
Please cite this article as: A. Sareen, J. Zhao, J. Sheridan et al., Large amplitude cross-stream sphere vibration generated by applied rotational oscillation.
Journal of Fluids and Structures (2019), https://doi.org/10.1016/j.jfluidstructs.2019.03.025.

Journal of Fluids and Structures xxx (xxxx) xxx

Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Large amplitude cross-stream sphere vibration generated by
applied rotational oscillation
Anchal Sareen ∗, Jisheng Zhao, John Sheridan, Kerry Hourigan,
Mark C. Thompson
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash
University, Melbourne, VIC 3800, Australia

a r t i c l e i n f o

Article history:
Received 2 November 2018
Received in revised form 22 February 2019
Accepted 27 March 2019
Available online xxxx

Keywords:
Flow-induced vibration
Rotation
VIV
Lock-in

a b s t r a c t

A new class of vibrations has been discovered where the vibrations are induced
by forced sinusoidal rotary oscillation of a sphere. They have been termed Rotary-
Induced Vibrations (RIV). RIV is observed only for selected forcing parameters, where the
vibrations are locked to the forcing frequency. For these cases, the vibration amplitude
increases monotonically with an increase in U∗, similar to a galloping response. However,
unlike the galloping response which is typically observed for high flow velocities and is
generated by lift caused by body asymmetry, RIV is observed for the entire fundamental
synchronisation regime of a sphere. RIV is found to be driven by vortex shedding as well
as the imposed rotary oscillation, which causes an oscillatory Magnus force. As is typical
of forced oscillations, the band of forcing frequencies that leads to RIV becomes wider
with forcing amplitude, and is centred on the resonant condition for which the forcing
frequency matches the natural system frequency. At a reduced velocity of 20, which is
approximately 3 times the resonant reduced velocity, the vibration amplitude was more
than 50% greater than the unforced case.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-induced vibration (FIV) has been an especially active area of research over the last four decades. This has resulted
in a number of literature reviews focused on understanding the underlying mechanisms (e.g. Sarpkaya (2004), Williamson
and Govardhan (2004), Gabbai and Benaroya (2005), Païdoussis et al. (2010)). For some applications, e.g., heat exchangers,
oil risers, offshore structures and bridges, FIV is undesirable as it can cause severe structural fatigue and damage. Hence,
many past studies have focused on suppressing large-amplitude vibrations. Choi et al. (2008) provides a comprehensive
review on various active and passive control methods that have been employed.

On the other hand, some researchers have exploited energetic vibration to harness flow energy (e.g., Barrero-Gil et al.
(2012), Wang et al. (2017) and Soti et al. (2018)). For both sets of applications, it is crucial to be able to predict the
structural vibration response so that suitable control or energy-harvesting methods can be employed.

Recently, VIV control using rotary oscillation has gained increased attention. A numerical study by Du and Sun (2015)
and an experimental study by Wong et al. (2018) explored the potential of imposed rotary oscillation to control vortex-
induced vibration (VIV) of a cylinder. A very recent study by Sareen et al. (2018b) examined the potential of rotary
oscillation to control VIV of a sphere. These studies demonstrated that when the imposed forcing frequency, fr , is close to
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Fig. 1. (a) Schematic of the experimental set-up. (b) Definition sketch of the current fluid–structure interaction problem consisting of a 1-DOF system
constrained to move only in the cross-flow direction. Here, D is the sphere diameter, U is the free-stream velocity, k the spring constant, c the
structural damping, and θ the imposed angular displacement.

(but not equal to) fnw (natural frequency of the system), then the vortex shedding frequency, fsh, locks on to fr instead of
fnw, thereby possibly inhibiting resonance and suppressing vibration. This phenomenon is called lock-on, or in this case,
rotary lock-on.

Of particular interest here is the response that is observed for certain forcing parameters, for which the vibration
amplitude increases monotonically with reduced velocity (normalised flow velocity). Previously, Sareen et al. (2018b)
reported a monotonically increasing vibration response for a sphere for fR = fr/fnw ∼ 1 at αR. Here, αR is forcing
amplitude ratio defined as the ratio of the equatorial surface velocity amplitude of the sphere to the freestream speed. For
those control parameters, they found that vibrations are always locked-on to the forcing frequency. This monotonically
increasing vibration response was termed rotary-induced vibration (RIV). However, Sareen et al. (2018a) reported RIV only
for an amplitude ratio of αR = 1 for two cases with forcing frequency ratios very close to unity. In that paper, it was not
explored how the characteristics of RIV change with amplitude ratio. Does RIV persist for even smaller amplitude ratios?
How does the saturation amplitude increase with an increase in the amplitude ratio, and how does the forcing frequency
range for occurrence change? This current study focuses on rotary-induced vibration to characterise its behaviour for
amplitude ratio between 0 ⩽ αR ⩽ 2 to determine the frequency ratio for occurrence. Specifically, the current study maps
out the parameter space where RIV is observed and provides a more detailed analysis and characterisation than previously
undertaken.

2. Experimental methodology

The experiments were carried out in the recirculating free-surface water channel of the Fluids Laboratory for
Aeronautical and Industrial Research (FLAIR) at Monash University, Australia. The test section of the channel is 600 mm
wide, 800 mm deep and 4000 mm long. The free-stream turbulence level was less than 1% for the current experiments.
A uniform density spherical acrylic ball with a smooth polished surface was used for the experiments. The diameter of
the sphere was D = 80 mm (accurate to within ± 200 µm).

The rotary motion was provided using a miniature low-voltage micro-stepping motor with a resolution of 25000
steps/revolution. The rotary oscillation was monitored using a digital optical rotary encoder with a resolution of
4000 counts/revolution. More details of the rotary device can be found in the studies of Wong et al. (2017, 2018) and Zhao
et al. (2018b). The sphere cross-stream displacement was measured using a linear encoder with a resolution of 1 µm. For
each data set, the signal was acquired at a sampling frequency of 100 Hz for more than 100 vibration cycles. A schematic
of the current problem set-up is given in Fig. 1. The sphere was free to move in the direction transverse to the flow. An
air bearing rig was employed to provide the near-frictionless motion, which has been validated and used in many related
FIV studies in the FLAIR group (e.g. Zhao et al., 2018a,b, 2019a,b). Further details of the setup can be found in Sareen et al.
(2018b).

The sphere vibration response is often characterised using the amplitude ratio A∗ and frequency ratio f ∗ as a function
of reduced velocity U∗. Here, A∗

=
√
2yrms/D, f ∗

= f /fnw and U∗
= U/(fnwD), where yrms is the root-mean-square measure

of the sphere oscillation signal in the transverse direction, f is the oscillation frequency, U is the free-stream velocity and
D is the sphere diameter. The other important non-dimensional parameters are Cy, defined as Cy = Fy/( 18ρU

2πD2), and
f ∗

Cy , defined as f ∗

Cy = fCy/fnw. Here, Fy is the total transverse force acting on the sphere, ρ is the fluid density and fCy is the
dominant frequency of the transverse force.
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The rotary oscillation motion of the sphere is characterised by the forcing frequency ratio, fR, and the forcing amplitude
ratio, αR. As introduced previously, fR is defined as the ratio of forcing frequency, fr , to the natural frequency of the system,
fnw, as

fR = fr/fnw. (1)

The other parameter, αR, is expressed as the ratio of the maximum tangential velocity of the sphere surface to the
free-stream velocity U , as

αR =
Dθ̇max

2U
, (2)

where θ̇max is the maximum angular velocity of the sphere.
The equation governing cross-flow motion of the sphere can be written as

mÿ + cẏ + ky = Fy (3)

where Fy is the fluid force in the transverse direction, m is the total oscillating mass of the system, y is the displacement
of the sphere in the transverse direction, c is the structural damping of the system, and k is the spring constant. As a first
approximation, it is often assumed that Fy(t) and y(t) are both sinusoidal and can be represented as

y(t) = A sin(2π ft), (4)

Fy(t) = Fo sin(2π ft + φtotal). (5)

Based on suggestions by Lighthill (1986), Govardhan and Williamson (2000) and others, the total transverse force (Fy)
can be split into a potential force (comprising the potential added-mass force, Fp) and a vortex force (due to vorticity
dynamics, Fv). From the potential theory, the instantaneous potential force acting on the sphere can be expressed as

Fp(t) = −CAmdÿ(t) , (6)

where CA is the potential flow added mass coefficient (0.5 for a sphere), md is the displaced fluid mass and ÿ is the
acceleration in the transverse direction. Thus, the vortex force Fv can be computed from

Fv = Fy − Fp . (7)

If all the forces are normalised by ( 12ρU
2πD2/4), this reduces to

Cvortex(t) = Cy(t) − Cpotential(t). (8)

Hence, the equation of motion can also be written as

(m + mA)ÿ + cẏ + ky = Fvortex sin(ωt + φvor). (9)

The vortex phase φvor, first introduced by Govardhan andWilliamson (2000), is the phase difference between the vortex
force Cvortex(t) and the body displacement y(t). The more conventionally used total phase φtotal is the relative phase angle
of the total force Cy to the body displacement y(t).

The sinusoidal rotary motion imposed on the sphere can be expressed as

θ (t) = θo sin(2π fr t + φrot), (10)

where θ is time-dependent imposed angular displacement, θo is maximum angular displacement and fr is the forcing
frequency and φrot is the phase difference between the sphere displacement and the imposed sinusoidal rotary motion.
The theory presented in this section assumes that the signals are all purely sinusoidal at a fixed frequency. The system
dynamics is more complex in reality, of course, with how well the displacement and force signals actually satisfy those
assumptions depending on control parameters. In any case, it is possible to define instantaneous phases using a Hilbert
transform (e.g. Khalak and Williamson, 1999; Zhao et al., 2014a,b), which helps to define how the signals relate to one
another both instantaneously and on average.

Readers should be mindful here that in the current problem, the sphere experiences a Magnus force due to rotation,
which can be partially described by potential theory. However, the maximummean lift coefficient experienced by a sphere
tends to be limited to ∼ 0.5, while potential theory predicts it to vary as 2α (Rubinow and Keller, 1961). Moreover,
there will be a time lag in the generation of the Magnus force after the sphere rotational velocity is increased, since it
is transmitted through viscous diffusion, that will contribute to complex dynamics. In addition, it can be expected there
will be contributions to the vortex force from the vorticity induced by the oscillatory sphere rotation as well as from
natural vortex shedding depending on the frequency ratio of these two phenomena. Thus, unlike the unforced case, the
vortex force here may need to account for these contributions, i.e., natural vortex shedding, vortex shedding associated
with oscillatory rotational oscillation and a Magnus component that can be associated with bound vorticity. Nevertheless,
Eq. (9) should still be useful to understand the current problem and may help shed light into the dynamics.
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Fig. 2. (a) Vibration response of a sphere for various fR values at an amplitude ratio of αR = 0.5. (b) Vibration response for a sphere for fR = 1
and αR = 0.5. The ‘error bars’ are bounded by the means of the top 10% and bottom 10% peaks of the sphere vibration. Time traces of the sphere
displacement are also shown for two selected cases of U∗

= 5 (left) and U∗
= 10 (right).

3. Sphere vibration response without rotary oscillation

The Reynolds number in the current study varies in the range 3840 ≤ Re ≤ 25 600. For a stationary sphere at such
high Reynolds numbers, vortex loops emanate at a Strouhal frequency of St = fshD/U ≈ 0.2, where fsh is the vortex
shedding frequency. If a sphere is mounted elastically in the transverse direction, resonance or lock-in kicks in when the
vortex shedding frequency is equal to the natural frequency of the system, i.e, U∗

= 1/St ≈ 5 (See the dashed curve of
Fig. 2). Once lock-in kicks in, the sphere continues to experience large vortex-induced vibration (VIV) for a wide range
of reduced velocities. The vibration amplitude increases as the response moves through sphere vibration modes I to II,
reaching plateau values for mode III at higher flow velocities. The sphere response with no imposed rotation is discussed
in detail in studies by Govardhan and Williamson (2005) and Sareen et al. (2018a,c). During VIV, the vortex shedding
as well as the sphere vibration are locked to the natural frequency of the system for low mass-damping systems. In the
following discussion, this will be referred as the ‘natural vortex shedding’ or the ‘natural shedding frequency’.

Sareen et al. (2018b) reported deviation of the vortex shedding frequency from the natural frequency of the system
under imposed rotary oscillation. They demonstrated that under the influence of rotary motion of the sphere, the timing
of vortex formation changes leading to deviation of the vortex shedding frequency from the natural frequency towards
the forcing frequency fr . As it will be shown in the following discussion, the vortex shedding may show only a single
frequency at fr or both frequencies of fr and fnw or may also show a more complex behaviour, with additional frequency
content including higher harmonics of the forcing frequency.

4. Effect of imposed rotary oscillation

Fig. 2 shows the sphere response for a selection of fR values for an amplitude ratio of αR = 0.5. As evident from Fig. 2(a),
the sphere vibration response resembles the typical response curve observed for a non-rotating sphere, whereby the
response increases gradually from mode I to mode II. However, there is a significant reduction in the vibration amplitude
at higher reduced velocities (U∗

≥ 10). Large variations in the instantaneous vibration amplitude are also observed for
higher U∗ ≳ 8, as depicted in 2(b). Conversely, time traces of the sphere displacement show that the vibration remains
periodic for U∗ ≲ 8. However, the time trace shows beating at a very low frequency for higher reduced velocity of U∗ > 8.

Similar response curves were also observed for αR = 0.25 (although not shown here). This leads to a conclusion that
RIV is not observed for low forcing amplitude ratios (at least over the range of fR tested in this study).

In order to see the effect of forcing amplitude ratio, higher values of αR = 1 and 2 were tested. Fig. 3 shows the sphere
vibration amplitude response for various fR values for a high forcing amplitude ratio of αR = 2. As also demonstrated
in Sareen et al. (2018b), the sphere exhibits a rich response showing characteristically different response curves depending
on the fR value. In Fig. 3, fR = 1, fR = 1.2 and fR = 1.5 show a monotonic increase in the vibration amplitude with U∗.
These three cases are examples of rotary-induced vibration. For fR = 4, the sphere exhibits lock-in or resonance followed
by suppression of vibrations. There is no RIV in this case. On the other hand, fR = 0.5 is an interesting case exhibiting VIV
followed by rotary lock-on at higher U∗. In the following sections, RIV cases will be discussed in more detail.

5. Characteristic behaviour and the mechanism of RIV

In this section, selected cases of RIV are presented and their characteristic behaviour is discussed. One of the
characteristic features of RIV is the monotonic (approximately linear) increase of the vibration amplitude with increasing
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Fig. 3. Sphere vibration response as a function of reduced velocity for various frequency ratios at a high forcing amplitude ratio of αR = 2. For this
αR value, the sphere exhibits various characteristically different FIV responses depending on fR .

Fig. 4. The RIV response of a sphere under imposed rotary oscillation at a forcing amplitude ratio of αR = 1 for frequency ratios of fR = 1.1 (a)
and fR = 1.2 (b). The correlated phases and PSD contours of f ∗

Cy and f ∗ are also shown below. Circular symbols in the phase plot represent φrot , and
triangular symbols represent φvor . The green-shaded region highlights the region where φrot increases. Time traces for the marked symbols in (a)
and (b) are shown in Figs. 5 and 6, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

reduced velocity. This trait is similar to the galloping response known for non-circular bluff bodies. Galloping is observed
at high flow velocities and is essentially a low frequency phenomenon (Blevins (1990), Nemes et al. (2012) and Zhao et al.
(2014b)). In addition, it is usually associated with high mass ratio systems. In the present case, RIV can also be observed in
the same parameter space in which resonance is observed in the absence of rotary oscillation as well as at higher reduced
velocities.

Fig. 4(a) shows response quantities for fR = 1.1 at an amplitude ratio of αR = 1. As evident from the figure,
the vibration amplitude increases monotonically as the reduced velocity is increased. The power spectral density (PSD)
contour plot of the sphere displacement shows the dominant frequency at the forcing frequency. It is interesting to note
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Fig. 5. (a) Time trace of the sphere displacement (black colour) and coefficient of the vortex force Cv (orange). (b) Time trace of the instantaneous
phases φrot (black) and φvor (orange). The time traces are shown for U∗

= 3, 5, and 15 (also marked in Fig. 4(a)) for an amplitude ratio and frequency
ratio of α = 1 and fR = 1.1, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

here that the phase difference between the vortex force and the sphere displacement (φvor) remains zero for the entire
range of U∗. It appears that the vortex shedding assists to sustain these vibrations.

On the other hand, the PSD contour plot of Cyrms also shows a dominant frequency at the forcing frequency. Of interest
is the sudden jump observed in the phase difference between the imposed rotary oscillation and the sphere displacement
(φrot). All the RIV responses observed in the current study exhibited a monotonic decrease of φrot with increasing reduced
velocity beyond the resonant region. As indicated, due to rotary oscillation of the sphere, an oscillating Magnus force is
generated in the transverse direction, which presumably also contributes to sphere oscillation along with direct forcing
from vortices shedding into the wake.

The time traces of the instantaneous phases calculated using a Hilbert transform are shown in Fig. 5. For very low
reduced velocity of U∗

= 3, large fluctuations in φvor are evident. The time trace of Cv also shows large variations with
time. Beyond this U∗ where the oscillation amplitude becomes significant, both phases, φvor and φrot, remain fairly constant
for U∗

= 5. For very high reduced velocity of U∗
= 15, Cv and y/D are highly periodic and both the phases remain steady.

These findings show the consistent constant phasing between the different signals that occurs for this near resonant case.
At high U∗, it also appears to indicate that the vortex forcing is caused by vortices shed at the forcing frequency rather
than the natural shedding frequency.

For fR = 1.2 and αR = 1, the PSD contour plot of the transverse force coefficient shows broad frequency content for
U∗

≥ 8 (Fig. 4(b)). Distinct higher harmonics (second and third harmonics) of the forcing frequency are also clearly evident.
The sphere displacement, however, remains locked to the forcing frequency for the entire range of reduced velocities. A
close examination of the instantaneous phases (φrot and φvor, see Fig. 6) reveals that there is transition in the signal at
U∗

= 8 (see Fig. 6(b)). At this particular reduced velocity, the displacement signal shows beating for an initial period of
time and subsequently undergoes a transition to where the displacement and applied forcing become locked. However,
when that occurs, the vortex phase is far from constant. This may suggest that normal vortex shedding is occurring or at
least varying on top of the vortex shedding associated with the oscillating rotational motion of the sphere.

The transition between these two types of behaviour is also evident in the time traces of Cv and y/D shown in Fig. 6(a).
Interestingly, the large variation in the mean amplitude of the lift coefficient observed in the different regions does not
translate to the sphere displacement, as evident from the time trace of y/D in the figure (especially for U∗

= 8). Although
there is a phase shift in φrot and φvor at U∗

= 7.5, the sphere vibration amplitude hardly shows any trace of this phase
shift and keeps increasing smoothly with increasing reduced velocity (see Fig. 4(b)). However, the PSD plot of the lift force
coefficient shows a drastic change in the frequency content for U∗

≥ 8. Intriguingly, φvor is not maintained at zero but
varies between ≈ 40 and 60◦, unlike the previous case of fR = 1.1. Note here that the RIV response for fR = 1.2 is also
characterised by a sudden jump in φrot.

Fig. 7(b) shows another example of RIV for fR = 1.5 and αR = 2. For this case, φvor is out of phase with the displacement
for U∗

≈ 6 − 12 (see highlighted region). Interestingly, outside of that region, both the displacement and lift signals
show clear frequency content at both the natural and forcing frequencies. Despite this, there is a smooth variation in the
amplitude response with U∗ over the entire range.

An interesting case is when the dominant frequencies of the system are equal, i.e. fR = 1. This is shown in Fig. 7(a). The
sphere displacement as well as the transverse force show a clean frequency response. The vortex force is in phase with
the sphere displacement for the entire range of U∗. The rotary oscillation enhances the sphere vibration with increasing
reduced velocity as φrot decreases from 180◦ to 90◦ for U∗ ≲ 10. However, for U∗

≥ 10, φrot remains fixed and the
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Fig. 6. (a) Time trace of the sphere displacement (black colour) and coefficient of the vortex force Cv (orange). (b) Time trace of the instantaneous
phases φrot (black) and φvor (orange). The time traces are shown for U∗

= 7, 7.5, 8 and 15 (also marked in Fig. 4(b)) for an amplitude ratio and
frequency ratio of α = 1 and fR = 1.2, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7. The RIV response of a sphere under imposed rotary oscillation for (a) fR = 1, αR = 2 and (b) fR = 1.5, αR = 2. Circular symbols in the phase
plot represent φrot , and triangular symbols represent φvor . The highlighted region for fR = 1.5 shows RIV observed for φtotal = 180◦ . The green-shaded
region highlights the region where φvor is fixed at 180◦ . (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 8. Plots showing the contours of A∗ as a function of αR and fR in mode I (a), mode II (b) and mode III (c). Here (d) highlights the region in
αR–fR parameter space, where RIV is observed based on the intersection of rotary lock-on regions shown in (a), (b) and (c). Note that RLO indicates
rotary lock-on, and TLO tertiary lock-on.
Source: In addition, please note that figures (a), (b) and (c) have been reproduced from Sareen et al. (2018b).

vibration amplitude does not increase as rapidly as for U∗ ≲ 10. The maximum vibration amplitude recorded in this case
is at the highest reduced velocity tested of U∗

= 20. In that case, the recorded amplitude was more than 50% higher than
the maximum amplitude seen in the unforced case (∼ 0.80 : 1.2).

Sareen et al. (2018b) performed extensive wake measurements and observed no significant change in the dominant
wake structures in the lock-on regions. However, they reported a change in the timing of vortex formation consistent
with the change in φvor. In the present case, since the sphere vibrations are always locked-on to the forcing frequency in
RIV, one can expect that there will not be any significant change in the dominant vortex structures in the sphere wake.
However, the rotary motion of the sphere induces vortex shedding at the forcing frequency. Therefore, there should be a
change in the timing of the vortex formation.

In the sense that the forcing is externally applied, rather that induced by body or flow asymmetry, rotary-induced
vibrations might be better compared to wake-induced vibrations (WIV) rather than galloping. Assi et al. (2010) reported
WIV for an elastically mounted cylinder placed downstream of a fixed cylinder. In their study, the elastically mounted
cylinder exhibited only WIV, only VIV, combined WIV and VIV, and separated WIV and VIV, depending on the cylinders’
separation (that essentially changes the phase difference between the two vortex sheddings). In any case, the forcing of
the second cylinder is a result of the transversely oscillating pressure as the positive and negative wake vortices from
the first cylinder advect downstream past the second cylinder. The case here is perhaps more complicated because of the
various different components of the vortex force discussed in Section 2.

These findings are very interesting from the viewpoint of energy extraction applications. If we know the favourable
forcing parameters, we can achieve enhanced sphere vibrations of the order of 1.5 sphere diameters for a wide range of
flow velocities. Of course, it is possible that even higher amplitudes could be achieved at higher reduced velocities. It is
also important to predict such vibrations even for control applications, where the aim is to suppress such vibrations. It is
crucial to know the parameter space of αR – fR, where RIV is observed so as to avoid those conditions. By examining the
sphere response frequency as a function of fR for each fixed αR in the current experiments, we can estimate the region
where RIV is observed in the αR – fR parameter space. When reduced velocity is progressively increased, monotonically
increasing vibration amplitude (RIV) is observed only in those cases where there is rotary lock-on in all the three modes of
sphere vibrations. Based on this criterion, a region can be mapped out in αR − fR parameter space, where there is lock-on
in all the three modes. Such a region has been highlighted in Fig. 8. Fig. 8 shows the approximate boundaries of the RIV
region based on the data reported by Sareen et al. (2018b). This type of response is common in forced resonant systems
and is known as a resonant horn (Arnol’d, 1977). For example, it has also been observed for flow past a circular cylinder
under transverse forcing (e.g., Karniadakis and Triantafyllou, 1989; Leontini et al., 2006).
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6. Conclusions

In this study, the phenomenon of Rotary-Induced Vibration (RIV) was investigated experimentally. Despite some
similarities, it was found to be different from the classical galloping phenomenon known for asymmetric bluff bodies.
Unlike the galloping response that is observed for high flow velocities, RIV was observed over 3 < U∗ < 20, which also
covers the entire fundamental modes I & II synchronisation regimes, where resonance/VIV is observed in the absence of
imposed rotary oscillation. The RIV response exhibited the sphere vibrations as well the total transverse lift force both
being locked to the forcing frequency for the entire U∗ range.

RIV was found to be driven by the effect of imposed rotary oscillation as well as associated vortex shedding. The rotary
motion induces an oscillatory transverse Magnus force on the sphere. In essence, RIV is an amalgamation of the combined
effects of the vortex force due to natural vortex shedding as well as or combined with vortex shedding associated with
the release of vorticity as the body oscillates rotationally, along with the potential Magnus force, which is essentially due
to varying bound vorticity. Depending on system parameters, the contribution of these forces to RIV changes, although
during RIV the rotational phase and displacement signals remain locked.

Based on the experiments, a region was mapped out in αR – fR parameter space, where RIV is observed for the
experimentally captured reduced velocity range of 3 < U∗ < 20. In view of energy extraction applications, the optimum
case would be when the rotary oscillation is imposed in such a way that it matches the system frequency, where the
resonant effect is greatest. Of course, for energy extraction, one would have to consider if the extra energy input is more
than matched by the energy output. However, for control applications, other parameter choices can, of course, provide
vibration suppression.
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