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Abstract. Many Australian wind farms are located near escarpments and cliffs where flow 

separation occurs. An absence of literature addressing the effect of wind direction over cliffs 

have motivated surface shear stress visualisations on forward facing steps at yaw angles 

between 0° and 50°. These visualisations have been conducted in the Monash University 

450 kW wind tunnel. Mean reattachment lengths were measured and shown to vary as a 

function of the boundary layer thickness to step height ratio and the yaw angle. Vortices shed 

off the crest of the step induced surface shear stresses on the top surface of the step. The 

orientation of these shear stresses varied linearly with the yaw angle. Three-dimensional 

structures of different forms were also observed. At zero yaw angle the flow converged at 

points along the crest. At high yaw angles distinct sections of misaligned flow were observed 

downstream of the reattachment line, indicating a spatial periodicity in shedding. 

1.  Introduction 

Siting wind turbines in the vicinity of escarpments, cliffs and ridges steep enough to cause flow 

separation is common in Australian wind farms, particularly in coastal cliff areas, as developers seek 

to take advantage of the speed-up generated by up-slopes associated with coastal cliffs. The research 

described here was initiated and partially funded by several wind energy companies to (a) identify 

problems with such an approach (b) optimize the siting of turbines placed in wind farms in such 

landscapes and (c) to develop design methods for such installations. 

Many of these cliffs can be approximated by a Forward Facing Step (FFS). Depending on their 

upstream angle, FFSs can have downstream separation regions, where flow separates off the crest. The 

resulting vortices can buffet turbines placed in close proximity to the steps. A diagram of an FFS is 

presented in Figure 1.  

Various researchers, including recent work by Ren and Wu [1], Sherry et al. [2], and Largeau and 

Moriniere [3], have quantified the size of the downstream separation region and parameterised the 

speed up and turbulence intensity (TI). A key parameter affecting the size and behaviour of the 

separation bubble is the ratio of boundary layer thickness to step height (/h). Largeau and Moriniere 

[3], comparing the work of Moss and Baker [4], Mohsen [5], Tashie et al. [6] and Farabee and 

Casarella [7], state that the size of the separation bubble increases as /h is reduced, and that the effect 

is more significant where /h is greater than 1. They suggest that this is due to the interaction between 
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the separation bubble and the up-stream flow TI, which will be higher closer to the surface. The other 

factor considered is whether the separation bubble is fully contained by the boundary layer.  

There is limited data on the flow over a FFS as a function of direction. Baker [8] proposes that only 

flow perpendicular to an escarpment is accelerated and his own experimental work showed that this is 

a reasonable assumption. However, the analysis of yawed flow has not been researched to the extent 

that the FFS at 0° yaw angle () has.  

Sherry et al. [2] performed water channel experiments on flow over a FFS for a range of Reynolds 

numbers from 1400 to 19000. They observed that, in this Reynolds number range, the size of the 

downstream recirculation region became largely insensitive to Reynolds number above a critical 

Reynolds number of 8500. However, the size of the separation region does vary as a function of δ/h. 

Also, the size of the separation region becomes less dependent on the flow speed when the component 

of the flow perpendicular to the escarpment results in a Reynolds number greater than the critical 

Reynolds number. Thus, if Baker’s [8] assumption is correct, the size of the downstream recirculation 

region would extend a constant distance downstream from the crest of the escarpment independent of 

the flow speed and hence , since  changes the component of the flow perpendicular to the 

escarpment.  

Largeau and Moriniere [3] studied flow over an FFS in an open jet wind tunnel, operating over the 

Reynolds number range of 2880 to 1.3 x 10
5
. They observed that the accumulation of fluid in the 

upstream recirculation region occurred at a faster rate than could be drained laterally, thus forcing the 

flow over the crest of the step. Kiya and Sasaki [9], observing flow over a flat plate at Reynolds 

number of 26 000 in low turbulence conditions, described a similar forcing in terms of the growth of 

the downstream recirculation region, where it reaches a maximum containable size before fluid is 

ejected, giving the recirculation region a flapping appearance. This explanation of the separation and 

shedding mechanisms implies a relationship between the size of the mean recirculation region and the 

TI. An increase in TI would render the separation region unstable, giving it a propensity to shed 

sooner, resulting in a smaller mean reattachment length (XL). 

 

 

This research focuses first on the θ = 0° case, comparing XL with previously published literature. 

Adjustment of θ in the low TI cases is then considered, covering a range of δ/h from 0.9 to 2.7. This 

analysis will identify the changes to XL as a function of θ and δ/h, providing insight into the physical 

understanding of the flow processes. A similar analysis is then conducted with in-flow conditions 

comparable to a real-world atmospheric boundary layer, with δ/h in the range 4.77 to 14.3. A 

comparison is also made between the low and high TI cases. 

2.  Experimental setup 

The research was conducted in the Monash University 450 kW wind tunnel, a schematic of which is 

shown in Figure 2. The wind tunnel is fan blade pitch controlled. The working section of the tunnel 

has a 2 m x 2 m cross-section and extends 12 m, as shown in Figure 2. Testing was completed in the 

centre region of the working section over FFS models of height h = 0.050 m, 0.100 m and 0.150 m at a 

nominal free-stream speed of 33 ms
-1

.  

 

Figure 1.  Diagram 

of forward facing 

step. 
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The experiments were completed at Reynolds Numbers of 1 x 10
5
, 2 x 10

5
 and 3 x 10

5
, using the 

step height, h, as the reference length. End plates extending upstream 12h upstream of the crest were 

used when h = 0.050 m. An example of the h = 0.050 m,  = 20° yaw case is shown in Figure 3.  

The FFS models of height 0.050 m, 0.100 m and 0.150 m resulted in 2.5%, 5% and 10% blockage. 

The yaw angles investigated were 0° to 50° in 10° increments. The models extended beyond 10h 

downstream, and can be thus considered isolated cliffs according to Moss and Baker [4].  

The aspect ratio at  = 0°, defined as the ratio of model width to model height, following the work 

of de Brederode et al. [10] was maintained above 10. In the h = 0.150 m case, the aspect ratio was 

13.3, while in the h = 0.050 m case with end plates, the aspect ratio was 34. 

2.1. Inflow Conditions 

Three sets of in-flow conditions were used; two with low TI, and a third with higher TI, and a thicker 

boundary layer. The vertical velocity and turbulence intensity profiles are shown in Figure 4. The 

inflow conditions were measured using a TFI four-hole pressure probe, with a 45° cone of acceptance. 

A sample time of 20 s and a sampling frequency of 2500 Hz were used.  

 

 

  

Figure 3. (Left) Surface shear stress visualisation setup. Flow is from bottom to top. Step 

height is 50 mm. End plates are used. (Right) Trapezoidal vortex generator used to increase 

boundary layer thickness and turbulence intensity. 

 

The low TI configurations were generated without any flow conditioners. In the first case, the step 

was located on the wind tunnel floor, a minimum of 42h downstream of the contraction, resulting in a 

δ of 0.135 m with free-stream TI of 1%. The second low TI configuration was developed over a false 

floor, with a fetch of 32h. The resulting free-stream TI was also 1% and the δ was 0.100 m. 

The high TI case was generated using a trapezoidal vortex generator at the entrance to the working 

section, as depicted in the right pane of Figure 3. This generated a δ of 0.715 m and free-stream TI 

below 5%. Figure 5 provides a comparison with a terrain category 1.5 (TC 1.5) boundary layer from 

the Australian Wind Loading Standard [11], representative of a coastal inflow conditions at a scale of 

1:500. The velocity match is excellent, while the TI is lower than the standard. The modelled FFSs 

correspond to 25 m, 50 m, and 75 m in full scale. 

 

Figure 2.  

Schematic of the 

Monash University 

450 kW wind tunnel. 
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Results from these configurations indicated significant wall effects and concerns regarding the 

aspect ratio (width to step height) with the 0.100 m and 0.150 m step heights. End plates were 

implemented in the h = 0.050 m case to negate the wall effects. The lower h increased the aspect ratio.  

Lateral profiles were measured at a height of δ/2; across a 0.500 m span, turbulence intensity and 

velocity measurements remained within a ±10% envelope. The second low TI configuration, 

conducted on the false floor, yielded a lateral inflow variation envelope of less than ±3.5%. 

 

 

Figure 4. Vertical profiles of normalised velocity (Left) and turbulence intensity (Right) centreline 

profiles of the three inflows used.  

 

 

Figure 5. Vertical centreline profiles of normalised velocity (Left) and turbulence intensity (Right) of 

the high TI inflow configuration, compared against the TC 1.5 boundary layer. [11] 

2.2. Description of flow visualisation technique 

Arrays of paint droplets were used to visualise the surface shear stress over the downstream region of 

the FFS. The orientation of the paint streaks indicate the direction of the surface shear stress, allowing 

flow topology lines such as mean reattachment lines to be identified and the length of vortex regions 

to be measured. The mean reattachment line is defined as the line where the mean surface shear stress 

changes from acting in the direction of the crest (recirculation) to a direction away from the crest. The 

mean reattachment length is the distance from the crest of the FFS to the reattachment line.  

The models were placed in the middle of the working section of the wind tunnel. The surfaces of 

the models were aerodynamically smooth, covered with a black semi-gloss surface, and gridded using 

a permanent marker. For the 0.100 m and 0.150 m FFSs, the grid had a lateral resolution of 0.100 m 

and a downstream resolution of 0.050 m. In the 0.050 m case lateral resolution of 0.025 m and stream-

wise resolution of 0.010 m were used. This resulted in an uncertainty in XL of 10 – 15%.  
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Magenta-coloured water-based paint was diluted with water to approximately a 1:1 ratio providing 

a mixture with sufficient viscosity to avoid speckling, but not so viscous as to stop the droplets from 

streaking. Hypodermic syringes were utilised to apply nominally 0.1 mL of the paint solution at each 

grid point in the 0.100 m and 0.150 m FFS cases. Further drops were applied at grid midpoints through 

the central region and towards the edges. This was done to increase the resolution so as to more 

precisely determine reattachment lengths, and to observe in more detail the edge effects. For 

h = 0.050 m, paint was administered to one in every four grid points in a diagonal array. The 

application of paint was performed in still conditions. 

To obtain the streaks, the wind tunnel was run up to a fan blade pitch angle of 30°, corresponding 

to a free-stream velocity of 33 ms
-1

. The wind tunnel was allowed to run at speed for approximately 

one minute from the time the wind tunnel fan blade pitch had reached 30°. This allowed the droplets 

sufficient time to form streaks. 

3.  Comparison with previous FFS work 

Reattachment lengths were measured using the paint drop surface shear stress visualisation technique 

described in Section 2.2. An example is depicted in Figure 6. The direction of the streaks is clearly 

visible; the mean reattachment line is shown with a red dashed line. 

 

 

Reattachment lengths from the  = 0° case are presented in Figure 7 and compared with values 

from other studies. Data from the current study are in good agreement with Farabee and Casarella [7], 

Camussi et al. [12] and Leclerq et al. [13]. Lower Reynolds numbers in other studies cause the 

reattachment lengths to be lower than those reported in this study and by other researchers at similar 

/h ratios. The current study investigates a broad range of /h ratios and the reattachment lengths 

generally increase as /h values decrease.  This is consistent with the theory that at low /h values, the 

highest velocity flow interacts with the crest of the FFS, inducing a momentum increase, forcing the 

separation region farther downstream, resulting in a larger separation region. 

The example shown in Figure 6 also illustrates the three-dimensional, cellular nature of the 

separation region, highlighted by the solid red lines. Castro and Dianat [14] observed similar cellular 

divisions whilst investigating surface flow topology over rectangular bodies in thick boundary layers 

at an aspect ratio of 9. They observed a line of symmetry along the model centreline as well as further 

saddle points relating to the edge effects. Largeau and Moriniere [3] also identified branched 

structures upstream of their FFS, which provided an inherent three-dimensionality to the flow over the 

two-dimensional geometry. The branched structures convected downstream over the crest of the FFS 

as the upstream vortex burst periodically. Largeau and Moriniere [3] observed that these structures 

occurred symmetrically, and the number of branched structures related to their length, which was a 

function of the aspect ratio. Other cases in the present study exhibited cell boundaries along the tunnel 

 

Figure 6. Surface shear stress visualisation of flow over a 50 mm FFS with /h = 2.7. Flow is 

from bottom to top. Notice the change in streak direction and the stagnation region 2.6h 

downstream of the crest, signifying the mean reattachment length. Note also the lateral 

component of the flow at the crest, indicating a cellular structure. 
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centreline and fewer cells. A further distinction between the current study and the work of Castro and 

Dianat [14] is that the flow tended to funnel towards the centre of the crest (or the centre of the cell, as 

seen in Figure 6) rather than funneling the flow along the crest, towards the edge of the model. The 

fixed walls, either of the wind tunnel or of the edge plates, prevented drainage along the edge of the 

models in the current study. 

 

 

Figure 7. Comparison of mean reattachment lengths with other studies at 0° yaw angle. 

4.  Effect of yaw angle on the flow over a forward facing step 

The effect of yaw angle is broken down into the low TI and the high TI cases. The comparison 

between the two regimes is presented in Figure 8. The low TI cases are shown in the left pane; the 

high TI cases are shown in the right pane. For each graph comparisons can be made based on values of 

δ/h. Comparisons between the two panes, however, need to be considered in terms of a combination of 

both the TI and δ/h.  

 

 

Considering first the low TI cases, the δ/h = 2 and δ/h = 2.7 cases were sampled at 10° increments 

and a consistent trend of increasing XL with increasing θ is observed. Beyond θ = 40°, a threshold 

appears to be exceeded, and XL reduces sharply. The δ/h = 1.35 case exhibits a similar trend in XL 

with increasing θ, albeit without an observable threshold, as the highest value of θ was 40° in this case. 

This trend shows that the lateral flow along the crest increases the stability of the vortex, up to a 

critical yaw angle. 

In addition to XL, the visualisations give the direction of the surface shear stress lines. The angle 

these lines make with the stream-wise direction is , which varies linearly as a function of θ, as shown 

 

Figure 8. Mean reattachment length as a function of yaw angle for a range of /h ratios. Low TI 

cases shown in the left-hand pane; high TI cases shown in right-hand pane. 
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in Figure 9. The linear relationship is  = 180 - 2.4θThis relationship was consistent across the low 

and high TI cases. Note that there is a critical θ where the shear stress lines change from having a 

counter-stream-wise component (the most extreme case being the recirculation in the θ = 0° case) to 

no counter-stream-wise component immediately before θ = 40°. The reduction in Ω with increased θ 

shows that the crest vortex becomes dominated by the lateral flow, rather than by the low pressure 

generated by the separation at the crest. 

Lateral segmentation was observed in the recirculation region for θ, as shown in Figure 6. By 

θ = 10°, this cellular structure in the recirculation region has broken down. However, Figure 10 shows 

there is a new cellular structure evident in the θ = 40° and θ = 50° cases, downstream of the separation 

region. Streaks indicate distinct regions where the surface shear stress is aligned at an angle of 13° to 

the direction of the free-stream flow. The orientation of the streaks indicates that a vortex structure of 

the same sign as the primary vortex structure is being shed from that structure. Because this 

observation was made in a time-averaged field, it indicates there is a stable spatial periodicity in the 

shedding from the primary vortex structure.  

 

 

 

 

Figure 9. Direction of surface shear stress as 

a function of yaw. Black line corresponds to 

linear trend line. 

 Figure 10. θ = 50°, δ/h = 2 case, showing the 

segmentation downstream of the separation region. 

Flow is from bottom of page to top of page. 

 

The high TI cases, whose XL values are plotted in the right pane of Figure 8, exhibit weaker 

dependence on θ than the low TI cases. In two of the three δ/h cases, a small reduction in XL is 

observed, but the reduction is of a similar order to the magnitude of the uncertainty.  

Each of the high TI cases has smaller XLs than the low TI cases. The increased TI renders the 

vortices more unsteady. The reduced momentum and stronger vertical shear associated with the higher 

values of δ/h compounds the effect.  

The downstream shedding that laterally segmented the wake in a spatially periodic manner in the 

low TI cases was not observed in the high TI cases. The increased turbulence was responsible for 

breaking down the spatial periodicity. 

5.  Conclusions  

This work describes the effect of yaw angle on flow over an FFS. At a yaw angle of θ = 0° the results 

presented here are comparable with similar wind tunnel studies over a range of δ/h.  

The mean reattachment length is shown to vary as a function of θ, δ/h and TI. Lateral flow induced 

by θ is shown to increase the stability of the crest vortex up to a critical value of θ, beyond which the 
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effect is diminished. When TI was increased and combined with an increase in δ/h, a general decrease 

in XL was observed, and further small reductions occurred at higher yaw angles. The increased TI and 

increase in thickness of the shear layer both promote instability, reducing the ability of the crest vortex 

to entrain flow. 
Vortices generated off the crest of the FFS at different yaw angles are shown to act at an angle 

relative to the surface, varying linearly with θ, demonstrating a gradual dominance of the lateral flow 

over the recirculation as θ is increased. This effect was consistent, independent of TI and δ/h. 

Distinct segmentation of the flow is observed in the wake of the low TI regimes. At higher TI and 

δ/h, the segmentation is not obvious, indicating the spatial periodicity is broken down by turbulence.  
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