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• The damping effects on VIV of a circular cylinder were studied experimentally.
• A simple and tuneable eddy-current-based passive damping mechanism was constructed.
• Different VIV response branches of the cylinder are identified at higher damping.
• A fitting is proposed for the peak amplitude data as a function of mass–damping and Re.
• The flow power extraction efficiency of the cylinder is 20% at the highest Re considered.
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a b s t r a c t

The effect of damping on vortex-induced vibration (VIV) of a circular cylinder with a fixed
mass ratio (m∗

= 3.0) was studied through water-channel experiments. An eddy-current-
based dampingmechanismwas constructed to provide controlled and adjustable damping
values. It consisted of a permanentmagnet connected to the cylinder thatmoves parallel to
a copper plate at some predetermined gap, which determines the damping in the system.
Increased damping was found to reduce the reduced-velocity range of the upper and
lower branches, thus reducing the synchronization region. As the damping is increased,
the lower branch remains easy to identify from the amplitude response curves, but the
boundary between the initial and upper branch becomes less clear. However, the frequency
response under higher damping shows similarities to that at the lowest damping and
these similarities, for the first time, were used to delimit the different response branches.
The existence of the upper branch was found to continue down to A∗

≈ 0.2D. The
experimental data was assembled to plot the peak amplitude response as a function of
the mass–damping parameter in a ‘‘Griffin plot’’. Due to a restricted variation in Reynolds
number in the experiments, the measured data shows negligible scatter compared to the
assembled literature data. Three sets of experiments using different sets of springs were
conducted to quantify the Reynolds number effect previously established by Govardhan
andWilliamson (2006). An exponential fitting functionwas then used to successfully fit the
data on theGriffin plot. Under higher damping, itwas found that the total and vortex phases
are no longer at either 0◦or 180◦, and take intermediate values throughout the response
branches. The power extracted by the damping mechanismwas also calculated. Maximum
power extraction occurs for a combination of optimal damping and reduced velocity. The
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power was also found to increase with Reynolds number, correlated with the increase in
vibration amplitude. At the highest Reynolds number examined, the dimensionless energy
conversion ratio is 0.2, indicating that approximately 20% of the flow energy approaching
the cylinder frontal cross-section can be converted to useful electrical energy. This factor
increased substantially with Reynolds number from approximately 15 to 20% over the
Reynolds number range considered (Re ∼ 1700–5900). The fit devised for the peak
vibration amplitudewas extended for expressing the average extracted power as a function
of mass–damping and Reynolds number.

© 2018 Elsevier Ltd. All rights reserved.

Nomenclature

c Damping coefficient
CA Added mass coefficient of circular cylinder
Cv Vortex force coefficient
Cy Lift coefficient
D Cylinder diameter
fn Natural frequency of the system in air
fN Natural frequency of the system in fluid
Fv Vortex force
Fy Lift force
G Gap between the magnet and copper plate
k Spring stiffness
L Immersed length of the cylinder
m Total mass of the cylinder-magnet assembly
mf Mass of the displaced fluid
m∗ Mass ratio
P Instantaneous power
P Average power
Pmax Maximum average power
Re Reynolds number
U Free stream velocity
U∗ Reduced velocity
y Transverse displacement of the cylinder
ẏ Transverse velocity of the cylinder
ÿ Transverse acceleration of the cylinder
µm Magnetic dipole moment of the magnet
ν Kinematic viscosity of the fluid
φtotal Phase difference between lift force and displacement
φvortex Phase difference between vortex force and displacement
ρ Fluid density
ζ Damping ratio

1. Introduction

Vortex-induced vibration may occur when a bluff body, having some degree of freedom, is placed in a fluid stream.
Stationary bluff bodies experience vortex shedding above a critical Reynolds number. In this state, vortical structures form
at the rear of the bluff body and are typically shed in an alternating fashion. This causes fluctuations in the lift and drag
forces experienced by the body. An elastically mounted body can vibrate due to these fluctuating forces, which is known as
vortex-induced vibration (VIV). Indeed, VIV is encountered in many important situations, for example, marine risers, bridges,
transmission lines, buildings, heat exchangers, etc. Often the flexibility of the structure can be modelled as a linear spring
for simplicity. Such a simplified model focuses on the resonant vibration of an elastically mounted bluff body with one or
two degrees of freedom (DOF) of movement due to the oncoming fluid flow.

Vortex-induced vibration (VIV) of a circular cylinder has been studied extensively by many researchers; for example, see
the reviews by Khalak and Williamson (1999), Williamson and Govardhan (2004), Sarpkaya (2004), Gabbai and Benaroya
(2005) and Bearman (2011). The focus of many of these studies has been to identify the maximum cylinder response by
minimizing the structural damping. This is important because of the possible structural failure that may occur due to large
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deformations. Khalak andWilliamson (1999), in their experiments with a 1-DOF elasticallymounted circular cylinder, found
three branches in the amplitude response: the initial, upper and lower branches, as the ratio of shedding frequency to
body oscillation frequency was varied. The maximum vibration amplitude was close to one cylinder diameter (D) and was
observed to occur in the upper branch. The transition from one branch to another was found to be associated with the
changes in the vortex shedding mode and phases of the lift and vortex forces. The transition from the initial branch to the
upper branch occurs when the phase of the vortex force jumps from 0◦ to 180◦, which is associatedwith the vortex shedding
mode changing from 2S (refer to Williamson and Roshko (1988)) for a description of the different vortex shedding modes)
to 2Po. The upper to lower branch transition is associated with a jump from 0◦ to 180◦ in the phase of the lift force and a
change in the vortex-shedding pattern from 2Po to 2P . Jauvtis andWilliamson (2004) conducted 2-DOF VIV experiments on
a circular cylinder by using a pendulum arrangement. For mass ratios 6.0 or greater, the transverse direction response was
found to be close to a 1-DOF circular cylinder. However, a super-upper branch was observed for mass ratios less than 6.0. In
that state, a maximum vibration amplitude of 1.5D and a corresponding 2T vortex shedding mode were observed.

Some results on the oscillatory response have also been reported on the effect of damping. Feng (1968) used an
electromagnetic-eddy-current-based damper for studies of circular andD-shaped cylinders in awind tunnel. Due to the large
mass–damping parameter (product of the mass ratio and the damping ratio), the vibration amplitude response did not have
any discontinuities. Based on this, Khalak and Williamson (1999) concluded that only two branches (the initial and lower
branches) are present at highermass–damping. Klamo et al. (2005) reported the effect of Reynolds number on themaximum
vibration amplitude (A∗

max) of a circular cylinder. They conducted experiments on VIV of circular cylinders of two different
diameters for different values of mass, spring stiffness and damping values. The Reynolds number ( defined by Re = UD/ν,
withU the free-stream velocity and ν the kinematic viscosity of the fluid) was varied in the range 525 < Re < 2600. Using a
linear fit, theywere able to extrapolate the limiting value of Amax at zero damping at three Reynolds numbers Re ≈ 525, 1000
and 2600. They concluded that alongwith damping, themaximumvibration amplitude depends onReynolds number but it is
independent of themass ratio. Klamo et al. (2006) showed the transition of the VIV amplitude from the so-called three-branch
response to the two-branch responsewith the increasing damping. They also relied on the jump in the vibration amplitude for
identification of the upper branch and concluded that the three-branch response is observed at lowmass–damping and high
Reynolds number. They also identified the three branches in the frequency response. For low Reynolds number, they found
hysteresis in the lower branch to the desynchronization region. Klamo (2009) proposed a variable magnetic eddy-current
damping system to study VIV of a circular cylinder. Govardhan and Williamson (2006) controlled the damping by applying
an external force to the cylinder proportional to the cylinder velocity. In their setup, the measured cylinder velocity was
applied to the support of a spring connected to the cylinder to mimic the damping force. A functional fit was proposed for
maximum vibration amplitude as a function of the mass–damping parameter and Reynolds number.

Studying damping effects is also important as VIV can be used for converting flow energy into electrical energy (see
Bernitsas et al., 2008; Barrero-Gil et al., 2012; Soti et al., 2017). A cylinder undergoing VIV has kinetic energy and part of it
can be extracted using a power transducer such as an electromagnetic generator (Soti et al., 2017). The power-extraction
process from VIV introduces additional damping into the system. Therefore, the power extraction process can be modelled
by adding a damper to the system. Bernitsas et al. (2008) proposed a flow energy extraction device called VIVACE which
utilized VIV of circular cylinders. They showed improved energy density, a measure of the energy generated per unit volume
occupied by the converter, of the VIVACE converter in comparison to three existing wave-energy converters. The average
flow power conversion efficiency of the device was reported to be close to 0.22 for Reynolds number close to 9.3 × 104.
The VIVACE device is submerged under the ocean surface to minimize its effects on the coastal real estate. Raghavan et
al. (2009) experimentally investigate the effects of proximity to a bottom boundary on the performance of VIVACE for the
Reynolds number range of 8× 103–1.5× 105. For large gap ratios (G/D > 3), VIV was found to be unaffected by the bottom
boundary. For gap ratio less 3, the vibration response was partially suppressed by the bottom boundary. Lee and Bernitsas
(2011) conducted an experimental study on the performance of VIVACE at various spring stiffness and damping values for
the Reynolds number range of 4 × 104–1.2 × 105. The damping and stiffness of the system were mimicked by a motor and
pulley system. The virtual damping and stiffness values were controlled by the torque of the external motor using software.
They found an increase in the vibration amplitude with Reynolds number, and a peak vibration amplitude of 1.78D was
achieved for a smooth cylinder for the lowest damping. The maximum harnessed power was close to 0.33 ×

1
2ρDLU

3 for
Reynolds numbers close to 7.5 × 104.

All of the previous studies relied on the jumps in the amplitude response for identification of the three branches of VIV
response. However, the jumps in the vibration response disappear at higher damping. It will be shown that frequency can
be used to demarcate the three branches at higher mass–damping. The main focus of the previous studies on damped VIV of
circular cylinders has been on the effect of damping on the peak amplitude response. This is summarized in a ‘‘Griffin plot’’,
which plots peak vibration amplitude as a function of mass–damping. Literature studied showed considerable scatter about
the underlying functional variation. Klamo et al. (2005) and Govardhan andWilliamson (2006) have shown that the scatter is
mostly due to the Reynolds number differences between different measurements. In the present work, an accurate physical
damping mechanism is used to confirm that the data points on the Griffin plot show virtually no scatter for a fixed Reynolds
number. By conducting experiments for three different Reynolds numbers, it is confirmed that the scatter is due to Reynolds
number differences. The functional dependence of the undamped peak vibration amplitude on Reynolds number, predicted
by Govardhan andWilliamson (2006), is confirmed by our measurements. Govardhan andWilliamson (2006) also proposed
a quadratic fit for the peak vibration amplitude as a function of mass–damping which did not behave physically (predicted
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Fig. 1. Definition sketch for the transverse vortex-induced vibration of a circular cylinder. The hydro-elastic system is idealized as a 1-DOF system
constrained to move in the cross-flow direction. Here, U is the free-stream velocity, k the spring constant, D the cylinder diameter, m the oscillating mass,
and c the structural damping. Fx and Fy represent the drag and the transverse lift force components acting on the body, respectively.

increasing amplitude with increasing damping) at high mass–damping. A modified fit is proposed which is well behaved
whilemaintaining the level accuracy. Apart from the Griffin plot, which focuses only on peak amplitude response, the effects
of damping on the amplitude response as a function of reduced velocity appears to have been insufficiently documented in
the literature, which may be important for engineering applications that may not always operate at the optimal operating
point. The aim of the present work is also to report the effects of damping on various parameters of the VIV response of the
circular cylinder, namely, the amplitude, frequency, lift and phase. As it is clear from the literature review, there is a lack of
data on power extraction for low ranges of Reynolds number (1000 < Re < 10,000). To fill this gap, the power extracted
by the damping system from VIV of the circular cylinder is investigated for this range of Reynolds number.

2. Experimental methodology

2.1. Experimental apparatus

The experiments reported on herewere conducted in the free-surface recirculatingwater channel of the Fluids Laboratory
for Aeronautical and Industrial Research (FLAIR) group at Monash University. The water channel has a test section with
dimensions of 600 mm in width, 800 mm in depth and 4000 mm in length. Fig. 1 shows a schematic of transverse VIV of a
circular cylinder, which defines key parameters to the problem. The elastically mounted cylinder is free to oscillate in only
one direction transverse to the oncoming free-stream. The governing equation of the oscillating system can be expressed as

mÿ + cẏ + ky = Fy, (1)

where m is the total oscillating mass of the system, c is the structural damping, k is the structural stiffness, y is the body
displacement in the transverse (cross-flow) direction and Fy is the transverse lift force.

In the present experiments, the hydro-elastic VIV set up employed a low-friction air-bearing system. A schematic of the
experimental set up is shown in Fig. 2. The air bearing consisted of two air bushings thatmoved along two stationary precision
guiding shafts. The air bushings weremounted on a carriage to which the cylinder was attached (see Sareen et al., 2018). The
test circular cylinder, precision-made from hollow aluminium tubing, had a diameter of D = 30 ± 0.01 mm. The immersed
length in water was L = 615 mm, giving the mass of displaced fluid of mf = ρπD2L/4 = 434 g and a length-to-diameter
aspect ratio of 20.5. The total oscillating mass was m = 1301.5 g, yielding an overall mass ratio of m∗

= m/mf = 3.0. A
non-contact digital optical encoder with a resolution of 1 µm (model: RGH24, Renishaw, UK) was mounted to the side of
the carriage to measure the displacement of the cylinder. An end-conditioning platform was used to reduce end effects at
the bottom edge of the cylinder as shown in the schematic (see Zhao et al., 2014a, b; Wong et al., 2017). A force balance
based on strain gauges wasmounted between the carriage and the cylinder for directly measuring the fluid forces. However,
it should be noted the transverse lift was derived based on the body displacement signal and other system parameters in
Eq. (1), since it was found that the accurate digital displacement signal produced a more reliable and accurate lift force than
attainable from the force balance signal because of electrical noise. The method and approach have been further described
and validated in Zhao et al. (2014b) and Wong et al. (2017).

The data acquisition (DAQ) system consisted of a USB DAQ device (model: USB6218-BNC, National Instruments, US) and
customized LabVIEW programs that controlled the water-channel flow velocity and automation of measurements. For each
U∗ case, the DAQ measurements were sampled at 100 Hz for more than 100 oscillation cycles. Spot measurements with
longer sampling times verified that this signal acquisition time was sufficient to provide reliable and accurate response
amplitudes.
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Fig. 2. Schematic of the experimental set-up used for the VIV experiments.

2.2. Damper mechanism

An eddy-current based damping mechanism was used to achieve controlled and variable damping values. The damper
consists of a stationary electrically conductive plate and a permanent magnet that can move along the length of the plate at
any fixed gap (G) between the plate and the magnet. When the magnet moves relative to the plate it creates eddy currents
inside the plate. These eddy currents produce their own magnetic field that opposes the motion of the magnet (Lenz’s
law). From an energy conversion point of view, the eddy currents dissipate energy in the form of heat due to the electrical
resistance of the plate. The dissipated energy is deduced from the kinetic energy of the magnet. If the magnet is located at a
distance G from the plate and moves with a constant velocity ẏ along the y-direction (see Fig. 3) then the damping force can
be expressed as (Schieber, 1975; Klamo, 2009)

F = CσδB2
x ẏ, (2)

where σ and δ represent the electrical conductivity and thickness of the plate, respectively. The constant C is a function of
various parameters such as the dimensions of the plate and the magnet. It also accounts for the variation in magnetic field
along the plate and the finite width of the plate. The magnetic field strength Bx depends on the gap G, material and size of
the magnet. The strength of magnetic field at any point P on the plate is given by (Donoso et al., 2009)

Bx =
µm

(G2 + r2)3/2

[
3G2

G2 + r2
− 1

]
, (3)

where µm represents the magnetic dipole moment of the magnet. Eqs. (2) and (3) show that the damping coefficient
(c = CσδB2

x ) depends upon various parameters, namely: the gap between the magnet and the plate, the magnetic field
strength of the magnet, and the size, thickness and material of the conducting metal plate. A change in the damping, in the
present experiments, is achieved by changing the gap between the plate and the magnet.

The damper system that was made for the current experiments is shown in Fig. 4. For the present experiments, an N42
grade rare earth Neodymium magnet element of cylindrical shape with diameter 20 mm and length 10 mm was used. The
magnet elementwasmounted on the carriage towhich the cylinder is attached so that it followed themotion of the cylinder.
A copper plate of 250mm length and 60mmwidth was used. It had a thickness of 6 mm. This plate was attached to a micro-
drive stage so that the distance between the magnet and plate can be changed in a precise and controlled manner with
an accuracy of 10 µm. This allowed the magnet element to remain at the same gap irrespective of its transverse location
so that the damping ratio could be set to a constant at any given gap. This was achieved by mounting the linear stage on
an orientation plate having some degree of freedom to rotate about the vertical axis. The orientation plate was locked in a
position where the line of movement of the magnet was parallel to the plate. This ensured that the damping coefficient did
not vary with the transverse location of the body. The orientation plate was mounted on a extension plate which had series
of holes to attach the extension plate at the desired gap.

2.3. Damping measurements

The first experimental step was to measure the damping coefficient for various gap values so that any desired damping
value, c , can be achieved by positioning the copper plate at the corresponding gap distance, G, from themagnet element. The
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Fig. 3. Schematic of the damper system.

Fig. 4. (a) Various components of the damper system and (b) the damper assembly attached to the VIV setup.

damping coefficient was measured by conducting free-decay tests in air. The cylinder was removed during the free decay
test to avoid fluid forces and an equivalent mass was placed on the carriage to retain the total mass of the system. If the
system is displaced by some distance A0 from its equilibrium position and released then the motion of the freely vibrating
system is governed by

mÿ + cẏ + ky = 0, (4)

where m and k represents the total mass and stiffness of the system. The behaviour of the solution of Eq. (4) depends upon
the damping ratio ζ = c/(2mωn) where ωn =

√
k/m is the angular natural frequency of the system. For damping ratios,

0 ≤ ζ < 1, the system undergoes periodic harmonic motion of form y = A cos(ωdt), where ωd = ωn
√
1 − ζ 2 is the
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Fig. 5. Damping coefficient (c) as a function of the gap (G) between the magnet and the copper plate of the damper used in the present experiments.

damped natural angular frequency and the amplitude of vibration is given by A = A0 exp(−ζωnt). Two consecutive peaks
of displacement would be separated by the time interval T = 2π/ωd. If the log decrement between two instances of peak
displacement, tn and tn+1 = tn + T , is defined as δ = ln(An/An+1) then the damping ratio is given as

ζ =

√
δ2

4π2 + δ2
. (5)

The natural frequency can be calculated as fn = 1/T for very low ζ cases. At any gap, the damping values obtained by
applying Eq. (5) to all the consecutive peaks of the displacement are averaged to give a mean damping at that gap. Since the
damping coefficient is independent of mass and stiffness of the system, it is useful to convert the damping ratio values to
a damping coefficient. The measured values of the damping coefficient as a function of the gap (G) are plotted in Fig. 5 for
m = 1301.5 g and fn = 1.095 Hz.

2.4. Experimental validation

The experimental set-up was validated by comparing the amplitude response of the circular cylinder at low damping
with that of Khalak and Williamson (1997) and Zhao et al. (2014a). The mass and damping ratios for the present case are
m∗

= 3.0 and ζ = 2.5 × 10−3. Fig. 6 shows a good match of the amplitude response of the cylinder with previous results.
The difference in the peak value of the amplitude could be attributed to the difference in the Reynolds number. The Reynolds
number range for the data presented in Fig. 6 is given by the dataset 3 in Table 1. The synchronization region, i.e. the range
of reduced velocity for which the cylinder shows significant vibration amplitude, is known to shrink with the increase in the
mass ratio. Since themass ratio for the present experiments is slightly higher than that of Khalak andWilliamson (1997), the
boundaries of the upper and lower branches do notmatch exactly with the published data. Overall, a goodmatch is obtained
and the three response branches, the initial, upper and lower branches, are captured.

3. Results

In this section, the effects of damping on the vortex-induced vibration of a circular cylinder will be discussed. There are
four important independent parameters in the study of VIV: the mass ratio (m∗), damping ratio (ζ ), reduced velocity (U∗)
and Reynolds number (Re). The reduced velocity is defined as U∗

= U/(fND), where U is the free stream velocity and fN is
the natural frequency of the system in water. The natural frequency in water is measured by conducting free decay tests
in still water with minimal damping (without the damper). The VIV response also depends on the Reynolds number (see
Klamo et al., 2005). In the present experiments, the reduced velocity was varied by changing the free-stream velocity while
keeping the values of fN and D fixed. This also resulted in a changing Reynolds number. Three sets of fN values were used
in the experiments to examine the effect of Reynolds number. The values of natural frequency and corresponding Reynolds
number ranges for the three sets are shown in Table 1. The mass ratio is kept atm∗

= 3.0. The change in fN was achieved by
physically changing the number of springs and thereby changing the spring constant. The displacement and force data were
recorded for 360 s (for more than 100 oscillation cycles) for a single reduced velocity.

3.1. Effect of damping on the vibration response

The effect of damping on the vibration amplitude of the circular cylinder is shown in Fig. 7 for the Reynolds number
range of Re = 2220–6661 (referred to as set 2 in Table 1). For the least damped case, a typical three-branch VIV response
is observed. In the initial branch, 3.6 ≤ U∗ < 4.8, the vibration response is influenced by the vortex shedding frequency
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Fig. 6. Comparison of displacement amplitude obtained by our experiment (m∗
= 3.0, ζ = 2.5 × 10−3 and 3805 < Re < 11416) with that of Khalak

and Williamson (1997) (m∗
= 2.4, ζ = 4.5 × 10−3 and Re ≈ 6000 in the lower branch) and Zhao et al. (2014a) (m∗

= 2.66, ζ = 3.2 × 10−3 and
1450 < Re < 7500).

Table 1
Three set of experiments performed in the present work.

Set Natural frequency in air fn (Hz) Natural frequency in water fN (Hz) Re range

1 0.362 0.309 1250–3750
2 0.639 0.550 2220–6661
3 1.095 0.943 3805–11416

for a stationary cylinder and the natural frequency of the system in the fluid, which is based on the effective added mass
that varies with the reduced velocity. The initial branch is further divided into a quasi-periodic (QP) region (see Fig. 8(a)) for
3.6 ≤ U∗ < 4.4, and a periodic (P) region for 4.4 < U∗ < 4.8 (Fig. 8(b)). There is a visible jump in the vibration amplitude
from the initial to the upper branch at U∗

≃ 4.8. At the start of the upper branch, which extends over 4.8 ≤ U∗
≤ 7.4, the

vortex shedding frequency locks onto the natural frequency of the cylinder and the amplitude response becomes significantly
higher. The amplitude response reaches its peak value of A∗

10 ≈ 0.8 at U∗
= 5.8 in the upper branch. Here, A∗

10 represents
themean of the top 10% of peaks of the displacement signal. The vibration amplitudes were observed to be varying from one
cycle to another, i.e. the vibrations are not fully periodic (see Fig. 8(c)). With further increase in U∗, the vibration response
switches to the lower branch covering 7.4 ≤ U∗

≤ 11.0. The vibration amplitude response does not vary much with U∗ in
the lower branch and is consistently close to A∗

10 ≈ 0.6 (see Fig. 8(d)). The vibration amplitude is also quite stable from one
cycle to another at any U∗ i.e. the vibrations are periodic. The upper and lower branch combined is called the lock-in region.
The cylinder motion desynchronizes from the vortex shedding frequency for U∗ > 11.0 and the vibration amplitude jumps
down to a small value.

The vibration amplitude is seen to decreasewith an increase in the damping ratio for any reduced velocity since the role of
damping is to dissipate energy. The jump in the vibration amplitude at the initial to upper branch transition becomes smeared
out with increasing damping and the beginning of the upper branch gets delayed. On the other hand, the reduced velocity
corresponding to the end of the lower branch decreases with the damping. As seen in Fig. 7, these critical reduced velocities
lie approximately on a straight line. Therefore, the lock-in region becomes narrower as the damping ratio is increased. The
transition between the branches become continuous rather than through jumps. The vibration amplitude in the lower branch
tends to decrease with U∗ at higher damping values. The upper and lower branches are identified by blue and red colours,
respectively, in Fig. 7. The identification of boundaries of these branches, especially the upper branch, is approximate at high
damping values and the proposed classification will be discussed in the next section. Klamo et al. (2006) had also plotted
the variation of the vibration amplitude of the cylinder with the reduced velocity for various damping values to show the
transition from the three-branch response to the two-branch response. The mass ratio in their experiments (=49.8) was
much larger than that of the present case. In their experiments, Reynolds number at the maximum vibration amplitude was
close to 1000, while for the present work it is close to 3200. Despite these differences in the operating parameters, they
also found a delay in the jump from initial to upper branch and smaller synchronization regions with increasing damping.
In addition, they found that the upper to lower branch transition point did not change with the damping. Fig. 7 shows that
this is true only up to a certain damping value (for ζ ≤ 0.074 in the present work) after which this transition occurs at a
lower U∗ as the damping is increased. Govardhan and Williamson (2006) also plotted the vibration amplitude as a function
of reduced velocity and damping form∗

= 10.0 and Re ≈ 4000. By comparing the vibration responses from the two studies
with the present work, it can be concluded that the magnitudes of the jump in the vibration amplitude (for initial to upper
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Fig. 7. Mean of top 10% maximum amplitude response (A∗

10) versus reduced velocity for various values of damping ratios. The mass ratio is 3.0 and
Reynolds number ranges from 2220 to 6661 as reduced velocity is increased. Blue and red regions show the upper and lower branches, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Time histories of the non-dimensional cylinder displacement for U∗ = (a) 4.0, (b) 4.6, (c) 5.8 and (d) 8.0 for the minimal damping case. The plots
illustrates the time-variation of the cylinder displacement for quasi-periodic, periodic, upper branch and lower branch regions, respectively.

branch and upper to lower branch transitions) and the peak vibration amplitude are a decreasing function of mass–damping
and an increasing function of Reynolds number.

Both of the previous studies relied on the jump in the vibration amplitude at the end of the initial branch to identify the
onset of the upper branch. This approach raises a question: which values of change in the vibration amplitude, for a given
small change in the reduced velocity, can be considered as a jump? No information is available on this in the literature.
Furthermore, both the studies have concluded that there is no upper branch at lowReynolds number (Re ≤ 525) even at zero
damping since the vibration amplitude is a continuous function of the reduced velocity for these cases. In fact, Govardhan
and Williamson (2006) labelled A∗

= 0.6D as the boundary between the three-branch and two-branch response regions
since it is the peak vibration amplitude at low Re. In contrast, Leontini et al. (2006), by performing numerical simulations
at Re = 200, have shown that the low Re vibration response of the cylinder shows regions similar to the upper and lower
branches found in the high Re experiments. Therefore, vibration amplitude does not seem to be a definitive indicator of the
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branching behaviour of VIV at low Re and high damping. In the following section, frequency response will be shown to be
alternative candidate for identification of different branches in the damped VIV response of lowmass-ratio circular cylinder.

Blevins and Coughran (2009) plotted the vibration response of a circular cylinder at six damping values for m∗
= 6.4

and Re ≈ 30 000 at peak vibration amplitude. For the lowest damping case, the lower branch region in their work shows
a monotonic decay of the amplitude with the reduced velocity. In contrast, the vibration amplitude in our results stays
around 0.6D in the lower branch which is consistent with the results of Govardhan and Williamson (2006) and Khalak and
Williamson (1997). A similar monotonic decay of the vibration amplitude in the lower branch can be seen in the result of Lee
and Bernitsas (2011) where Reynolds number was close to 90,000 at the peak vibration amplitude. Therefore, this different
nature of the lower branch could be a Reynolds number effect. Both Blevins and Coughran (2009) and Lee and Bernitsas
(2011) did not focus on the three-branch to two-branch response transition as the damping was increased.

3.2. Effect of damping on the oscillation frequency

The normalized frequency ratio of vibration frequency to the natural frequency of the cylinder in water (fy = f /fN ) also
shows different behaviour in the three response branches. A contour plot of amplitude spectral density (ASD) of cylinder
displacement against normalized frequency and reduced velocity is plotted on the left of Fig. 9 for five different damping
values. A contour map of the ASDs of the lift force signals is also plotted on the right of Fig. 9. The log scale is chosen for
the ASD in the contour plots so that weak harmonics can still be recognized. For low damping values (see Fig. 9(a)), three
distinct patterns are seen for the frequency response. In the initial branch, two frequency components are present in the
displacement. One is due to the vortex shedding frequency, which overlaps with the straight line representing St = 0.208 in
Fig. 9, and the other is due to the natural frequency of the system. The two components are also visible in the lift force, as seen
in Fig. 9(a). The vortex shedding frequency becomes locked to the natural frequency of the cylinder at the start of the upper
branch and there is only one dominant component present in fy. The normalized vibration frequency of the cylinder jumps
to a value close to unity at the start of the upper branch. The normalized vibration frequency then increases gradually, with
a slope slightly less than the St slope, with U∗ through the upper branch. A third harmonic of the fundamental frequency
appears in the lift signal in the upper branch, which could be related to the change in vortex shedding pattern from 2S to
2Po (Morse and Williamson, 2009). With a further increase in U∗, another jump in fy is observed at the start of the lower
branch. The normalized vibration frequency stays constant at a value greater than 1.0 (≈ 1.25) in the lower branch. The
vibration amplitude in this branch is very stable compared to the initial and upper branches and therefore, the plots show a
sharp spectral peak through this lower branch. However, a relatively stronger third harmonic is present in the lift force in the
lower branch indicating that the signal is not purely sinusoidal. For U∗ > 11.0, the desynchronization region appears and
the cylinder displacement shows two dominant frequencies: the vortex shedding and the natural frequencies. The lift force
also has these two frequency components in this region. Note that in the contour plots the energy of the signal is distributed
over a range of frequencies.

As the damping is increased, the desynchronization region begins at progressively small values of U∗. All contour plots
in Fig. 9(b)–(e) show a region similar to Fig. 9(a), where the normalized vibration and lift frequencies remain at a constant
value. Following the discussion for the low damping case in the previous paragraph, this region can also be labelled as the
lower branch for higher damping cases. The right-hand end of the lower branch can be identified by the distribution of the
displacement and lift signal energy to a larger range of frequencies i.e. the scatter in the ASD frequency content. The left-hand
end of the lower branch occurs when the normalized vibration frequency stops changing with U∗ and becomes a constant.
The same can be seen for the third harmonic in the lift force. There is a region in Figs. 9(b) to 9(e) resembling the initial
branch for the low damping case in Fig. 9(a) where the vibration frequency matches the vortex shedding frequency for a
stationary circular cylinder. The frequency content overlaps with the St = 0.208 line in this region. Due to the similarity, it
is reasonable to designate this region the initial branch for higher damping cases.

Identifying the start of the upper branch is less obvious at higher damping values. In Fig. 9(b), which corresponds to an
order of magnitude higher damping, the start of the upper branch can still be identified by a jump in the vibration frequency.
A small jump in the vibration frequency is also present at the boundary of upper and lower branches since there is a visible
change in the amplitude variation with U∗ across the branch boundaries (see Fig. 7). In Fig. 9(c), fy does not show any visible
jump at the upper branch boundary since the vibration amplitude increase gradually with U∗ at this high damping. The
vibration frequency still shows the three different trends that occur in the three branches at low damping. In the upper
branch of the low damping case, the normalized vibration frequency increases with U∗ but no longer overlaps with the St =

0.208 line, and a third harmonic of the fundamental frequency appears in the lift force. These two trends are also present
for the higher damping cases and, therefore, were used for identifying the upper branch at high damping. Notice that in
Fig. 9(e), there is a very narrow region of U∗ for the upper branch where the normalized vibration frequency deviates from
St = 0.208 line and a third harmonic is present in the lift force. Therefore, this can act as a demarcation boundary between the
three-branch and two-branch types of VIV responses. The corresponding vibration amplitude is close to 0.2Dwhich is three
times smaller than 0.6D limit set by Govardhan and Williamson (2006). Beyond this damping value, the vibration response
can be considered to have only the initial and lower branches.

Govardhan and Williamson (2000) presented two normalized vibration frequency responses for a low and a high mass–
damping case by changing the mass ratio. Unlike the present work, the normalized vibration frequency in the upper branch
did not vary with the reduced velocity at the lowmass–damping and remained close to unity for the entire synchronization
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Fig. 9. Contours of the amplitude spectral density of displacement (left) and lift force (right) plotted against the normalized frequency and reduced velocity
for ζ = (a) 0.002, (b) 0.028, (c) 0.074, (d) 0.124 and (e) 0.228. Each power spectrum is plotted vertically and stacked together horizontally from each U∗ to
form these contour plots. A log10 scale is used to highlight the variation from 0 (black) to −3 (white). The line represent St = 0.208, corresponding to the
vortex shedding frequency of a stationary cylinder.

region at the higher mass–damping. These differences are most likely due to the higher value of the mass ratios in their
experiments, which results in negligible effects of the effective added mass. Note that the frequency response will depend
on themass ratio since the addedmasswill affect the natural frequency of the cylinder in the fluid. Therefore, it was essential
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Fig. 10. (a) RMS lift coefficients, and (b) RMS vortex force coefficients versus reduced velocity for specified damping ratios.

to keep the mass ratio fixed at a low value and change the damping to see the effects of increased mass–damping on the
frequency response of VIV.

3.3. Effect of damping on lift force and phase

The lift coefficient is defined by Cy = Fy/( 12ρU
2DL), where Fy represents the force acting on the cylinder in the transverse

direction. The root mean square (RMS) lift coefficient as a function of reduced velocity is plotted in Fig. 10(a) for various
damping ratios. The peak value of Cy is seen to decrease with an increase in damping. The maximum value of the lift
coefficient (= 1.8) is obtained at minimum damping for U∗

= 4.6. For small damping values, the lift force shows a rapid
increase with U∗ in the initial branch and reaches a peak value at the beginning of the upper branch. In the upper branch,
the lift force experiences a rapid decrease with U∗ and reaches a value lower than that of the stationary cylinder case. With
a further increase in U∗, the lift force shows a slow decrease in its value in the lower branch. At the end of the lower branch,
a jump is seen in Cy and it reduces to an even smaller value.

The fluid force can be decomposed into two components: the potential force (Fpot ) and the vortex force (Fv). This
decomposition reflects the fact that any velocity field can be constructed from the summation of a potential flow component
plus a field due to the vorticity in the system. The potential force is the part of the fluid force that is in phase with the
displacement (in the equivalent potential flow system). Physically, it is the force required to accelerate the surrounding
fluid. Therefore, the magnitude of potential force is equal to the added mass times the acceleration of the cylinder

Fpot = −mAÿ = −CA
π

4
ρD2Lÿ, (6)

wheremA and CA (= 1.0 for the circular cylinder) are the added mass and potential added mass coefficient, respectively. The
vortex force is then calculated by subtracting the potential force from the total lift force. The RMS vortex force coefficient
(Cv = Fv/( 12ρU

2DL)) is plotted in Fig. 10(b) against U∗ for various damping values. The vortex force increases with U∗ in the
initial branch and reaches its peak at the start of the upper branch. There is a sudden decrease in Cv at the start of the upper
branch. The vortex force increases with further increase in U∗. In the lower branch, the vortex force is seen to decay almost
linearly with U∗.

It is also important to examine the phase of the fluid forces with respect to the displacement. The phase difference was
calculated by performing a Hilbert transform of the displacement and force signals, e.g., see Khalak and Williamson (1999).
Fig. 11(a) and 11(c) shows the instantaneous phase of the lift force forU∗

= 4.6 and 6.6, respectively, for theminimal damping
case. As seen in Fig. 11(a), the lift force is in phase with the displacement in the initial branch since the phase difference
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Fig. 11. Instantaneous phase of the total lift (left) and its histogram normalized to show the probability density function (right) for U∗
= 4.6 (top) and 6.6

(bottom). All the plots corresponds to the minimal damping case.

Fig. 12. Instantaneous phase of the total lift (black solid lines) and cylinder displacement (red broken lines) at U∗
= 6.6 for the minimal damping case. This

figure illustrates that the jump in phase angle is associated with the change in the nature of variation of the vibration amplitude with time.

remains close to 0◦. This is evident in the histogram shown in Fig. 11(b), normalized to show the probability density function
(PDF), which looks like a Gaussian distributionwith zeromean value. In the upper branch, Fig. 11(b), the instantaneous phase
difference jumps between 0◦ and 180◦ as evident in Fig. 11(d). Fig. 12 shows the instantaneous phase forU∗

= 6.6 alongwith
the cylinder displacement. It can be seen that the variation in the vibration amplitude is associated with the jumps in the
phase of the lift force. The vibration amplitude is increasing or decreasing with time depending on whether the phase is
close to 0◦ or 180◦, respectively. The mean phase difference between lift force and cylinder displacement (φtotal) is shown
in Fig. 13(a) for various damping ratios. The mean phase of vortex force with respect to displacement (φvortex) is shown in
Fig. 13(b). For very low damping values, the total phase remains at 0◦during the initial and upper branch. The total phase
jumps to 180◦during the transition from the upper branch to lower branch. The vortex phase, on the other hand, shows a
jump from 0◦to 180◦at the start of the upper branch. These jumps in the total and vortex phase agreewith those observed by
Govardhan and Williamson (2000) and Khalak and Williamson (1999). The jump in the vortex phase is associated with the
change in thewake structure from2S to 2Pmode. As the damping ratio is increased, the phase changes between the branches
become more continuous. In addition, the phase difference between branches tends to reduce with increasing damping.

3.4. The griffin plot

Previous studies have attempted to relate the peak vibration amplitude of a circular cylinder undergoing VIV with
the product of mass and damping ratios (m∗ζ ). Griffin (1980) plotted the peak vibration amplitude against the Skop-
Griffin parameter SG = 2π3S2(m∗ζ ), where S is the Strouhal number for a stationary cylinder. This is known as the
Griffin plot. Govardhan and Williamson (2006) proposed, what they called, the modified Griffin plot, where they plotted the
peak vibration amplitude against the logarithm of mass–damping parameter α = (m∗

+ CA)ζ . For Reynolds numbers in
range of 500 to 33000, they found a fit for the peak vibration amplitude of circular cylinder at zero damping with Re as
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Fig. 13. Mean phase difference between (a) total lift and (b) vortex force and displacement versus reduced velocity for various values of damping ratios.

Fig. 14. Comparison of the quadratic polynomial fit by Govardhan and Williamson (2006) (dashed line), fit proposed by Sarpkaya (1978) (dash–dot line)
and Eq. (7) with n = 2 (solid line).
Source: The data points shown as circular symbols are taken from Govardhan and Williamson (2006).

A∗

0 = log10(0.41Re
0.36). At a fixed Re, they proposed a quadratic polynomial fit between the peak vibration amplitude and

mass–damping parameter. Overall, the peak vibration amplitude as a function of mass–damping and Reynolds number is
written as A∗

= (1 + C1α + C2α
2)log10(0.41Re

0.36) where C1 and C2 are constants.
The authors, independently, developed an alternative exponential fitting function for the following reasons: (a) the plot of

peak vibration amplitude versus themass–damping parameter on a linear scale looks like an exponentially decaying function
and (b) since the damping force is proportional to cylinder velocity, it should take very large (tending towards infinite)
amount of damping to completely suppress the VIV. The following general exponential fitting function was conceptualized
to take into account the expected asymptotic behaviour

A∗
= A∗

0 exp

(
n∑

i=1

Ciα
i

)
, (7)



A.K. Soti et al. / Journal of Fluids and Structures 81 (2018) 289–308 303

Fig. 15. (a) Griffin plot, showing the comparison of our results for three Re ranges with the published data. The error bars represent the difference between
the A∗ and A∗

10 values and signify the variation in the vibration amplitude over time. G &W stands for Govardhan andWilliamson. (b) The collapse of all the
data points from our experiments onto a single curve by considering the effect of Reynolds number.

Table 2
Coefficients of the exponential fit, obtained by least-squares fitting method,
for the peak vibration amplitude data shown in Fig. 15(a).

Set Re range A∗

0 C0 C1

1 1687–2030 0.798 −0.802 −1.483
2 2995–3440 0.878 −0.812 −0.959
3 5328–5898 0.970 −0.966 −0.755

where Ci are constants determined based on a least-squares fit. A second-order form (n = 2) was found to give an excellent
fit. Fig. 14 is taken fromGovardhan andWilliamson (2006) and shows comparison of three fitting functions: quadratic fitting,
the fitting proposed by Sarpkaya (1978), and Eq. (7) with n = 2. Both the quadratic and exponential fitting functions overlap
over the available data range shown by the circular markers. As noted by Govardhan and Williamson (2006), the quadratic
fit does not behave nicely in the high mass–damping region where it first predicts a negative peak vibration amplitude and
then an increase in peak vibration amplitude with mass–damping. The exponential fit, on the other hand, predicts a slowly
decaying peak vibration amplitude with mass–damping. The fitting proposed by Sarpkaya (1978) also shares the property
of requiring an infinite amount of damping to completely suppress the VIV but it is less accurate in fitting the available data
(see appendix B of Govardhan and Williamson (2006)).

The local peaks of the cylinder displacement were detected and their maximum was labelled as the maximum vibration
amplitude at the corresponding combination of the reduced velocity andmass–damping. Themaximumvibration amplitude
is important from the structural engineering point of view. However, the vibration amplitude can vary from one cycle to
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Fig. 16. The non-dimensional cylinder displacement versus non-dimensional time plots illustrating the variation of the displacement amplitude with time.
The subplots (a) and (b) correspond to the data points shown in Fig. 15(a). A large standard deviation in the vibration amplitude is an indication of a larger
variation in its values as seen in the subplot (b).

Table 3
Root mean squared error of three fitting functions for the peak vibration amplitude data shown in Fig. 15(a).

Set Re range RMS error

Eq. (7) with n = 2 Quadratic fit by Govardhan and Williamson (2006) Fitting by Sarpkaya (1978)

1 1687–2030 0.023 0.017 0.129
2 2995–3440 0.036 0.048 0.128
3 5328–5898 0.040 0.035 0.071

another (see Fig. 8) and its maximum value may not repeat at several instants. Therefore, there is an uncertainty in the
maximum vibration amplitude. Another possibility is to sort the local peaks in descending order and then take the mean of
the few top values. In the present work, mean of top 10% values (A∗

10) is used for this approach. Notice that, for any mass–
damping value, the maximum vibration amplitude attains a global maximum value at some optimal reduced velocity. This
global maximum is referred to as the peak vibration amplitude (A∗) in the present work. The peak vibration amplitude of
the cylinder as a function of mass–damping, for three sets of experiments reported in Table 1, is plotted in Fig. 15(a). The
exponential fitting function, Eq. (7) with n = 2, is used to connect the data points. The coefficients of the fit are listed in
Table 2. The error bars in Fig. 15(a) represent A∗

− A∗

10 and provide a measure of degree of uncertainty in the peak vibration
amplitude. For a harmonic signal, A∗ and A∗

10 values will be identical and therefore the error will be zero. A larger error value
signifies a larger variation in the vibration amplitude over time. For example, consider the time histories of the cylinder
displacement shown in Fig. 16(a) and 16(b)which corresponds to the data points labelled as a and b, respectively, in Fig. 15(a).
Clearly, a small error implies a smaller variation in the vibration amplitude with time.

The peak vibration amplitude of the circular cylinder is seen to increase with Reynolds number. This could be related to
the decrease in the viscous component of the lift force acting on the cylinder. Table 3 shows the root mean square (RMS)
error for three types of fitting used in Fig. 14 at three different Reynolds numbers. The RMS error is defined as

Erms =

√ 1
N

N∑
i=1

(A∗ − A∗

fit

A∗

)2

, (8)

where A∗ is the measured vibration amplitude, A∗

fit is the vibration amplitude obtained from fit and N is the total number
of dataset points. Both exponential and quadratic fitting give similar RMS errors while the fit proposed by Sarpkaya has a
larger error. Therefore, the exponential fit in Eq. (7) performs as good as the quadratic fitting function while having a better
basis, given the physical behaviour at higher mass–damping values.

Interestingly, the peak vibration amplitude occurs at different reduced velocities at different damping values. In general,
the optimal reduced velocity corresponding to peak vibration amplitude increases with damping because the damped
natural frequency of a linear spring–mass system is known to be smaller than the undamped one. Therefore, there is a
small variation in Reynolds number corresponding to each data point in Fig. 15(a) for each set of experiments. The range
of variation in Re is also shown in Table 3. To account for the Reynolds number effect, the undamped peak vibration
amplitude in Eq. (7) is expressed as A∗

0 = log10(DRe
E) where D and E are constants. Note that this is the same fit that

was proposed by Govardhan andWilliamson (2006). The four constants in the modified form of Eq. (7) are then determined
by a least-squares fit of all the data from three sets of experiments in Fig. 15(a). The set of values of constants obtained is
(D, E, C1, C2) = (0.402, 0.366, −0.940, −0.935). Once the constants D and E are known, the effect of Re in the Griffin plot
can be eliminated by dividing the individual A∗

0 data in Fig. 15(a) by the A∗

0 corresponding to the Re value at that data point.
The resulting Griffin plot is shown in Fig. 15(b), which shows a strong collapse of the peak vibration amplitude, normalized
by its undamped value, on a single curve. Therefore, as an alternative to the fit proposed by Govardhan and Williamson
(2006), the following equation can be used to predict the peak vibration amplitude (A∗) of a circular cylinder undergoing VIV
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Fig. 17. The average extracted power versus reduced velocity for various values of damping ratios.

as a function of mass–damping (α) and Reynolds number (at least over the range of Re considered in this study)

A∗
= log10

(
0.402Re0.366

)
exp

(
−0.940α − 0.935α2) . (9)

3.5. Power extraction

The fluctuating lift force acting on the cylinder, due to vortex shedding, causes the cylinder to vibrate. The vibration of the
cylinder suggests a way to extract power from the fluid flow. Any power extraction process can be modelled as the addition
of damping to the system. Usually, the damping coefficient for the power-harvesting device is modelled as a constant. In Soti
et al. (2017), it was shown that a constant damping ratio model predicts the same average power that will be extracted by a
more realistic electromagnetic power extraction device where the damping is far from constant. In the present experiments,
different damping values were introduced to the system and then the extracted power was calculated by using the observed
cylinder displacement and the preset value of damping introduced to the system. If the cylinder displacement at any instant
is given by y(t), then the instantaneous non-dimensional power extracted by the damper is P(t) = cẏ(t)2/( 12ρU

3DL), which
can also be written as

P(t) = 2π2f ∗

n m
∗ζ ẏ∗2, (10)

where f ∗
n = fnD/U and y∗

= y/D are the non-dimensional natural frequency in a vacuum and the displacement of the
cylinder, respectively. Since the cylinder undergoes a periodic motion, the average extracted power over an oscillation cycle
can be defined as P =

1
T

∫ T
0 P(t)dt where T is the oscillation period. The cylinder displacement can be approximated as

y∗
= A∗

y sin(2π fyf ∗

N t
∗) where A∗

y , fy and f ∗

N are non-dimensional displacement amplitude, normalized vibration frequency
and non-dimensional natural frequency of the cylinder in water, respectively. Using this approximation, the average power
can be simplified to

P = 4π4f ∗

n fy
2m∗ζ

(
A∗
y

U∗

)2

. (11)

The average power varies from one vibration cycle to another because of the variation in vibration amplitude. In the present
experiments, the average power was calculated over many (≈100) vibration cycles. The average extracted power as a
function of reduced velocity is shown in Fig. 17 for various damping values for set 2. At any damping value, an optimal
reduced velocity exists at which P is maximum. Since the vibration amplitude and thereby the cylinder velocity attains its
maximum in the upper branch, it is expected that P will be maximum in the upper branch.

In general, the value of optimal U∗ at which the average power is maximummay not be the same as that of themaximum
vibration amplitude. In the present experiments, these optimal U∗ values are found to differ by 0.5 for set 1 and 1.0 for set
2 and set 3 at the minimum damping. This indicates that the difference in the optimal U∗ could be a function of Reynolds
number. At high damping, the difference is always zero. The difference decreases with the increasing damping in a gradual
manner. Notice that there is a uncertainty of ±0.2 in the difference values. The normalized vibration frequency is close to
1.0 in the upper branchwhere the average power is maximum. Since the vibration amplitude varies from one vibration cycle
to another, the maximum average power is approximated as Pm = C0αA∗

2
, where C0 is a constant and A∗ is the peak mean

vibration amplitude of the cylinder. Assuming that the peak mean vibration amplitude can be related to the mass–damping
using a function similar to Eq. (7), the maximum average power is approximated as

Pm = C3α exp
(
C1α + C2α

2) , (12)
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Table 4
Coefficients of the exponential fit, obtained by least-squares fitting method,
for the maximum average power.

Set Re range C3 C1 C2

1 1560–1998 1.591 −3.624 −1.739
2 2662–3440 1.512 −2.222 −2.246
3 4757–5708 1.581 −1.922 −2.637

Fig. 18. The maximum average extracted power versus damping ratio for three Reynolds number ranges given in Table 1.

where C3 = C0(A∗

0)
2 and A∗

0 is the peak mean vibration amplitude at zero damping. Notice that n is taken as 2 in Eq. (12) as
the use of only two terms inside the exponential was found to be sufficient for accurate fitting in Section 3.4.

Themaximumaverage power (Pm) obtained from thepresent experiments is plotted in Fig. 18 for three ranges of Reynolds
number. Notice that the Re range in Fig. 18 differs from that in Fig. 15(a) because the optimal values of U∗ for average power
and peak amplitude are different. The data is fitted to Eq. (12) using the least-squares method. The constants of Eq. (12)
obtained by the least-squares fit are listed in Table 4. From Fig. 18, it is seen that there is also an optimal damping at which
Pmax ismaximum. The existence of an optimal damping canbe explainedby the following argument. The extractedpowerwill
be zero at zero damping. On the other hand, the extracted power will also be zero at very large damping due to complete
suppression of the cylinder vibration. Therefore, as the damping is increased from zero, the extracted power should first
increase with damping then reach amaximum for some optimal damping before decreasing back to zero. Since the vibration
amplitude increases with Reynolds number, the extracted power is expected to increase too. Fig. 18 also shows the effect of
Re on extracted power. As expected, the extracted power increases with Reynolds number. The value of optimal damping
also increases with Reynolds number. In the present work, the maximum value of Pm was found to be close to 0.151, 0.184
and 0.200 for Re ≈ 1747, 3107 and 5328, respectively. Barrero-Gil et al. (2012), using forced vibration data, calculated the
maximum efficiency values close to 0.18 and 0.24 for Re = 3800 and 10,000, respectively. Grouthier et al. (2014), using a
wake-oscillator model, calculated the value of maximum flow power extraction efficiency to be 0.23. Notice that both of the
previous studies were based on some form of modelling while the present results are from direct measurement. Bernitsas
et al. (2008) measured the power extraction efficiency of their VIVACE device to be equal to 0.22 for Re ≈ 93 000, though
they did not optimize this value. Lee and Bernitsas (2011) experimentally found the maximum efficiency of VIVACE device
to be 0.33 for Re ≈ 75 000. Soti et al. (2017), through numerical simulations, calculated the power extraction efficiency
to be 0.10, 0.13 and 0.145 at Re = 100, 150 and 200, respectively. The present work provides power extraction data in the
lower ranges of Reynolds number where there is a lack of information in the literature. It also demonstrates the superiority
of VIV over other techniques, such as turbines and watermills, in extracting flow energy at much smaller flow velocities.

Assuming that the peak mean vibration amplitude at zero damping follows a logarithmic relationship with Reynolds
number similar to the one used in Section 3.4, the average power as a function of Reynolds number and mass–damping is
written as

Pm =
[
log10

(
0.252Re0.538

)]2
α exp

(
−2.882α − 1.779α2) . (13)

The coefficients in Eq. (13) were obtained by using a least-squares fit on the all data points in Fig. 18.

4. Conclusions

The effects of damping on the vortex-induced vibration of a circular cylinder ofmass ratio 3.0were studied experimentally
in a water channel for Reynolds number ranging from 1200 to 11,000. An eddy-current-based passive damping mechanism
was used to apply various damping levels to the system. The cylinder vibration response and the fluid forces were recorded
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as a function of the reduced velocity over a range of damping values. The flow power extracted by the damper was also
calculated.

The typical three-branch VIV response (the initial, upper and lower branches) is observed at low damping values. The
transition from one branch to another occurs with a jump in the vibration amplitude. These jumps in amplitude response
get smeared out as the damping is increased. The frequency response also shows jumps at the boundaries of the branches at
low damping but these jumps disappear at higher damping. However, there are the following similarities between frequency
responses at low and high damping: there is a region of reduced velocity at higher damping similar to (a) the initial branch
where the vibration frequency matches with the vortex shedding frequency for a stationary circular cylinder; (b) the upper
branchwhere the vibration frequency is close to the natural frequency of cylinder and increasesmoderatelywith the reduced
velocity; and (c) the lower branch where the vibration frequency stays constant. Therefore, it is reasonable to also label
these regions as the initial, upper and lower branches, respectively, for higher damping cases. Based on the above finding,
the existence of the upper branch was found to continue down to A∗

≈ 0.2D. The frequency of vibration decreases by a little
with damping in all of these regions since the damped natural frequency is smaller than the undamped one. The amplitude
response decreases with increasing damping due to an increase in the dissipation of the kinetic energy of cylinder by the
damper. As the damping is increased, all branches are seen to shrink in terms of the range of reduced velocity. Consequently,
the synchronization region also shrinks with increasing damping.

The lift force also shows a monotonic decrease with increasing damping. Since the power dissipation is proportional to
the sine of the phase difference between the lift and displacement signals, the total phase remains close to 0◦and 180◦for
low damping. As the damping is increased, the total phase tends to vary in a continuous fashion with reduced velocity.

The effect of damping on the peak vibration amplitude is quantified by plotting it against the product of mass and
damping ratios (called mass–damping) in the Griffin plot. The peak amplitude data, obtained by varying the damping and
keeping the Reynolds number fixed, shows a smooth variationwithmass–damping. Three sets of experimentswith different
Reynolds number rangeswere conducted to account for the Reynolds number effects. The experiments agreewith the finding
of Govardhan and Williamson (2006) that the scatter in previously reported Griffin plots is due to the Reynolds number
variation. An exponential fitting function is proposed that fits the peak amplitude data with excellent accuracy and shows a
monotonic decay of peak amplitude at higher mass–damping.

The amount of power dissipated by the damper was also calculated and was regarded as the power that can be extracted
from the flow throughVIVof the cylinder. At anydamping value, there is an optimal reduced velocity for extractingmaximum
power. Also, there is an optimal damping value at any reduced velocity atwhich the extracted power ismaximum. Therefore,
there is an optimal combination of damping and reduced velocity where the extracted power attains its global maximum
value. The vibration amplitude and hence the extracted power is seen to increase with Reynolds number. The maximum
average extracted power was found to be close to 0.151, 0.184 and 0.200 for Re ≈ 1747, 3107 and 5328, respectively. The
fit for the peak vibration amplitude was extended to express the average extracted power as a function of Reynolds number
and mass–damping.
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