng & Kavanagh 1999). For gap ratios greater than this value, the
flow is comparable to that around a cylinder in a free stream. An explanation for
this was offered by Nishino et al. (2007), who stated that for the cylinder near a
moving ground, the nearby wall can have an effect similar to that of a splitter plate
in the wake. They proposed that the ground restricts the appearance and growth
of disturbances in the wake that can lead to an absolute instability and the onset
of Bénard–von Kármán vortex shedding. Rather than the presence of an absolute
instability, they observed that the wake displays only convective instabilities as the
cylinder nears the wall.
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Figure 1. A simple schematic of the problem under consideration.

When a square cylinder is placed in contact with the moving wall, Arnal et al.
(1991) found that the wall encouraged the onset of unsteady flow, compared with the
stationary-wall case. Dipankar & Sengupta (2005) stated that the instability arising
between the cylinder wake and the wall is due to the interaction of the convecting
vortex core shed from the free-stream side of the cylinder. This was first proposed by
Sengupta, De & Sarkar (2003), who tested this theory by using a rotating cylinder
positioned above the wall to act as a captive vortex. The movement of this ‘vortex’
was found to create a weak streamwise pressure gradient, which in turn destabilizes
the wall shear layer. Furthermore, experiments by Lim, Sengupta & Chattopadhyay
(2004) found that the instability effects are enhanced when the vorticity in the wall
shear layer and the convecting vortex are of opposite sign. In such cases, the adverse
pressure gradient imposed by the convecting vortex will be much larger and will
destabilize the downstream wall shear layer. When the vorticity of the two are of the
same sign, the disturbance in the flow is much less, and depending on the distance
between the vortex and the wall, the shear layer is largely unaffected. The proximity
of the wall also results in an increase in the lift force on the non-rotating cylinder
(Zdravkovich 1985; Huang & Sung 2007; Nishino et al. 2007).

2. Problem description and methodology
The problem set-up considered in the present investigation is that of a cylinder

moving along a plane wall through a quiescent fluid. The motion of the cylinder
may be rolling or sliding, or a combination of the two; both positive (prograde)
and negative (retrograde) rotation rates are considered. Using a frame of reference
attached to the cylinder simplifies the computational analysis. In this frame, the
cylinder remains fixed, with the fluid and the wall moving past the cylinder as shown
in figure 1. Here, D is the diameter of the cylinder and U the translational velocity,
and the angular velocity is denoted ω.

The relative motion of the body and the fluid allows this problem to be characterized
in terms of two parameters: the Reynolds number and the non-dimensionalized
rotation rate of the cylinder. The Reynolds number is defined by Re = ρUD/μ,
where μ is the coefficient of dynamic viscosity and ρ is the fluid density. A range
of 20 < Re < 500 is considered in order to capture the two- and three-dimensional
transitions in the flow. For the frame of reference attached to the cylinder centre,
the body rotation can be defined by the ratio of the rotational to the free-stream
velocity. This is given by α =Dω/2U , where positive α has the anticlockwise sense of
rotation (prograde) indicated in figure 1. When α = 1, the body moves in the intuitive
sense of forward rolling. This corresponds to the case of the body and the plane wall
moving at the same relative velocity, at their nearest points, without slipping. The
term ‘retrograde rolling’ will be used to describe the case in which α < 0, and α = −1
corresponds to the case in which the nearest points of the body surface and the wall
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are moving at equal magnitudes but in opposite directions. During this investigation,
attention is given to five discrete values of the rotation rate. These are α = 1, 0.5, 0,
−0.5 and −1.

Values of the lift and drag coefficients, and the Strouhal number, are also reported.
The lift and drag coefficients are calculated from the total force acting on the cylinder
surface and are given by CL = FL/ρU 2R and CD = FD/ρU 2R, respectively. Here, R is
the radius of the cylinder and FL and FD are the lift and drag forces. In the unsteady
wake regimes, the Strouhal number is calculated according to St = fsD/U , where fs

is the frequency of vortex shedding associated with the unsteady wake.
In order to prevent a singularity arising in the numerical simulations from the

collapse of the elements directly underneath the cylinder, it is necessary to impose a
small displacement G between the cylinder and the wall. Throughout this investigation,
the gap ratio, defined as G/D, is set equal to 0.005. The choice of this value, along
with a sensitivity study, shall be discussed in the following sections.

2.1. Numerical scheme

As indicated above, simulations are carried out in the non-rotating frame attached
to the cylinder centre, and all results are presented with the flow moving from left
to right. As the frame of reference is not accelerating, no additional terms need
to be included in the governing equations. Instead, the influence of the moving
frame is effected through modifications to the boundary conditions. For simplicity,
the results are represented in the non-dimensional form, with the relevant variables
normalized by the body diameter and the free-stream velocity. Likewise, the time t is
non-dimensionalized according to τ = tU/D.

The numerical scheme solves the viscous, incompressible Navier–Stokes equations.
These comprise the equations governing momentum transport,

∂u
∂t

= −(u · ∇)u − 1

ρ
∇P +

1

ρ
∇ · μ∇u (2.1)

and continuity,

∇ · u = 0, (2.2)

where u(x, y, z, t)= (u, v, w) is the velocity vector, ρ the fluid density, P the scalar
pressure field and μ the dynamic viscosity.

Equations (2.1) and (2.2) are discretized with the use of a semi-implicit spectral-
element scheme that incorporates time-splitting for the temporal discretization. This
code has previously been used to obtain accurate solutions for the flow around
cylinders (Thompson, Leweke & Williamson 2001b; Ryan, Thompson & Hourigan
2005), spheres (Thompson, Leweke & Provansal 2001a; Thompson et al. 2006) and
rings (Sheard, Thompson & Hourigan 2003). Temporal discretization takes place via
a fractional step method (Chorin 1968). The implementation for the spectral-element
method is given in Karniadakis, Israeli & Orszag (1991).

Dirichlet boundary conditions are used to specify the velocity at the inlet and
transverse boundaries and on the cylinder surface. For α = 0, when the cylinder is not
rotating, a no-slip condition is defined at the body surface. The lower boundary, which
is positioned just below the body, has a specified velocity equal to the free-stream
flow. The upper boundary also has an imposed velocity equal to that of the free
stream, which is acceptable provided this boundary is positioned very far from the
body. The downstream boundary is defined in terms of a von Neumann condition
for the velocity. Three-dimensional computations were performed by using a Fourier
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expansion in the spanwise direction. Further information on the implementation is
given in the references cited above.

2.2. Linear stability analysis

In order to examine the sensitivity of the flow around the cylinder to three-dimensional
perturbations in the spanwise direction, a linear stability analysis is carried out. This
involves solving the linearized Navier–Stokes equations based on a pre-computed
two-dimensional base flow. The approach has been documented in, for example,
Ryan et al. (2005).

This procedure results in a set of equations governing the perturbation field, the
exponential growth or decay of which can then be monitored over time. As the
resulting partial differential equations are linear and have constant coefficients with
respect to the spanwise coordinate z, the functional dependence on this variable can
be expressed as a sum of complex exponential terms of a Fourier expansion, with
each term corresponding to a different spanwise wavelength λ, treated separately.

Linear stability theory then considers solutions of the form

r̂(x, y, t + T ) = r̂(x, y, t) exp σT , (2.3)

where r̂ is a complex amplitude coefficient of any of the spanwise perturbation fields
for the pressure or velocity components and T is a relevant period of time. This form
is useful for either a steady or an unsteady base flow. When a steady base flow is
considered, T represents an arbitrary period over which the growth of the mode is
recorded, and this is typically of the order of one non-dimensional time unit. In such
cases, the stability of the flow is generally referred to in terms of the growth rate σ

of the mode.
In practice, the complex eigenvalue problem does not need to be set up and solved

explicitly. The dominant modes can be found by integrating in time from a white
noise perturbation and extracting the modes and growth rates using an Arnoldi
decomposition as done by Barkley & Henderson (1996).

For a specified λ, the Reynolds number at which the growth rate equals zero is
termed the critical Reynolds number. This indicates the value above which the flow
will become locally unstable to three-dimensional perturbations and below which the
flow will remain two-dimensional. Further details of this method are given in Leontini,
Thompson & Hourigan (2007) and Griffith et al. (2007). Although the method has
been implemented to calculate the first few eigenvalues using a Krylov-based approach
(e.g. Barkley & Henderson 1996), for the results reported in the current paper only
the dominant eigenmode is presented.

2.3. Resolution studies

The mesh used for the two-dimensional study is shown in figure 2, with increased
resolution present in the vicinity of the cylinder and to capture the small-scale
structures in the wake. This increased resolution is maintained for a distance of 30D

downstream of the cylinder. Immediately beneath the cylinder, the domain is spanned
by two macro-elements. This means that typically there are 15 node points (for N =8,
see the discussion below) between the cylinder and the wall. For negative values of
α, the flow remains stable over a range of Re wider than that for α > 0. Resolution
studies were therefore undertaken for the extreme values of the rotation rate, α = −1
and 1, and the Reynolds number, Re = 20, 200 (for α > 0) and 500 (for α < 0). For the
unsteady flow regime, the wake is considered to have reached the converged periodic
solution when the variation in the peak lift is less than 1 % over several cycles (which
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Figure 2. View of the cylinder macro-element mesh with detail of the region near the body.

in the majority of cases was less than 0.1 %). The Strouhal number is then calculated
from the frequency of the fluctuating lift coefficient.

The numerical code was tested to ensure that the solution is insensitive to variations
in the chosen time step Δt . This is indeed found to be the case, and halving the time
step from 0.001 to 0.0005, for the Re and α given above, shows a variation in CL, CD

and St of less than 0.1 %.
The streamwise and transverse boundaries are placed far from the cylinder location

to reduce blockage effects. Three different meshes were used to investigate blockage.
The position of the upstream and downstream boundaries are given by x1 and x2,
respectively, while the position of the transverse boundary is given by y1. All boundary
positions are non-dimensional and are given in terms of the cylinder diameter, D.
The three meshes, C1, C2 and C3, had the dimensions (x1, x2, y1) = (75, 75, 100),
(100, 100, 150) and (150, 150, 200), respectively. The variation in CL, CD and St

between the two finest meshes was at most 0.1 %; hence the intermediate mesh, C2,
was used for the remainder of the study.

When using the spectral-element method, Lagrange interpolants of order N − 1
are used to represent the solution variables during the spatial discretization, where
N is the number of interpolation points in each direction. As part of the resolution
study, the number of the N (×N) internal node points within each macro-element
of the mesh was varied from 6 to 10. The study indicated that for N � 7 the force
and Strouhal number predictions were converged to better than 0.1 %. Therefore,
N = 8 provides stable, converged solutions and is used throughout the remainder of
the simulations. During the stability analysis, the peak growth rate at the critical
Reynolds number was also found to be insensitive to increases in the polynomial
order, with no change in σ as N is increased from 8 to 9.

As mentioned previously, it was necessary to impose a small gap between the body
and the wall to avoid a collapsed mesh element at the wall. The gap was minimized as
far as possible to accurately model the flow around a cylinder positioned in contact
with the wall. Towards this end, seven separate meshes were constructed with gap
ratios ranging from 0.004 to 0.01, with G/D =0.004 being the minimum value as
imposed by the stability of the numerical scheme. Over this range of gap ratios, the
variation of the key parameters at the high- and low-Re limits is tested.

The variations of the lift and drag coefficients at Re = 20 and Re = 50 and 200
are shown in figure 3 and 4, respectively. The lift shows a slight increase as the gap
ratio is reduced for all values of α, and the trend is approximately linear. The drag
coefficient in figure 3 shows a clearly nonlinear relationship and increases according
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Figure 3. Variation in the lift and drag forces with varying gap ratio at Re = 20.
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Figure 4. Variation in the lift and drag forces with varying gap ratio at Re = 200 and 500.

to a power law as G/D → 0. This increase in CD is due to a substantial increase in the
pressure force as the flow through the small gap is suppressed. The drag data are well
approximated by a curve of the form CD = a(G/D)b, where a ≈ 1.2 and b ≈ −0.41.

While there is some variation in the force coefficients for smaller Reynolds numbers
as the gap ratio is reduced (associated with the sensitivity of the pressure beneath
the cylinder to gap size), streamline plots for different G/D show no discernible
difference away from the immediate vicinity of the gap. The predicted flow structures
are assumed to be general, applicable to the zero-gap case, except in the immediate
vicinity of the lowest point on the cylinder. For the unsteady cases, the Strouhal
number was found to vary linearly with the gap ratio. The greatest effect was at the
highest rotation rates. In the worst case, the Strouhal number is still predicted to be
within 2 % of the (extrapolated) zero-gap-ratio value. All simulations from this point
forward are presented with the mesh of gap ratio 0.005.

The topological wake structure from three-dimensional simulations are compared
with the predicted instability modes determined using the linear stability analysis. To
carry out the three-dimensional simulations, the two-dimensional mesh is expanded
in the spanwise direction using 36 Fourier planes, spanning either one wavelength
or four wavelengths of the dominant linear three-dimensional instability mode for
each rotation rate. Mesh C2 is also used for all three-dimensional simulations, and
fifth-order polynomials (N = 6) are employed.
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Figure 5. Flow through the contact region. Streamlines are plotted for irregularly spaced
values of the streamfunction to indicate the location of stagnation points for Re = 50. The
arrows indicate the relative motion of the cylinder and wall, and the position of stagnation
points in the flow are indicated with ‘S’.

3. Results
3.1. Flow in the contact region

To understand fully the flow structures that form around the rolling cylinder, it is
helpful to first examine the flow at the point of near contact between the cylinder and
the wall. For any given α, the flow structures are largely insensitive to small changes
in the gap ratio; however, the flow is heavily dependent on the value of α chosen.
Figure 5 shows streamline plots of the flow in the contact region at representative
values of α. Streamlines are plotted at irregular intervals so as to illustrate better
the regions in which stagnation points are present. As was observed by Bearman &
Zdravkovich (1978) for a cylinder placed near a stationary wall, there exist stagnation
points in the contact regions, the number and location of which depend on the value
of α. It is not possible to detect any movement of these stagnation points at a given
α, either with variations in Re or with the onset of unsteady flow.

Figure 5(a) shows the streamlines present for ‘normal’ (prograde) rolling when α = 1.
Two stagnation points are present, upstream and downstream of the gap. These are
pushed away from the solid boundaries by the entrained fluid layers moving along the
wall and the cylinder surface. On the upstream side of the cylinder, the fluid is being
carried into the contact region by the moving boundaries. The rapid constriction then
causes the flow to change direction, and an outflow jet is formed. The reverse is true
on the downstream side of the cylinder, where the boundary motion transports the
fluid away from the constriction. The flow on the downstream side of the cylinder is
therefore carried into the contact region by a central inflow jet. The stagnation points
are present in the regions of hyperbolic flow, as indicated by the streamlines plotted
in the frame of reference attached to the cylinder centre. At the point of nearest
contact between the cylinder and the wall, the streamlines are almost parallel, and
the flow is from left to right.
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(a) α = 1, Re = 60. (b) α = –1, Re = 300.

Figure 6. Vorticity contours for the steady flow around the cylinder. The streamlines showing
the presence of the two recirculation zones are overlaid in black. The streamlines are shown
in the frame of reference attached to the cylinder centre.

For α = 0 (figure 5b), there exist two stagnation points, as for α = 1, but these are
now positioned on the stationary cylinder surface. The flow is encouraged to pass
through the narrow gap by the relative motion of the moving lower wall. The outflow
of fluid from the gap on the upstream side and the inflow on the downstream side
now take place closer to the cylinder surface rather than in the region equidistant
between the two walls. There also exists a very large shear rate near the cylinder
surface where the fluid velocity goes to zero.

Figure 5(c) shows the representative streamlines for retrograde rotation at α = −1.
In this case, the motion of the cylinder and the wall are opposite in direction at
the point of near contact, creating a single region of hyperbolic flow and a single
stagnation point. In this configuration, the fluid on the upstream side of the cylinder
is pulled into the gap region along the plane wall before undergoing a reversal
and moving away in the direction of cylinder motion. The opposite is true on the
downstream side of the cylinder, with the flow leaving the gap region adjacent to
the plane wall. From these plots, one would intuitively expect the retrograde case of
α = −1 to yield the most stable flows, i.e. resisting shedding as the Reynolds number
is increased, with the possibility of the incoming flow remaining fully attached as it
passes from the upstream wall to the cylinder surface and is then carried downstream
with the motion of the plane wall.

The presence of the single stagnation point for α = −1 yields a flow analogous to
that described by Seddon & Mullin (2006) and which is observed when a continuous
row of cavitation bubbles form in the contact region between the cylinder and the
wall. These bubbles block the bulk flow through the gap, causing a complete reversal
of the flow upstream of the cylinder, and induce a reversed rotation (α < 0).

3.2. Steady flow

The steady flow over steps and wall-mounted obstacles has been the subject of
studies for some time, with recirculation zones frequently observed in the downstream
flow. When the obstacle and the downstream wall have zero relative velocity, the flow
separating from the trailing edge reattaches to the wall, thereby defining the boundary
of a single recirculation zone. In the current investigation, such a reattachment is not
possible, as the downstream wall is moving relative to the cylinder. Results from Arnal
et al. (1991), for the flow behind the square cylinder sliding along a wall, show that
this configuration can lead to the formation of ‘two’ recirculation zones. In the present
study, this was also found to be the case, and the order in which these two recirculation
zones form is dependent on the rotation rate. Examples of the steady flow vorticity
and regions of recirculating fluid for the two extreme rotation rates can be seen in
figure 6, when both the upper and lower recirculation zones are present. The closed
streamlines (shown as black curves) are plotted in the frame of reference attached to
the cylinder and show the location of the upper and lower recirculation zones.
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α 1 0.5 0 −0.5 −1

Reup < 20 <20 <20 70 140
Re low 40 50 70 100 115

Table 1. Reynolds number of formation of the upper and lower recirculation zones. Re is
varied in increments of 5.

When α = 0.5 and 1, the rotation of the cylinder entrains a layer of fluid that opposes
the free-stream flow. This opposing fluid motion results in an upper recirculation zone,
which forms around the cylinder and is displaced away from the wall at its downstream
end. When α =0, there is no imposed velocity on the surface of the cylinder, and
the upper recirculation zone forms from separation and reattachment points on the
cylinder surface. For all rotation rates with α � 0, increasing the Reynolds number
leads to the development of a secondary recirculation zone located between the upper
recirculation zone and the wall.

The flow around the cylinder for negative rotation rates is topologically similar
(except in the vicinity of the cylinder) but is markedly different in the size of the flow
structures from that for α > 0. Because of the sense of rotation of the cylinder when
α < 0, the entrained fluid moving with the cylinder surface displaces the recirculation
zones away from the boundary and downstream of the cylinder. Also at these
rotation rates, the upper recirculation zone is greatly reduced in size, and the lower
recirculation zone forms further upstream towards the cylinder than for α � 0.

The upper recirculation zone is present at all Reynolds numbers considered (down to
Re =20), for α = 0.5 and 1. The steady wake for α =0 (not shown) bears similarities
to that for α = 1, and again, the upper recirculation zone is present at the lowest
Reynolds number considered, Re =20. When retrograde rotation is present, the
streamlines of figure 6 show that the reversal of the flow takes place nearer the
plane wall, and the majority of the vorticity lies in this region. Unlike the other four
values of α studied, the lower recirculation zone forms first for α = −1. With the
cylinder undergoing retrograde rotation, it is possible for the flow to remain fully
attached as it moves with the boundaries. For both α = −0.5 and −1, there are no
closed recirculation zones present at Re = 20. Furthermore, α = −1 provides the most
stable configuration observed, with steady flow predicted at Reynolds numbers over
300.

The effect of the rotation rate appears to be that positive values of α lead to the
displacement of the steady recirculation zone further from the wall, in agreement
with the findings of Cheng & Luo (2007), while the negative rotations result in the
confinement of the vorticity to the region close to the wall. The vorticity forming
over the top of the cylinder is opposite in sign to that generated along the plane wall,
and the stability of the flow is enhanced (against two-dimensional shedding) as the
rotation rate is varied from 1 to −1.

The formation of the closed recirculation zones is determined by a detailed
inspection of the streamlines at each Re. The values of the Reynolds number at
which the upper and lower recirculation zones are first observed are summarized in
table 1. To identify the critical Reynolds number in each case, the simulations are run
with Re increments of 5, and the simulations are started from an unperturbed flow
and are allowed to develop.
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Figure 7. Total lengths of the upper and lower recirculation zones.
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Figure 8. Coefficients of drag and lift for varying Re and α in the steady regime.

3.3. Recirculation lengths

The position and length of the closed recirculation regions vary with the Reynolds
number of the flow. The start and end positions of these zones are measured as the
upstream- and downstream-most points of the limiting streamline. Accordingly, for
α > 0, the start of the upper recirculation zone is upstream of the cylinder, while for
α = 0, it lies on the downstream cylinder surface, and for α < 0, it is located in the
wake. The lower recirculation zone terminates at a hyperbolic point in the flow. The
overall length of the recirculation zones are shown, for all five rotation rates, in figure 7.
The non-dimensional lengths of the two regions are given by X∗ = x/D, where x is
the streamwise coordinate measured from the cylinder centre.

For both the upper and lower recirculation zones, the overall length increases
linearly with Re, following an initial period of nonlinear growth at Re just above
formation. Such a linear increase in the recirculation length with the Reynolds number
is similar to that observed for the recirculation zone behind a cylinder in unbounded
flow (Taneda 1956; Kawaguti 1966; Tamaki & Keller 1969; Dennis & Chang 1970;
Fornberg 1985).

3.4. Steady lift and drag trends

Trends in the lift and drag coefficients have been plotted in figure 8, for the steady
flow regime. Although the forces on the cylinder show some sensitivity to the gap
ratio, the resolution study described in § 2.3 indicates that the trends shown with
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Figure 9. Change in CL and CD with varying α and fixed Re. Increasing the Reynolds
number causes a dramatic decrease in CD , while the overall trends for CL and CD remain
largely unchanged.

increasing Re are expected to hold for G/D �= 0.005 when the cylinder is very close
to the wall. The coefficient of drag in figure 8 has a log–log relationship that is
inversely proportional to Re. Furthermore, the drag coefficient decreases slightly with
decreasing α but is only weakly dependent on the rotation rate. For clarity, only the
values of α = −1, 0 and 1 have been plotted for CD , with the other rotation rates
lying between these curves.

In the case of the non-rotating cylinder away from the wall, Henderson (1997)
found that at Re = 40, CD ≈ 1.55. This is in contrast with the present results for the
cylinder sliding along the wall (with α = 0), for which the drag coefficient is over
three times this value at CD = 5.93. The results of Mittal & Kumar (2003) for the
rotating cylinder in an unbounded flow at Re =200 found the values of the mean drag
coefficient C̄D to be approximately 1.05 and 1.27 for α = ±1 and ±0.5, respectively.
When these values are compared with the present cases in which the cylinder motion
assists the fluid flow over the surface (α = −1 and α = −0.5), the present values of
1.43 and 1.69 again show an increase. These comparisons indicate that while the
wall may delay the onset of unsteady flow, the mean drag force experienced by the
cylinder increases following the introduction of a nearby wall. This effect becomes
pronounced as α varies from −1 to 1.

The effect of changing the rotation rate has a much greater influence on the lift
than on the drag, especially when α < 0.5. The lift force in figure 8 decreases with
increasing Re, and when plotted on log–log axes, the data curves are not as clearly
linear as for CD . When α = 0.5 and 1, CL appears less affected by the varying rotation,
and the change in CL with Re is much closer to a log–log relationship. Unlike the
drag force, CL is observed to increase as α varies from 1 to −1.

The effect of varying the rotation rate in the present study can be seen more clearly
in the lift and drag plots of figure 9. As α is varied from −1 to 1, the change in the
steady-state lift and drag coefficients is shown at two different Reynolds numbers. At
Re =20 (figure 9a), the drag force dominates for all α and is approximately two to five
times the magnitude of the lift, depending on the value of α. At Re = 80 (figure 9b),
this situation changes, and the lift and drag are of similar magnitude. Furthermore,
as the rotation rate is varied from −1 to 1, the forces on the cylinder change from
being lift dominated to being drag dominated. For all values of α and Re, the lift
force is directed away from the wall. As the Reynolds number is increased beyond
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Figure 10. Magnitude of the pressure and viscous components of the (a) drag and (b) lift
coefficients for Re = 20 (solid lines) and 80 (dashed lines).

Re = 80, the flow becomes time dependent for certain values of α, and therefore a
direct comparison of the steady flow CL and CD cannot be made at higher Re.

The results of figure 9(b) show a trend in the lift and drag coefficients that is very
similar to those observed by Cheng & Luo (2007), who investigated the flow around
a rotating cylinder near a stationary wall at Re = 200. They found that at the smallest
gap ratios studied (0.2 < G/D < 0.3), the flow was steady for all rotation rates. As for
the present study at Re =80, the system studied by Cheng & Luo (2007) underwent
a transition from lift to drag dominated at α ≈ −0.5.

The viscous and pressure components of the lift and drag are shown in figure 10 for
Re = 20 and 80. The viscous component of the drag is dominated by the very large
velocity gradients at the cylinder surface near the gap region and varies linearly from
positive values at α = −1 to negative values at α = 1. When the cylinder is undergoing
prograde rolling (α > 0), the velocity gradients in this region are negative, resulting in
a negative viscous drag. A decrease in the viscous drag is offset by an increase in the
pressure drag as α varies from −1 to 1. The result is that the total drag force is only
slightly affected by varying the rotation rate, while the magnitudes of the pressure
and viscous components decrease with increasing Re.

Relative contributions of the pressure and viscous forces on the lift remain almost
constant for a given α and increasing Re throughout the steady regime. Figure 10
shows the relative contributions at Re = 20 and 80. In both cases, the viscous
component of the lift remains fairly constant with changing α, while the pressure
force provides the dominant contribution to the lift force and decreases as α varies
from −1 to 1. A slight increase in CLp is observed for 0.5 <α < 1, with α = 1 having
a higher value of CLp . This increase in the pressure component results in the total lift
coefficient being almost equal for α = 0.5 and 1. This is in contrast with the results
of Cheng & Luo (2007), who found CL to decrease steadily with the rotation rate for
Re = 200. This may be due to the larger gap ratios employed in their study and/or
the fact that the plane wall was stationary.

The drag coefficient is dominated by the pressure force for all α �= −1. The
current observations of the lift force being dominated by the pressure and switching
of dominance between the pressure and viscous drag are in agreement with the
observations by Kang et al. (1999), Tang & Ingham (1991) and Mittal & Kumar
(2003) for the rotating cylinder in a free stream. However, in this instance the
contribution of CLv to the total lift is far more significant than for those cases in
which the wall is not present.
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Figure 11. Contours of constant pressure around the cylinder at Re = 20 and various
rotation rates. The regions of negative pressure are enclosed with the dashed lines.

The large change in the drag coefficient and the relative invariance of the lift
coefficient with the Reynolds number are presumably due to the significant change in
size of the wake region, leading to a change in the base pressure, and the modification
of the boundary layer width at the top of the cylinder, both of which will primarily
affect the drag coefficient.

The dominant pressure forces in the system occur in the gap region beneath the
cylinder. A positive peak in the pressure develops upstream of the gap where there is
strong converging flow, and a negative pressure develops downstream in the diverging
region. The magnitude of these pressures increases greatly for the cylinder undergoing
positive rotation. The magnitude of the pressure forces are greater at lower Reynolds
numbers, and as Re increases in the steady regime, the magnitude of these pressures
steadily decreases for all α.

Figure 11 shows the contours of constant pressure in the region of the cylinder for
the steady flow regime. Results are shown for representative values of α, with negative
pressures enclosed by the dashed lines. Varying the rotation rate from forward to
reversed rolling causes a region of low pressure to move from the rear of the cylinder
towards the top of the body, away from the wall. For α = −1 (figure 11c), the region
of negative pressure is concentrated near the top of the cylinder, resulting in an
increase in the total lift force. However, it can be seen that the low pressures on the
cylinder surface still extend around the downstream side of the cylinder and into the
gap region.

4. Unsteady flow
4.1. Critical Re of transition

The critical Reynolds numbers at which the two-dimensional simulations first become
unsteady are given in figure 12 and table 2. It has previously been found that the
presence of the wall is able to suppress unsteady flow as the gap ratio is reduced, and
the critical Reynolds number of transition may be extended well beyond that for a
cylinder in a free stream (Arnal et al. 1991; Cheng & Luo 2007; Nishino et al. 2007).
In the present study, for α = 0, the critical Reynolds number is found to be Re ≈ 160.
This is 3.5 times greater than the value of Re observed for a cylinder in unbounded
flow.

From the results of Cheng & Luo (2007), it was found that for the rotating cylinder
near the stationary wall, the flow is steady for all −1 <α < 1 at gap ratios of 0.2–0.3
and Re = 200. As the gap ratio in the present study is well below these values, and
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α 1 0.5 0 −0.5 −1

Rec 35.6 48.2 70.8 112 182
λc/D 8.5 6.9 5.4 3.6 2.2

Rec2d 90 115 160 245 425

Table 2. Critical wavelength and Reynolds number at which the three-dimensional mode first
develops. Also shown are the transition Reynolds numbers for two-dimensional steady to
two-dimensional unsteady flow.
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Steady three-dimensional
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Figure 12. Transition map showing the critical Reynolds numbers for two-dimensional
steady → two-dimensional unsteady, two-dimensional steady → three-dimensional steady
and three-dimensional steady → three-dimensional unsteady transitions. Details are provided
in the text.

the transition to unsteady flow occurs at Re < 200 for several values of α, the results
indicate that the relative motion of the plane wall has a significant destabilizing
effect on the flow when compared with the cylinder positioned near a stationary
wall.

4.2. Flow structures

When the flow becomes time dependent, vortex shedding takes place in the cylinder
wake. The shear-layer vorticity that forms over the top of the cylinder rolls up into
a strong, compact vortical structure. This in turn destabilizes the wall shear layer as
described in the studies of Sengupta et al. (2003) and Lim et al. (2004). The current
flow satisfies the criteria laid out by Lim et al. (2004) for unsteady flow to occur,
namely that the shed vortex is moving significantly slower than the free stream and
that the vorticity in the wall shear layer and the shed vortex are of opposite sign.

The destabilized wall shear layer rolls up and forms a counter-rotating vortex pair
with the shed vortex. A similar phenomenon has been observed by Arnal et al. (1991),
in the wake behind a square cylinder in contact with and translating along a plane
wall. The movement of the shed vortices in the present study is shown in figure 13,
at Re =200 and α = 0, over a typical shedding cycle. The unequal strength of the two
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Figure 13. Vorticity contours for the cylinder with α = 0 at Re = 200 over a single shedding
cycle. Negative vorticity forming over the top of the cylinder is shown by the black contours,
and positive vorticity near the wall is shown in grey. Time increases from top to bottom in
steps of one quarter of a period.

vortices results in a net clockwise rotation of the weaker vortex around the strongest
vortex as they propel away from the wall. Following this series of images in figure 13,
the shedding sequence repeats from the top.

Figure 14 shows a comparison of the vortex shedding for various cylinder rotation
rates. All images are shown at the moment of maximum lift in the shedding cycle.
The plots on the left give the vorticity contours at Re = 200 for the values of α � 0.
From this, it is apparent that increasing the rotation rate from 0 to 1 decreases the
formation length of the flow and increases the circulation of the vortices, causing
the vortex pair to migrate further from the wall. There is also an associated drop in
the shedding frequency, which will be discussed in more detail later. At Re = 200, the
simulations with negative rotation rates exhibit steady flow. It is therefore necessary
to consider higher-Reynolds-number flows when α < 0. The plots on the right show
the unsteady flows for α � 0 when Re = 450. At this higher Re, the flow for α = 0 now
closely resembles the flow with α = 1 from figure 14. Increasing the Reynolds number
therefore has a similar effect on the flow as increasing the rotation rate. The wake
for α = −1 is markedly different from the other cases, as the frequency of shedding
is much higher, and the weak vortex pairs remain adjacent to the wall as they move
downstream. This is presumably related to the fact that for α = −1, the velocity at
the top of the cylinder matches the free-stream velocity. While there will still be some
speed-up of the flow as it passes over the cylinder, the rate at which vorticity is shed
into the wake will be greatly reduced.
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(a) α = 0, Re = 200 (d) α = 0, Re = 450

(b) α = 0.5, Re = 200 (e) α = –0.5, Re = 450

(c) α = 1, Re = 200 (f) α = –1, Re = 450

Figure 14. Vorticity contours for unsteady shedding for a selection of rotation rates. The left
column shows the results for Re = 200 and the right column for Re = 450. The contours of
vorticity are as in figure 13.

4.3. Comparison with experiments

In addition to numerical simulations, experiments were also performed as part of this
research programme. The experimental rig has been fully described in Stewart et al.
(2008, forthcoming) in a study on the flow past a sphere, and in order to save space
and because it is not the main focus of the present study, it will not be described here,
except to mention a few salient features. The experiment required a moving floor.
This was implemented using a driven, tensioned flexible belt passing over rollers at
each end of the working section. Upstream of the moving floor, the boundary layer
was removed by suction, allowing a uniform flow on to the motor-driven cylinder.
Flow visualization was performed using careful upstream injection of fluorescein dye
and an argon ion laser to produce a narrow light sheet. Unfortunately, because of
the constraints of the Reynolds number range and the requirement for the cylinder
diameter to be large enough to provide clear and consistent visualizations, the aspect
ratio of the cylinder was only 13.3. This is certainly too small to avoid considerable end
effects; however, it was possible to capture some visualizations during the transient
time interval prior to the propagation of the contaminating end flow structures
towards the central region of the cylinder. Thus the experimental results should only
be considered as qualitative, but they still provide a useful comparison with the
numerical flow predictions.

Figure 15 shows two comparisons for the steady regimes. The dye visualizations
are overlaid with numerically predicted streamlines, which match the observed dye
structures reasonably well. Figure 16 shows two comparisons for the unsteady flow.
In this case, numerical vorticity fields are used to provide the comparison. Again,
the different sets of results show a good match, with the positions and sizes of the
near-wake structures in good agreement. It is perhaps surprising that the comparison
is so good, given the stability analysis below indicates that the wake undergoes
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(a) (b)

Figure 15. A comparison of the streamlines from the numerical simulations with dye
visualizations for the steady regime: (a) Re = 100, α = −0.5; (b) Re = 250, α = −1.

(a) (b)

Figure 16. A comparison of dye visualizations with numerically predicted vorticity fields for
the unsteady regime: (a) Re = 100, α =1; (b) Re = 450 (experiments) and Re = 400 (numerics)
for α = −1.

three-dimensional transition well prior to transition to two-dimensional shedding. An
interpretation is that the development of three-dimensionality in the flow does not
strongly affect the nature of the two-dimensional shedding. In turn, this provides
more relevance to the two-dimensional results presented in this section. However,
having said this, as indicated above the experimental results show only transient
behaviour prior to significant contamination, as the flow cells at the ends of the span
grow towards the centre of the cylinder and disrupt the flow there. It is possible
that two-dimensional shedding develops faster than the three-dimensional instability
and that the contamination by the end cells prevents a different fully saturated
three-dimensional time-dependent flow from being seen.

4.4. St-Re relationship

In the unsteady regime, the frequency of vortex shedding was measured for each
value of α, and the results are shown in figure 17. The Strouhal number increases
steadily as α varies from 1 to −1. For all rotation rates apart from α = −1, St is
lower than for the non-rotating cylinder in an unbounded flow. This is in agreement
with the findings of Arnal et al. (1991) for the square cylinder sliding along a wall.
Arnal et al. (1991) also found that St remains fairly constant with changes in Re,
and a value of St ≈ 0.08 was recorded. This is slightly lower than the present value
of St ≈ 0.1 for the circular cylinder with α = 0.

The Strouhal number for α = −0.5 shows a slight initial decrease with Re. However,
this is small in comparison with the variation in St for α = −1. In contrast with all
the other rotation rates, the shedding frequency for α = −1 undergoes a smooth and
steady decrease with increasing Re, until an apparent flattening off as Re → 500.
The reason for this difference in the flow is not immediately apparent; it may be due
to the greatly reduced vorticity generation at the top of the cylinder in this case, as
discussed above. The relative insensitivity of St to Re for a given α (excepting α = −1)
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Figure 17. Strouhal number plots for all values of α. The trends remain fairly constant over
the range of Re considered, except for α = −1, where St shows a rapid and steady decrease
for 425 <Re < 475.
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Figure 18. Time histories of the unsteady lift and drag coefficients at representative values
of the rotation rate.

is in keeping with the results for unsteady flow behind the cylinder near a stationary
wall (Arnal et al. 1991; Lei et al. 1999, 2000; Huang & Sung 2007).

4.5. Unsteady lift and drag trends

In the unsteady regime, the force-time histories of the lift and drag forces are given in
figure 18. These are shown for the upper Reynolds number limit of the flow studied
at representative values of α =1, 0 and −1. Figures 18(a)–18(c) indicate that the
magnitude of fluctuation of the body forces decreases as the rotation rate is varied
from forward to reversed rolling, along with the associated increase in shedding
frequency mentioned previously.

The perfectly periodic nature of the vortex shedding for the unsteady regime can be
characterized by the mean values of the lift and drag, as shown in figures 19 and 20.
For α = 1, 0.5 and 0, C̄D and C̄L show a smooth variation. The mean drag coefficient
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Figure 20. Mean values of the lift coefficient for the unsteady regime.

changes greatly with α but has only a weak dependence on Re, with a slight decrease
observed as Re increases. The overall value of the drag decreases as α varies from
1 to −1. Meanwhile, the lift steadily decreases for α = 1 but is almost constant for
α = 0.5 and 0. For the negative rotation rates, the lift coefficient is nearly constant
but with some variation for Re near the initial onset of unsteady flow. As was the
case for the steady flow, the magnitude of C̄L increases as α goes from 1 to −1, with
the greatest increases when α < 0.5.

4.6. Linear stability analysis

Following the two-dimensional simulations described above, a linear stability analysis
was conducted to investigate the stability of the two-dimensional flows to three-
dimensional perturbations. The stability of three-dimensional modes was monitored
with respect to an associated spanwise wavelength, λ, and the growth rate, σ , recorded.
A growth rate greater than zero indicates that the mode will continue to grow over
time. For increasing Re, the wavelength at which the growth rate first reaches zero is
referred to as the critical wavelength λc.

For each of the five values of α investigated, a three-dimensional mode appears at a
Reynolds number below the onset of unsteadiness predicted from the two-dimensional
simulations. The critical Reynolds number, Rec, and wavelength as predicted from the
linear stability analysis are given in table 2 and also in figure 12 for each value of α.
In each instance, the value of Rec is less than half of the Reynolds number predicted
for the development of time-dependent flow in the two-dimensional simulations.
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Figure 21. Curves of neutral stability for which σ = 0, indicating the transition to
three-dimensional flow.

The three-dimensional mode occurring in the wake of the rolling and sliding cylinder
is markedly different from the three-dimensional instabilities occurring behind the
cylinder in unbounded flow. For the isolated cylinder, the wake undergoes a Hopf
bifurcation while it is still two-dimensional, and the three-dimensional flow develops
on the resulting unsteady base flow. In the present study, three-dimensional transition
occurs before the two-dimensional flow becomes unsteady, and the critical wavelength
varies greatly with α. The large range of λc, from 2.2D to 8.5D, indicates that the
three-dimensional mode does not scale directly on the fixed physical geometry scale
(although presumably it must on the wake geometry).

The fact that the present instability arises on the steady base flow appears more
closely associated with a seemingly similar absolute instability in the wake behind
a backward-facing step, as reported in the studies by Barkley, Gomes & Henderson
(2002) and Beaudoin et al. (2004). In their investigation, Barkley et al. (2002) found
that a backward-facing step with an expansion ratio of 2 undergoes a steady three-
dimensional bifurcation at Re = 748 (based on the step height H ) with a wavelength
of approximately 7H . In their configuration, the downstream wall is stationary with
respect to the step, and the wavelength of the instability is directly linked to the
length of the recirculation zone. In the study by Beaudoin et al. (2004), the critical
wavelength varies from 4.5H to 7H and is dependent, to a certain degree, on the
expansion ratio of the channel. A connection between λc and the primary recirculation
zone is also a possibility in the present study and will be discussed further in § 4.8.

For each value of α, the dominant three-dimensional mode is time invariant, and
the numerical code returns converged (to within 0.1 %), real values of the multiplier,
μ = σT . From these, and knowing the sampling rate T , the growth rate, σ , is calculated.
The values of λ for which σ = 0 therefore describe the boundaries between the two-
and the three-dimensional flow with varying Re. These are often termed contours of
neutral stability, and they are plotted for each α in figure 21. For Reynolds numbers to
the left of these contours, the flow is steady and two-dimensional, while immediately
to right of the curves the flow is steady and three-dimensional. The values of λc and
Rec correspond to the leftmost point on each curve.

From the stability analysis, it is possible to plot the fields of perturbation vorticity
acting on the two-dimensional, steady base flow. Regions of the flow with a high
perturbation vorticity may serve as an indication of the areas in which the instability
first develops. Figure 22 shows the contours of streamwise perturbation vorticity at
representative values of α. The spanwise vorticity of the two-dimensional base flow
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Figure 22. Shaded greyscale contour plots of the streamwise perturbation vorticity for various
Re-α combinations. The figures to the left are overlaid with the contours of the base flow
vorticity, while the figures on the right are overlaid with the streamlines of the base flow. The
streamfunction levels have been selected to give an indication of the regions of recirculating
flow.

and the streamlines of the flow have also been shown to indicate the structure present
in the base flow.

For α � 0, the strongest regions of perturbation vorticity lie on the surface of the
cylinder, near the top on the downstream side and on the moving wall just downstream
of the cylinder. This configuration has similarities to those reported by Barkley et al.
(2002) for the backward-facing step, where it was found that the regions of strongest
instability (and those with the largest spanwise velocity) occurred on the downstream
face of the step and near the reattachment point of the primary recirculation zone. In
the present case, there is no concentration of streamwise vorticity at the downstream
ends of the upper or lower recirculation zones (the lower recirculation zone was small
but present in each of the cases shown in figure 22). Instead, the perturbation vorticity
in the wake tends to lie within the limits of the recirculation zones.

The images to the left in figure 22 show areas of streamwise perturbation vorticity
associated with the upper region of base flow vorticity. However, it is only for the cases
of α < 0 that the strength of the vorticity in these regions dominates the perturbation
field. In figure 22(c), there remain regions of vorticity on the surface of the cylinder,
but these have reduced in both size and magnitude. This is a logical consequence
of the reversed rotation of the cylinder, in which the shear at the surface has been
significantly reduced.

The perturbation fields obtained from the stability analysis can also be reconstructed
as three-dimensional fields, and these are plotted in figure 23. This provides a
clearer image of the structure of the perturbation mode and how the sign of
vorticity alternates in the spanwise direction. Three-dimensional surface plots of
vorticity, illustrating the modes reported in figures 22(a)–22(c), are given in figure 23
over one wavelength of the span. Surfaces of streamwise vorticity are all shown
at approximately one quarter of the maximum/minimum. The vortical structures
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α = 1, Re = 40, λ = 9D.

α = 0, Re = 75, λ = 5D.

α = –1, Re = 200, λ = 2.2D.

(a)

(b)

(c)

Figure 23. Three-dimensional reconstruction of the predicted perturbation mode.
Isosurfaces show the streamwise perturbation vorticity.

represent the shape of the dominant linear perturbation mode to the flow. As such, it
will not accurately reflect the form of the streamwise vorticity in the fully developed
(saturated) three-dimensional flow. After the mode first develops from the initial
noise, nonlinearities develop and cause the mode to saturate, thereby resulting in a
change to the structure.

As described above for the two-dimensional fields of perturbation vorticity, figure 23
shows the presence of three-dimensional regions of vorticity on the cylinder surface
and the downstream wall. The vorticity in the wake takes the form of an opposite-
signed pair of flattened streamwise vortices that extend downstream. This is similar
to the three-dimensional wake behind the backward-facing step, which is described
by Barkley et al. (2002) as a series of ‘flat rolls’. In the present study, these ‘flat rolls’
are displaced further from the wall by the relative motion of the wall and the lower
recirculation zone. There also exist smaller regions of opposite sign vorticity that lie
near the back of the body, away from the wall. These small regions of vorticity are
present for α > 0 but have almost disappeared when α = −1. This suggests that their
formation is linked to the size and strength of the vorticity forming on the top surface
of the cylinder.

As was the case for the spanwise vorticity observed in the two-dimensional
simulations, the placement of the streamwise vortices moves closer to the wall as
α varies from 1 to −1. Furthermore, the spanwise length of the structure narrows
until, for α = −1, the width of each of the streamwise vortices is close to one diameter.
In the case of α = −1, the perturbation mode looks less like the ‘flat rolls’ described
by Barkley et al. (2002) for flow behind the backward-facing step (the form of which
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Perturbation mode depicted by transverse vorticity from linear stability analysis (left) and the converged steady 
field from three-dimensional simulations (right) for Re = 37 and α = 1.

Same as above except for Re = 75 and α = 0.

Same as above except for Re = 190 and α = –1.

(a)

(b)

(c)

Figure 24. Comparison between isosurfaces of transverse vorticity from linear analysis and
for the fully saturated flow from the three-dimensional simulations. The images on the left
show the predicted perturbation mode for the same values of Re and λ as in figure 23.
The images on the right show the fully developed wake mode from the three-dimensional
simulations, taken over a spanwise distance of 4λ at the Reynolds numbers and rotation rates
indicated.

can be seen in figures 23a and 23b) and more closely resemble Görtler vortices, which
form elongated streamwise structures.

4.7. Three-dimensional simulations

Direct three-dimensional simulations are used to investigate how the linear modes are
modified as the three-dimensional wake develops and saturates. The spanwise domain
is set equal to four times the dominant wavelength of the linear instability mode, with
36 Fourier planes used to capture the spanwise variation.

Figure 24 shows the resulting isosurface plots of the transverse vorticity, directed
normal to the wall. The images on the left-hand side of figure 24 correspond to the
perturbation modes of figure 23, but here, the transverse vorticity has been plotted
instead to provide additional information about the structure of the fully developed
wake. These isosurfaces are again plotted at one quarter of the maximum/minimum
levels and reflect the swirling motion of the fluid in a plane parallel to the moving
wall. The three-dimensional simulations show a distance of 4λ in the spanwise
direction. Note that the transverse vorticity is zero for the two-dimensional flow.
These results provide a qualitative comparison between the predicted and observed
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(a)

(b)

y

x
z

Figure 25. Isosurface plots of spanwise vorticity (ωz = ±0.5) from a three-dimensional
simulation at Re =40 and α = 1: (a) perspective view; (b) side view showing the projected
extent of the waviness.

vortical structures in the wake, showing that a very good agreement exists between
the two. This indicates that the fully saturated instability mode is in fact only slightly
modified from the predicted linear mode. This is somewhat of a reflection that
the transition is supercritical and that the Reynolds number is close to the critical
value.

Perhaps an important point is that the transition to three-dimensional flow does
not strongly change the underlying two-dimensional structure of the wake. For
example, figure 25 shows isosurfaces of ‘spanwise’ vorticity for Re = 40 and α = 1
from three-dimensional simulations. This shows that the development of wake three-
dimensionality only causes the otherwise two-dimensional vorticity isosurfaces to
become wavy. The minimal distortion from the two-dimensional state is highlighted
by the right-hand-side image, which shows an end-on view of the same isosurfaces.

An interesting observation is that the three-dimensional simulations only displayed
a converged, steady three-dimensional flow for a small range of Reynolds numbers
above the predicted transition (within approximately 5 % of Rec). Beyond this range
of Re, after the initial development of the three-dimensional mode, the spanwise
velocity in the wake showed a small magnitude oscillation that grew slowly over
time. For example, for both α = 1 and −1, unsteadiness is present in the wake for
Re = 40 and 200, respectively, only slightly above the critical values of Rec = 35.6
and 182. However, this unsteadiness is of such a low magnitude that it does not
reflect any marked change to the wake structure with time. From the results of
the three-dimensional simulations, it therefore appears that at Reynolds numbers
only slightly in excess of the critical values, the development and initial saturation of
steady three-dimensional flow causes a further subsequent transition to unsteady flow.
This is unrelated to the steady-to-unsteady transition for the numerically imposed
two-dimensional flow, which occurs at considerably higher Reynolds numbers.

4.8. The transition mechanism

The mechanism responsible for the transition to three-dimensional steady flow is
not immediately apparent. Given that the three-dimensional flow bears similarities
to the wake reported behind the backward-facing step, this was used as a starting
point for identifying the mechanism. Some debate remains regarding the transition
mechanism for the backward-facing step flow; however, evidence suggests some type
of centrifugal instability. One explanation is put forward by Ghia, Osswald & Ghia
(1989) who proposed that Taylor–Görtler vortices form as the result of the concave
shear layer passing over the top of the step, between the upper and lower recirculation
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zones. Barkley et al. (2002) discounted this theory, stating that they found the region
of concave flow to remain linearly stable over a large range of Re and that the
instability does not take the form of streamwise vortices in the main flow, as would
be expected, but is linked to the primary recirculation zone behind the step.

A connection between the three-dimensional instability and the location of the
lower recirculation zone is noted in the present study. Even for the case of α = −1
(figure 23c), when the streamwise vortices are less flattened, the structures are
confined to the regions of recirculating fluid. From their stability analysis of the
backward-facing step, Barkley et al. (2002) believed the mechanism of transition to
be centrifugal in nature, and they associated it with the closed streamlines in the
primary recirculation zone. A method similar to that used by Barkley et al. (2002)
has therefore been employed to analyse the steady two-dimensional recirculating flow
for possible regions of instability.

At this point, it is worth mentioning that the onset of the three-dimensional flow, as
predicted by the stability analysis, occurs very close to the Reynolds number at which
the lower recirculation zone is first observed in the two-dimensional simulations for
α = 1, 0.5 and 0. It is therefore possible that the formation of this recirculation zone
plays a part in the onset of three-dimensional flow. For this reason, both the upper
and lower recirculation zones are tested for regions of centrifugal instability.

The basic premise for centrifugal instability is Rayleigh’s criterion (as outlined
in Drazin & Reid 1981), and this was generalized by Bayly (1988) for the case
of inviscid flow with convex closed streamlines. Bayly (1988) stated that regions of
possible centrifugal instability arise when the streamlines are closed (as in a zone of
recirculating fluid) and that the circulation decreases outwards in some portion of the
flow. This condition is satisfied in the flow behind a blockage or backward-facing step
(Barkley et al. 2002; Griffith et al. 2007), when the presence of the stationary walls
reduces the velocity of the nearby flow to such an extent that the overall circulation is
reduced. For the backward-facing step, Barkley et al. (2002) found these conditions to
be satisfied on the wall immediately downstream of the step and at the reattachment
point of the limiting streamline representing the primary recirculation zone.

Given the above requirements for centrifugal instability, and the fact that the
circulation Γ is defined as the integral of u · d l (where u is the velocity and d l an
incremental length) around one circuit of the streamline, it is possible within the
numerical code to calculate a value of Γ for a series of streamlines within each
recirculation zone. The above process was carried out for both recirculation zones at
α = 1, Re = 50, α = 0, Re =75 and α = −1, Re = 300 on the two-dimensional flow. For
all these α-Re pairs, the flow is three-dimensional, and both recirculation zones are
fully formed. However, no evidence of outwardly decreasing circulation was found
in any of the above cases. This does not eliminate the possibility of a centrifugal
instability in the flow but suggests that if one is present, it does not originate within
the highly elliptical recirculation zones. With consideration, the lack of a decrease in
circulation can be clearly accounted for by the presence of the moving wall. In the
present study, where the frame of reference is attached to the cylinder centre, there
are no stationary boundaries (except for the cylinder surface when α = 0) to cause a
decrease in the velocity of the flow. Rather, the motion of the recirculating fluid in
each case is accelerated by the moving boundaries, causing an increase in u and Γ .

Given the recent work by Griffith et al. (2007), it is possible that the physical
mechanism mainly responsible for the transition is an elliptic instability of the
recirculation zone. This instability occurs in flows with elliptic streamlines such
as the flow associated with a vortex in an external strain field. The interaction of the



252 B. E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan

(a) (b)

Figure 26. (a) Spanwise perturbation vorticity for α = 1, Re = 40. The streamlines are overlaid.
The dashed line corresponds to ω = −0.2D/U , indicating the position of the upper attached
vortex. (b) Contours of inviscid growth rate assuming local elliptic instability. Again, the
streamlines are overlaid to show the location of the recirculation zone.

strain with the normally neutral perturbation modes of the vortex leads to resonant
amplification, resulting in three-dimensional deformation of the vortex core. The
general theory can be found in Kerswell (2002). Support for this point of view is
provided by figure 26. Figure 26(a) shows the spanwise perturbation vorticity for
α = 1 and Re = 40 (one of the cases considered in figure 22). The streamlines are
overlaid. These indicate that the zero contour passes almost through the centre of
the recirculation with the instability lobes on either side. This is also observed for
the other rotation rates. Interestingly, the lobes are contained within the attached
clockwise vortical region as would be expected for an elliptic instability. For an
idealized elliptic instability the alignment is at 45◦ to the ellipse axes, and the
instability is contained within the vortex; however, the situation here is somewhat
distant from the idealized case, which would allow a rigorous analytic treatment. In
that case the inviscid growth rate is approximately given by

σi =
9ε

16
(1 − βm)n,

where ε is the strain rate and m and n are constants given by m = 2.811 and n= 0.3914
(see Landman & Saffman 1987; Leweke & Williamson 1998). Here, β =2ε/ω, which
is constant for the idealized case, with ω the spanwise vorticity. If these relationships
are assumed to apply locally, an inviscid growth rate can be determined as a function
of space. This is shown in figure 26(b). A considerable part of the recirculation
zone shows a positive growth rate, including near the centre of the recirculation.
This provides support for the hypothesis that the essential mechanism supporting
the growth of the three-dimensional mode is elliptic. For finite-sized vortices, the
preferred spanwise wavelength depends on the core size. For a strained Gaussian
vortex, Le Dizes & Laporte (2002) showed that this spanwise wavelength is given by
λ/a = 2.78, where a is the Gaussian length scale. For a highly strained elliptical vortex
the appropriate length scale can be extracted from the axis lengths of the ellipse and
is given by a2 = (a2

M + a2
m)/2, where aM and am are the semi-major and semi-minor

axis lengths, respectively (Le Dizes & Verga 2002).
For the cases shown in figure 22 the spanwise vorticity perturbation field is restricted

to the vortical region. The vertical sizes of the upper vortical regions are very
approximately 2.2D, 1.5D and 0.75D, for α = 1, 0 and −1, respectively. This is
just the vertical distance between the dashed contours in figure 22. In each case,
the ratio of the axis lengths of the elliptical streamlines close to the centre of the
recirculation zone is close to 5:1. Given that in the slightly strained case, the diameter
of the region delimited by the approximately circular zero-amplitude contour for the
perturbation field is about 1.7a, these numbers suggest the preferred wavelengths for
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the three cases of approximately 13D, 8.8D and 4.4D. These are about 50 % greater
than the observed preferred wavelengths at these Reynolds numbers of 9D, 6D and
2.8D; however, given the assumptions and approximations involved, this is perhaps
a surprisingly good match.

For a flow through constricted channels showing similar spanwise perturbation
vorticity and inviscid growth rate distributions, Griffith et al. (2007) showed that the
onset of the instability is consistent with the elliptic mechanism given the observed
preferred wavelengths; i.e. the viscous damping and inviscid elliptic growth balance
at approximately the correct transition Reynolds numbers. Perhaps it is also of
note that for that case it was shown that the centrifugal mechanism does not
provide positive growth rates, and in any case for a centrifugal instability the most
unstable wavelengths are far from those predicted from instability analysis and three-
dimensional simulations. Thus, it appears that the elliptic mechanism is much more
likely to be a contributor to the three-dimensional transition for this flow.

5. Conclusions
The numerical simulations have shown that in the small gap region present between

the cylinder and the wall, the flow experiences a strong reversal in direction on both
the upstream and the downstream side of the cylinder. The flow in this near-contact
region is characterized by either one or two stagnation points, and the location and
number of these points depends on the rotation rate of the cylinder. In the steady
flow regime, two recirculation zones are observed in the wake behind the cylinder, and
these grow linearly with Re, as is reported for the steady wake behind a cylinder in
an unbounded flow (Taneda 1956; Kawaguti 1966; Tamaki & Keller 1969; Dennis &
Chang 1970).

When the Reynolds number is increased in the steady regime, the lift and drag
forces on the cylinder both decrease. For α > 0, the drag dominates the system, while
negative rotation rates vary from being drag dominated to being lift dominated with
increasing Re in the steady flow regime. This trend was similar to that observed by
Cheng & Luo (2007) for the rotating cylinder near a stationary wall.

Larger magnitude, negative rotation rates are shown to provide the most stable
flow, with the unsteady transition delayed until higher Reynolds numbers. The values
of α > 0 act to destabilize the flow and decrease the Reynolds number of transition,
while α < 0 creates a more stable flow that delays the transition. The unsteady flow
resulting from the two-dimensional simulations has similarities to that which develops
behind a cylinder in a free stream, with opposite-signed vortices forming a pair in the
wake. However, in the case of the cylinder near the wall, one vortex is formed from
the shear layer over the top of the cylinder, and an opposite-signed vortex is induced
in the wall shear layer behind the body. These vortex pairs propel away from the wall
as they move downstream.

From the linear stability analysis, it was discovered that the wake behind the
rolling cylinder undergoes a transition to steady three-dimensional flow, prior to the
onset of unsteady flow. This has similarities to the flow behind a backward-facing
step, but no clear link has been established between the mechanism governing these
two transitions. The spanwise wavelength of the three-dimensional mode is strongly
dependent on the rotation rate of the cylinder, and the structure of this time invariant
perturbation mode is verified with the use of three-dimensional simulations. For
several of the rotation rates studied, the three-dimensional mode first appears at
the same Reynolds number as the lower recirculation zone in the two-dimensional
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simulations. This may be a coincidence, but some opportunity for further study
presents itself. Results of the three-dimensional simulations indicate that the saturated
three-dimensional mode remains steady only for a small range of Reynolds numbers
above the predicted transition. It appears that the three-dimensionality triggers the
early onset of unsteadiness in the wake.

It was considered whether it was possible that the three-dimensional mode develops
as the result of a centrifugal instability in the flow. Towards this end, calculations
were carried out on the closed streamlines of the upper and lower recirculation
zones to determine if Rayleigh’s criterion was satisfied. However, the circulation was
found to be always outwardly increasing, and the findings indicate that a centrifugal
instability does not develop within the recirculation zones. A further analysis was
then conducted into whether an elliptic instability of the recirculation zones could be
responsible. The observed distribution of spanwise perturbation vorticity within the
recirculation zone, the observed wavelengths and the determination that the inviscid
growth rate was strongly positive over large areas of the recirculation zone support
this hypothesis. In addition, an analogy of the present flow with a related flow past
semicircular blockages within a channel, in which the elliptic analysis was extended
slightly further, provide further support for this conclusion.
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