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We present an experimental investigation aimed at understanding the effects of surface
roughness on the time-mean drag coefficient (�̄�𝐷) of finite-span cylinders (span/diameter
= aspect ratio, 0.51 ⩽ AR ⩽ 6.02) freely rolling without slip on an inclined plane. While
lubrication theory predicts an infinite drag force for ideally smooth cylinders in contact
with a smooth surface, experiments yield finite drag coefficients. We propose that surface
roughness introduces an effective gap (𝐺eff) resulting in a finite drag force while allowing
physical contact between the cylinder and the plane. This study combines measurements
of surface roughness for both the cylinder and the plane panel to determine a total relative
roughness (𝜉) that can effectively describe 𝐺eff at the point of contact. It is observed that
the measured �̄�𝐷 increases as 𝜉 decreases, aligning with predictions of lubrication theory.
Furthermore, the measured �̄�𝐷 approximately matches combined analytical and numerical
predictions for a smooth cylinder and plane when the imposed gap is approximately equal
to the mean peak roughness (𝑅𝑝) for rough cylinders, and one standard deviation peak
roughness (𝑅𝑝,1𝜎) for relatively smooth cylinders. As the time-mean Reynolds number (𝑅𝑒)
increases, the influence of surface roughness on �̄�𝐷 decreases, indicating that wake drag
becomes dominant at higher 𝑅𝑒. The cylinder aspect ratio (AR) is found to have little impact
on �̄�𝐷 . Flow visualisations are also conducted to identify critical flow transitions and these
are compared with visualisations previously obtained numerically. Variations in 𝜉 have little
effect on the cylinder wake. Instead, AR was observed to have a more pronounced impact
on the flow structures observed. The Strouhal number (𝑆𝑡) associated with the cylinder wake
shedding was observed to increase with 𝑅𝑒, while demonstrating little dependence on AR.
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1. Introduction
The free motion of a body rolling along a plane wall is of practical interest in many fluid
dynamics applications, such as the transport of sediment in rivers, the design of viscous
micro-pumps and the motion of leukocytes near vessel walls. While these practical flows
typically feature irregular and varied geometries, much research has focused on simplified
geometries, including spheres (Carty 1957; Jan & Shen 1995) and infinite cylinders (see
Thompson et al. (2021) for a detailed review). The present authors have recently highlighted
the importance of surface roughness in determining the drag on rolling spheres (Nanayakkara
et al. 2024). In particular, surface roughness elements generate an effective hydrodynamic
gap between the sphere and the wall, and the drag coefficient (𝐶𝐷) can be approximately
predicted based on this effective gap. We anticipate that this proposed mechanism of rolling
motion applies to other rolling body geometries. Therefore, the present article presents an
experimental investigation into the influence of surface roughness on the motion of finite-span
rolling cylinders, where the contact area is far more extensive than for a sphere. Our results
strongly support the hypothesis that surface roughness introduces an effective hydrodynamic
gap between the cylinder and the wall, and the effective drag coefficient can be determined
from this hydrodynamic gap using lubrication theory.

The paradox of rolling motion arises from the theoretical prediction for an incompressible
fluid that a perfectly smooth sphere or cylinder should be incapable of rolling while in contact
with a smooth wall. This theoretical expectation contradicts experimental observations of
rolling motion for both spheres (Carty 1957; Houdroge et al. 2023; Jan & Shen 1995)
and cylinders (Rao et al. 2011). Specifically, analytic expressions for the force and moment
applied to either a sphere (Goldman et al. 1967; O’Neill 1967; O’Neill & Stewartson 1967) or
cylinder (Jeffrey & Onishi 1981; Merlen & Frankiewicz 2011) translating and rotating near a
plane wall predict an infinite drag force when the body is in contact with the wall. A resolution
to this paradox is to introduce an effective gap between the rolling body and the wall, thereby
resulting in a finite drag force. Proposed mechanisms to introduce this effective gap include
cavitation (Ashmore et al. 2005; Prokunin 2003; Seddon & Mullin 2006), compressibility
(Terrington et al. 2022) and surface roughness (Galvin et al. 2001; Nanayakkara et al.
2024; Smart & Leighton 1989; Zhao et al. 2002). Which of these mechanisms is relevant
for establishing the effective gap depends on the experimental parameters (Terrington et al.
2022). For example, while cavitation has been observed in some experiments, for both spheres
(Ashmore et al. 2005; Yang et al. 2006) and cylinders (Seddon & Mullin 2006), cavitation
is entirely absent in others (Houdroge et al. 2023; Nanayakkara et al. 2024).

In cases where cavitation is responsible for the motion (Ashmore et al. 2005; Seddon &
Mullin 2006), the formation of a cavitation bubble produces a lift force that results in the
sphere or cylinder losing contact with the wall. In such cases, there are no contact forces
between the body and the wall, and the sphere or cylinder experiences a rotation rate different
from that required to roll without slipping (Ashmore et al. 2005; Seddon & Mullin 2006).

When cavitation and compressibility effects are either weak or absent, the effective gap
is a result of surface roughness. The rolling body and the wall maintain contact via surface
asperities, and this produces an average gap proportional to the height of surface asperities.
In such cases, the body may roll without slipping along the wall, due to contact forces
between the body and the wall. For the rolling sphere flow, this hypothesis is supported by
experimental measurements in both the Stokes flow (Galvin et al. 2001; Smart et al. 1993;
Zhao et al. 2002) and inertial flow regimes (Houdroge et al. 2023; Nanayakkara et al. 2024;
Thompson et al. 2021). However, this proposed mechanism has not yet been shown to apply
to other geometries, such as the rolling cylinder. Importantly, the nominal contact between a
cylinder and the wall occurs at a line, while contact between a sphere and a wall occurs at a
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single point, and this could influence the mechanism of rolling motion. The present article
presents experimental results that demonstrate the occurrence of the same mechanism in the
motion of finite-span circular cylinders.

While extensive experimental studies of isolated cylinders have been conducted, including
both long-span (Bénard 1908; Taneda 1965; Von Karman 1911) and finite-span (Norberg
1994; Williamson 1996) cylinders, experimental measurements of cylinders rolling in close
proximity to a plane wall remain relatively scarce. Bearman & Zdravkovich (1978) and
Zdravkovich (1985) considered the related problem of flow past a stationary cylinder near a
plane wall, with gap-to-diameter ratio (𝐺/𝐷) in the range 0 ⩽ 𝐺/𝐷 ⩽ 2. The flow structures
(Bearman & Zdravkovich 1978) and both the drag and lift coefficients (Zdravkovich 1985)
were found to vary significantly with 𝐺/𝐷, while the Strouhal number (𝑆𝑡) was insensitive
to 𝐺/𝐷.

While few experimental investigations of rolling cylinders at low and moderate 𝑅𝑒

have been performed, this problem has been widely examined using both analytical and
computational approaches. Jeffrey & Onishi (1981) obtained expressions for the force and
moment applied to a circular cylinder both rotating and translating near a plane wall in
Stokes flow, which are valid for any𝐺/𝐷. Merlen & Frankiewicz (2011) found corresponding
expressions valid in the limit𝐺/𝐷 ≪ 1 using lubrication theory. These solutions are accurate
only for Stokes flow (𝑅𝑒 = 0), and under-predict the drag coefficient at non-zero 𝑅𝑒, since
inertial effects such as wake formation are neglected.

To account for inertial effects at non-zero 𝑅𝑒, numerical simulations have been employed
(Houdroge et al. 2017, 2020; Rao et al. 2011; Stewart et al. 2006, 2010b; Wang et al.
2021). These studies typically consider only a single value of 𝐺/𝐷, noting that the flow
outside the gap region is insensitive to 𝐺/𝐷, when 𝐺/𝐷 is small. While this approach
is sufficient to determine the wake dynamics and transitions, the drag coefficient appears
to be highly sensitive to 𝐺/𝐷, and therefore simulations must be performed for a range
of 𝐺/𝐷 to completely determine the drag coefficient. To avoid performing simulations for
multiple 𝐺/𝐷, Terrington et al. (2023) have introduced a combined analytical-numerical
approach, where the gap-dependent drag (𝐶𝐷,pred,gap) for the two-dimensional flow over a
circular cylinder is obtained using the analytical lubrication solution, while the wake drag
(𝐶𝐷,pred,wake), which is independent of 𝐺/𝐷, is obtained using numerical simulations. The
total predicted drag coefficient is the sum of the gap-dependent and wake drag coefficients;
this predicted drag coefficient will be denoted as 𝐶𝐷,pred.

The gap-dependent drag coefficient obtained by Merlen & Frankiewicz (2011) is for the
infinite cylinder flow. Saintyves et al. (2020) computed the correction to this expression due
to end effects for a finite-span cylinder with a large aspect ratio. Teng et al. (2022) extended
this analysis, computing the correction to the gap-dependent drag valid for all aspect ratios.
The end effects result in a reduction in the gap-dependent drag coefficient compared to the
two-dimensional theory, particularly for small aspect ratios and larger 𝐺/𝐷.

While Teng et al. (2022) provided expressions for the gap-dependent drag for a finite-span
cylinder, solutions for the gap-independent wake drag for a finite-span rolling cylinder have
not been obtained in the existing literature. While both Pirozzoli et al. (2012) and Javadi
(2022) performed numerical simulations for low-aspect-ratio finite-span cylinders (wheels)
in contact with a plane wall, neither of these studies discussed the numerical treatment of the
contact point, nor the infinite pressures that should arise in that region. Both studies reported
finite 𝐶𝐷,pred at 𝐺/𝐷 = 0, in contrast with the infinite drag predicted by lubrication theory.
As discussed by Terrington et al. (2023), this is likely due to low grid resolution at the point
of contact. The 𝐶𝐷,pred values reported by these works are therefore likely to be unreliable.

The effect of cylinder aspect ratio on the wake structures behind a freely rolling finite-span
cylinder has also not been documented in the existing literature. Zdravkovich et al. (1989)
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conducted experiments on isolated cylinders with 𝐴𝑅 ⩽ 1 and showed that �̄�𝐷 increases for
decreasing AR, for high 𝑅𝑒 (approximately 105). Computational studies by Inoue & Sakuragi
(2008) investigated the effects of both 𝑅𝑒 and AR on isolated stationary cylinders, and found
5 basic patterns of vortex shedding. The authors reported that these patterns are dependent
on both 𝑅𝑒 and AR of the cylinders, and end effects also play a role in the flow patterns
observed. Inoue & Sakuragi (2008) also observed double-sided hairpin-like vortex patterns
for moderate AR (2 − 10) and moderate 𝑅𝑒 (50 − 200). Recent computational analysis by
Yang et al. (2022) found a similar behaviour for a cylinder with AR ranging from 0.5 to 2,
at lower 𝑅𝑒 (0 − 300). It is noted that their results also indicate that the difference in 𝐶𝐷,pred
for varied AR is higher at low 𝑅𝑒, and the curves seem to converge together at 𝑅𝑒 ≈ 500.
The present article will experimentally investigate the effect of AR on the wake structures
formed behind a rolling circular cylinder.

Numerical studies (Houdroge et al. 2017, 2020; Rao et al. 2011; Stewart et al. 2010a) have
also investigated the influence of gap size on the wake dynamics and vortex shedding of a
freely rolling infinitely long cylinder. Although a vanishing gap size has a strong influence
on the forces acting on the cylinder, at least for small gap ratios, the gap height has minimal
effects on the wake and wake transitions. Houdroge et al. (2020) visualised the pressure
distribution of a cylinder with large and small gaps, and showed that the pressure coefficients
were nearly identical, at the top and sides of the cylinder, even when the gap size was reduced
by a factor of 32. However, it is important to note that given the coupling between a freely
rolling cylinder and the flow, where the cylinder motion responds to changes in drag forces
as vortices are shed into the wake, the dependence of drag force on the gap size has an
indirect effect on the wake dynamics. A detailed discussion of relevant literature regarding
the wake-structure interaction of cylinders rolling on a plane is given in §5.1.

In this study, we will experimentally investigate the effects of surface roughness on the drag
coefficient of finite-span cylinders freely rolling without slipping. Our primary focus will
be on the low to moderate Reynolds number regime (30 < 𝑅𝑒 < 1800), where the present
literature lacks experimental evidence of the dependence of �̄�𝐷 on surface roughness. We
aim to provide experimental evidence that the time-mean drag coefficient (�̄�𝐷) is dependent
on both cylinder and panel surface roughness, and the effective gap (𝐺eff) between the panel
and cylinder can be estimated using roughness parameters. Moreover, we will show that gap
heights approximately equated to peak roughness (𝑅𝑝) for rough cylinders, or one standard
deviation above the mean peak roughness (𝑅𝑝,1𝜎) for smooth cylinders, yield predicted drag
coefficients in general agreement with measured values. This is the main finding of the present
investigation and forms a basis on which the drag coefficient of a cylinder can be predicted
using a combined analytical-numerical approach and using peak surface roughness as the
gap height. The difference between the two types of cylinders and the use of two different
roughness statistics are discussed in §4.5.2.

A limited set of experiments were conducted in air using foam cylinders to demonstrate
that cavitation is not required to allow cylinder motion in this 𝑅𝑒 range and that similar drag
trends are observed. Additional dependence of �̄�𝐷 on cylinder aspect ratio (AR) will also
be investigated and compared with analytical predictions. Furthermore, experimental flow
visualisations will be employed to identify and validate critical flow transitions that have
been previously observed in numerical studies.

This paper is organised as follows. §2 describes the problem and the existing analytical
solutions, and §3 presents a summary of the experimental method. §4 presents detailed
experimental results of the investigation together with a discussion of results. Wake structure
interactions including experimental flow visualisations are given in §5. Finally, §6 draws
final conclusions and points to future studies.
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Figure 1: Schematic free body diagram of a freely rolling cylinder, on an inclined plane under the influence
of gravity.

2. Problem description
Figure 1 illustrates a cylinder with a diameter 𝐷 undergoing free rolling without slip on
an inclined plane set at an angle 𝜃 relative to the horizontal axis. The cylinder density is
denoted as 𝜌𝑠, and the fluid density is represented as 𝜌 𝑓 . The typical relationship 𝜌𝑠 > 𝜌 𝑓

indicates negative buoyancy and a mass ratio is given by 𝛽 = 𝜌𝑠/𝜌 𝑓 . The coordinate system
is anchored at the centre of the body.

After the cylinder attains a quasi-steady state, it adopts a time-mean terminal velocity �̄�

in the 𝑥 direction and an angular velocity �̄� around the 𝑦 direction, as indicated in the figure
(referred to as prograde rolling). Here, the 𝑥 direction corresponds to the down-slope, while
the 𝑦 direction represents the cross-slope. The buoyant weight of the body, denoted as 𝑊𝐵,
is calculated as 𝑊𝐵 = 𝜋𝐷2𝐿 (𝜌𝑠 − 𝜌 𝑓 )/4, where 𝐿 is the span of the cylinder.

We assume that the cylinder is offset from the wall by an effective gap, 𝐺eff , which is
characterised by the non-dimensional parameter �̂� = 𝐺eff/𝐷. We propose that the effective
gap �̂� can be determined from the measured surface roughness. This is discussed further in
§2.2 and §4.

Furthermore, 𝐹𝐷 , 𝐹𝐿 and 𝑇𝑦 are the instantaneous hydrodynamic drag, lift and torque,
respectively, applied to the body, while the time-mean counterparts of these parameters are
represented by �̄�𝐷 , �̄�𝐿 , and 𝑇𝑦 , respectively. Correspondingly, 𝑁, �̄� and 𝐹𝐶 , �̄�𝐶 are the
instantaneous and time-mean normal and contact forces, respectively. Finally, the time-mean
Reynolds number of the cylinder is expressed as 𝑅𝑒 = �̄�𝐷/𝜈 𝑓 , where 𝜈 𝑓 is the kinematic
viscosity of the fluid.

The drag coefficient considered in this study includes both hydrodynamic drag force �̄�𝐷

and the contact force �̄�𝐶 , as

�̄�𝐷 =
�̄�𝐷 + �̄�𝐶

1
2𝐷𝐿𝜌 𝑓 �̄�

2
. (2.1)

Considering the time-mean force balance parallel to the plane wall (�̄�𝐷 + �̄�𝐶 = 𝑊𝐵𝑔 sin 𝜃),
the drag coefficient can be expressed as:

�̄�𝐷 =
𝑊𝐵𝑔 sin 𝜃
1
2𝐷𝐿𝜌 𝑓 �̄�

2
=

1
2
𝐷 (𝛽 − 1)𝑔𝜋

�̄�2 sin 𝜃. (2.2)

Equation (2.2) is used to calculate the drag coefficient in experiments.
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2.1. Combined analytical-numerical predictions
Assuming the cylinder is rolling without slipping, the total drag coefficient can be determined
from the hydrodynamic force and torque coefficients. Assuming quasi-steady motion, the
balance of torques applied to the cylinder is:

𝑇𝑦 − 𝐹𝐶
𝑑

2
= 0, (2.3)

and therefore the effective predicted drag coefficient is written as:

𝐶𝐷,pred,num = 𝐶𝐹,fluid + 𝐶𝑇,fluid (2.4)

where 𝐶𝐹,fluid = �̄�𝐷/( 1
2𝐷𝐿𝜌 𝑓 �̄�

2) and 𝐶𝑇,fluid = (𝑇𝑦/𝐷
2 )/(

1
2𝐷𝐿𝜌 𝑓 �̄�

2) represent the
hydrodynamic force and moment coefficients, respectively. In this study, (2.4) is used to
predict the drag coefficient from numerical simulations.

For two-dimensional flow over a rolling circular cylinder, Terrington et al. (2023)
decompose the force and moment coefficients into a gap-dependent term and a ‘wake-drag’
term. Here, we express this result as a combined predicted drag coefficient:

𝐶𝐷,pred(2D) = 𝐶𝐷,pred,gap(2D) + 𝐶𝐷,pred,wake(2D) (2.5)

The gap-dependent drag for an infinite cylinder is obtained using lubrication theory, valid
for small gap heights (𝐺/𝐷 ≪ 1) (Merlen & Frankiewicz 2011; Terrington et al. 2023):

𝐶𝐷,pred,gap(2D) =
8𝜋

𝑅𝑒
√︁
𝐺/𝐷

, (2.6)

while the wake-drag term was obtained by Terrington et al. (2023) using numerical
simulations for steady-state flow. We obtain the following empirical fit to their numerical
data:

𝐶𝐷,pred,wake(2D) = 14.9 − 11.0(𝑅𝑒)0.033. (2.7)

This equation is valid for 10 < 𝑅𝑒 < 200 (see Terrington et al. 2023).
Teng et al. (2022) compute the gap-dependent force and moment contributions for a finite-

span circular cylinder, both translating and rotating near a plane wall. When expressed as an
effective drag coefficient, their solution is given by

𝐶𝐷,pred,gap(3D) =
8𝜋

𝑅𝑒
√︁
𝐺/𝐷

− 4I
𝑅𝑒 𝐴𝑅

, (2.8)

where the integral I can be approximated using the following rapidly converging series:

I =
64
3𝜋

sinh−1( 𝐴𝑅√︁
𝐺/𝐷

) − 16𝐴𝑅 +
∑︁

𝑛=1,3,5..
64𝑒−𝑛𝜋/2𝐴𝑅 ( 1

3𝑛𝜋
+ 2𝐴𝑅
𝑛2𝜋2 ). (2.9)

Equation (2.8) represents the influence of the lubrication flow in a narrow gap between the
cylinder and the wall on the total predicted drag coefficient. The first term on the right-hand
side is the drag coefficient corresponding to two-dimensional flow (infinite-span cylinder),
while the second term is a correction representing the effect of a finite aspect ratio. However,
this expression does not include the influence of outer-flow effects such as wake formation
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Figure 2: Visual representation of the three roughness statistics on a sample cylinder profile.

and shedding. To account for these effects, the total predicted drag coefficient will be given
by

𝐶𝐷,pred = 𝐶𝐷,pred(3D) = 𝐶𝐷,pred,gap(3D) + 𝐶𝐷,pred,wake(3D) , (2.10)

where 𝐶𝐷,pred,wake(3D) is a function of both 𝑅𝑒 and AR, but not 𝐺/𝐷. Unfortunately,
analytical or numerical results for 𝐶𝐷,pred,wake(3D) have not been reported in the literature.

A detailed numerical study is required to obtain accurate estimates of𝐶𝐷,pred,wake(3D) , but is
outside the scope of the present work. In the absence of a reliable estimate for𝐶𝐷,pred,wake(3D) ,
we assume it will be approximately the same order of magnitude as the wake drag coefficient
for the two-dimensional cylinder flow (𝐶𝐷,pred,wake(2D) ). This is a rough approximation only
and is likely to introduce significant and unquantified errors into our estimate of the wake
drag coefficient. Fortunately, at the low and moderate Reynolds numbers considered in the
present study, the wake drag represents a relatively small contribution to the total drag
(10% − 20% depending on 𝑅𝑒), so reasonable predictions of the total drag coefficient may
still be obtained.

Additionally, we note that the wake drag coefficient for the two-dimensional cylinder
flow is 1.5 ⩽ 𝐶𝐷,pred,wake(2D) ⩽ 3 (Terrington et al. 2023) and the wake drag coefficient
for the rolling sphere flow is 1.0 ⩽ 𝐶𝐷,sph,wake ⩽ 1.5 (Houdroge et al. 2023) for
10 ⩽ 𝑅𝑒 ⩽ 200. Given that the three-dimensional sphere also exhibits a similar range
of wake drag values as the two-dimensional cylinder, our assumption that the three-
dimensional wake drag of a cylinder will be similar to the two-dimensional wake drag
(𝐶𝐷,pred,wake(3D) ≈ 𝐶𝐷,pred,wake(2D) ) is sufficiently accurate. This approximation will enable
an effective comparison between measured �̄�𝐷 and 𝐶𝐷,pred.

2.2. Relationship between gap and surface roughness
The primary objective of this investigation is to establish the correlation between surface
roughness parameters and the effective gap (𝐺eff) required to determine the drag force
acting on the cylinder. The British Standard Geometric Product Specifications (GPS) -
Surface texture: Profile method - Terms, definitions, and surface texture parameters, BS ISO
4287:1997 provides a comprehensive framework to characterise surface roughness. Among
these parameters, the most frequently used are the mean absolute deviation, root mean square
(r.m.s.), and the peak roughness, which are denoted by 𝑅𝑎, 𝑅𝑞 , and 𝑅𝑝, respectively. Figure
2 indicates these parameters for a sample profile from a cylinder. See Gadelmawla et al.
(2002) for detailed descriptions and analytical expressions for typical roughness statistics.

Drawing upon these roughness parameters, a new non-dimensional relative roughness
denoted by 𝜉 will be introduced as follows:

𝜉 =
𝑅panel + 𝑅cylinder

𝐷
, (2.11)
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where 𝑅panel and 𝑅cylinder denote the roughness parameters corresponding to the panel and
cylinder surfaces, respectively. A subscript is employed to indicate the specific surface-
roughness statistic used to compute 𝜉. For instance, 𝜉𝑝, is the non-dimensional roughness
determined using the peak roughness of both the panel (𝑅𝑝,panel) and the cylinder (𝑅𝑝,cylinder),
whereas 𝜉𝑎 and 𝜉𝑞 are calculated using the mean absolute deviation and r.m.s. roughnesses,
respectively.

Equation (2.11) assumes that the effective gap at the point of contact results from a
linear summation of two simple roughness statistics. In general, elementary roughness
statistics such as 𝑅𝑝 may be insufficient to completely describe the complex nature of
the surface, and a linear summation of surface roughness statistics may not fully describe the
interaction between two complex surfaces. The accuracy of these assumptions and simplified
measurements will be discussed in detail in §4.5.

3. Experimental setup and methodology
The rolling cylinder experiments were conducted within the Fluids Laboratory for Aeronau-
tical and Industrial Research (FLAIR laboratory) at Monash University. A detailed review
of the experimental setup and methodology used for the present study can be found in the
previous work of Nanayakkara et al. (2024). A summary is provided below.

3.1. Summary of experimental setup and methodology
The present experiments were conducted in a water tank with a glass panel mounted on
an adjustable stainless steel frame. Other test panels with various surface roughnesses were
also adopted. The inclination angle ranged from 1.5° to 23°. Panel flatness was determined
by measuring surface height variation at discrete points, revealing that panel non-flatness
was negligible compared to the panel’s downward slope. The test cylinders were pre-soaked
underwater, with air bubbles removed by vibration and stirring, prior to carrying out the
experiments. The cylinders were then placed on a collection port on the plane and gently
released to minimise water surface disturbances. A waiting period of at least 2 minutes
followed any water perturbation before measurements were taken, ensuring the water had
adequately settled. Regular cleaning of the water tank prevented dust or fibre deposition on
the panel surface.

The velocity of rolling cylinders was determined by timing their travel over a fixed distance.
A minimum of 20𝐷 rolling distance was allowed prior to measurements to ensure the
cylinders attained their time-mean terminal velocity. Initially, a stopwatch measured the time
for a 200 mm distance on the removable panel (constituting 30% of data). Later, a system
with three laser-based object detectors was introduced for improved accuracy and efficiency
(70% of data). The results presented in the present study incorporate both data sets, and an
uncertainty analysis in Appendix B accounts for measurement errors from both methods.
Specifications of the tested panels and cylinders are provided in tables 1 and 2, respectively,
in Appendix A. Table 2 specifies unique identifiers for each group of cylinders used with the
same diameter and aspect ratio. These identifiers are used herein to refer to distinct cylinders.

The data outlined in §4 represent average measurements obtained from 8 separate runs
using cylinders of similar diameter and density. Furthermore, occasional checks were
performed at randomised locations on the curve to confirm the consistency of the data,
even when the fluid temperature varied. Table 2 indicates that the uncertainty regarding the
cylinder diameter within each group of cylinders was generally below 1%. To prevent any
distortion caused by water absorption, the cylinders and panels were regularly removed from
the water tank outside measurement intervals and dried.

The uncertainty in cylinder diameter was used to estimate deviations in roundness. Given
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that the uncertainties in the diameter cylinders were generally below 1%, it was assumed that
deviations in the roundness of cylinders could be neglected.

Preliminary experiments were conducted with a selection of cylinders at various inclination
angles ranging from 2° to 23° to examine potential cylinder slippage in our trials. A marker
was placed on the surface of the cylinder, and the cylinder rolling motion was then recorded
using a digital camera. The calculated rotational speed was compared to the measured linear
down-slope velocity, revealing no significant difference between the two velocities (less
than 1%). As such, any slippage between the cylinder and the surface was considered to be
negligible.

To establish the effects of cylinder deformation due to the normal contact force, Hertzian
contact theory was used. A simple case of a two-dimensional spherical body in contact with
a flat plate was assumed, and the formula for plastic deformation is found in textbooks such
as Johnson (1985). For an acrylic cylinder of 𝐷 = 19.7mm rolling at 𝜃 = 2° on a glass plate,
where the largest normal contact force is acting on the cylinder, the calculated deformation
of the cylinder was in the order of 10−12m. This deformation is small compared to the height
of asperities (typically 10−6m), hence the impact of cylinder deformation on the gap imposed
by surface asperities was deemed negligible.

3.2. Surface roughness measurements
Non-contact surface roughness measurements for both the cylinders and panels were acquired
using an optical profilometer, specifically the Bruker Contour GT-I. This instrument is housed
at the Melbourne Centre for Nanofabrication (MCN), situated within the Victorian Node of
the Australian National Fabrication Facility (ANFF). The measurements were performed with
a 50 times magnification, employing the Vertical Scanning Interferometry (VSI) technique.
VSI relies on a broadband light source and is particularly accurate for evaluating surfaces
that are rough. The obtained measurements are detailed in Tables 3 and 4 in Appendix A.

In the present work, roughness statistics, such as 𝑅𝑝, were obtained for a minimum of
four different samples. Each sample was generated using the combination of 24 individual
measurements conducted under 50 × 1 magnification of each surface. The reported values
represent the average across all samples. This means that the peak roughness (𝑅𝑝) reported
in this study is a sample-averaged value, and does not represent the highest peak observed
across all samples. In addition to the sample-averaged peak roughness, it is also useful to
report the parameter 𝑅𝑝,1𝜎 , signifying one standard deviation above the sample-mean peak
roughness. This parameter will be used to differentiate the gap imposed by two types of
roughness textures observed, which will be elaborated further in §4.5.

Figure 3 presents the surface roughness measurements obtained from two panels and
four cylinders that were employed in the present experimental investigations. The surface
roughness profiles of the acrylic panel depicted in figure 3a span a range from −1.0 𝜇m to
0.7 𝜇m, which is indicative of a typically smooth surface. The ceramic panel surface displayed
in figure 3b displays notably higher asperities and deeper valleys, with some reaching heights
as large as 2 𝜇m and valleys as deep as −4.6 𝜇m, characteristic of a typical rough surface.

The surface roughnesses observed in all four cylinders shown in figure 3 display pro-
nounced directional characteristics, with a series of ridges and valleys aligned parallel to the
direction of cylinder rolling. These ridges arise from the fabrication process, where the acrylic
cylinders were produced using a lathe. Comparatively, the two smaller diameter cylinders
shown in figures 3c and 3d possess a smoother surface compared to the larger cylinders in
figures 3e and 3f. In the case of the larger cylinders, the peaks of the ridge-like structures
typically exceed 4 𝜇m, while the smaller cylinders exhibit peaks within the 1 − 2 𝜇m range.
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Figure 3: Surface roughness profiles obtained using the Optical Profilometer, under 50 × 1 magnification.
The arrow at the top right corner of each panel image indicates the approximate down-slope direction,
while for cylinder images, the arrow shows the direction of rolling of each cylinder, with respect to the

directional surface textures.
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Figure 4: Variation of �̄�𝐷 with 𝑅𝑒 for the 5 types of panels, 𝑅𝑒 = 10 − 1800 range in log-log scale. The
cylinder span was fixed at 10.1mm which results in varied AR ranging from 0.51 − 2.15.

4. Results and discussion
This section presents the experimental results of the effect of surface roughness on the mean
effective drag coefficient. The drag coefficient for experimental measurements is determined
using equation (2.2), and it is compared with analytical evaluations under the assumption
that the effective gap is equal to the peak surface roughness.

This section is structured as follows. First, we present the observed variations of �̄�𝐷

with 𝑅𝑒 for a set of cylinders with a fixed span in §4.1. Note that maintaining a constant
cylinder span (𝐿) while varying the cylinder diameter (𝐷) leads to a variation in aspect ratios.
Subsequently, the influence of aspect ratio (AR) on �̄�𝐷 is discussed in §4.2. Furthermore,
§4.3 discusses the role of cavitation (or lack thereof) on cylinder motion and the limited
set of results obtained for foam cylinders rolling in air. In §4.4 the variation of �̄�𝐷 with
𝜉 is discussed, while §4.5 discusses the relationship between peak roughness and effective
gap. §4.6 presents additional considerations that may influence cylinder �̄�𝐷 . Finally, §4.7
compares the �̄�𝐷 – 𝑅𝑒 relationships between a cylinder and a sphere.

4.1. Measurements of �̄�𝐷 as a function of 𝑅𝑒 for cylinders with a fixed span (in water)
To investigate the effects of surface roughness on �̄�𝐷 of a rolling cylinder, a set of �̄�𝐷

measurements were obtained with a fixed span (𝐿 = 10.1 mm), while the cylinder diameter
and surface roughness of the panel were varied. This approach ensures that the contact region
between the panel and cylinder remains constant which enables the comparison of the effects
of surface roughness on �̄�𝐷 of cylinders with varying 𝐷. Figure 4 presents the measured �̄�𝐷

vs 𝑅𝑒 values within 30 < 𝑅𝑒 < 1800 for these fixed-span cases. Given the fixed span and
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Figure 5: Variation of �̄�𝐷 against 𝑅𝑒 for a cylinder with a fixed diameter and aspect ratio, D19.7-A0.5,
while varying the panel surface roughness. Least-squares lines of the form 𝑎 + 𝑏/𝑅𝑒 have been fitted

through data that correspond to individual panels. The coefficient of determination 𝑅2 values are
approximately 0.9.

variations in 𝐷, the AR of these cylinders varies from 0.51 − 2.15. The influence of AR on
�̄�𝐷 is considered in §4.2. Any variation in �̄�𝐷 with AR is less than the scatter in the data, at
least for the experimental parameters considered in this study.

Figure 4 shows all of the data gathered, with the legend indicating the marker shapes
corresponding to seven cylinder diameters, and marker colours corresponding to the five
panels used. The measured �̄�𝐷 data exhibit a clear inverse relationship with 𝑅𝑒, particularly
evident at low 𝑅𝑒, as depicted by the grey dashed line in figure 4. Additionally, there is a
noticeable degree of scatter in the measured �̄�𝐷 with different surface finishes. This scatter
is more significant at low 𝑅𝑒, but decreases with increasing 𝑅𝑒. Specifically, there is a
difference of 70% between the smallest and largest �̄�𝐷 values at 𝑅𝑒 = 100; however, this
scatter is reduced to 60% by 𝑅𝑒 = 400.

The results of foam cylinders are not included in figure 4, and are presented in §4.3.1.
These observations can be explained using the decomposition of �̄�𝐷 into gap-dependent

and wake drag contributions (equation (2.10)). Specifically, the gap-dependent drag is
approximately proportional to 1/𝑅𝑒, while the wake drag is expected to have an order
of magnitude (𝑂 (1)) dependence on 𝑅𝑒 at moderate to large Reynolds numbers (Houdroge
et al. 2023; Nanayakkara et al. 2024). Therefore, the gap-dependent drag is dominant over
the wake drag for small 𝑅𝑒, leading to the observed 1/𝑅𝑒 dependence and large scatter.

The scatter in the experimental �̄�𝐷 data arises from differences in surface roughness.
To illustrate this point, figure 5 depicts the �̄�𝐷 versus 𝑅𝑒 curves for a single cylinder
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Figure 6: Variation of �̄�𝐷 with 𝑅𝑒 for cylinders of different diameter rolling on the (a) glass panel, and (b)
rough ceramic panel. Least squares lines of the form 𝑎 + 𝑏/𝑅𝑒 have been fitted through data that

correspond to the individual diameters of the cylinders used. The 𝑅2 values are approximately 0.9. Error
bar indicate bias error only.

D19.7-A0.5 rolling on five tested panels. Each of the panels yields a different �̄�𝐷 versus 𝑅𝑒
profile. Especially, �̄�𝐷 decreases with an increase in the panel roughness (or increasing 𝜉𝑝).
Corresponding 𝜉𝑝 values are also indicated in the figure. This behaviour can be attributed
to the larger roughness producing a larger effective gap, resulting in a reduction of gap-
dependent drag.

Figure 6 presents profiles of �̄�𝐷 versus 𝑅𝑒 for cylinders of various diameters rolling on
two separate panels. Figure 6(a) is for the cylinders rolling on a glass panel (𝑅𝑝 = 0.308 𝜇m),
while figure 6(b) is for the rough ceramic panel (𝑅𝑝 = 33.18 𝜇m). 𝜉𝑝 values corresponding
to each cylinder are indicated in the figure legend. These figures demonstrate that, for a fixed
panel roughness, �̄�𝐷 increases with increasing cylinder diameter. Despite an approximately
45-fold difference in peak roughness between the two panels, a similar increase of �̄�𝐷 with
increasing 𝐷 was observed. This held true for all panels examined in this study.

Assuming the effective gap is proportional to the surface roughness, the dimensionless
surface roughness 𝜉𝑝 reduces with increasing cylinder diameter, resulting in increased gap-
dependent drag.

Figure 7 presents a comparison between experimentally measured drag coefficients and
analytical evaluations using lubrication theory. The dashed green lines represent the gap-
dependent drag (as per equation (2.8)) using 𝐺/𝐷 = 𝜉𝑝,1𝜎 for the D4.7-A2.2 cylinder, and
𝐺/𝐷 = 𝜉𝑝 for the D7.7-A1.3 cylinder. The difference in roughness statistics is associated
with a difference between the surface textures of the two cylinders, as discussed further
in §4.5. It is worth noting that the gap-dependent drag generally under-evaluates the drag
coefficient since it does not include the wake-drag effects and possibly other sources of
drag such as rolling resistance that is discussed further in 4.6. The wake-drag coefficients
for a finite-span cylinder are not available in the literature. For now, we use the wake-drag
coefficient for two-dimensional flow (equation (2.7)). The solid red lines in figure 7 represent
the sum of the gap-dependent and wake drag components, which is in good agreement with
the measured �̄�𝐷 .
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Figure 7: Comparison of �̄�𝐷 vs 𝑅𝑒 of two cylinders rolling on a glass panel against analytical prediction
(equation (2.8)). The total drag when two-dimensional 𝐶𝐷,pred,wake predictions from equation (2.7) is

added to (2.8) is also indicated in the figure. Physical parameters are (a) 𝜉𝑝,1𝜎 = 0.00096 and AR = 2.16
and (b) 𝜉𝑝 = 0.00035 and AR = 1.31.
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Figure 8: Cylinder �̄�𝐷 variation with AR.

4.2. Effects of aspect ratio on �̄�𝐷 versus 𝑅𝑒
To investigate the effect of cylinder aspect ratio on �̄�𝐷 , a series of experiments was conducted
with a consistent cylinder diameter of 𝐷 ≈ 4.7 mm while the cylinder span 𝐿 was varied.

Figure 8a presents the relationship between �̄�𝐷 and 𝑅𝑒 for cylinders with AR ranging from
0.5 to 6.02 rolling on a glass panel (𝑅𝑝 = 0.308 𝜇m). Generally, all cylinders with varying
aspect ratios follow the previously observed 1/𝑅𝑒 trend outlined in §4.1. Additionally, the
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same convergence of �̄�𝐷 at high 𝑅𝑒 is observed, regardless of the cylinder aspect ratio. This
behaviour implies that the influence of end effects on �̄�𝐷 also decreases with increasing 𝑅𝑒.

There is a significant amount of scatter in the experimental data shown in figure 8a. To
investigate whether this scatter is due to aspect ratio effects, figure 8b plots the variation of
�̄�𝐷 with AR for three constant Reynolds numbers, 𝑅𝑒 = 50, 100 and 150. Since the surface
roughness values of the cylinders varied (see table 4), the rough ceramic panel was used to
obtain the data in this figure. The roughness of this panel is approximately ten times larger
than the cylinder roughness values, which maintains a consistent 𝜉𝑝 across the different ARs.
The �̄�𝐷 values corresponding to each 𝑅𝑒 were determined through linear interpolation from
the nearest neighbouring 𝑅𝑒. We observe no significant variation of �̄�𝐷 with AR.

Solid lines in figure 8b indicate the predicted drag obtained by adding the estimated
wake drag to the gap drag (2.10). The approximate peak roughness of the rough ceramic
panel 𝑅𝑝/𝐷 = 0.008 was used to approximate 𝐺/𝐷 to calculate 𝐶𝐷,pred. We observe
reasonable agreement between measured and predicted values, particularly at higher AR and
higher 𝑅𝑒. The predicted 𝐶𝐷,pred increases with AR, and approaches a constant value in the
limit AR → ∞. However, the predicted change in �̄�𝐷 against AR, using equation (2.8), is
relatively small over the range of AR considered in this study and is within the variation in
�̄�𝐷 observed. There is a marginal increasing trend in �̄�𝐷 against decreasing AR, in contrast
to the decreasing trend predicted by theory. We attribute the difference in drag at small aspect
ratios (AR < 1) to the use of two-dimensional wake drag in (2.10). While this assumption
is valid for larger AR cylinders, it becomes less accurate for smaller AR cylinders where
three-dimensional effects are more prominent. Further, the influence of the large roughness
of the panel on the cylinder motion also increases for the smaller AR cylinders. Small AR
cylinders were observed to change directions easily following collisions with large asperities,
and increased vortex-induced oscillations were also observed. The theoretical model does
not consider these added effects. Extending the range of AR to smaller than 0.5 may produce
useful insights, which we recommend as future works.

Additionally, the wake drag was estimated by assuming it to be equal to the wake drag of
an infinite cylinder. The true wake drag for a finite-length cylinder is unknown, and it may
also vary with AR. If the wake drag were to decrease with AR, then the total drag may be
approximately constant with respect to AR. For a finite length cylinder in an unbounded flow,
Yang et al. (2022) observed a reduction of �̄�𝐷 from approximately 1.5 to approximately 1
for an increase of AR from 0.5 to 2.0 at 𝑅𝑒 = 100. The wake drag behind a rolling cylinder
might be expected to follow a similar trend in AR. However, the wake will be modified by
both the presence of the wall and the rotation of the cylinder. Numerical simulations of the
flow over finite-length cylinders rolling near plane walls are needed to determine the true
variation of the wake drag with AR. Further, the numerical study on the variation of �̄�𝐷 with
AR for the same 𝐺/𝐷 value will provide useful insight into the influence of end-effects on
�̄�𝐷 . We recommend this as future work.

Additional experiments that were excluded from figure 8 were conducted using larger AR
cylinders. A decline in �̄�𝐷 was observed for AR > 6 which is likely attributed to the potential
wobbling of the cylinders during rolling, which in turn increases the effective gap. Again,
producing perfectly straight cylinders with large aspect ratios is difficult, and we cannot
ensure that consistent contact along the span exists between the rolling cylinder and the
plane. Given that the gap-dependent drag is extremely sensitive to the imposed gap height
(see §4.4), a twofold increase in gap height at 𝑅𝑒 = 50 could lead to a reduction in �̄�𝐷

on the order of 40% − 50%, the same order of magnitude as observed in the reduction of
�̄�𝐷 . However, the high AR cylinders were included in §5 where cylinder wake is discussed.
Gap height (or roughness) has minimal influence on the cylinder wake (see §5.4), where the
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effects of the non-straightness of the large AR cylinders on wake formation and shedding,
will be minimal.

4.3. Effects of cavitation on �̄�𝐷

Merlen & Frankiewicz (2011) tentatively propose that the mechanism allowing cylinder
motion involves a gap induced by cavitation lift force, rather than a gap caused by surface
roughness. This proposal is also supported by experimental observation of cavitation bubbles
near the body-plane contact for steel cylinders in silicone oil (Seddon & Mullin 2006). The
formation of a cavitation bubble produces a lift force that allows the cylinder to travel along
the wall without contacting the wall. Due to the absence of a contact force, the rotation rate
of the cylinder is theoretically zero assuming an infinite cylinder in Stokes flow (Jeffrey &
Onishi 1981). This is supported by experimental measurements of Seddon & Mullin (2006),
who find that the onset of cavitation results in a significant decrease in the cylinder rotational
velocity compared to the translational velocity, and, in some cases, reverse rotation of the
cylinder.

In our experiments, the cylinders were observed to roll without slipping. Contact forces
are required to ensure the cylinder rolls without slip, and therefore our cylinders must remain
in contact with the wall, via a distribution of surface asperities. Therefore, cavitation is not
responsible for determining the effective gap in our experiments.

Merlen & Frankiewicz (2011) give the condition for cavitation to occur as 𝑝∞ < 𝑃min,
where 𝑝∞ is the ambient pressure, and

𝑃min =
3
√

3
4
√

2
𝜇 𝑓 (1 + 𝑘)�̄�

𝐺

√︂
𝐷

2𝐺
(4.1)

is the maximum magnitude of the pressure decrease in the lubrication region. Also, 𝑘 =



17

0.0002 0.001 0.01 0.02
p or G/D

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

CD

Interpolated exp. data, Re = 100

3D Lubrication theory
CD, pred, gap (3D), AR = 1
CD, pred, gap (3D) + CD, pred, wake (2D)

(a)

0.0002 0.001 0.01 0.02
p or G/D

0

2

4

6

8

10

12

14

CD

Interpolated exp. data, Re = 150

3D Lubrication theory
CD, pred, gap (3D), AR = 1
CD, pred, gap (3D) + CD, pred, wake (2D)

(b)

Figure 10: Variation of �̄�𝐷 with 𝜉𝑝 for AR ≈ 1 at (a) 𝑅𝑒 = 100 and (b) 𝑅𝑒 = 150. A line of best fit of the
form 𝑎 + 𝑏/

√
𝜉 is used to show the general trend with 𝑅2 approximately 0.9.

𝜔y𝐷/2𝑈 is the slip coefficient, equal to unity for our experiments and 𝜇 𝑓 = 𝜌 𝑓 𝜈 𝑓 is the
dynamic viscosity. Assuming 𝐺 is equal to either 𝑅𝑝 or 𝑅𝑝,1𝜎 as discussed in §4.5, the
maximum value of 𝑃min is approximately 1.3 kPa, which is below the ambient pressure 𝑝∞ ≈
101.7 kPa. This confirms that cavitation is not likely to be significant in our experiments.

4.3.1. Measured relationship of �̄�𝐷 versus 𝑅𝑒 for foam cylinders in air
Additional experiments were performed using foam cylinders rolling down inclined surfaces
in air. If cavitation, rather than surface roughness, indeed determines the effective gap, we
would expect to observe significant differences in drag coefficient between air and water,
given the absence of cavitation in air.

The profiles of measured �̄�𝐷 versus 𝑅𝑒 for foam cylinders on a glass panel in air are shown
in figure 9, along with the results for acrylic cylinders in water rolling on the same panel. The
�̄�𝐷 for foam cylinders in air are generally lower compared to those for acrylic cylinders in
water. As shown in table 4 in Appendix A, the 𝑅𝑝 roughness of foam cylinders (approximately
100 𝜇m) is an order of magnitude greater than that of acrylic cylinders (approximately 5 𝜇m).
𝜉𝑝 values corresponding to each cylinder is indicated in the figure legend. This significant
difference in roughness contributes to the observed differences between the two sets of
results. Nevertheless, despite the large difference in surface roughness, the �̄�𝐷 values are
within the same order of magnitude.

As such, the relative consistency between the results of measurements conducted in air
and water suggests that under present experimental conditions, effects of cavitation, if any,
are negligible.

Furthermore, the �̄�𝐷 results for foam cylinders in the air (figure 9) also follow the
same increasing trend with increasing cylinder 𝐷. Similar to the experiments in water,
this observation can be attributed to the decrease in 𝜉 caused by the increase in 𝐷.

4.4. Variation of �̄�𝐷 with relative roughness 𝜉
Figure 10 shows the variation of �̄�𝐷 with the relative roughness 𝜉𝑝 for two constant Reynolds
numbers, 𝑅𝑒 = 100 (figure 10(a)) and 𝑅𝑒 = 150 (figure 10(b)). The data are presented as
two figures at each corresponding 𝑅𝑒 to highlight the overall trend at each 𝑅𝑒, and enable
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comparison with lubrication theory predictions, without data clustering. The cylinder AR
was maintained close to unity (0.8 < 𝐴𝑅 < 1.2) and only larger cylinders (𝐷 > 6 mm) were
used in the figure.

The corresponding �̄�𝐷 values for each 𝑅𝑒 were determined through linear interpolation
from the nearest neighbouring 𝑅𝑒 values. Error bars indicate the bias (formal) error of
measurements, which are approximately 2% for �̄�𝐷 and 5% for 𝜉. Analytical evaluations of
the gap-dependent drag (2.8) (dashed green) are also plotted in this figure, as well as the sum
of the gap-dependent and two-dimensional wake drag (solid green) for AR=1 cylinder.

In figure 10, the general trend of decreasing �̄�𝐷 with increasing 𝜉 for the experimental
data is shown using a line of best fit of the form 𝑎 + 𝑏/

√
𝜉. A dashed line in blue is used in

figures 10(a) and 10(b), respectively. The 𝑅2 values of the curve fit were approximately 0.9,
indicating that variations in 𝜉𝑝 account for the majority of the variation in �̄�𝐷 .

As shown in the figure 10, it is evident that as 𝜉 decreases, �̄�𝐷 tends to increase for both
Reynolds numbers. A smaller gap leads to a higher �̄�𝐷 , in agreement with lubrication theory
and numerical predictions. However, figure 10 shows that the predictions made by Teng et al.
(2022) (equation (2.8), dashed green line) underestimate �̄�𝐷 for both Reynolds numbers, due
to the omission of wake-drag effects and other sources of drag such as rolling resistance that
is discussed further in 4.6. At 𝑅𝑒 = 100, for a ten-fold increase in 𝜉 (0.0005 to 0.005), an
approximate 65% reduction in �̄�𝐷 is observed. However, at 𝑅𝑒 = 150, the same increase in
𝜉 causes only an approximate 60% decrease in �̄�𝐷 . This observation is in agreement with
analytical evaluations, where the gap-dependent drag is inversely proportional to 𝑅𝑒.

When an approximate wake drag contribution is added (solid green line), we observe better
agreement between experimental �̄�𝐷 and combined analytical and numerical predictions.
The observed reduction in �̄�𝐷 at both 𝑅𝑒 is larger than the experimental uncertainty of the
measured �̄�𝐷 values. This observation coupled with the relative agreement between �̂� and
roughness statistics, discussed in 4.5, supports the present argument that surface roughness
provides the gap required by lubrication theory, and is dependent on both cylinder and panel
roughness. Despite the scatter in data, the measured and predicted trends follow a similar
curve. The inclusion of wake drag improves the agreement between results. Although the
measured and predicted curves do not agree for all 𝜉 values when 𝐺/𝐷 = 𝑅𝑝/𝐷 is assumed,
it gives a simple approximate solution that is valid for a large range of 𝐺/𝐷 values. That is,
𝑅𝑝 roughness is a good approximation of the gap height, despite the limited accuracy at low
𝑅𝑒 and small AR. A more comprehensive model including additional sources of drag such
as rolling resistance will likely improve the accuracy of the model.

4.5. Roughness analysis
Up to this point, we have progressed under the assumption that the effective gap (𝐺eff) is
of the same order of magnitude as the peak roughness (𝑅𝑝) or the peak roughness plus one
standard deviation of the cylinder and panel (𝑅𝑝,1𝜎). However, as mentioned previously,
simple statistical measures such as 𝑅𝑝 or 𝑅𝑝,1𝜎 may not adequately account for various
scales of surface roughness. To further explore these effects, we examine four specific cases
in detail: the four cylinders D4.7-A2.2, D7.7-A1.3, D9.7-A1.0 and D11.7-A0.9, all rolling on
a glass surface. Given that the roughness of the glass panel (𝑅𝑝 = 0.3 𝜇m) is approximately
10 times smaller than those of the cylinders (𝑅𝑝 ≈ 3 𝜇m), we anticipate that the dominant
factor determining the gap will be the roughness of the cylinders.

4.5.1. Relationships between dimensionless effective gap (𝐺eff/𝐷), 𝜉𝑝, and 𝜉𝑝,1𝜎

Let us introduce �̂� = 𝐺eff/𝐷 as the non-dimensional effective gap required to match the
analytical predictions of the drag coefficient (2.8) with the experimental measurements.

Figure 11 presents a comparison between the measured surface roughness statistics and the
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Figure 11: Non-dimensional effective gap (�̂� = 𝐺eff/𝐷) vs 𝑅𝑒 for four cylinders rolling on a smooth glass
panel. Cylinder span 𝐿 = 10.1mm for all diameters. The measured roughness parameters of the cylinders

are plotted in the figure.

�̂� values. Two scenarios are considered here. First, the non-dimensional effective gap without
wake drag is shown (�̂� and �̂�mean). The effective gap including wake drag approximated using
equation (2.7) (�̂� (2D wake) and �̂� (2D wake) ,mean) is presented to enable an effective comparison
between experimental and analytical-numerical predictions including wake drag.

(i) �̂� and �̂�mean: Red markers and red dashed line in figure 11.
Note that the wake drag is not considered by (2.8), so the �̂� will be smaller than the actual gap
introduced by surface roughness. The �̂� is presented in figure 11 for the four cases introduced
earlier. In general, the �̂� is approximately independent of 𝑅𝑒, and the mean effective gap
�̂�mean is also shown in the figure.

(ii) �̂� (2D wake) and �̂� (2D wake) ,mean: Cyan markers and cyan dashed line in figure 11.
Since the �̂� does not consider the wake drag, an additional parameter – �̂� (2D wake) – is
also shown in figure 11 for comparison. �̂� (2D wake) predicts the effective gap when two-
dimensional wake drag (equation (2.7)) is also considered. �̂� (2D wake) ,mean is the mean
�̂� (2D wake) . Generally, �̂� (2D wake) ,mean > �̂�mean as a larger gap is required for agreement
between experimental and analytical solutions when wake drag is considered. We consider
�̂� (2D wake) a better estimate of the effective gap than �̂�, since it includes an estimate of the
wake drag effect. �̂� (2D wake) increases with 𝑅𝑒, indicating that the effective gap increases
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with 𝑅𝑒. A similar observation was made for the rolling sphere by Nanayakkara et al. (2024).
However, this trend may be due to the limitations of using the two-dimensional wake drag.

(iii) Roughness statistics 𝜉𝑝 and 𝜉𝑝,1𝜎: Purple and green solid lines in figure 11.
The measured relative roughnesses 𝜉𝑝 and 𝜉𝑝,1𝜎 for each cylinder (including panel rough-
ness) are also shown in figure 11. For each case, the �̂� is of the same order of magnitude
as the measured relative roughnesses. This supports our hypothesis that surface roughness
produces the effective gap responsible for allowing the cylinder to roll. Other roughness
parameters (such as 𝑅𝑎 and 𝑅𝑞 , which are smaller than 𝑅𝑝) were also considered; however,
they were found to significantly underestimate the �̂�.
For the three larger cylinders (D7.7-A1.3, D9.7-A1.0 and D11.7-A0.9), 𝜉𝑝 provides a
excellent approximation for �̂� (2D wake) ,mean. However, 𝜉𝑝 underestimates the effective gap for
the smallest cylinder (D4.7-A2.2), and better agreement is obtained by using the parameter
𝜉𝑝,1𝜎 , especially in the range 𝑅𝑒 < 80. The use of different roughness statistics for the larger
and smaller cylinders is reasonable, given the qualitative differences in the surface textures
of smaller and larger cylinders (see §4.5.2).

It should also be noted that with increasing cylinder diameter, the range of 𝑅𝑒 of the data
increases while the AR decreases. The effects of varying AR on these results will be minimal
as shown in §4.2. Additionally, equation (2.7) is only valid for 10 < 𝑅𝑒 < 200; as such, the
�̂� beyond 𝑅𝑒 > 200 will be unreliable.

4.5.2. Comparison of surface textures of the two cylinders with different roughness
characteristics

In §4.5.1, we found that different surface roughness parameters, 𝜉𝑝 and 𝜉𝑝,1𝜎 , give the
best agreement between experimental measurements and analytical-numerical predictions
of the drag coefficient for larger and small diameter cylinders, respectively. We propose that
this difference can be attributed to a difference in the surface finish between the small and
large-diameter cylinders examined in this study.

Figures 12 compares the surface textures of a cylinder D4.7-A2.2 (figure 12a) with cylinder
D9.7-A1.0 (figure 12b). Two-dimensional excerpts of each three-dimensional measurement
are also shown in figures 12c and 12d. Sections A-A were selected at the location with the
largest observed asperity.

The surface textures of the two cylinders shown in figure 12 are notably different from each
other. While both surfaces are highly directional, covered with regularly spaced grooves and
ridges, the height of these ridges differs significantly between the two cylinders. The D4.7-
A2.2 cylinder is relatively smooth (𝑅𝑞 = 0.27 𝜇m), with a sparse distribution of surface
asperities that are much larger than the directional ridges. The ridges on the D9.7-A1.0
cylinder are much larger and are of comparable height to the largest asperities. Therefore,
the D4.7-A2.2 cylinder will contact the wall via a sparse distribution of large asperities,
while the D9.7-A1.0 cylinder contacts the plane via the regularly-spaced large ridges. This
difference in microscopic surface features is likely responsible for the different roughness
statistics required to predict the effective gap.

This observed variation of the roughness statistic that best describes the effective gap
between two types of cylinders further highlights that simple roughness measures such as
𝑅𝑝 do not capture all effects of surface roughness sufficiently. However, they do provide
a simple approximation of 𝐺/𝐷 within an order of magnitude, which may be useful for
some applications. Further detailed analysis of the surface roughness, especially while under
contact, is required to effectively capture the exact mechanism through which surface-to-
surface contact occurs.
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(a) Three-dimensional surface of D4.7-A2.2
cylinder. Measurement 𝑅𝑝 = 3.16 𝜇m,

𝑅𝑞 = 0.27 𝜇m.
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(b) Three-dimensional surface of D9.7-A1.0
cylinder. Measurement 𝑅𝑝 = 5.72 𝜇m,

𝑅𝑞 = 1.79 𝜇m.
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(c) Section A-A of figure 12a. The two-dimensional surface profile of D4.7-A2.2 cylinder.
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(d) Section A-A of figure 12b.The two-dimensional surface profile of D9.7-A1.0 cylinder.

Figure 12: Detailed review of D4.7-A2.2 and D9.7-A1.0 cylinder. Direction of cylinder rolling direction
with respect to the of surface elements is indicated in the arrow at the top right corner.

Recall that the peak roughness 𝑅𝑝 is an ensemble average of the largest peaks observed
over 4 or more different samples, each consisting of 24 combined measurements under 50×
magnification. For the small-diameter cylinder (figure 12a), there are only 2 large surface
features in the sample area, while for the large-diameter cylinder (figure 12b), there are a
large number of large surface features (the directional grooves). Therefore, fewer large peaks
are sampled when measuring the small-diameter cylinder, as compared to the large-diameter
cylinders. We expect only the largest peaks to contact the wall, and hence govern the effective
hydrodynamic gap. The use of 𝑅𝑝,1𝜎 for the small-diameter cylinders represents a ‘larger-
than-average’ representative asperity contacting the surface. For the small diameter cylinder,
as more measurements are obtained, a larger portion of tall peaks could be captured and
the average peak height (𝑅𝑝) could be larger than the reported value. However, obtaining
a larger data set was found to be impractical due to time constraints, and the use of 𝑅𝑝,1𝜎
is a sufficiently accurate approximation to represent the largest peaks in small cylinders, or
more particularly, those with this type of surface roughness pattern. Again, we note that one
standard deviation peak roughness for smaller cylinders was chosen based on the agreement



22

between �̂� values shown in figure 11(a) and the discussion provided in §4.5.1. If other
roughness statistics were used, such as two standard deviation peak roughness, it would
significantly overestimate the gap height. Therefore, one standard deviation peak height was
chosen to yield an approximate agreement between the gap height required by theory and
roughness measurements for smaller, smoother cylinders.

Note that for the rolling sphere problem, the r.m.s roughness 𝑅𝑞 was found to give the
best predictions of the drag coefficient (Nanayakkara et al. 2024). This is due to only a
small contact area for the sphere, while the cylinder contacts the plane over a line of contact.
Therefore, it is much more likely for the cylinder to contact a large asperity at any given time,
while the sphere may often be in contact with small asperities. Hence, the effective gap for
the cylinder is of the order of the peak roughness 𝑅𝑝, while the effective gap for the sphere
will generally be substantially less than the peak roughness.

Additionally, the direction of the grooves on the cylinder surface (see figures 3(e), 3(f) and
12) with respect to the rolling direction may influence the gap height. However, since the gap
is determined by the peak height of roughness asperities, and is larger than the grooves, this
effect is likely to be negligible.

4.6. Other considerations
In addition to surface roughness effects, there are additional mechanisms that have not been
considered in the analytical analysis. These mechanisms could potentially influence the
disparities observed between experimental and analytical predictions.

First, the effects of rolling resistance have not been considered. Bikerman (1949) and
Halling (1958) have highlighted several mechanisms that are characterised as rolling
resistance on a rolling sphere, while Sharma & Reid (1999) discuss a general case applicable
for a rolling sphere or disk. Some of these mechanisms include continuous collisions,
elastic deformation, capillary action, hysteresis effects, inter-facial slip, and molecular
adhesion. Exploring the contribution of each of these mechanisms is beyond the scope
of the present work; however, a summary of experimental results is given here to highlight
the potential contribution of rolling resistance to the total drag coefficient. Typically, rolling
resistance is expressed as a non-dimensional rolling resistance coefficient, 𝜇roll. Experimental
measurements of 𝜇roll ranges from 0.0002 for spheres rolling on relatively smooth panels
(Cross 2016) to 0.04 for teethed gears rolling on smooth panels in air (Cross 2015). For
acrylic cylinders assuming a rolling resistance of 0.001, if treated as a drag coefficient
(�̄�𝐷,roll = �̄�roll/( 1

2𝐷𝐿𝜌 𝑓 �̄�
2)), where �̄�roll = 𝜇roll(𝑊𝐵𝑔 cos 𝜃 − �̄�L). This �̄�𝐷,roll contribution

would likely fall within the order of 0.5. However, accurately determining the precise
contribution of rolling resistance to �̄�𝐷 without a dependable analytical model is challenging.
Developing such a model is not within the scope of the present study and is recommended
for future research.

Further, it should be highlighted that the rolling resistance force (�̄�roll) is distinct from the
contact force (�̄�C) described in §2. The frictional force at the point of contact is essential for
the cylinder to roll without slip; however, it does no work on the cylinder and therefore does
not reduce the cylinder’s total kinetic energy. Instead, it transfers the cylinder’s total kinetic
energy between translation and rotation to maintain no slip

Second, the analytical predictions using lubrication theory have assumed ideally smooth
surfaces. Surface roughness generally results in an increased resistance to fluid flow through
the lubrication film (Patir & Cheng 1978), which may result in an increased drag force which
has not been considered in the present study. Further analytical and numerical studies would
yield insights into the variation of the drag on a cylinder due to the rough lubrication layer.

Third, it is important to highlight that the area used for measuring roughness can influence
the statistical data of roughness presented in this study. A larger area of measurement
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may encompass more peaks, leading to more accurate 𝑅𝑝 and 𝑅𝑝,1𝜎 values. To acquire
roughness measurements that accurately represent the surfaces of the cylinders and panels, a
considerably larger set of measurements would be necessary. However, this was considered
impractical due to time constraints and other considerations.

In addition, experimental limitations will introduce errors to the presented results. Local
gradients on the panel surface and unevenness of cylinder diameters and spans lead to
perturbations to the cylinder rolling path. Dust deposited on the panel surface, and micro air
bubbles although (mostly) systematically removed, may also lead to systematic errors.

Finally, although surface roughness provides an effective gap for fluid flow allowing for
a finite effective drag coefficient, contact occurs via asperities. Lubrication theory predicts
infinite pressure peaks at these contact points, due to zero gap, which restricts cylinder
motion (‘the rolling paradox’). Goldman et al. (1967) argued that non-continuum flow could
be a probable mechanism that allows sphere motion, which may be applicable to the rolling
cylinder problem as well. Goldman et al. (1967) states that effects of surface roughness, with
larger length scales, should be evident prior to the effect of non-continuum flow. Since we
have observed the effects of surface roughness on �̄�𝐷 , an inter-asperity level gap height could
be sufficiently small that lubrication theory is no longer valid and wall slip corrections to the
Navier-Stokes equation should be considered. On the length scale of asperities, if fluid-wall
slip occurs (non-zero fluid velocity at the wall-fluid boundary), it will provide an alleviation
of the large pressure peaks generated at the contact points, which will allow cylinder motion.
However, these considerations are beyond the scope of the present study.

4.7. Comparison of 𝑅𝑒 vs �̄�𝐷 of a rolling cylinder and rolling sphere with the same
diameter.

Figure 13 illustrates the 𝑅𝑒 vs �̄�𝐷 curves for a freely rolling cylinder with an aspect ratio
close to unity (1.07), and a sphere of similar diameter. The freely rolling cylinder has an
estimated gap-diameter ratio of 𝐺/𝐷 ≈ 𝜉𝑝 = 5.8 × 10−4, while the rolling sphere has an
estimated gap-diameter ratio of 𝐺/𝐷 ≈ 𝜉𝑞 = 6.1 × 10−5. Additionally, numerical data from
Yang et al. (2022) for an isolated cylinder and from Johnson & Patel (1999) for an isolated
sphere are included for comparison.

The isolated cylinder and isolated sphere have a similar drag coefficient, while the drag
coefficient for the rolling cylinder is nearly double that of the rolling sphere for all 𝑅𝑒.
Moreover, both of the freely rolling bodies exhibit much higher drag coefficients than the
isolated sphere and cylinder. The increase in drag for freely rolling bodies is largely due to
the gap-dependent drag, which characterises the effects of the lubrication flow in the inner
region.

For the cylinder flow, the gap-dependent drag is given by (2.8), and is inversely proportional
to (𝐺/𝐷)1/2. For the sphere, the gap-dependent drag is given by (Goldman et al. 1967;
Houdroge et al. 2023):

𝐶𝐷,pred,gap,sphere =
1
𝑅𝑒

(−44.2 log10(𝐺/𝐷) + 34.0), (4.2)

and depends logarithmically on 1/(𝐺/𝐷). The gap-dependent drag coefficients for both the
cylinder and the sphere are indicated by solid lines in figure 13, and wake drag is indicated by
dashed lines. Here, the wake drag was estimated by subtracting the gap-dependent drag from
the measured drag coefficient, for both sphere and cylinder. The wake drag of the cylinder and
the sphere are similar to each other, within the 𝑅𝑒 range considered here. For the cylinder,
the gap-dependent drag is more prominent than the wake drag; however, at a lower range of
𝑅𝑒, the same could be true for the sphere as well (𝑅𝑒 < 50). The relative contribution of
wake drag to gap-dependent drag on total drag will be dependent on 𝐺/𝐷. The 𝐺/𝐷 values



24

0 200 400 600 800 1000
Re

0.5

1

2

5

10

20

40

60

CD

Rolling cylinder, AR = 1
CD, pred, gap, cyl (3D)

CD, wake, cyl

Rolling sphere
CD, pred, gap, sph

CD, wake, sph

Isolated cylinder
Yang et al. (2022) (CFD, AR = 1)

Isolated sphere
Johnson & Patel (1999) Exp.

Figure 13: Comparison of �̄�𝐷 vs 𝑅𝑒 variation for a cylinder(D9.7-A1.0) with the aspect ratio of 1 and a
sphere, both with diameter 𝐷 ≈ 9.7𝑚𝑚 on the glass panel. Least squares lines have been fitted through the

data points corresponding to cylinders and spheres. The relative roughnesses are 𝜉𝑝 = 5.8 × 10−4 for
cylinders, and 𝜉𝑞 = 6.1 × 10−5 for spheres. Data corresponding to isolated spheres for both spheres and

cylinders are also presented for comparison.

are fixed in the examples shown here and under different 𝐺/𝐷, gap-dependent drag will be
different for both the cylinder and sphere. However, the gap-independent wake drag is similar
in magnitude for both sphere and cylinder, which is not surprising owing to their geometrical
similarities.

With increasing 𝑅𝑒, the wake drag and gap-dependent drag converge for the cylinder and
diverge for the sphere. The point of intersection between gap-dependent and wake-dependent
drag is 𝑅𝑒 ≈ 800 (approximated by extrapolating the observed trends) for the cylinder and
𝑅𝑒 ≈ 80 for the sphere. Although the 𝑅𝑒 at which the transition from gap-dependent drag
dominant to wake drag dominant varies for the cylinder and sphere, both display the same
general trends of behaviour.

While the drag coefficient for both spheres and cylinders approaches infinity in the limit
𝐺/𝐷 → 0, the sphere �̄�𝐷 diverges only logarithmically (4.2), while the cylinder �̄�𝐷 diverges
much faster, with an inverse square-root (power law) behaviour (2.8). Therefore, for a
sufficiently small 𝐺/𝐷, the cylinder will exhibit a much larger drag coefficient than the
sphere. Physically, we attribute this difference in behaviour to the much larger contact region
for the cylinder, which results in a larger region over which lubrication forces act.
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5. Wake-structure Interactions
Due to the influence of wake shedding, the velocity of a freely rolling cylinder varies in the
down-slope (𝑥) and cross-slope (𝑦) directions and these variations have a direct influence on
�̄�𝐷 . As such, we have conducted an analysis of the cylinder wake-structure interaction to
visualise the wake of a freely rolling cylinder, and its variation with 𝑅𝑒, AR and 𝜉. A UV-
induced fluorescent dye visualisation technique was used to visualise the wake structures
behind the freely rolling finite-span cylinders. High-resolution (Nikon D7100 and GoPro
Hero 10) cameras were used to capture images of wake formations.

5.1. Background of wake-structure interaction of cylinders
An isolated stationary cylinder in free flow transitions from steady two-dimensional to
unsteady periodic shedding at 𝑅𝑒 = 46 (Bénard-von Kármán shedding), and further three-
dimensional instabilities occur at 𝑅𝑒 = 190 and 𝑅𝑒 = 260 (Henderson 1997; Taneda 1956).
It is also well known that at 𝑅𝑒 ≈ 1200, the shear layers separating from the cylinder surface
becomes unstable, and the boundary layer becomes turbulent before separation beyond
𝑅𝑒 ⩾ 3 × 106. Adding cylinder rotation to this problem gives rise to a range of additional
modes of shedding and instabilities, dependent on 𝑅𝑒, of which a thorough review has been
presented by Rao et al. (2015a). Interestingly, at a rotation rate (the ratio of the cylinder
surface speed to the relative free stream speed) of unity, the wake transitions are similar to
those of an isolated non-rotating cylinder.

The presence of a plane or a boundary near the cylinder acts to stabilise the flow (Taneda
1965), and delays the onset of vortex shedding to 𝑅𝑒 = 100 for 𝐺/𝐷 ⩽ 0.3 (Lei et al. 1999).
At much smaller gap ratios (𝐺/𝐷 ⩽ 0.1), the vortices are generated from the interaction
between the separating shear layer at the top of the cylinder and the secondary vorticity
formed by the wall boundary layer (Stewart et al. 2010a).

The addition of rotation to this system further complicates the flow dynamics. Stewart et al.
(2010a) and Rao et al. (2011) found that the direction of rolling- prograde or retrograde-
acts to either destabilise the flow or delay instabilities, respectively. Houdroge et al. (2020)
investigated numerically the wake of a freely rolling cylinder with a small gap (𝐺/𝐷 = 0.005),
and discovered that as 𝑅𝑒 increases, the cylinder wake becomes unsteady and leads to cylinder
oscillations. Previous studies (Houdroge et al. 2017; Rao et al. 2011; Stewart et al. 2010a)
have found that a uniformly rolling cylinder transitions from steady to unsteady vortex
shedding at 𝑅𝑒 = 88. Rao et al. (2015b) found numerically that the presence of the wall
alters the centre-line symmetry of the wake, and as such significantly modifies the transitions.
When the gap height approaches small values (𝐺/𝐷 ≈ 0.2), they observed that the steady
flow transitions to mode E instability prior to the transition to unsteady base flow. At such
gap heights, more common instabilities, such as modes A and B, were not observed in the
𝑅𝑒 < 400 range. We note that mode A is three-dimensional spanwise instability with an
approximate four-diameter wavelength, while mode B has a shorter (one-diameter) spanwise
wavelength Williamson (1996).

Pirozzoli et al. (2012) investigated the flow around a wheel of AR = 0.4 at various 𝑅𝑒, and
observed steady laminar flow up to 𝑅𝑒 ≈ 300, followed by unsteady planar symmetric flow,
with the shedding of hairpin vortices up to 𝑅𝑒 ≈ 400. The first transition from periodic, planar
symmetric flow to quasi-periodic, asymmetrical flow was found to occur at 𝑅𝑒 ≈ 500, with
further increase in 𝑅𝑒 leading to increase in turbulence in the wake of the rolling cylinder.
Pirozzoli et al. (2012) also attributed the formation of the hairpin vortices to a combination
of span-wise, streamwise and wall-normal vorticity around the rolling cylinder. Through
iso-surface vorticity visualisations, they have shown that span-wise vorticity forms the upper
part of the hairpin vortices, while streamwise vorticity provides the legs and wall-normal
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vorticity contributing to the necks. Although these critical transitions have been observed
numerically for a cylinder of AR = 0.4, variations in cylinder AR may influence the 𝑅𝑒 at
which these transitions occur. We will experimentally investigate these phenomena further
in the present study.

Wang et al. (2020) studied numerically (three-dimensional) the wake of an infinite cylinder
near a moving wall, at𝐺/𝐷 = 0.2 and 150 < 𝑅𝑒 < 300. They observed three different modes
of shedding and concluded that the transition to chaotic flow at high 𝑅𝑒 occurs due to the
strong non-linear interaction between these modes with different span-wise wavelengths. We
expect similar span-wise modes for the large AR cylinders for the freely rolling case studied
here; however, cylinder end effects will also contribute to the wake structures formed.

Houdroge et al. (2020) reported on the Strouhal number, 𝑆𝑡, of two-dimensional freely
rolling cylinders, and observed 𝑆𝑡 decreasing from 0.065 at 𝑅𝑒 = 100 to 0.051 at 𝑅𝑒 = 300
for 𝐺/𝐷 = 0.0003125. With increasing 𝐺/𝐷, 𝑆𝑡 was observed to increase at a given 𝑅𝑒.
A similar observation was made for the three-dimensional case, with a weak dependence
on the mass ratio of the cylinders. Stewart et al. (2010a) also observed 𝑆𝑡 for the two-
dimensional cylinders within the same range, with 𝑆𝑡 increasing with decreasing rotation
rate of the cylinder. The largest 𝑆𝑡 (≈ 0.1) was observed for a non-rotating cylinder at
160 < 𝑅𝑒 < 200. Experimental flow visualisations obtained in this study are compared
against these numerically observed values.

5.2. Variations in the cylinder wake with 𝑅𝑒

Figure 14 displays the evolution of the wake behind a freely rolling cylinder with a fixed
AR ≈ 1, as 𝑅𝑒 is increased. As observed in figures 14a and 14b at lower 𝑅𝑒, the wake of
the cylinder is steady and attached. The shear layer separating from the top of the cylinder
forms a recirculation zone comprising a counter-rotating vortex pair which is attached to the
cylinder. As the cylinder moves down the panel, this recirculation zone oscillates, causing
some minor fluctuations in the cylinder path. Figure 14c presents the first instance that we
observed unsteadiness in the wake of the cylinder. This corresponded to the detachment of the
shear layer from the top of the cylinder to form hairpin vortex loops. This image indicates that
the first critical transition to unsteady periodic flow occurs in the range 95 < 𝑅𝑒 < 116. The
observed hairpin loop appears symmetrical. From figures 14d to 14j as the 𝑅𝑒 is increased,
the wake of the cylinder becomes progressively more unstable and chaotic. The frequency
of shedding of hairpin vortices also increases with 𝑅𝑒, and we observe some degree of
cross-slope movement, generated by this shedding.

Figure 15 visualises the near-wake of a freely rolling cylinder D4.7-A10.7, while 𝑅𝑒

was varied. As the 𝑅𝑒 is increased from 28–134, the near wake becomes more chaotic. At
𝑅𝑒 = 28, the wake is shorter and no hairpin structures are observed. At 𝑅𝑒 = 45, we notice
one hairpin-like structure with increased vorticity in the remaining wake as well. Unlike the
AR = 1 case shown in figure 14, for this cylinder with a higher AR, the transition to unsteady
periodic shedding of hairpin vortices occurs at a much lower 𝑅𝑒 (≈ 45). This indicates that
the cylinder AR plays an important role in the wake characteristics of a rolling cylinder.

In addition to the streamwise hairpin vortices, there is an increase in span-wise vorticity
with increasing 𝑅𝑒. Following the transitions to periodic shedding of hairpin vortices first
observed at 𝑅𝑒 = 45, 2 distinct structures are observed at 𝑅𝑒 = 50 and 𝑅𝑒 = 89. As 𝑅𝑒 is
increased further, the wake becomes more chaotic and distinct hairpins are no longer visible;
rather, multiple vortices are observed. As discussed by Wang et al. (2020), the non-linear
interaction of different span-wise modes may contribute to the evolution of the wake to the
chaotic state observed at 𝑅𝑒 = 134. The shape of the near wake also changes with increasing
𝑅𝑒. At low 𝑅𝑒 (28 < 𝑅𝑒 < 50), the near wake appears to be shorter than the span of the
cylinder. However, at higher 𝑅𝑒, the near-wake vortices are observed across its full span.
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(a) 𝑅𝑒 = 79(±1) (b) 𝑅𝑒 = 95(±1)

(c) 𝑅𝑒 = 116(±1) (d) 𝑅𝑒 = 134(±2)

(e) 𝑅𝑒 = 157(±2) (f) 𝑅𝑒 = 275(±3)

(g) 𝑅𝑒 = 317(±4) (h) 𝑅𝑒 = 368(±4)

(i) 𝑅𝑒 = 469(±6) (j) 𝑅𝑒 = 598(±9)

Figure 14: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique for a
cylinder with AR ≈ 1 with 𝑅𝑒 ranging from 79 − 598. Images were captured using a Go-Pro camera and

post-processed. The cylinder is rolling from right to left. The video recordings are provided as
supplementary movie 1 available at doi link.

Re=104(±2) Re=134(±2)Re=89(±1)Re=50(±1) Re=45(±1)Re=28(±1)

Figure 15: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Comparison of the near wake of a freely rolling cylinder D4.7-A10.7 with 𝑅𝑒 ranging from 28 − 134, for a

constant D (4.69𝑚𝑚). Cylinder rolling from right to left. The video recordings are provided as
supplementary movie 2 available at doi link.
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5.3. Cylinder wake variations with AR

In this section, we will investigate the variation of a cylinder wake with AR. The wake of
a three-dimensional cylinder (limited span) differs from that of a two-dimensional cylinder
(infinitely long) primarily due to the flow around the ends, more commonly categorised
as end effects. End effects are an important consideration for limited-span bodies, where a
pressure difference between opposing sides drives the fluid around its ends. To visualise these
effects, the wake of a cylinder with a fixed 𝐷 ≈ 4.7 mm and with varying AR(1.01 − 29.84)
was visualised while rolling down a plane at a fixed angle of inclination.

Figure 16 shows the images of the near wake of the cylinders. First, even at the same angle
of inclination, the induced 𝑅𝑒 of the cylinders generally increases with increasing AR. The
smaller AR cylinder displays a steady attached wake while the larger AR cylinders displays a
high degree of unsteady shedding of hairpin vortices and turbulence in the wake. The wakes
of the cylinders are clearly distinct, indicating that the cylinder AR has a significant effect
on the cylinder wake shedding.

Similar to the observations made by Inoue & Sakuragi (2008) for an isolated stationary
cylinder, we observe a range of patterns within the wake as the AR of the cylinder is varied.
One important difference to the observations made by Inoue & Sakuragi (2008) is that
the wake is one-sided, due to the presence of the plane wall. However, similar to Inoue &
Sakuragi (2008), for a low 𝑅𝑒(67 − 113), we observe a counter-rotating vortex pair, which
transitions to periodic shedding of hairpin vortices (referred to as type IV shedding by Inoue
& Sakuragi (2008)) as AR is increased. As AR is further increased to 19.72 and 29.84, we
observe some remnants of oblique vortex shedding (type I) with a combination of hairpin
vortices. Span-wise wavelengths are also visible for the high AR cylinders; at AR = 29.84,
two pairs of hairpins are shed per shedding cycle. This pair of hairpins is shown in figure 16
using two white arrows for the AR= 29.84 case.

Another key observation that can be made from figure 16 is the streamwise length of
the near wake, compared to its span, decreasing with increasing AR. For the first 3 cases
(AR = 1.01, 2.16, 4.29), we note that the near wake spans the full length of the cylinder.
However, at the higher AR (AR = 10.68, 19.72, 29.84), the near wake gradually becomes
narrower compared to the cylinder span. That is, we see more fluid flow around the ends
to the low-pressure region downstream of the cylinder. This phenomenon could reduce the
pressure differential between the front and rear of the cylinder, reducing pressure drag. The
near wake of the high AR cylinders is also increasingly turbulent, with multiple hairpin-like
structures observed in the wake. For the lower AR cases, the near wake comprised a pair of
attached counter-rotating vortices, with no hairpin structures shed into the wake.

5.4. Cylinder wake variations with 𝜉

To establish the effects of surface roughness on the cylinder wake, visualisations of the same
cylinder (D9.7-A1.0) rolling on two panels with different surface roughnesses were obtained.
Figure 17 shows the wake of the cylinder rolling on a glass panel (𝑅𝑝 = 0.308 𝜇m) and
a frosted glass panel (𝑅𝑝 = 5.96 𝜇m), which is 20 times rougher than the glass panel. As
observed in the figure, the wake of the cylinders shows a high degree of similarity and the
𝑆𝑡 are also nearly identical. This observation indicates that the panel surface roughness, or
the gap imposed by roughness, has little influence on the wake of a rolling cylinder. The
same observation was made from the numerical studies of Merlen & Frankiewicz (2011) and
Houdroge et al. (2020).
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Re=101(±1)
AR=19.72

Re=113(±2)
AR=29.84

Re=104(±1)
AR=10.68 

Re=117(±2)
AR=4.29 

Re=67(±1)
AR=2.16

Re=79(±1)
AR=1.01

Figure 16: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Comparison of the near wake of a freely rolling cylinder, for different AR ranging from 1.01 − 29.84, for a
constant 𝐷 (4.7𝑚𝑚) and 𝜃 = 14°. Cylinder rolling from right to left. White arrows indicate the shedding of

a pair of vortices per shedding cycle. The video recordings are provided as supplementary movie 3
available at doi link.

(a) Glass panel (𝑅𝑝 = 0.308 𝜇m) at 𝑅𝑒 = 275(±3), 𝑆𝑡 = 0.13

(b) Frosted glass panel (𝑅𝑝 = 5.96 𝜇m) at 𝑅𝑒 = 277(±3), 𝑆𝑡 = 0.13

Figure 17: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique of the
cylinder D9.7-A1.0. Comparison of flow structures between glass panel and frosted glass panel 𝑅𝑝

roughness of the frosted glass panel is approximately 20 larger than the glass panel. The cylinder is rolling
from right to left.

5.5. Temporal evolution of the wake of a cylinder
The wake of a freely rolling finite-span cylinder is complex, varying with cylinder 𝑅𝑒 and
AR. At higher 𝑅𝑒, the wake also exhibits a high degree of unsteadiness which increases
with 𝑅𝑒, and the hairpin vortices are shed at a higher frequency. To further investigate this
unsteadiness, we have captured the temporal evolution of the wake of 3 cylinders under
varied flow conditions. First, in figure 18, we present snapshots taken of a cylinder D4.7-
A10.7 at 𝑅𝑒 = 89(±1). Then, the flow around a larger cylinder D9.7-A5.16 (𝐷 = 9.7 mm and
AR = 5.16) at 𝑅𝑒 = 205(±3) is presented. Finally, the flow around a cylinder D19.7-A0.5 at
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t = 0s t = 1s t = 2s t = 3s

t = 4s t = 6s

Figure 18: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Temporal evolution of the wake of a freely rolling cylinder D4.7-A10.7 at 𝑅𝑒 = 89(±1). The images depict

the evolution of the wake from 𝑡 = 0 s (𝑡∗ = 0) to 𝑡 = 6 s (𝑡∗ = 23.3). 3 hairpin vortices are shed into the
wake within this time period. Cylinder rolling from right to left. The video recordings are provided as

supplementary movie 4 available at doi link.

a much higher 𝑅𝑒 = 558(±9) is shown to highlight the increased unsteadiness in the wake
at higher 𝑅𝑒.

Figure 18 depicts the temporal evolution of the near and far wake of a freely rolling
cylinder D4.7-A10.7 at 𝑅𝑒 = 89(±1). Snapshots were taken at varied time intervals over
three fundamental shedding cycles, both dimensional (𝑡) and non-dimensional (𝑡∗ = 𝑡�̄�/𝐷)
timescales have been used to describe the flow. At 𝑡 = 0 s (𝑡∗ = 0), we observe the initial
development of the vorticity within the near wake of the cylinder. Two distinct hairpin
structures are observed developing, with their corresponding ends attached to the ends of
the cylinder and joined in the middle. The vorticity generated by end effects appears to feed
each of the hairpins developed. At 𝑡 = 1 s (𝑡∗ = 3.9) and 𝑡 = 2 s (𝑡∗ = 7.8), the two structures
grow in size and move further away from the cylinder surface. At 𝑡 = 3 s (𝑡∗ = 11.6), the
individual hairpins intertwine and form a single larger hairpin structure, which is detached
from the cylinder and shed into the wake at 𝑡 = 4s (𝑡∗ = 15.5). At the same time, we note that
another set of hairpin vortices are being developed, grow and join from 𝑡 = 3 s (𝑡∗ = 11.6)
to 𝑡 = 4 s (𝑡∗ = 15.5) and shed into the wake at 𝑡 = 6 s (𝑡∗ = 23.3). At 𝑡 = 6 s (𝑡∗ = 23.3), 3
such vortices are observed in the far wake of the rolling cylinder, and another is still attached
to the rear end of the cylinder. These shed vortices move away from the panel and dissipate
downstream of the cylinder. Additionally, we note that in figure 14, the transition to unsteady
vortex shedding occurs at 𝑅𝑒 ≈ 100; however, at this larger AR, this transition appears to
occur at a lower 𝑅𝑒.

Figure 19 depicts the temporal evolution of the near and far wake of a freely rolling cylinder
D9.7-A5.16 at 𝑅𝑒 = 205(±3). This case is at a higher 𝑅𝑒 than figure 18, with a larger 𝐷 and
half the AR. Two dyes with different shades of green were used on either end of the cylinder,
to visualise the interaction between opposite vorticity generated by opposing ends of the
cylinder. We observe that the wake is more chaotic than figure 18; however, hairpin vortices
are shed periodically. The streamwise distance between consecutive hairpins is also reduced.
The intertwining of the two opposite vortices generated by each end of the cylinder is more
clearly observed in this figure. At 𝑡 = 0 s (𝑡∗ = 0), we observe the two dyes are coating each
end of the cylinder, but as time progresses, there is significant mixing induced by the rolling
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t = 0s t = 1s t = 2s t = 3s

t = 4s t = 5s

t = 7s
Figure 19: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.

Temporal evolution of the wake of a freely rolling cylinder D9.7-A5.16 (𝐷 = 9.7 mm and AR = 5.16) at
𝑅𝑒 = 205(±3). The images depict the evolution of the wake from 𝑡 = 0 s (𝑡∗ = 0) to 𝑡 = 7 s (𝑡∗ = 16.1).
Two dyes of different shades of green have been used to indicate opposite vorticity generated due to the
rolling motion. Cylinder rolling from right to left. The video recordings are provided as supplementary

movie 4 available at doi link.

motion of the cylinder. There is some degree of separation between the two dyes, even in the
shed vortices, but as the wakes move downstream, there appears to be a remnant of a single
colour.

Figure 20 depicts the temporal evolution of the near and far wake of a cylinder D19.7-A0.5
at 𝑅𝑒 = 558(±9). Shedding of hairpin vortices is pseudo-periodic, with varying angles to
the streamwise direction. The cylinder wake is chaotic and clear hairpin structures are no
longer observed. However, some resemblance of hairpin structures is noted. The frequency
of shedding is further increased compared to figures 18 and 19, and the streamwise distance
between each vortex is also reduced. As the vortices move away from the cylinder, they
grow in size and dissipate downstream. The vortical structures numerically visualised by
Pirozzoli et al. (2012) at 𝑅𝑒 = 500 for a cylinder with a similar AR were compared against
the structures observed in figure 20. They were in excellent agreement with the structures
observed here. They observed numerically that the alternately shed vortices under these
conditions have a tendency to bend to alternating sides in the cross-slope direction, which
also corresponds to peaks in the frequency spectra of force coefficients. The shedding of
these vortices can be used to calculate the 𝑆𝑡 of the cylinders, which is presented in §5.5.1.

It should be noted that in experimental visualisations, even a small perturbation in the
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t = 0s t = 2s t = 4s

t = 6s

t = 8s

Figure 20: Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Temporal evolution of the wake of a freely rolling cylinder D19.7-A0.5 at 𝑅𝑒 = 558(±9). The images

depict the evolution of the wake from 𝑡 = 0 s (𝑡∗ = 0) to 𝑡 = 8s (𝑡∗ = 12.1). Cylinder rolling from right to
left. The video recordings are provided as supplementary movie 4 available at doi link.

initial conditions can break the wake symmetry. It has been difficult to capture a purely
symmetrical wake, due to cylinder oscillations and the lateral movement across the plane.
Pirozzoli et al. (2012) observed a symmetrical wake up to 𝑅𝑒 = 400; however, we have not
been able to observe that experimentally.

5.5.1. Strouhal Number (St) calculations
The shedding of hairpin vortices into the wake of a freely rolling cylinder allows the
calculation of the Strouhal number (𝑆𝑡 = 𝑓 𝐷/�̄�). Here, 𝑓 is the vortex shedding frequency,
𝐷 is the cylinder diameter and �̄� is the mean down-slope velocity.

Figure 21 depicts the variation of cylinder 𝑆𝑡 with 𝑅𝑒 for cylinders of varied aspect
ratios (0.5 − 29) and diameters. The numerical results of Houdroge et al. (2020) for a two-
dimensional cylinder with 𝐺/𝐷 = 0.0003125 and two-dimensional results of Stewart et al.
(2010a) for 𝐺/𝐷 = 0.004 are also shown in the figure. Three-dimensional numerical 𝑆𝑡
determined from the peak 𝑆𝑡 from the lift coefficient time histories given by Pirozzoli et al.
(2012) for a cylinder with 𝐴𝑅 = 0.4 are also indicated in the figure for comparison.

The experimental 𝑆𝑡 of the present study shows a clear increasing trend with increasing
𝑅𝑒. There is general agreement between the results of the present study and numerical results
in the range 100 < 𝑅𝑒 < 200, but diverge beyond 𝑅𝑒 > 200. Experimental results indicate an
increasing 𝑆𝑡 with increasing 𝑅𝑒, while the numerical studies predict a decrease in 𝑆𝑡. Three-
dimensional effects, which are not effectively captured in the two-dimensional numerical
studies by Houdroge et al. (2020) and Stewart et al. (2010b), likely play a significant role in
this observed divergence. As observed in figure 16, higher AR cylinders display increased
unsteadiness in the wake and pronounced wake shedding, even at the same angle of panel
inclination and at similar 𝑅𝑒. Experimental data presented in figure 21 contain a large range
of ARs (≈ 0.5 − 30) and cylinder diameters, which also likely contributes to the divergence,
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Figure 21: Comparison of 𝑆𝑡 vs 𝑅𝑒 variation for a freely rolling cylinder with varied aspect ratios
(≈ 0.5 − 30) and diameters. For experimental data, Stewart et al. (2010a) and Yang et al. (2023) the 𝑆𝑡 of
vortex shedding in shown. For Houdroge et al. (2020) and Pirozzoli et al. (2012) the 𝑆𝑡 of oscillations is

indicated. Numerical predictions from previous literature have also been plotted for comparison.

and also the scatter observed in the figure. Yang et al. (2022) numerically observed a similar
increase in 𝑆𝑡 from 0.12 to 0.22 for an increase of 𝑅𝑒 from 50 to 500 for an isolated
three-dimensional cylinder for similar AR (also shown in figure 21). We anticipate that the
introduction of a plane will alter the shedding behaviour, but will retain the general 𝑅𝑒

dependence. Therefore, the observed increase in 𝑆𝑡 with 𝑅𝑒 in figure 21 is generally within
the expected range of 𝑆𝑡 for a three-dimensional cylinder.

Given the complex coupling of contact forces, fluid forces, frictional forces, three-
dimensional effects, gap effects and other minor experimental factors such as plate uneven-
ness, dust and air bubbles, the mechanisms that affect cylinder motion and wake shedding
are difficult to quantify. Experimentally, we cannot measure the forces acting on a freely
rolling cylinder; as such, a detailed explanation of the observed behaviour is not presented
here. We simply present the measured 𝑆𝑡 data, which highlight the general behaviour of a
freely rolling cylinder. We acknowledge that some of the experimental factors mentioned
earlier will affect the presented results. A detailed three-dimensional numerical investigation
(including a numerical stability analysis), with sufficiently small gap ratios, of the effects of
AR and 𝑅𝑒 on 𝑆𝑡 is required to obtain a deeper understanding of these observed behaviours,
and the mechanisms contributing to the observed periodic fluctuations of the freely rolling
cylinder problem. To our knowledge, such an investigation has not yet been reported in the
current literature, and it is considered to be is beyond the scope of the present study, which
we recommend for future work.
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6. Conclusions
We have investigated the effects of surface roughness on the time-mean drag coefficient
(�̄�𝐷) of a finite-span cylinder rolling, without slip, down an inclined plane due to gravity.
Additionally, we have also considered the effects of time-mean Reynolds number (𝑅𝑒),
cylinder aspect ratio (AR), wake dynamics and the potential influence of cavitation on
cylinder �̄�𝐷 .

The most noteworthy discovery was the dependence of the �̄�𝐷 vs 𝑅𝑒 relationship on
surface roughness. Increased roughness, represented by the parameter 𝜉, resulted in reduced
�̄�𝐷 , aligning with lubrication theory predictions, assuming that roughness creates an effective
gap between the cylinder and the plane. Both cylinder and panel surface roughness contributed
to �̄�𝐷 variations. For instance, when 𝜉 increased by a factor of 10, approximate �̄�𝐷 reductions
of 65% and 60%, at 𝑅𝑒 values of 100 and 150 were observed.

The experimental results of the study aligned well with the three-dimensional analytical
model of Teng et al. (2022). This model divided �̄�𝐷 into two components: gap-dependent
drag (𝐶𝐷,pred,gap(3D) ) and wake drag (𝐶𝐷,pred,wake(3D) ).𝐶𝐷,pred,gap(3D) can be predicted using
three-dimensional lubrication theory (2.8) and is a function of 𝑅𝑒,AR and 𝜉.𝐶𝐷,pred,wake(3D)
should be calculated numerically, and depends on 𝑅𝑒 and AR. Teng et al. (2022) do not
provide the numerical estimates of𝐶𝐷,pred,wake(3D) but Terrington et al. (2023) provide results
for a two-dimensional cylinder𝐶𝐷,pred,wake(2D) (2.7), which have been used as baseline values
in this study to enable effective comparison. It is assumed that 𝐶𝐷,pred,wake(3D) will be of the
same order of magnitude as 𝐶𝐷,pred,wake(2D) .

Matching drag coefficients for an ideally smooth cylinder with an imposed gap with rough
cylinders in contact with the plane demonstrated agreement between the effective gap ratio
(�̂� = 𝐺eff/𝐷) and the measured relative peak roughness (𝜉𝑝 = 𝑅𝑝/𝐷). For the comparatively
smoother 𝐷 ≈ 4.7 mm cylinders, 𝑅𝑝,1𝜎/𝐷 was observed to better represent the value of �̂�.
Differences in the value of �̂� and measured roughness between cylinders were attributed to
limitations in using simple statistical roughness measures. Smaller cylinders were generally
smoother with a sparse distribution of tall asperities, while larger cylinders exhibited more
uniform directional asperities, leading to discrepancies in estimated effective gaps. However,
it was promising that the gap required by lubrication theory can be estimated using a simple
roughness statistic such as 𝑅𝑝 roughness, with a high degree of accuracy. This agreement
provides evidence to the assertion that surface roughness is a primary mechanism that allows
cylinder motion under solid-solid contact, while providing a finite gap required for lubrication
theory, within the 𝑅𝑒 range considered in this study.

The �̄�𝐷 versus 𝑅𝑒 curves for individual panels and cylinders diameters corresponding to
distinct 𝜉 values were observed to converge with increasing 𝑅𝑒. This observation can be
explained by using the decomposed version of the total drag coefficient. The contribution
to total drag from gap-dependent drag decreases with increasing 𝑅𝑒 while the wake drag
remains relatively constant. As such, at higher 𝑅𝑒, wake drag begins to dominate. The
observed convergence at high 𝑅𝑒 is due to this effect, where the gap-dependent drag is small
and the wake drag is more prominent.

The analytical predictions of Teng et al. (2022) predicts𝐶𝐷,pred to decrease with decreasing
AR; however, the experimental results of the present study indicate that �̄�𝐷 remains relatively
constant to variations in cylinder AR. This may be due to the effects of AR on the wake
drag coefficient, which are currently unknown. Alternatively, the increased contact area with
increasing AR may result in a larger effective gap. The drag coefficient decreased with
increasing AR beyond AR > 6, due to imperfect contact between the cylinder and panel for
large AR cylinders.

Calculation of the minimum pressure in the gap region using a formula derived by Merlen
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& Frankiewicz (2011) for the experiments conducted in water suggests that cavitation is
unlikely to occur for our range of experimental parameters. The relative agreement of the
observed trends between �̄�𝐷 for foam cylinders rolling in the air to acrylic cylinders in the
water suggested cavitation was not a necessity for cylinder motion, contrary to previous
suggestions (Merlen & Frankiewicz (2011)), as cavitation does not occur in the air.

Investigation of the wake-structure interaction of a freely rolling cylinder with AR
approximately 1 indicated that the wake becomes increasingly unsteady with increasing
𝑅𝑒. The first transition to unsteady periodic shedding of hairpin vortices was observed at
𝑅𝑒 ≈ 100, with the wake prior to the transition being steady with a pair of counter-rotating
vortices attached to the cylinder. Following this critical transition, the shedding of hairpin
vortices becomes prominent with increasing 𝑅𝑒, and the wake becomes increasingly chaotic
and turbulent.

Cylinder AR was also found to influence critical transitions to unsteady flow. Decreasing
AR was observed to delay this first critical transition. A cylinder with AR = 1.01 was
observed to transition at 𝑅𝑒 ≈ 100 while a cylinder with AR = 10.68 was observed to
transition at 𝑅𝑒 ≈ 50. Visualisation of the transient variations of the wake of a cylinder
highlighted the interaction of opposite vortices generated from the end effects which merge
to form the hairpin vortices that are shed into the wake. Cylinder wake shedding 𝑆𝑡 was
observed to increase with increasing 𝑅𝑒, and general agreement with previous numerical
results was observed at 𝑅𝑒 ≈ 100, while experimental results diverged from numerical
predictions at higher 𝑅𝑒. This divergence was attributed to three-dimensional effects which
were not effectively captured in two-dimensional numerical investigations.

Overall, further research is needed to understand the effects of rolling resistance generated
by energy losses due to collision between asperities, or other mechanisms (such as interfacial
slip or hysteresis) and the contribution that makes to the overall drag coefficient. Additionally,
the three-dimensional effects of wake drag should be studied further, and the development
of these mechanisms may lead to a more comprehensive model to describe cylinder motion.
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Appendix A. Measurement data tables
The properties of panels and cylinders used during the experimental process are described
in tables 1 and 2. Tables 3 and 4 present the measured surface roughness values.

Appendix B. Uncertainty analysis
Accurate estimation of experimental uncertainties for both measured and calculated param-
eters is crucial for establishing the reliability of observed behavioural trends. In figures 5 to
7, the error bars on data points represent the uncertainty in calculated values of 𝑅𝑒 and �̄�𝐷 .

https://orcid.org/0009-0003-9375-1806
https://orcid.org/0000-0001-5769-4507
 https://orcid.org/0000-0001-9117-9170
https://orcid.org/0000-0003-3473-2325
https://orcid.org/0000-0002-8995-1851


36

Panel Type
Panel

Thickness
(mm)

Max. deviation
(mm) Max. gradient

Glass panel 10 0.05 0.10%
Frosted glass panel 10 0.06 0.18%
Acrylic panel 15 0.25 0.30%
Ceramic panel 15 0.10 0.22%
Rough ceramic panel 15 0.34 0.30%

Table 1: Panel types used as inclined planes are detailed here. Max. deviation is the maximum absolute
deviation of surface height measurements from the mean plane. Max. gradient is the maximum cross-slope

gradient over a minimum cross-slope measurement distance of 50 mm.

This section outlines the methodology used to calculate these error bars, illustrated with an
example calculation.

For each variable of interest, the total error (𝛿) is assumed to be the sum of two components:
bias error (𝛿𝐵) and random error (𝛿𝑅). In figures 5 to 7, only bias error is depicted as error
bars. To perform error propagation analysis, the Python uncertainties package (Lebigot
2023) was used. This package calculates the standard deviation of variables using the linear
approximation of error propagation theory. An example calculation is provided here, and
table 5 summarises the reference values utilised for a cylinder rolling on a glass panel.
This approach ensures that the figures accurately represent the uncertainties associated with
the presented data, helping readers understand the reliability of the observed trends in the
behaviour of the parameters.

The 𝑅𝑒 and �̄�𝐷 are given by the following equations:

𝑅𝑒 =
�̄�𝐷

𝜈
=

𝐿𝐷

𝑡𝜈
, (B 1)

�̄�𝐷 =
𝐷 (𝛽 − 1)𝑔𝜋𝑠𝑖𝑛(𝜃)

2𝑈2 . (B 2)

Based on the reference values given in table 5, the measured 𝑅𝑒 and �̄�𝐷 are:

𝑅𝑒 = 106 ± 2 (1.9%), (B 3)

�̄�𝐷 = 9.8 ± 0.4 (4.1%), (B 4)
Approximately 50% of the measured error in 𝑅𝑒 and �̄�𝐷 is due to the natural variation

of the rolling cylinder velocity. The bias error (error due to measurement uncertainty) is
approximately 1% for 𝑅𝑒 and 2% for �̄�𝐷 in this instance, and only the bias error is shown as
error bars in all figures.
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Cylinder
Material

Cylinder
Density

𝜌𝑠 (g/cm3)
Cylinder Diameter

(mm)
Cylinder Spans

(𝑚𝑚) Aspect Ratio Identifier

Acrylic 1.2

4.70 ± 0.02 (0.4%) 2.34 ± 0.02 (0.8%) 0.50 D4.7-A0.5
4.68 ± 0.01 (0.5%) 3.52 ± 0.01 (0.5%) 0.75 D4.7-A0.8
4.69 ± 0.01 (0.5%) 4.74 ± 0.02 (0.5%) 1.01 D4.7-A1.0
4.71 ± 0.05 (1.0%) 5.87 ± 0.02 (0.3%) 1.25 D4.7-A1.3
4.70 ± 0.02 (0.4%) 7.04 ± 0.03 (0.4%) 1.50 D4.7-A1.5
4.70 ± 0.02 (0.4%) 8.30 ± 0.11 (1.3%) 1.77 D4.7-A1.8
4.69 ± 0.02 (0.4%) 10.11 ± 0.03 (0.3%) 2.16 D4.7-A2.2
4.68 ± 0.03 (0.3%) 14.11 ± 0.02 (0.1%) 3.01 D4.7-A3.0
4.69 ± 0.03 (0.7%) 20.11 ± 0.05 (0.2%) 4.29 D4.7-A4.3
4.68 ± 0.01 (0.5%) 23.52 ± 0.02 (0.1%) 5.03 D4.7-A5.0
4.69 ± 0.01 (0.5%) 28.23 ± 0.08 (0.3%) 6.02 D4.7-A6.0
4.67 ± 0.02 (0.6%) 32.92 ± 0.05 (0.1%) 7.05 D4.7-A7.0
4.68 ± 0.02 (0.3%) 35.37 ± 0.12 (0.4%) 7.56 D4.7-A7.6
4.68 ± 0.03 (0.5%) 37.66 ± 0.05 (0.2%) 8.05 D4.7-A8.1
4.69 ± 0.03 (0.6%) 50.09 ± 0.07 (0.1%) 10.68 D4.7-A10.7
4.69 ± 0.02 (0.4%) 92.48 ± 0.06 (0.1%) 19.72 D4.7-A19.7
4.69 ± 0.01 (0.3%) 139.93 ± 0.08 (0.1%) 29.84 D4.7-A29.8

Acrylic 1.2

5.70 ± 0.02 (0.4%) 10.10 ± 0.02 (0.2%) 1.77 D5.7-A1.8
7.70 ± 0.03 (0.4%) 10.10 ± 0.04 (0.4%) 1.31 D7.7-A1.3
9.70 ± 0.05 (0.5%) 10.09 ± 0.03 (0.3%) 1.07 D9.7-A1.0

11.69 ± 0.05 (0.4%) 10.08 ± 0.08 (0.8%) 0.86 D11.7-A0.9
15.70 ± 0.03 (0.2%) 10.07 ± 0.02 (0.2%) 0.64 D15.7-A0.6
19.73 ± 0.05 (0.2%) 10.08 ± 0.03 (0.3%) 0.51 D19.7-A0.5
7.78 ± 0.04 (0.6%) 7.73 ± 0.07 (1.1%) 1.01 D7.7-A1.0

Foam 0.04
5.08 ± 0.05 (1.3%) 10.31 ± 0.10 (1.1%) 2.03 F-D5.7-A2.0
7.53 ± 0.05 (0.8%) 10.15 ± 0.08 (0.9%) 1.35 F-D7.5-A1.3

10.06 ± 0.03 (0.4%) 10.09 ± 0.08 (0.9%) 1.00 F-D10.1-A1.1

Table 2: Specifications of cylinders used for experimental evaluation are given in the table above. Each
cylinder diameter corresponds to a set of 10 individual cylinders, and 3 measurements of cylinder diameter

and 1 measurement of cylinder span was measured for each cylinder. The mean values of diameter and
span including the error for each set is shown above. Refer to Appendix B in for details on error analysis.
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Panel Type 𝑅𝑎 𝑅𝑝 𝑅𝑝 (𝜇 + 1𝜎) 𝑅𝑞

(𝜇m) (𝜇m) (𝜇m) (𝜇m)
Glass 0.023 ± 0.005(20%) 0.308 ± 0.155(50%) 0.46 0.029 ± 0.006(19%)
Acrylic 0.02 ± 0.01(53%) 0.57 ± 0.20(35%) 0.77 0.04 ± 0.02(63%)
Ceramic 0.70 ± 0.07(11%) 3.43 ± 1.38(40%) 4.81 0.91 ± 0.10(11%)
Frosted Glass 1.86 ± 0.12(6%) 5.96 ± 1.03(17%) 6.98 2.33 ± 0.15(6%)
Rough Ceramic* 13.96 ± 2.41(17%) 33.18 ± 5.47(16%) 38.65 17.06 ± 2.64(15%)

Table 3: Table presents the measured surface roughness values of panels. Values presented are the
arithmetic mean of five individual measurements. The measurement area of one measurement is

0.25 × 0.25 mm2 (12 measurements under 50x1 magnification joined together).* Measurement area of
10 × 10 mm2 was used for the rough ceramic panel which was obtained by stitching together 100 profile

scans using a stylus profilometer. No waviness correction was used.

D L AR 𝑅𝑎 𝑅𝑝 𝑅𝑝,1𝜎 𝑅𝑞 Id
(mm) (mm) (𝜇m) (𝜇m) (𝜇m) (𝜇m)
4.70 2.34 0.50 0.25 ± 0.08(33%) 6.59 ± 3.23(49%) 9.82 0.34 ± 0.11(32%) D4.7-A0.5
4.68 3.52 0.75 0.16 ± 0.14(91%) 2.04 ± 0.34(17%) 2.38 0.21 ± 0.17(80%) D4.7-A0.8
4.69 4.74 1.01 0.09 ± 0.03(31%) 2.16 ± 0.36(17%) 2.52 0.13 ± 0.04(33%) D4.7-A1.0
4.71 5.87 1.25 0.17 ± 0.01(9%) 2.78 ± 1.66(59%) 4.44 0.23 ± 0.03(13%) D4.7-A1.3
4.70 7.04 1.50 0.17 ± 0.01(8%) 3.27 ± 1.95(60%) 5.22 0.23 ± 0.02(10%) D4.7-A1.5
4.70 8.30 1.77 0.29 ± 0.06(19%) 2.50 ± 1.63(65%) 4.13 0.36 ± 0.07(21%) D4.7-A1.8
4.69 10.11 2.16 0.26 ± 0.10(40%) 2.88 ± 1.17(41%) 4.06 0.33 ± 0.12(36%) D4.7-A2.2
4.68 14.11 3.01 0.10 ± 0.02(19%) 2.91 ± 1.30(45%) 4.21 0.14 ± 0.03(18%) D4.7-A3.0
4.69 20.11 4.29 0.61 ± 0.25(42%) 3.58 ± 0.43(12%) 4.02 0.73 ± 0.29(39%) D4.7-A4.3
4.68 23.52 5.03 0.06 ± 0.01(17%) 1.65 ± 0.36(22%) 2.01 0.09 ± 0.02(22%) D4.7-A5.0
4.69 28.23 6.02 0.10 ± 0.05(48%) 1.77 ± 0.34(19%) 2.11 0.15 ± 0.06(39%) D4.7-A6.0
4.67 32.92 7.05 0.13 ± 0.06(44%) 2.03 ± 0.38(19%) 2.41 0.20 ± 0.09(46%) D4.7-A7.0
4.68 35.37 7.56 0.36 ± 0.08(23%) 3.93 ± 1.50(38%) 5.43 0.51 ± 0.09(18%) D4.7-A7.6
4.68 37.66 8.05 0.12 ± 0.05(40%) 2.12 ± 1.39(66%) 3.51 0.18 ± 0.07(38%) D4.7-A8.1
4.69 50.09 10.68 0.30 ± 0.07(22%) 2.71 ± 1.22(45%) 3.92 0.38 ± 0.09(23%) D4.7-A10.7
4.69 92.48 19.72 0.48 ± 0.31(65%) 3.90 ± 1.41(36%) 5.31 0.66 ± 0.39(60%) D4.7-A19.7
4.69 139.93 29.84 0.36 ± 0.05(15%) 3.56 ± 1.97(55%) 5.52 0.50 ± 0.13(26%) D4.7-A29.8

5.70 10.10 1.77 0.22 ± 0.08(37%) 3.04 ± 1.73(57%) 4.77 0.32 ± 0.17(52%) D5.7-A1.8
7.70 10.10 1.31 0.21 ± 0.05(24%) 2.36 ± 0.97(41%) 3.33 0.27 ± 0.06(23%) D7.7-A1.3
9.70 10.09 1.04 1.49 ± 0.05(4%) 5.39 ± 1.77(33%) 7.16 1.74 ± 0.06(4%) D9.7-A1.0
11.69 10.08 0.86 1.01 ± 0.29(29%) 5.59 ± 3.25(58%) 8.84 1.21 ± 0.36(30%) D11.7-A0.9
15.70 10.07 0.64 1.33 ± 0.07(5%) 7.02 ± 2.19(31%) 9.21 1.56 ± 0.10(6%) D15.7-A0.6
19.73 10.08 0.51 1.35 ± 0.11(8%) 4.60 ± 0.78(17%) 5.37 1.60 ± 0.16(10%) D19.7-A0.5

7.78 7.73 1.01 1.84 ± 0.31(17%) 7.42 ± 1.02(14%) 8.44 2.19 ± 0.31(14%) D7.7-A1.0
5.08 10.31 2.03 17.52 ± 3.44(20%) 99.29 ± 24.39(25%) 123.68 23.82 ± 3.02(13%) F-D5.1-A2.0
7.53 10.15 1.35 15.75 ± 4.17(26%) 91.66 ± 29.19(32%) 120.84 19.83 ± 4.23(21%) F-D7.5-A1.3
10.06 10.09 1.00 17.47 ± 3.30(19%) 92.50 ± 40.10(43%) 132.59 22.29 ± 4.06(18%) F-D10.1-A1.1

Table 4: Measured surface roughness of cylinders. Values presented are arithmetic mean of 4 (or more)
individual measurements of 4 separate cylinders of the same diameter. The measurement area of each

presented measurement is 0.4 × 0.4𝑚𝑚2 for all diameters (24 measurements under 50x1 magnification
joined together). All measurements were corrected for cylinder curvature prior to obtaining roughness

statistics.
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Definition
(unit) Symbol Reference

value 𝛿𝐵 Estimation 𝛿𝑅 Estimation 𝛿

Distance
(mm) 𝑙 200 1 IR - - 1

Time(s) 𝑡 13.47 0.1 IR 0.14 STD 0.24

Fluid
viscosity
(𝑚𝑚2/𝑠)

𝜈 1.080 0.005 IR* - - 0.005

Diameter
(mm) 𝐷 7.70 0.01 IR 0.02 STD 0.03

Span
(mm) 𝐿 10.10 0.01 IR 0.03 STD 0.04

Angle
(degree) 𝜃 5.5 0.05 IR - - 0.05

Fluid
density
(𝑔/𝑐𝑚3)

𝜌 𝑓 1.000 0.001 IR* - - 0.001

Relative
density 𝛽 1.190 - - 0.0012 STD 0.0012

Table 5: Reference values for uncertainty calculations. IR = Instrument resolution, STD = Standard
deviation of measurements. (*) Fluid density and viscosity were calculated using the temperature

measurement, the given value is the deviation of viscosity for the instrument resolution of the temperature
measurement.
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