
Variation in the critical mass ratio of a freely oscillating cylinder
as a function of Reynolds number

K. Ryan, M. C. Thompson, and K. Hourigan
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical
Engineering, Monash University, Clayton, Victoria 3800, Australia

sReceived 1 April 2004; accepted 8 October 2004; published online 8 February 2005d

A two-dimensional numerical investigation of the flow-induced vibration of a circular cylinder held
free to oscillate transverse to the free-stream direction has been performed. The simulations were
performed over a Reynolds number range Re=f30,200g and for an infinite reduced velocity. Two
regions of high amplitude oscillations are observed and are referred to as the viscous and higher
Reynolds number range, respectively. The viscous range was observed for Re=f40,95g and the
higher Reynolds number range was observed above Re=180. A critical mass ratio, below which
appreciable amplitude oscillations are observed, is determined as a function of Reynolds number.
For Reynolds numbers between the two ranges, only very small oscillations were observed for all
mass ratios investigated. ©2005 American Institute of Physics. fDOI: 10.1063/1.1850871g

The problem of flow-induced vibration of a rigid bluff
body has generally been considered by studying an elasti-
cally mounted circular cylinder allowed to oscillate trans-
verse to the fluid flow direction. Classical studies in the field
have been restricted to consider only large mass ratio, highly
damped cylinders; several comprehensive reviews exist on
this topic sfor example, Refs. 1–3d.

Recent study of flow-induced vibration of a cylinder has
extended the field to incorporate the effect of very low mass
ratios and of very low structural damping forces.3–6

The study of Khalak and Williamson4 demonstrated the
existence of three oscillation “branches;” the initial, upper,
and lower branch. Of interest is the upper branch, as it ex-
hibits large amplitude oscillations. Khalak and Williamson4

also demonstrated that the reduced velocity range over which
significant amplitude oscillations were observed varied in-
versely with mass ratio. This work was extended by Govard-
han and Williamson,5 and a critical mass ratio was deter-
mined, below which large amplitude oscillations are
maintained up to an infinite reduced velocity. They deter-
mined experimentally a critical mass ratio ofmcrit

* =0.54 for
Reynolds numbers in the range Re=f2000,12 000g. For cyl-
inders with mass ratios belowmcrit

* , they observed large am-
plitude oscillations up to the highest reduced velocity that
could be achieved using their facilities.

By setting the structural restoring forcek to zero, it is
possible to study the case of an infinite reduced velocity, and
this has been achieved both numerically and experimentally.
In their experimental study, Govardhan and Williamson6 ob-
served high amplitude oscillations form* ,0.54 for Rey-
nolds numbers in the range Re=f4000,22 000g. They also
interpreted a critical mass ratio of 0.25 for Re=100 from the
results of the numerical study performed by Shielset al.7 In
this study, we numerically determine the critical mass ratio
for Reynolds numbers in the range Re=f30,200g.

The specific case considered here is that of a circular
cylinder of densityr, with diameterd, submerged in a ho-
mogeneous Newtonian fluid with densityrw, dynamic vis-

cosity m, and associated free stream velocityU`. The cylin-
der is free to oscillate only in the direction transverse to the
fluid flow. Two governing, nondimensional parameters de-
scribe the system completely, the Reynolds number, Re
=rwdU` /m, and the cylinder mass ratio,m* =r /rw. In this
study, the mass ratio is varied in the rangem* =f0.075,0.8g.

Generally, for the case of flow-induced vibration, the
reduced velocityU* =U` / fnD, where fn=Îk/ sm+mAd, k is
the structural restoring force,m is the cylinder mass, andmA

is the added mass, is used as the governing flow field param-
eter, in preference to the Reynolds number. However, in this
investigation, the structural restoring force is set to zero, and
the reduced velocity is infinitely large for all Reynolds num-
bers and mass ratios considered. For this investigation, the
structural damping forcec was also set to zero, to ensure that
the damping coefficientz=c/2Îksm+mAd was always at the
lower limiting case ofz=0.

Therefore, for the system studied here, the governing
equations of motion of the freely oscillating cylinder may be
simply written in nondimensional form as

m* ÿ* = CLstd. s1d

Here, ÿ* = ÿpD /2U`
2 is the normalized cylinder acceleration

andCL is the lift force coefficient.
The flow field is determined by solving the two-

dimensional form of the incompressible Navier–Stokes equa-
tions. A Galerkin spectral-element method is used to dis-
cretize the spatial domain; this is coupled with a three-step
time splitting algorithm to advance the solution forward in
time. The algorithm solves the equations governing the fluid-
structure interaction in a noninertial reference frame, held
fixed relative to the cylinder. The forces acting on the cylin-
der are calculated by determining the viscous and pressure
components directly from the flow field solution. The
Navier–Stokes equations are coupled to the equations of mo-
tion through the lift force and the cylinder position is up-
dated at each time step using a predictor-corrector technique.
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Details of the predictor-corrector technique have already
been described fully.8 A full description of the flow-field so-
lution technique is beyond the scope of this paper, however,
details may be found in Thompsonet al.9 and references
therein.

The domain chosen for the investigation consists of 518
macroelements, an inlet boundary condition 15 diameters up-
stream of the cylinder, and an outletsNeumannd boundary
condition 23 diameters downstream of the cylinder; the wall
boundaries on either side of the cylinder are 15 diameters
away from the cylinder and have an inlet condition imposed.
A rigorous domain study has been performed for the case of
both a stationary and freely oscillating cylinder,8 revealing a
blockage effect of less than 2% for Re=200. A rigorous mesh
independence study was also performed. From the results of
this study, eighth order polynomial interpolants were used to
discretize the domain within each macroelement. The current
numerical scheme has been validated by comparing results
with those of Blackburn and Henderson10 at Re=250; the
current code reproduced their predictions to within numerical
error. A full description of the code validation is presented by
Ryan.8

For each Reynolds number and cylinder mass ratio, the
simulation is performed until a saturated solution is obtained.
The cylinder position is obtained as a function of time, and
from this information an amplitude of oscillation is calcu-
lated. Following Govardhan and Williamson,6 the oscillation
results are shown in thesA* , f*d plane wheref* = fv0/ f, fv0 is
the Strouhal shedding frequency from a fixed cylinder andf
is the oscillation frequency, andA* =A/D is the normalized
amplitude of oscillation taken as half the normalized peak-
to-peak value. By presenting the results in this plane, ampli-
tude information and lock-in information can both be clearly
indicatedshere lock-in describes a system wheref* Þ1 and
the oscillations of the cylinder are synchronized with the
shedding frequencyd. Results are also presented in the
sf* ,m*d plane, which clearly shows the effect of a changed
mass ratio on the frequency response of the system.

Figure 1 shows the results for Reynolds numbers in the
range Re=f40,100g. Simulations were also performed at
Re=30, however, cylinder oscillations were not observed at
this low Reynolds number. This is in agreement with the
findings of Taneda,11 who, in his study of the flow past a
fixed cylinder, did not observe global instabilities for Rey-
nolds numbers below Re=35.

For Re=40, the response was markedly different for all
mass ratios when compared to simulations performed at
slightly higher Reynolds numberssRe=f50,70gd; the largest
amplitude observed beingAmax

* .0.14 for m* =0.2 sthe low-
est mass ratio considered for Re=40d; also, f* decreased be-
low f* =1 for all mass ratios considered, this is in contrast to
all higher Reynolds numbers considered. Further,A* ap-
proaches zero asm* is increased for Re=40. By contrast, for
higher Reynolds numbersA* approaches a finite value asm*

approaches the maximum value investigated.
For Reynolds numbers in the range Re=f50,90g, f* .1

for all simulations conducted, indicating that the shedding
cycle was locked-in with the oscillating frequency for all
mass ratios considered. For each Reynolds number, for small

amplitude oscillations,f* increases withA* . For a critical
value of A* shereafter referred to asAcritical

* d, a maximum
value of f* is reached. For oscillation amplitudes higher than
this critical value,f* decreases with increasingA* . Within the
Reynolds number range shown in Fig. 1, increasing the Rey-
nolds number acts to increase both the range and variation of
f* as a function ofA* . Also apparent is that as the Reynolds
number is increased, fewer simulations foundA* .Acritical

* ,
from Fig. 1, this corresponds to the mass ratio at which
Acritical

* occurs decreasing with increasing Reynolds number
in this range. Despite the significant difference in Reynolds
numbers when comparing investigations, the current results
are in qualitative agreement with those found experimentally
by Govardhan and Williamson.6 They found, for A*

,Acritical
* , the oscillation response was quasiperiodic. By

contrast, at these low Reynolds numbers no quasiperiodic
state was observed.

As the Reynolds number is increased further to Re
=100, a value ofAcritical

* fi.e., a turning point in thesA* , f*d
responseg is not observed for any mass ratio considered. In-
deed, the amplitude of oscillation is observed to decrease
with decreasing mass ratio. This result is contrary to the
findings at all Reynolds numbers less than 100.

Figure 2 shows the cylinder oscillation response as the
Reynolds number is increased through the range Re
=f100,200g. This figure clearly shows that the findings for
Re=100 presented in the previous figure are not restricted to
only the Re=100 case. For Reynolds numbers in the range
Re=f100,170g only small amplitude oscillations were ob-
servedsA* .0.1d even for the lowest mass ratio considered
sm* =0.075d, indeed, within this Reynolds number range, the
amplitude actually decreases slightly with decreasing mass
ratio. As with simulations performed at lower Reynolds num-
bers, the oscillations observed for Re=f100,200g were syn-

FIG. 1. Amplitude of oscillation and mass ratio response as a function of
frequency ratio for Reynolds numbers in the range Re=f40,100g; j, Re
=40; m, Re=50;., Re=60;c, Re=70;b, Re=80;l, Re=85;P, Re
=90; and* , Re=100. Hollow points indicate values whereA* .Acritical

* .
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chronized with the shedding frequency for all mass ratios
considered.

As the Reynolds number is increased to Re=180, a
barely perceptible, abrupt increase in the amplitude is noted
as the mass ratio is reduced fromm* =0.1 tom* =0.075. This
increase is more evident as the Reynolds number is increased
to 190. As the Reynolds number is further increased to 200,
a marked increase in amplitude is observed for mass ratios
below m* =0.15. This increase in amplitude is associated
with an increase inf* . For Re=200 anAcritical

* value appears,
coinciding withm* =0.1; form* =0.075,f* decreases. Of note
is that for Re=200 the oscillations exhibited forA*

.Acritical
* sm* =0.1d are quasiperiodic, in agreement with pre-

vious findings.6

From the response characteristics presented in Figs. 1
and 2 it is evident that two response ranges exist, which vary
as a function of Reynolds number. The first rangesRe
=f40,95gd is tentatively referred to as the “viscous” range.
For these low Reynolds numbers, the viscous component
contributes a significant proportion to the total force acting
on a stationary cylinder.12 The second Reynolds number
range is referred to as the “higher” Reynolds number range,
beginning at Re.180. The higher Reynolds number range
continues up to the highest Reynolds number considered in
this study and may continue up to even higher Reynolds
numbers.

Figure 3 shows the maximum peak amplitude response
obtained for each Reynolds number investigated. This figure
clearly shows the two response ranges as regions whereAmax

*

is significant. Also shown for comparison is the response of
Shielset al.7 for Re=100 andm* =0.16; this amplitude re-
sponse was the highest they obtained for a finitem* and
compares favorably with the present results.

In both the viscous and higher Reynolds number range,

Amax
* coincides with the amplitude of oscillation form*

=0.075, the lowest mass ratio considered. Given the form of
the relationship betweenA* andm* swhich may be inferred
from Figs. 1 and 2d, it is probable thatAmax

* is slightly greater
for the limiting case ofm* =0 than that presented in Fig. 3.

It should also be noted that for a given Reynolds num-
ber,Amax

* reported here is lower than that reported previously
for studies performed within the present Reynolds number
range investigated.7,13,14 With the exception of the work by
Shielset al.,7 the value ofAmax

* reported previously was for a
finite reduced velocity. Experimental work,5,6 performed at
much higher Reynolds numbers, has shown that, form*

,mcrit
* , the amplitude of oscillation decreases somewhat at

an infinite reduced velocity when compared to a finite re-
duced velocity, but the amplitude is still significantly large.
The numerical study by Shielset al.7 at Re=100 shows the
same trend. For finite mass ratios, their highest amplitude
recorded wasA* =0.58 atU* =0.71 andm* =2.5; by contrast,
for U* =`, they found the highest amplitude of oscillation to
be A* =0.35 form* =0.25, as shown in Fig. 3.

Following the definition used in prior studies,6 a critical
mass ratio was calculated for each of the Reynolds numbers
investigated. Here, the critical mass ratio is defined as the
highest mass ratio which exhibits synchronized oscillations
and for whichA* ùAcritical

* . This corresponds to the mass ra-
tio at which a jump in the amplitude response is observed.
This definition allows for the variation in peak amplitude
response as a function of Reynolds number. It also allows for
a critical mass ratio to be defined even whereA* appears to
increase smoothly with decreasingm* . This definition coin-
cides with the definition used previously5 that mcrit

* corre-
sponds to the mass ratio below which significant amplitude
oscillations are observed up to and includingU`

* .
Figure 4 shows the calculated value ofmcrit

* as a function
of Reynolds number. Note that a critical mass ratio is not
defined in the range Re=f100,170g, as no jump inA* was
observed below any specific mass ratio for all values consid-
ered. It is possible that in this Reynolds number range, a
critical mass ratio less thanmcrit

* =0.075 exists. Also shown is
the value ofmcrit

* determined by Govardhan and Williamson6

of mcrit
* =0.25 for Re=100sdetermined from the numerical

FIG. 2. Amplitude of oscillation and mass ratio response as a function of
frequency ratio for Reynolds numbers in the range Re=f100,200g; * , Re
=100; b, Re=150;l, Re=170;j, Re=180;m, Re=190; andP, Re
=200. Hollow points indicate values whereA* .Acritical

* .

FIG. 3. ssd Maximum oscillation amplitude as a function of Reynolds
number for cylinder mass ratios in the rangem* =f0.075,0.7g and Re
=f40,200g. sld Oscillation amplitude results for Shielset al. sRef. 7d with
m* =0.16,k=0, c=0, representing the highest oscillation amplitude reported
for a finite m* .
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results of Shielset al.7d. The present results compare favor-
ably with this finding.

The present results have shown evidence for two regions
of critical mass ratio, a low Reynolds number, viscous re-
gion, and a higher Reynolds region. Between these two re-
gions sin the range Re.f100,170gd no critical mass ratio
was found. These results should not be taken to suggest that
high amplitude oscillations are impossible in the range Re
.f100,170g; just that, if high amplitude oscillations are pos-
sible, they will only be observed up to a finite reduced ve-
locity.

Three-dimensional direct numerical simulation studies at
higher Reynolds numberssspecifically in the range Re
=f300,2000gd will be able to account for three-dimensional
effects on the critical mass ratio. This work is continuing.
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