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ABSTRACT

A numerical investigation was undertaken into
state selection in Taylor vortex flow. The outer
cylinder was assumed stationary. The inner cylin-
der Reynolds number was linearly increased in time
from a fixed subcritical value to a fixed supercritical
value over a finite ramp time and then held constant
at the final Reynolds number. Different ramp times
were considered ranging from impulsive increases to
quasi-steady increases. For impulsive increases the
preferred axial wavelength of the Taylor vortex flow
was less than the critical wavelength. As the ramp
time was increased the preferred axial wavelength
increased toward the critical wavelength. For suf-
ficiently large ramp times the preferred axial wave-
length was always equal to the critical wavelength. A
linear model was developed that modelled the change
in preferred wavelength with ramp time. In the case
of sufficiently large ramp times the model predicted
that the amplitude of the mode with the critical wave-
length grew to high amplitudes first. This mode then
self-interacted and approached the form of steady
Taylor vortex flow. Nonlinear effects were discussed
with the addition of nonlinear terms in the amplitude
equations.

INTRODUCTION

Taylor-Couette flow is the fluid bounded by two
concentric rotating cylinders. Depending on the an-
gular speeds of the two cylinders flows with different
symmetries can be observed. We assume that the
outer cylinder is stationary and the cylinders are in-
finite in their axial extent. We define an Reynolds
number Re = Vd/v where V is the inner cylinder
speed, d is the gapsize of the cylinders and v is the
kinematic viscosity of the fluid. When Re is suffi-
ciently small circular Couette flow is observed. When
Re exceeds a critical value there is a transition to a
steady Taylor vortex flow. Taylor vortex flow is ax-
isymmetric and appears as a pairs of counter-rotating
toroidal vortices periodically arranged in the axial di-

rection.

Taylor vortex flow exhibits state nonuniqueness. In
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other words, Taylor vortex flows with different ax-
ial wavelengths can be achieved at the same final
Reynolds number. Which axial wavelength is selected
depends on the way in which the final state is ap-
proached.

Experiments by Burkhalter & Koschmieder (1974)
for impulsive increases of the inner cylinder Reynolds
number showed that the preferred axial wavelengths
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Figure 1: Stability diagram for Taylor vortex flow
for n = 0.727, p = 0. Taylor number versus ax-
ial wavelength. The solid line is the neutral curve:
from the linear stability of steady circular Couette
flow. The dashed line shows the stability bound-
ary from a weakly nonlinear analysis by Kogelman
& DiPrima (1970). The open circles represent Taylor
vortex flows states observed for sudden start exper-
iments by Burkhalter & Koschmieder (1974): The
solid circles represent Taylor vortex flow states ob-
served for an experiment where the annulus was filled
with fluid after inner cylinder was rotating at fixed
speed. From Burkhalter & Koschmieder (1974).



were smaller than critical wavelength, illustrated by
the open circles in Figure 1. Also, experiments
showed that very slow increases in the inner cylinder
speed from subcritical to supercritical Reynolds num-
bers always resulted in a Taylor vortex flow with the
critical wavelength. In Figure 1, the critical wavel-
ngth is A, = 2.0 . Koschmieder (1993) found that
different inner cylinder acceleration rates from fixed
subcritical to fixed supercritical Reynolds numbers
resulted in different Taylor vortex flows being pre-
ferred with wavelengths between those obtained by
impulsive increases and the critical wavelength.

In Figure 1, the Taylor number is related to
Reynolds number from the equation T/T, =
(Re/Rec)z. The outer curve is the neutral curve
from a linear stability analysis of steady circular Cou-
ette flow. For a particular Reynolds number there is a
band of axial wavelengths, with upper and lower lim-
its given by the outer curve, that will grow exponen-
tially. Perturbations with axial wavelengths outside
this band will decay exponentially.

Kogelman & DiPrima (1970) undertook a weakly
nonlinear stability analysis of Taylor vortex flow.
They found that Taylor vortex flows with wavelengths
within a band roughly 1/4/3 times the width of the
band from linear theory, are stable with respect to
axisymmetric perturbations. This inner band is often
called the Eckhaus stable band, the upper and lower
limits given by the dashed curve in Figure 1.

Koschmieder (1993) posed some fundamental ques-
tions: (i) Why can states be nonunique ? (ii) Why
is the critical wavelength always selected when the
inner cylinder speed is slowly increased from subcrit-
ical to supercritical values ? We applied a numerical
experiment to investigate these issues.

NUMERICAL METHOD

To conduct the experiment we used a numeri-
cal method described by Rigopoulos, Sheridan and
Thompson (1997). The axisymmetric, incompress-
ible Navier-Stokes equations in cylindrical coordi-
nates were solved numerically using a spectral method
and with the use of operator splitting. The method
was tested against known values of growth rate for
Taylor vortex flow and was shown to give second-
order time-accuracy. The height of the cylinders was
assumed infinite and so periodic axial boundary con-
ditions were applied. The velocity and pressure were
represented with a Fourier approximation in the ax-
ial direction and a Chebyshev approximation in the
radial direction.

NUMERICAL EXPERIMENT

We considered the case with radius ratio n = 0.727
in order to relate results to those by Burkhalter &
Koschmieder (1974). A stationary outer cylinder was
assumed. The inner cylinder Reynolds number was
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linearly increased in time from an initial subcriti-
cal value, Re; = 70, to a final supercritical value,
Re; = 116.67, over a finite ramp time, 7', and
then held fixed at Rey. A large aspect ratio of
I’ = 20.0286 (ten times the critical wavelength value)
was used in order to allow the nonlinear interaction
of many axisymmetric modes and thus simulate the
state selection process. A 324 x33 Fourier-Chebyshev
grid and a timespacing of At = 0.1 were used. A
number of different simulations were conducted for
different ramp times 7. In each simulation, initial
conditions of circular Couette flow plus a random per-
turbation of the order 10~% was applied. A random
perturbation was considered since this is typical in
a physical experiment. The random number genera-
tion sequence was kept the same for each simulation
to ensure that initial conditions were fixed.

RESULTS

In Figure 2 is shown results for amplitude of the
modes, A)\(t), versus time for four different ramp
times. The modes are for five discrete axial wave-
lengths in the vicinity of the critical wavelength:
1.54066, 1.66905, 1.82078, 2.00286 and 2.2254 with
corresponding Fourier indices 13, 12, 11, 10 and 9, re-
spectively. The critical wavelength is A, = 2.00286.
with critical Reynolds number Re, = 82.8 for the
slow ramp case of T' = 99.61 . We calculated A, (¢)
from the magnitude of the Fourier transform of the
radial component of velocity at the radial centre of
the gap.

Figure 2 shows that the ). is preferred for suffi-
ciently long ramp times, as illustrated for 7' = 99.61
and T = 149.42 . For sudden starts, T' = 0, the pre-
ferred wavelength A = 1.66905 is less than A;. The
selected wavelength changes from 1.66905 to 1.82078
to 2.00286 for progressively longer ramp times. The
wavelengths of these three Taylor vortex flow states
lie within the Eckhaus stable band. These features
agree with results by Koschmieder (1993).

LINEAR MODEL
While the amplitudes of the modes are small one has
to solve the amplitude equation
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where 0 (%) is the instantaneous exponential growth
rate which is a linear function of the instantaneous
Reynolds number Re(t). It is given by

o) ={ ;7 B S sttt S oy
oA ift>T
where
oo,x = —Kx(Re; — Rec,)) ®3)
and




-10

-1§

log, ()

-2

-10

= w
=7
s[
L B 5
L N Va
s :
s F ]
' -
o =20 40 80 ao
t (inner xr 5]

-10

= w
==
sl
L 8
L ‘\ e
St ™ - ]
N " " "
o 20 40 ao ao 100
t (Inner x )]

(4)

The factor K is the cofactor of proportionality
The solution to Equation

Tf A= I&’,\(Ref - Rec,)\)

and is mode dependent.
(1) is then
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Figure 2: A,(t) for four different ramp times T'.
A =2.2254 (mode 9)

Ac = 2.00286 (mode 10)

A = 1.82078 (mode 11)

A =1.66905 (mode 12)

A = 1.54066 (mode 13)

The log of the amplitude of the modes will there-
fore vary quadratically in time during the ramp and
Equation (5) models the behaviour of the modes in
Figure 2 while the amplitudes are small.

Now, consider the time, t} it takes for the am-
plitude of each mode A to grow to a particular
higher amplitude Ap, where nonlinear effects begin
to become important. In Figure 2 for T = 49.81,
99.61 and 149.42, Ay would be approximately where
the amplitude of the preferred mode ceases to vary
quadratically with time. Figure 2 for T' = 49.81,
99.61 and 149.42 implies that T > t}. Equation (5)
for t < T leads to
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for T sufficiently large. Equation (6) predicts that for
T = 149.42 the mode with the critical wavelength
has t}_ ~ 82, which is consistent with Figure 2 for
T = 149.42 .

The linear model thus predicts that for sufficiently
long ramp times the mode with the least time to reach
high amplitudes is the mode which has the minimum
critical Reynolds number (i.e. the mode with the crit-
ical wavelength). This mode then self-interacts and
approaches the form of steady Taylor vortex flow.




NONLINEAR MODEL

Following Abarbanel, Rabinovich and Sushchik
(1993) to account for nonlinear effects we suggest the
addition of the following nonlinear terms to Equation

(1):
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for N modes where the asterisk denotes complex con-
jugate. The subscripts now denote Fourier indices.

In Equation (7) the first cubic term accounts for
the self-interaction of mode 7. The second cubic term
accounts for the coupling of mode z with other modes
Jj. The quadratic term models resonant three-wave
interactions. The index g is taken over all harmonics
and is such that the resonance condition ¢ + 7 = ¢ is
satisfied.

Consider the Eckhaus mechanism of instability of
a Taylor vortex flow with a fundamental mode k and
first harmonic ¢ = 2k. When there are side-band per-
turbations with modes ¢ and j such that 7 + j = 2k,
these perturbations resonate with the first harmonic
and mutually reinforce each other, destabilizing the
Taylor vortex flow. However, when we consider a Tay-
lor vortex flow within the Eckhaus stable band, the
resonances still occur but they are not strong enough
to destabilize the flow.

In Figure 2 for T' = 49.81, T = 99.61 and T =
149.42 there are regions of rapid acceleration for the
lower amplitude modes prior to the saturation of the
preferred mode. These regions of rapid acceleration
are due to resonant three-wave interactions.

In Figure 2 for T' = 49.81 the preferred mode is
mode 11. During the ramp the log of the amplitude
of mode 12 varies quadratically with time whilst its
amplitude is small, followed by a rapid acceleration
prior to the saturation of mode 11. The first har-
monic (¢ = 22) of the fundamental mode (mode 11)
interacts simultaneously with the smaller amplitude
modes ¢ = 10 and j = 12, bringing about a mutual
reinforcement or resonance of these two modes (since
the condition under which the resonance occurs is sat-
isfied, namely 7 + j = ¢). One also expects mutual
reinforcements of modes ¢ = 9 and j = 13,7 = 8 and
J = 14, and so on. These resonances are a result of
interactions with the first harmonic of the mode 11.
These are also manifested as rapid accelerations prior
to the saturation of the fundamental mode.

Also, in Figure 2 for T' = 99.61 and T = 149.42
the preferred mode is mode 10. During the ramp the
log of the amplitude of mode 9 varies quadratically
with time whilst its amplitude is small, followed by a
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rapid acceleration prior to the saturation of mode 10.
The first harmonic (¢ = 20) of the fundamental mode
(mode 10) interacts simultaneously with the smaller
amplitude modes ¢ = 11 and j = 9 bringing about
a mutual reinforcement of these two modes. With
respect to the first harmonic of mode 10, resonances
are also expected for i = 8 and j = 12, 7 = 7 and
j =13, and so on.

One can envisage an N-dimensional phase space
spanned by { |A1|?,|A42%, ...,]AN|? }. Solving
Equation (7) for %
of all the equilibrium points. If the coupling con-
stants «;; satisfy some set of strong coupling condi-
tions then we obtain N stable equilibrium points in
the phase space. We can perceive the N stable equi-
librium points as a model for discrete set of N pos-
sible Taylor vortex flows within the Eckhaus stable
band. The strong coupling conditions can themselves

= 0 gives the coordinates

be viewed as conditions for nonuniqueness of the N-
mode system. Assuming that the initial amplitudes
of the modes are the same, which state is preferred
varies with ramp time.

CONCLUSION

A numerical experiment was conducted that demon-
strated the nonuniqueness of the final state in Tay-
lor vortex flow. For impulsive increases of the inner
cylinder speed the preferred axial wavelength was less
than the critical wavelength. A linear analysis showed
that Taylor vortex flow with the critical wavelength
was always preferred for sufficiently slow increases of
the inner cylinder speed because this mode grew to
high amplitudes earliest. A nonlinear model was de-
veloped that accounted for a number of nonlinear ef-
fects observed in the behaviour of the amplitude of
the modes. Nonuniqueness of the final state was con-
sidered from the point of view of dynamical systems.
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