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ABSTRACT 
Recently, investigations have considered the cooperative 
elliptic instability which forms by the mutual co-existence 
of a counter-rotating Batchelor-type vortex pair. Such 
vortex pairs are observed in the wake of an aircraft and 
pose a significant danger to trailing aircraft. An aircraft 
flying through the wake of a lead aircraft can exhibit 
significant loss of lift and control forces; several accidents 
and near-misses have been recorded. Our investigation has 
identified that short-wave Kelvin-type instabilities may 
prematurely destroy the vortex pair. By inducing short-
wave instabilities there is the potential to significantly 
improve safety in the aviation industry. The work has 
relied heavily on CFD to validate analytical estimates and 
provide data for future experimental investigations. 
 

NOMENCLATURE 
a  characteristic vortex core radius  
a0  initial characteristic vortex core radius  
b vortex separation distance 
k axial wavenumber 
q swirl number 
r radial dimension 
t time 
t* time coefficient 
tc characteristic growth time 
uθ azimuthal velocity component 
z axial dimension 
Re Reynolds number 
U self advection velocity 
W axial velocity component 
W0 axial velocity coefficient 
 
λ axial wave length 
θ azimuthal dimension 
Γ circulation 
ρ density 
σ instability growth rate 
ν kinematic viscosity 
σ* normalized instability growth rate 
ε0  external strain rate 
ω0  vorticity 
 
 

INTRODUCTION 
Trailing vortices form in the wake of aircraft as a result of 
the lifting process. High pressure air from the lower 
surface of the wings migrates to the low pressure air 
located above the upper surface of the wings, the practical 
result of which is a localized rotational flow at the wing 
tips, known as trailing vortices. Trailing vortices persist 
for a considerable length of time and pose a significant 
hazard to the flight characteristics of an aircraft following 
the lead aircraft. The strength and time to dissipation of 
the trailing vortices are strongly dependent on the weight, 
size and lift coefficient of the aircraft. This last point 
presents serious issues especially at take-off and landing. 
Far downstream of the aircraft, the two vortices form a 
counter-rotating vortex pair, each of which have an 
additional velocity component in line with the axis of the 
vortex. This velocity component occurs purely due to the 
forward motion of the aircraft through the air.  
 

Flow Field Description 

In this study two counter-rotating Batchelor vortices are 
placed a distance b apart. Each vortex has a characteristic 
radius a. Each vortex imposes a weak irrotational strain 
field on the other which is referred to as the external strain 
field, ε0 (for example see Le Dizès and Laporte 
(2002)). This paper is restricted to the study of counter-
rotating vortices in order to avoid two-dimensional 
merging phenomenon observed for co-rotating vortices (as 
observed by Le Dizès and Verga (2002) among others).  
 

 

Figure 1: Schematic diagram of geometry. 
 
Each vortex investigated has the generic Gaussian profile, 
expressed in cylindrical co-ordinates ( zr  , ,θ ) centred at 
the vortex centre: 
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Here 0a is the characteristic core radius of the vortex at 

time 0=t , and 0W  is the axial velocity coefficient, 

defined as: 
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where θû is the maximum azimuthal velocity component, 

Ŵ is the maximum axial velocity component and q  is the 
swirl number. Such a vortex profile was first proposed by 
Batchelor (1964) as representative of the profile of a 
trailing line vortex in the wake of an aircraft. For the case 
where W0 = 0, the vortex profile (equation 1) reverts to a 
Lamb-Oseen type, which has previously been investigated 
Sipp and Jacquin (2003). In isolation, the Batchelor vortex 
represents a stationary solution to the Euler equations, and 
a complete solution to the Navier-Stokes equations.  
 
It has been shown that a vortex with a Gaussian profile is a 
known global attractor of any two-dimensional 
axisymmetric vortex (see for example Batchelor (1964); 
all axisymmetric two-dimensional vortices relax by 
viscous diffusion to the Lamb-Oseen vortex profile. It is 
anticipated a priori that the Batchelor vortex will similarly 
represent a global attractor for flows with an axial velocity 
component. The Gaussian profile has the advantage over 
other possible profiles, in that it is unaffected by viscous 
diffusion. Viscosity only acts to modify the radius of the 
vortex, which evolves linearly in time (Batchelor (1964)) 
and has been shown to evolve as: 

( ) ,42
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whereν is the viscosity of the fluid. Assuming a 
sufficiently large Reynolds number, the vortex core size 
may be considered constant over the linear growth period 
of an instability. 
 
Several studies have investigated the growth of 
instabilities for the case of a Batchelor type vortex in 
isolation. Ash and Khorrami (1995), in an investigation 
limited to inviscid flows, found that an isolated Batchelor-
type vortex was unstable to Kelvin type instabilities for a 
minimum swirl number ( q ) of approximately 1.5 
(corresponding to a maximum axial velocity coefficient 

677.00 ≈W .  More recently, Fabre et al. (2004) studied 

the effect of viscous forces which are known to induce 
both axisymmetric and symmetric instability modes, their 
investigation concluding that these modes had a long 
wavelength, and growth rates orders of magnitude smaller 
than those found by Ash and Khorrami (1995). On the 
basis of these investigations, the axial velocity coefficient 
has been restricted to the range W0 = [0,0.6], such that the 
destabilizing effect of one vortex on the other may be 
studied in isolation.  

Prior Investigations 

A large wavelength instability known as the Crow 
instability has previously been observed in the trailing 
vortex system which assists with the dissipation of the 
trailing vortices (Crow (1970)). The Crow instability 
describes the growth in amplitude of a sinuous oscillation 
of each of the vortex cores due to the presence of the other 
vortex in the pair. As the instability mode grows over 
time, the two vortex lines merge to form vortex rings and 
rapidly dissipate to form small-scale turbulent structures 
thereafter.  Crow (1970) analytically determined the 
wavelength and growth rate of this form of instability. 
However his investigation was limited to large wavelength 
instabilities, as his analytical model approximated each 
vortex as an infinitesimally small vortex line. While the 
Crow instability has been identified as the dominant 
instability occurring in the trailing wake of an aircraft, the 
growth rate is relatively small. Crow (1970) found a 
normalized growth rate σ* ≈ 0.8, where, 
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Here, σ is the growth rate of the instability, where all 
velocity components increase over time following the 
function: 

( ) ( ) tewvuwvu σ
000 ,,,, = .            (5)  

 
Due to the low growth rate, the wake structures from large 
aircraft remain coherent for an extensive period of time 
forcing following aircraft to wait considerable lengths of 
time at airports for the trailing vortex system to dissipate.  
 

 

 

 
Figure 2: Die visualization of a vortex pair, showing 
growth of a long-wave Crow instability coupled with a 
short wave Kelvin mode instability (mode -1,1). From 
Leweke and Williamson (1998). 
 
More recently, research into elliptic, short-wave 
instabilities of vortex pairs has found renewed interest as a 
phenomenon which could be used to accelerate the 
dispersion of trailing vortices (Leweke and Williamson 
(1998), Meunier and Leweke (2005), and Lacaze et al. 
(2006)) Elliptic, short-wave instabilities occur due to the 
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strain field produced within one vortex core due to the 
presence of the second vortex. Several investigations have 
confirmed that Kelvin mode pairs, neutrally stable for an 
isolated vortex, may grow to form short wave instabilities 
due to the presence of a second vortex. Recently, both 
experimental and numerical investigations have 
considered the instability mechanisms for counter-rotating 
(Leweke and Williamson (1998) and co-rotating (Meunier 
and Leweke (2005)) vortex pairs, for vortices with no 
axial velocity component. For both cases, a short-wave, 
sinusoidal oscillation was found to grow in each vortex, 
corresponding to a resonance of the (-1,1) Kelvin modes 
in each vortex (see figure 2).  Leweke and Williamson 
(1998) observed an elliptic Kelvin mode superimposed on 
the large wavelength, Crow instability. They observed that 
the addition of the short wavelength instability resulted in 
a 20% increase in the normalized growth rate σ* at a 
Reynolds number, Re = 2800, where the Reynolds number 
is defined based on the circulation within each vortex as 
Re = Γ/ν . They predicted the normalized growth rate 
should increase with increased Reynolds numbers. 
Meunier and Leweke (2005) found a similar result when 
considering a co-rotating vortex pair. Neither study 
observed a short-wave elliptic instability in the presence of 
even a small axial velocity component; hence their 
findings were not directly applicable to the aircraft wake 
problem.  
 
The short-wave instability mode identified by Leweke and 
Williamson (1998) and Meunier and Leweke (2005) is 
only one of several Kelvin type instabilities which may 
propagate within a vortex. Prior to these investigations, 
several studies have determined the structure of Kelvin 
modes for a variety of flow fields. For the case of a  vortex 
with uniform vorticity whose radial dimension is confined 
to a finite value (a Rankine vortex), the Kelvin modes 
form a basis for perturbations confined within the vortex 
core (Arendt et al. (1997)). 
  

 

Figure 3: Instability area of the principal coupling modes 
in a plane (W0, ka). Colours correspond to the intensity of 
the growth rate (from blue to red: from minimum to 
maximum) for Re = 20 000 and ε0 = 0.01. From Lacaze et 
al. (2006). 
 
More recent investigations have considered the case of 
non-uniform vortices. Sipp and Jacquin (2003) and Fabre 
et al. (2004) have investigated the structure of Kelvin 
modes for the case of a vortex of Gaussian cross section in 

the absence of an axial velocity (a Lamb-Oseen vortex). 
Le Dizes and Lacaze (2005) investigated the effect of 
adding an axial velocity component on the form of 
inviscid normal instability modes (Kelvin modes) which 
may grow in the presence of the Batchelor vortex pair, 
where each vortex is of the form given by equation 1. 
Their investigation identified several other Kelvin mode 
pairs (apart from the mode -1,1 identified in earlier 
studies) which could occur in the presence of an axial 
velocity.   
 
A further investigation by Lacaze et al. (2006) analytically 
determined the normalized growth rates of the short-wave 
Kelvin mode pairs as a function of Wo and the axial 
wavenumber k. Analytically, this investigation was 
initially conducted in an inviscid fluid (Re → ∞ ). The 
effect of a viscous fluid was considered as a damping 
effect on the growth rates of the instability modes – figure 
3 shows the analytically determined growth rates for a 
range of Kelvin mode pairs for Re = 20000. The analytical 
work was validated by numerical computations which 
were restricted to solving the linearized Navier-Stokes 
equations over a range of axial wave numbers. For each 
axial wave number, the dominant short-wave elliptic 
instability was identified, and its growth rate was noted. 
The authors found excellent agreement between the 
linearized simulations and the analytical investigation. 
 
The goal of this paper is to confirm the findings of Lacaze 
et al. (2006) by use of three-dimensional direct numerical 
simulations of two counter-rotating Batchelor-type 
vortices (i.e. two vortices of Gaussian cross-section, each 
with a finite axial velocity component).  

NUMERICAL TECHNIQUE 
A spectral-element method was used for the direct 
numerical simulations in this investigation. The method 
employs high-order tensor-product Lagrangian 
polynomials as shape functions within each element. A 
Fourier expansion of the velocity and pressure fields was 
employed in the axial direction.  
 
The three-dimensional method extends the two-
dimensional spectral element method by using a global 
Fourier spectral discretization in the third dimension. This 
approach has been employed previously for the case of the 
flow past a circular cylinder by Thompson et al. (1996) 
among many others. The global spectral approach has the 
advantage of spectral convergence, however the boundary 
conditions in the axial direction are restricted to be 
periodic.  
 
The spatial discretization consists of 16 equi-spaced 
planes in the span-wise direction, each consisting of an 
identical spectral-element mesh. The flow variables are 
transformed into Fourier space in the span-wise direction 
for each node on the spectral element mesh using a fast 
Fourier transform. This decouples the problem into a set 
of 16 Fourier modes which are then solved independently 
for the linear operators. 
 
The time integration uses a three-step time-splitting 
method and achieves second-order time accuracy, and is 
described completely in Karniadakis et al. (1991) The 
spatial accuracy was determined at run time by specifying 

ka
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the order of the tensor-product of interpolating 
polynomials within each macro-element. In all the 
simulations quoted herein, 700 macro-elements were 
employed with 8th order polynomial interpolants. A 
square domain was employed with a domain length and 
width of 40 vortex diameters.  
 
Throughout this study, the Reynolds number and the 
normalised vortex separation distance were held fixed at 
Re=20 000, and a/b = 0.25 respectively.  This corresponded 
to an external strain rate ε0 = 0.0625. When compared to 
the analytical study of Lacaze et al. (2006), this was a 
relatively high strain rate. However it was chosen to 
increase the growth rate of the 3D instabilities (and hence 
decrease computational expense) while maintaining a 
sufficiently low strain rate that valid comparisons could be 
made with the analytical theory of Lacaze et al. (2006). 
 
If the two vortices are localized and sufficiently far apart, 
each vortex may be represented as a point vortex. This 
representation provides the inviscid dynamics of the 
system, and if the viscous effects are negligible to leading 
order may be used to represent a real system. Using this 
concept, the two-dimensional dynamics of the vortex 
system is reduced to determining the evolution of two 
point vortices of circulation Γ1 and Γ2, separated by a 
distance b. For the case of two counter-rotating vortices of 
equal magnitude (i.e. assuming Γ1 = -Γ2 and |Γ1,2| = Γ, the 
two vortices induce a constant velocity  along a straight 
line, perpendicular to the line connecting them, which is 
given by the equation: 

b
U

π2
Γ

= .     (6) 

 
In the simulation, the self-advection speed of the vortex 
pair is subtracted such that the vortices remain in the 
computational domain. 
 

Initial Conditions 

Each vortex grows independently as a function of time due 
to viscous dissipation. Given an initially Gaussian cross 
section with radius a0 the characteristic radius may be 
given as a function of time by: 
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Here a0 is the initial radius of the vortex, t* is the 
normalised time unit, and tc  is the characteristic time for 
instability growth. In this study, a0 was set to unity. The 
analytical study of Lacaze et al. (2006) assumed no 
viscous dissipation, and hence no growth of the vortex 
radius over time. To accurately compare growth rates and 
mode structure with the analytical results of Lacaze et al. 
(2006), it was essential that the vortex core did not grow 
appreciably within the linear growth region. 

RESULTS 

Two-Dimensional Initialization 

The basic flow is obtained by a two-dimensional 
numerical simulation. The simulation is initialized with 
two counter-rotating Gaussian vortices without axial flow, 
each with an axial vorticity field provided by equation 1. 
This initial condition does not form a solution to the Euler 
(or Navier Stokes) equations. Thus, there is first a rapid 
“relaxation” phase during which the vortices equilibrate 
with each other. Then, the quasi-steady state which is 
obtained after the relaxation process is advected at a 
constant speed and slowly evolves due to viscous 
diffusion. The properties of the quasi-steady state have 
been analysed in Le Dizès and Verga (2002). The two-
dimensional simulation is stopped once the relaxation 
process is complete. At this stage, both vortices are elliptic 
in cross section. 
 
During the relaxation process, the mean vortex radius, a, 
has slightly increased due to viscous diffusion and it is this 
new value which is considered for length scale 
normalisation. The 2D evolution of the axial flow is 
completely decoupled from the dynamics of the other 
velocity components and can be treated separately. It 
satisfies the same advection-diffusion equation as the axial 
vorticity. Thus, if we consider an axial flow velocity field 
proportional to the axial vorticity, we automatically form a 
solution. But, for such a solution, the axial flow is in the 
opposite direction when comparing either vortex with the 
other. Because, in most applications, vortices possess axial 
flow in the same direction, we have also integrated the 
advection-diffusion equation with an initial condition 
defined by 
 

)0()0( =∝= ttW zω .   (8) 

 

Three dimensional Results 

While several values of Wo were considered for this 
investigation, the findings for only two of them will be 
discussed here – this restriction has been made such that 
the modes with highest growth rate (and hence those of 
most interest) are reported here. The first simulation 
reported is the previously studied case of the Batchelor 
vortex pair in the absence of an axial velocity component 
(an Oseen vortex), the results of which allow comparison 
of the current numerical technique with several other 
investigations. The second case is for W0 = 0.482, this 
allows direct comparison with the findings of Lacaze et al. 
(2006). In each case the axial wave number was chosen 
such that the region of maximum growth rate was 
considered. Therefore, for the case where W0 = 0, k = 2.3 
and for W0 = 0 .482, k = 1.9 (see figure 3). In both cases a0 
= 1. 
 
Figure 4 is an isosurface plot of the two vortices taken at 
several non-dimensional times, for the case of W0 = 0 and 
k = 2.3. In the top left image, representing t* = 2, the two 
vortices are parallel and appear to be straight, however 
close examination reveals that each vortex exhibits a small 
perturbation. At later times, a sinusoidal oscillation is 
observed in both vortices. This mode is a Kelvin mode of 
type (-1,1). The perturbation is of the same form as the 
small wavelength instability observed in previous 
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experiments (for an example see figure 2). Within an 
individual vortex, the instability forms in a direction 450 
from the line directly linking the two vortices. This is in 
agreement with prior investigations, and with the 
analytical theory governing the growth of the instability.  

   

  
   

Figure 4:  Isosurface images of the vortex pair at various 
instances of time, top-left t* = 2, top-right t* = 4, bottom-
left t* = 10, bottom-right t* = 12; showing the growth of 
the mode (-1,1) instability. Here, W0 = 0, and k = 2.3. 
 
 

 

Figure 5: Growth rate, σ, as a function of normalized 
time, t*, for W0 = 0 and k = 2.3; mode (-1,1). Solid line is 
from analytical estimates of previous studies, symbols are 
from the current study. 
 

Figure 5 shows the growth rate of the instability as a 
function of t*.  The solid line is the growth rate estimated 
analytically by Lacaze et al. (2006), the diamonds are 
measured growth rate values from the current numerical 
investigation. Overall, good agreement was found between 
the analytical investigations and the current numerical 
investigations. However, for high values of t* (t* > 5), the 
numerical simulations indicate that the mode does not 
increase at the same rate as the analytical work does.  
 
It is postulated here that the difference between the results 
rests in a limitation of the analytical approach employed 
by Lacaze et al. (2006). The analytical work assumes that 
the vortex core does not grow in size over time. While this 
assumption may be appropriate for high Reynolds 
numbers, in the current investigation the vortex cores were 
found to grow appreciably during the growth period of the 
instability. With reference to figure 3, we see that the 
growth rate is dependent on ka. At the start of the 
simulation, ka = 2.3, whereas at t* = 10, ka = 2.4. Thus, 
over time the system moves away from the region of 
highest instability – accounting for the decrease in growth 
rate away from that predicted by theory.  

  

  

Figure 6:  Isosurface images of the vortex pair at various 
instances of time, top-left t* = 2, top-rght t* = 4, bottom-left 
t* = 10, bottom-right t* = 12; showing the growth of the 
mode (-2,0) instability.  Here, W0  = 0.482, and k = 1.9. 
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Figure 6 is an isosurface plot of the two vortices taken at 
several non-dimensional times, for the case of W0 = 0.482 
and k = 1.9. As for the case depicted in figure 4, at low 
values of t* (t* = 2), the two vortices remain parallel and 
relatively straight, however close examination reveals a 
small perturbation. At later times, an instability is 
observed in both vortices, whose spatial structure differs 
significantly when compared to mode (-1,1). This mode is 
a Kelvin mode of type (-2,0). As with the mode (-1,1), it is 
a coupling of two linear instability modes which are 
neutrally stable for an isolated vortex, but grow due to the 
influence of the second vortex. In this mode coupling the 
Kelvin mode 0 refers to a swelling and subsidence of the 
vortex core as a function of axis position. The top right 
image of figure 6 shows this mode component most 
clearly. The Kelvin mode -2 refers to the braiding of 
positive and negative perturbation vorticity components 
within each vortex core. In figure 6, this is most clearly 
observed in the bottom two images. Thus, the mode 
coupling (-2,0) shows both these features. 
 
Figure 7 shows the growth rate of the perturbation as a 
function of normalized time. As with figure 5, the solid 
line is the growth rate estimated analytically by Lacaze et 
al. (2006), the diamonds are measured growth rate values 
from the current numerical investigation. Overall, good 
agreement was found between the analytical investigations 
and the current numerical investigations. However, as with 
the case of mode (-1,1) for high values of t* (t* > 5), the 
numerical simulations indicate that the mode does not 
increase at the same rate as the analytical work does. Once 
again, with reference to figure 3, it is postulated that the 
growth in the vortex core size alters the preferred growth 
rate of the instability. For the present case, at the start of 
the simulation, ka = 1.9, whereas at t* = 10, ka = 2.0. 
 

 

Figure 7: Growth rate, σ, as a function of normalized 
time, t*, for W0 = 0.482 and k = 1.9; mode (-2,0). Solid 
line is from analytical estimates of previous studies, 
symbols are from the current study. 

Comparing the two results, we see that the mode (-2,0) has 
a growth rate comparable to the mode (-1,1). This is of 
great interest when we consider that the mode (-1,1) has 
already been found to accentuate the Crow instability 
experimentally. It is hypothesized here that the mode  
(-2,0) could increase the growth rate of the Crow in a 
similar manner. Therefore, by ensuring that the axial 
velocity component is carefully chosen it may be possible 
to increase the growth rate of the Crow instability and 
hence decrease the spacing required between successive 
aircraft. 

To confirm this hypothesis, further studies are necessary to 
compute the growth of the mode (-2,0) with an underlying 
Crow type instability, these investigations are continuing. 

CONCLUSION 
The current investigation has employed three-dimensional 
direct-numerical analysis to consider the linear growth of 
small wave (Kelvin type) instabilities which grow in the 
presence of a Batchelor vortex pair. The study has 
confirmed the recent analytical findings of Lacaze et al. 
(2006), for two cases in particular. The first case is for a 
flow with no axial velocity component, and the second is 
for a flow with an axial flow coefficient of W0 = 0.482. In 
both cases, Kelvin-type instability modes were found with 
both exhibiting high growth rates. These modes may 
couple with existing large wavelength Crow instabilities to 
enhance vortex dissipation in the wake of aircraft. 
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