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Wall shear stress and flow stability in a model
fusiform aneurysm
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Abstract

Levels of wall shear stress in arterial blood flow are known to con-
tribute to the integrity of wall tissue, and are believed to have a bear-
ing on the pathogenesis of aneurysm disease. The flow of fluid through
a model aneurysm was computed using a spectral element algorithm
to study the distribution of wall shear stress and the stability of the
flow to non-axisymmetric perturbations. Substantially higher mean
and fluctuating wall shear stress components were found in the distal
(downstream) region of the aneurysm bulge when compared to recent
experimental measurements. A global stability analysis demonstrates
that flow conditions consistent with a human aorta will produce non-
axisymmetric flow in an aneurysm consistent with that modeled here.
These results demonstrate the necessity for detailed numerical mod-
eling of these flows to accurately resolve the near wall fluid stresses.
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1 Introduction

Aneurysms are a form of arterial disease characterised by a localised weak-
ening and dilation of an artery [9]. Factors that contribute to the weakening
of the wall tissue include genetic predisposition [1], lifestyle [15], and irreg-
ular wall shear stress [7]. Ultimately, this weakening leads to rupture of
the aneurysm. For aneurysms on the abdominal aorta, rupture is catas-
trophic [12], leading to death from internal bleeding in 75–90% of cases. The
wall shear stress within an aneurysm is a function of the fluid mechanics of
blood within the aneurysm. Therefore an understanding of the development
of aneurysms requires an understanding of the blood flow dynamics within
aneurysms, which forms the basis of this study.

Studies have identified that endothelial cells lining the interior of blood
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Figure 1: Schematic diagram of geometry under investigation, showing key
dimensions. Fluid flows through the interior of the model.

vessel walls are susceptible to damage under excessive levels of wall shear
stress [5], with a measured yield stress of 37.9 ± 8.5Pa reported. This
value is almost an order of magnitude higher than the maximum wall shear
stress measured in a healthy abdominal aorta (4.5Pa [11]). Other studies [8]
demonstrated a correlation between reduced fluctuation in wall shear stress
and thickening of the innermost layer of the vessel wall. Hence the integrity
of the wall of an artery can suffer from atypical wall shear stress environments
featuring either excessive or inadequate stress levels.

Fusiform aneurysms are the focus of the present study, and manifest as a
widening about the vessel centreline [9]. A recent experimental investigation
attempted to systematically investigate aneurysm fluid dynamics through
variation in geometric parameters [13]. In that study, velocity fields within in
vitro aneurysm models were measured using particle image velocimetry (piv).
They reported smaller peak wall shear stresses within the aneurysm than in
a healthy vessel.
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2 Problem formulation

2.1 Aneurysm model

The system under investigation comprises of a circular tube of diameter d
featuring an axisymmetric bulge, and fluid flows through the tube driven
by a time varying pressure gradient. The bulge is defined by a sinusoidal
profile with length L and maximum diameter D (see Figure 1). Relative to a
cylindrical (z–r) coordinate system centered at the middle of the bulge, the
tube wall and bulge are therefore defined by the function

r′ (z′) =

{
1/2 if |z′| > lr/2 ,

dr+1
4

+ dr−1
4

cos
(
2πz′

lr

)
if |z′| ≤ lr/2 ,

where primes denote non-dimensionalisation by d, and a diameter ratio dr =

D/d and length ratio lr = L/d are introduced.

Dynamic similarity of pulsatile Newtonian flow is achieved by matching
two dimensionless parameters, the Reynolds number and Womersley number.

The Reynolds number is defined as Re = Ud/ν , where U is the time-
averaged velocity in the tube, and ν is the kinematic viscosity. The time-
averaged velocity U = Q̄/A , where Q̄ is the time-average volume flow rate
and A is the tube cross-section area πd2/4 . The Womersley number is
defined as α = (d/2)

√
2πf/ν , where f is the frequency of the pulsatile

waveform.

In a fluid flow, the local rate of rotation is obtained from the curl of the
velocity field (the vorticity ω). It can be shown that the zero tangential
velocity gradient of the no-slip wall condition gives for the wall shear stress
wss = µω|wall , where µ is the dynamic viscosity. Here, vorticity and wall
shear stress are non-dimensionalised by U/d and µU/d , respectively.

Flow conditions Re = 330 and α = 10.7 were employed by Salsac et al. [13]
to model conditions within a human abdominal aorta. The same Reynolds
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number and Womersley number are used throughout this study, and an
aneurysm with dimensions lr = 2.9 and dr = 1.9 is considered, corre-
sponding to Model 3 in that study.

2.2 Governing equations

To replicate the conditions of earlier experiments [13], blood is modeled as a
Newtonian fluid. Axisymmetric flow is computed in cylindrical coordinates,
governed by the incompressible Navier–Stokes equations
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+
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= 0 ,

where the advection term is shown in convective form. The axial and radial
velocity components are denoted by uz and ur, respectively. The kinematic
static pressure P is non-dimensionalised by U2, spatial coordinates by d, and
velocities by U.

3 Numerical treatment

3.1 Numerical discretization

The flows in this study are computed by solving the time dependent incom-
pressible Navier–Stokes equations in cylindrical coordinates using a spectral
element method for spatial discretization of the flow domain, and a third
order accurate backwards multistep time integration algorithm to evolve the
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Figure 2: Top: The full computational domain. Inset: Detail of the mesh
in the vicinity of the aneurysm bulge. Interpolation points corresponding to
seventh-degree polynomials within each element are shown.

flow [6]. The present code has previously been validated and used to solve
pressure driven flows in tubes [14].

On the axis, a stress-free boundary is naturally imposed through the for-
mulation of the solver in cylindrical coordinates [4]. Along the tube wall, a
no-slip condition is imposed on the velocity field, and an appropriate high-
order condition is imposed on the pressure gradient normal to the wall [6].
The flow is driven by a pressure gradient, imposed using time varying Dirich-
let conditions on pressure at the inlet and outlet, giving a pressure drop
∆P = Pout − Pin . Periodic boundary conditions for velocity link the outlet
to the inlet, uout = uin . To isolate the effect of a single aneurysm bulge, the
computational domain included 30d of straight tube, which was sufficient to
dissipate the vortical structures generated within the bulge. The computa-
tional domain and spectral-element mesh are shown in Figure 2. The mesh
contained 1099 nodes, forming 936 quadrilateral elements. Simulations used
a zero velocity field as the initial condition, and were evolved to a periodic
state before the data reported in this study was acquired.

A p-refinement study was conducted on a model with lr = 2.9 and dr =

1.9 at Re = 330 and α = 10.7 . It was found that an element polynomial order
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of 7 provided discrepancies of less than 0.2% in flow rate when compared to
a grid independent solution. This polynomial degree was used thereafter.

A global linear stability analysis was conducted using an implicitly re-
started Arnoldi method to solve the eigenvalue problem [2, 3, e.g.] arising
from the evolution of non-axisymmetric perturbation fields with azimuthal
mode number m on the periodic axisymmetric base flow. The Arnoldi solver
was implemented using the arpack package [10].

3.2 Pulsatile blood flow

In 1955, Womersley [16] published an analytical solution for the time varying
velocity profile and flow rate in a straight circular tube subject to a periodic
pressure gradient. Adapting equation (21) from that study yields a relation-
ship between the dimensionless Fourier coefficients of the present imposed
kinematic static pressure drop (∆Pk) and the mean velocity (ūk),

∆P0 = −
32Ltot

Re
ū0, (1)

∆Pk = i
4Ltot

Re

α2k

1− 2
αki3/2 J1 (αki3/2) /J0 (αki3/2)

ūk, (2)

where Bessel functions of the zeroth (J0) and first (J1) order with complex ar-
guments are employed, Ltot is the dimensionless length of the computational
domain (here Ltot = 32.9), and αk =

√
kα characterises the frequency of the

kth mode. The appearance of the imaginary unit in these expressions demon-
strates that the pressure drop and flow rate are out of phase, with the phase
difference varying with the frequency of the waveform components (αk).

While equations (1)–(2) are derived from a solution for a uniform straight
tube, it was found that the aneurysm bulge did not significantly alter the
pulse waveform.
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(a) t = 0.0T (b) t = 0.1T

(c) t = 0.2T (d) t = 0.3T

(e) t = 0.4T (f) t = 0.5T

(g) t = 0.6T (h) t = 0.7T

(i) t = 0.8T (j) t = 0.9T

Figure 3: Out-of-plane vorticity contours at Re = 330 and α = 10.7 , with
dr = 1.9 and lr = 2.9 . Ten frames are shown over one period of the
flow. Eight equi-spaced contour levels are plotted between −20U/d (blue)
and +20U/d (red).

4 Results

Simulations were evolved to a periodic state subject to the imposed periodic
pressure gradient, and data was acquired at a set of discrete intervals over a
complete pulse cycle.

Figure 3 plots contours of vorticity over one period. Frame (a) shows the
flow at peak systole (peak forward flow). As the flow rate begins to decrease,
frame (b), particles roll up into a vortex located just downstream of the
middle of the aneurysm. This vortex enlarges through frame (c), where its
anti-clockwise rotation couples with reversed flow in the tube to generate
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a weaker vortex of opposite rotational direction located near the proximal
(upstream) end of the bulge. The secondary vortex persists in the bulge to
frame (j), after which it is convected out of the bulge during the systolic
phase of the pulse cycle.

The vorticity contour plots reveal regions of high shear along the straight
tube walls, frames (a) and (c), as well as local regions of high shear at inter-
mittent times and locations within the aneurysm bulge.

Dimensionless wall shear stress was sampled on the tube wall upstream,
downstream and throughout the aneurysm bulge. These measurements are
plotted in Figure 4, and demonstrate subtle variations in wall shear stress
over time and as a function of position along the tube wall. In frame (a),
corresponding to peak systole, a peak in the shear stress occurs in the distal
end of the aneurysm (0 . z/d . 1.45). This peak has a value 2.4 times
greater than the level recorded in the straight portions of the tube at that
time.

Over subsequent frames (b)–(c), the peak stress diminishes, but remains
significantly larger than the peak value recorded in the healthy sections of
the tube, occurring in frame (a). Later frames, in particular frames (d)–
(e), exhibit smaller stresses, sometimes almost zero throughout the tube and
aneurysm. These times correspond to the resting period of the pulse cycle.

To determine how the wall shear stress measured in the aneurysm bulge
differs from the levels and variation of wall shear stress in healthy vessels,
time mean and standard deviations were measured over a pulse cycle at
each sample location plotted in Figure 4. The resulting plots are shown in
Figure 5. Significantly, deviation from the values obtained in the straight
tube sections are isolated to the aneurysm bulge (|z|/d . 1.45). Figure 5(a)
shows that within this aneurysm model, the time mean of the wall shear
stress is 4.0 times greater than the mean level in the healthy vessel, and an
opposite sign peak is found with a level 7.3 times greater than the healthy
level. These elevated levels of wall shear stress may lead to damage of the
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(a) t = 0.0T (d) t = 0.6T
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Figure 4: Plots of dimensionless wall shear stress (solid lines) and its mag-
nitude (dotted lines) at locations along the wall upstream, within, and down-
stream of the aneurysm bulge. Data was acquired from the solutions shown
in Figure 3.
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Figure 5: Plots of (a) the local time mean of both the dimensionless wall
shear stress (wss, solid line) and its magnitude (|wss|, dotted line), and
(b) their standard deviations against axial position. Again, data was acquired
at the conditions shown in Figure 3. The shaded region shows the location
of the aneurysm bulge.

endothelium on the distal aneurysm wall [5].

The standard deviation trends in Figure 5(b) show that the magnitude of
wall shear stress experiences a smaller fluctuation than the wall shear stress
itself. In healthy sections of the vessel, the standard deviation for wss was
49% greater than for |wss|. The minimum standard deviations are found
at the mid-point of the aneurysm, with values 44%–47% of those obtained
in a healthy vessel. This could possibly degrade the integrity of the intimal
layer of the vessel wall [8]. Peaks in the standard deviation were found in
the distal region of the aneurysm bulge. These peaks were 194% and 163%
of the values found in a healthy vessel for wss and |wss|, respectively. The
experiments of Salsac et al. [13] determined wall shear stress levels within
their aneurysm models to be approximately 80% of those found in healthy
vessels, while conceding that those values were under predicted because of
a lack of resolution. These computations demonstrate that wall shear stress
levels (both in terms of a time-averaged level as well as the amount of fluc-
tuation experienced at a given point) can differ significantly from the levels
found in a healthy vessel.
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A stability analysis was employed which determined that at Re = 330 ,
azimuthal modes 1 ≤ m ≤ 6 were unstable to global non-axisymmetric
instability modes, with m = 3 being most unstable through a subharmonic
bifurcation. These modes were most prominent in the distal end of the
aneurysm bulge, and were flushed into the downstream tube during systole.
The axisymmetric flow was found to be stable at Re = 250 , and it remains
an open question as to how the development of non-axisymmetric flow affects
the wall shear stress distribution.

5 Conclusions

Pulsatile flow has been computed in a model aneurysm defined by a sinusoidal
bulge on a straight circular tube. The aneurysm dimensions (lr = 2.9 ,
dr = 1.9) and flow parameters (Re = 330 , α = 10.7) correspond to a
medium sized aneurysm, typically considered low risk, on a human abdominal
aorta. Significantly higher mean and standard deviation in shear stress were
recorded in the distal end of the aneurysm bulge, as compared to those values
recorded in straight sections of the tube. Contrary to previous experiments,
these computations reveal that under these conditions the highest wall shear
stress occurs at peak systole, and is 2.4 times greater than the highest wall
shear stress recorded in a healthy vessel. This peak value occurred at peak
systole at the distal end of the aneurysm.
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