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Flow past a cylinder close to a free surface
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Two-dimensional flow past a cylinder close to a free surface at a Reynolds number
of 180 is numerically investigated. The wake behaviour for Froude numbers between
0.0 and 0.7 and for gap ratios between 0.1 and 5.0 is examined. For low Froude
numbers, where the surface deformation is minimal, the simulations reveal that this
problem shares many features in common with flow past a cylinder close to a no-slip
wall. This suggests that the flow is largely governed by geometrical constraints in the
low-Froude-number limit.

At Froude numbers in excess of 0.3–0.4, surface deformation becomes substantial.
This can be traced to increases in the local Froude number to unity or higher in the
gap between the cylinder and the surface. In turn, this is associated with supercritical
to subcritical transitions in the near wake resulting in localized free-surface sharpening
and wave breaking. Since surface vorticity is directly related to surface curvature, such
high surface deformation results in significant surface vorticity, which can diffuse and
then convect into the main flow, altering the development of Strouhal vortices from
the top shear layer, affecting wake skewness and suppressing the absolute instability.
The variations of parameters such as Strouhal number and formation length are
provided for Froude numbers spanning the critical range.

At larger Froude numbers, good agreement is obtained with recently published
experimental investigations. The previously seen metastable wake states are observed
to occur for similar system parameters to the experiments despite the difference in
Reynolds numbers by a factor of about 40. The wake state switching appears to be
controlled by a feedback loop. Important elements of the feedback loop include the
cyclic generation and suppression of the absolute instability of the wake, and the role
of surface vorticity and vortices formed from the bottom shear layer in controlling
vortex formation from the top shear layer. The proposed mechanism is presented.
Shedding ceases at very small gap ratios (∼ 0.1–0.2). This behaviour can be explained
in terms of the fluid flux through the gap, vorticity diffusion into the surface and
opposite-signed surface vorticity from the strong surface deformation.

1. Introduction
Flow past a cylinder close to a free surface has potential relevance to a large number

of practical applications such as pipelines, offshore structures, submarines and power
generation equipment using tidal power. While some attention has been focused on
some parameter ranges, it has not yet been studied in detail. This contrasts with the
related but simpler problem of flow past a cylinder in an infinite medium, which has
been explored in depth over virtually all parameter ranges; for example, see review
articles by Morkovin (1964), Berger & Wille (1972) and Williamson (1996). Thus,
perhaps a useful viewpoint is that the influence of the free-surface can be considered
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to cause changes from the infinite-medium reference case, although these deviations
can, of course, be very large. In addition to the Reynolds number, Re = ρud/µ, where
u is the upstream velocity, d is the cylinder diameter, ρ is the density and µ is the mo-
lecular viscosity, the introduction of the free surface introduces two new parameters:
the Froude number Fr= u/

√
gd , where g is the acceleration due to gravity; and the

gap ratio h/d , with h the distance between the top of the cylinder and the position
of the undisturbed surface.

The stability of the flow past a half-submerged cylinder as a function of Froude
number has been examined by Triantafyllou & Dimas (1989). They found the wake
was convectively unstable at all points downstream. Two convective instability modes
can occur, with the first effectively corresponding to a symmetrical set of vortices
dominant at lower Froude numbers, and the second asymptotically corresponding
to a staggered array of vortices at Froude numbers greater than 1.77. Dimas &
Triantafyllou (1994) later extended their investigations to examine the nonlinear
interaction of a long-wavelength inviscid shear layer interacting with a free surface,
potentially relevant to the current study. At low Froude numbers, the first branch
of the dispersion relation leads to the development of strong oval-shaped vortices
immediately beneath the free surface. In addition, sharp horizontal shear was observed
near the free surface resulting in small sharp surface waves. The second branch
corresponds to a free-surface elevation, which takes the form of a propagating wave.
Large vortices form at higher Froude numbers and lead to high vertical shear. The
two modes correspond to different forms of wave breaking with the characteristics of
the first mode being large horizontal and small vertical velocities and vice versa for
the second mode.

The related problem of flow past a cylinder near a no-slip surface also provides
a useful point of reference for the current study. Taneda (1965) examined that flow
for 0.10 � h/d � 0.60 at Re =170. At the larger gap ratio, regular vortex shedding
occurred, however, at the smallest gap ratio, a single layer of vortices resulted, which
became unstable after a few wavelengths downstream. For the same flow, Roshko,
Steinolfson & Chattoorgoon (1975) examined the behaviour of the lift and drag forces
with gap ratio. On reducing the gap ratio, the drag first increased before rapidly
decreasing. This result was confirmed by Göktun (1975) who found the maximum
drag occurred at h/d � 0.5. The lift, on the other hand, monotonically increased as the
cylinder approached the wall. Taniguchi & Miyakoshi (1990) extended this work to
include the effect of wall boundary-layer thickness, which they found had a substantial
influence at smaller gap ratios. Bearman & Zdravkovich (1978) investigated the fre-
quency response for a cylinder near a no-slip boundary. They found that the Strouhal
number drops quite rapidly as the cylinder approaches the wall, with a marked change
in behaviour near a gap ratio of h/d � 0.25. Göktun (1975) observed an initial increase
in Strouhal number as the gap ratio was decreased to 0.5, with a decrease at smaller
gap ratios. Similarly, Angrilli, Bergamschi & Cossalter (1982) determined the Strouhal
number variation, but at much lower Reynolds numbers (Re = 2860 and 7640). They
found the same behaviour and the same critical gap ratio as found by Göktun. Lei
et al. (1998) considered this problem numerically for a two-dimensional cylinder at
Re= 1000. They found weakening of shedding for h/d = 0.30, and suggested that the
Strouhal number reaches a minimum not a maximum at h/d = 0.50. However, it seems
likely that two-dimensional modelling is not appropriate at such Reynolds numbers,
as it leads to exceptionally strong compact vortices and a very short formation
length, in contrast to the real three-dimensional flow. Lei, Cheng & Kavanagh (1999)
also tackled the problem experimentally. They noted the strong influence of the
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boundary-layer development on the lift acting on the cylinder. Price et al. (2000) also
considered this flow experimentally at Re =1200. They found a large variation in
Strouhal number and the presence of additional frequency components in the wake
at smaller gap ratios as the wake became less periodic.

Also relevant to the current study is the behaviour of vortical flows near a (deform-
able) free surface. Yu & Tryggvason (1990) investigated the free-surface signature of
unsteady two-dimensional vortex flows numerically. Their major finding was that
the dominant parameter governing surface deformation is the Froude number. At
small Froude numbers, the vortices interact with the free surface as though it is a
rigid wall, whereas at large Froude numbers, the vortices cause significant surface
deformation. Ohring & Lugt (1991) and Lugt & Ohring (1992) investigated the
interaction of a two-dimensional vortex pair with a free surface, including the
effects of viscosity and surface tension. For intermediate Froude numbers and low
Reynolds numbers, these authors indicate that the vortices rebound from the free
surface, with the degree of rebounding diminishing with increasing Reynolds number.
The inclusion of viscosity gives a clearer picture of the surface interaction, with
significant levels of vorticity diffusing from regions of high curvature. The presence
of this secondary vorticity has a profound effect on the evolution of the primary
vortices through shedding of the secondary vorticity from the surface and subsequent
entrainment, resulting in considerable weakening of the primary vortices. Surface
tension acts to limit strong surface curvature, thereby reducing the production of
secondary vorticity at the surface (Tryggvason et al. 1991). This can significantly
modify the interaction of vortices with a free surface at high Froude numbers if
the surface tension is significant. Similarly, surface contamination can have a strong
effect. Moderate surface contamination can make the surface effectively act somewhere
between a no-slip and free-slip boundary (Wang & Leighton 1991; Sarpkaya 1996).
Even worse, surface motion can often produce an uneven distribution of conta-
minants (Tryggvason 1988), thereby effectively producing a temporally and spatially
varying surface boundary condition. A detailed discussion of the vorticity and free
surfaces, including many illuminating examples, is given by Rood (1995). Also of in-
terest, Lundgren & Koumoutsakos (1999) provide an interpretation enabling vorticity
conservation in flows with free surfaces by allowing vorticity to be stored in surface
vortex sheets.

Flow past a cylinder near a free surface was considered by Miyata, Shikazono &
Kani (1990) with an experimental and numerical investigation conducted at Re �
50 000 and Fr = 0.24. They noted a sharp reduction in drag and a sharp increase
in Strouhal number as the gap ratio was reduced from 0.35. They also noted the
considerable weakening of shedding and introduction of other frequency components,
at smaller gap ratios. They found that the drag was almost bimodal with one value
for large gap ratios dropping suddenly to a smaller value at small gap ratios. This
is in contradiction to the observations of Göktun (1975) and Roshko et al. (1975)
for flow past a cylinder near a no-slip wall, who both found relatively smooth (but
different) variations with gap ratio.

The flow behaviour of a cylinder near a free-surface for Fr= 0.60 and h/d = 0.45
has been considered by Sheridan, Lin & Rockwell (1995). For this parameter set, two
admissible wake states were observed. Each state was found to possess limited stability
such that transformations from one state to the other occurred in a time-dependent
manner. Thus, the flow was catagorized as metastable. The fluid passing over the
cylinder remained attached to the free surface when the flow was in one of the states,
and it was separated in the other state. The switching could occur spontaneously
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Figure 1. The problem set-up, and some of the important parameters.

with a very low non-dimensional frequency of the order of 10−3, or be induced by
artificially piercing the surface.

A region of parameter space was investigated by Sheridan, Lin & Rockwell (1997),
with a wide variety of different wake behaviours noted. The jet of fluid passing
over the cylinder was observed to exhibit a number of possible states including:
attachment to the free surface; attachment to the cylinder; and an intermediate state
in between. The previously observed metastable behaviour was also observed at gap
ratios and Froude number combinations other than the pair reported in Sheridan
et al. (1995). Both of these papers concentrate on mapping out the different wake
states without providing much information on physical parameters such as shedding
frequency, forces and other physical characteristics. Hoyt & Sellin (2000) confirm
some of the findings of Sheridan et al. (1997) and provide some further details on the
time-dependence. A major finding is that Kármán vortex shedding occurs at some
gap ratios and that the flow field varies in a time-dependent manner.

The problem was also investigated by Warburton & Karniadakis (1997) at Re =100
using a two-dimensional numerical model. They suggest that the flow features obser-
ved by Sheridan et al. (1997) are largely two-dimensional in nature. They provide
limited information on the time-dependent forces acting on the cylinder. Reichl,
Hourigan & Thompson (2003) have presented some results from computations of the
flow at Re= 180, mainly focusing on the evolution of the vorticity field for the metas-
table state first described by Sheridan et al. (1995).

The layout of this paper is as follows. Initially, a brief description of the numerical
method is presented together with supporting validation and resolution studies.
After this, results from numerical simulations are given, beginning with an overview
demonstrating the main effects of gap ratio and Froude number, followed by more
details of the variation of physical parameters and some physical interpretations.
Finally, some special cases matching previous experimental studies are explored and
interpreted, including a discussion of mechanisms controlling the wake dynamics.

2. Flow modelling
2.1. Problem set-up and important parameters

The problem set-up is shown in figure 1, together with the important dimensions.
The flow is from left to right with the cylinder submerged a distance h below the
surface (under no flow conditions). The diameter of the cylinder is d and the upstream
velocity is u. Since we have a free surface, the acceleration due to gravity, g, exerts
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an influence and must be considered. The important physical parameters were given
in § 1 and are the Reynolds number, Re, the Froude number, Fr, and the gap ratio,
h/d . In the limit, Fr → 0, the surface becomes a non-deformable horizontal free-slip
surface. The Strouhal number, St = f u/d , where f is the vortex-shedding frequency
in the wake is another important physical parameter characterizing the flow state.

2.2. Numerical method

The simulations were carried out using the computational fluid dynamics software
package FLUENT. Only a brief description of points of direct relevance to the com-
putations will be provided here, further details of the implementation can be found in
the FLUENT manuals. Versteeg & Malalasekera (1995) provide an excellent descrip-
tion of the finite-volume method on which the package is based, while a description of
the volume-of-fluid (VOF) method used to treat two-phase flows is given in Hirt &
Nichols (1981).

The main computational difficulty is the deformable free-surface. There are various
ways to treat this situation numerically. A potential constraint in this case is that the
surface may form breaking waves at high Froude numbers, which means that com-
putational methods that track the surface directly as a computational boundary
may have difficulties. It was decided to tackle the problem using the volume-of-fluid
approach. Here, both the fluid phase and the much lighter gas phase above it are
treated explicitly by introducing a (fluid) volume fraction, α1, and gas volume fraction,
α2. The combined volume fraction of both phases must satisfy the conservation pro-
perty, α1 +α2 = 1. A conservation equation is solved to transport the volume fraction
of one of the phases. The viscosity and density at any point are obtained by volume
phase averaging. A single momentum equation is solved for the whole domain result-
ing in a shared velocity field for both phases. The surface is defined to be the locus
of points where α1 = 0.5. In practice, the surface is represented by piecewise linear
segments across each cell.

The spatial discretization chosen was the QUICK (quadratic upstream interpolation
for convective kinematics) method of Leonard (1979). This is a hybrid of second-order
upwinding and central-differencing for the convective terms together with central-
differencing for the viscous terms. Hence, it is second-order accurate overall, although
the truncation error coefficient is formally smaller than either of the constituent
schemes. The temporal discretization is only first-order accurate when the VOF
method is employed.

2.3. Validation and resolution tests

Several benchmark tests were employed to ensure that the method behaved as
predicted theoretically. Poiseuille flow was modelled for a series of grids with different
spatial resolutions. By comparing with the exact solution, it was possible to establish
the order of the QUICK method for this case as 2.55, which is better than the
theoretical prediction. The transient state of impulsively started Couette flow was
used to establish the temporal accuracy as first-order, as predicted.

Benchmark deformable surface flows are more difficult to find. Two cases were
examined. The first was the idealized case of fluid in a spinning bowl in a vacuum.
The free surface forms a parabolic profile in the radial direction. An analytic expres-
sion for the shape is easily derived. Equilibrium solutions were computed for a series
of different density and viscosity ratios. In reality, at standard conditions, the density
ratio is ρwater/ρair =811, and the viscosity ratio is µwater/µair = 60. Generally, as these
ratios are increased, the real conditions of the water–air free surface are reproduced.
On the other hand, the equations become stiffer, resulting in convergence problems or
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at least many more iterations between time steps, as these ratios are increased.
Hence, in practice, it is necessary to compromise. It was found that using
ρwater/ρair = µwater/µair = 100, gave a solution with a relative fractional L2 norm error
of 0.00043. This was only slightly larger than the error using the accepted water/air
ratios, which required considerably increased computer time. For the former case, the
solution was graphically indistinguishable from the idealized solution over the entire
radius except for a few points near the outer radius. It was decided that realistic
solutions to free-surface (or fluid–air interface) problems could be obtained with
ρfluid/ρair =µfluid/µair = 100, and these combinations were subsequently used for all
further simulations.

The breaking dam problem of Martin & Moyce (1952) was used to investigate the
ability of the software to model a rapidly changing surface. These authors experi-
mentally determined the height and surge front location of an initially rectangular
cross-sectioned volume of water after one of the supporting walls was destroyed
impulsively at time zero. The predicted water height and surge front location both
agreed, to within experimental error, over the entire time over which data were experi-
mentally recorded.

A validation study close to the problem under consideration was flow past a fully
submerged cylinder, i.e. a cylinder far removed from the free surface. Of course, this
one of the most studied experimental and computational flows and accurate values
of many physical parameters are available. Figure 2 shows a typical computational
mesh used for simulations. This particular mesh has approximately 56 000 node points
with considerable mesh concentration both around the cylinder and in the wake. For
a Reynolds number of 190, this mesh gave a Strouhal number of St =0.191. This
is within 2 % of the accepted value of 0.194–0.195 (Williamson 1989; Barkley &
Henderson 1996). The errors in the drag coefficient, CD , the root mean square (r.m.s.)
lift coefficient, C ′

L, and the base pressure coefficient, Cpb, are 1 %, 6 % and 4 %,
respectively. For this mesh, the distances to the upstream, side and outflow boundaries
were L1 = 10d , L2 = 30d and L3 = 30d , respectively. Simulations using meshes of
increased dimensions led to only small changes in these physical parameters, hence
it was decided that these dimensions were adequate for the purpose of exploring a
large part of the parameter space with good accuracy. This domain size is broadly
consistent with the domain used by Henderson (1997) for his benchmark study.

To ensure that this mesh was fine enough to resolve the flow properly for the actual
flow problem considered in this paper, a resolution study was undertaken. Physical
parameters were determined for Re = 180, h/d =0.40 and Fr = 0.20, for this mesh
and a geometrically similar finer mesh with 89 000 node points. Using Richardson
extrapolation allowed the errors in the Strouhal number, drag and r.m.s. lift coefficients
to be estimated as 0.3 %, 0.3 % and 7 %, respectively.

Finally, the error induced by the first-order temporal scheme was examined. For
Re= 180, h/d = 0.40 and Fr= 0.30, the physical parameters were again determined for
time steps of �t = 0.0250 and 0.0125. For the Strouhal number and drag coefficient,
the predictions varied by less than 3 %, while for the r.m.s. lift, the difference was
about 5 %. To limit the amount of computer time per simulation, because of the large
number of simulations required, �t = 0.025 was chosen as an appropriate compromise.

The findings of these preliminary studies can be summarized as follows. The mesh
of 56 000 node points with increased resolution near the cylinder and in the wake
is sufficient to predict the Strouhal number and drag to within 5 %. The predictions
of the r.m.s. drag appear to be more sensitive to both time and space resolution
and the error may be larger and perhaps up to 10 %. This accuracy is believed to
be acceptable for the current study. In particular, we expect the physical behaviour
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Figure 2. Grid used for the majority of the simulations. It contains approximately
56 000 cells.

of the wake should be captured well. Further validation and demonstrations of the
correctness of this premise come from the comparison with experimental predictions
provided later in this paper.

2.4. Selection of the Reynolds number

Sheridan et al. (1995) suggest that, in general, the surface behaviour and wake are
quasi-two-dimensional even at the Reynolds number of their experimental studies
(Re � 6000–9000), where the flow must be fully turbulent. While it may be possible
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(b)
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Figure 3. Vortex streets for a gap ratio of h/d = 0.55 and for Froude numbers of (a) Fr = 0,
(b) 0.3, (c) 0.4 and (d) 0.6. Positive vorticity is shown as light grey and negative vorticity as
dark grey.

to perform fully three-dimensional large-eddy simulations at such Reynolds numbers,
these would be extravagantly expensive and would certainly prohibit a parameter
space study, which is a key aim of this work. Because of the observed predominant
two-dimensional nature of the observations, we envisaged that low-Reynolds-number
two-dimensional simulations would be adequate to reproduce the main physical
behaviour, and would allow the effect of various parameters to be determined. The
Reynolds number chosen for the bulk of the simulations was Re= 180. This is close to
the Reynolds number for transition to three-dimensional flow of Re= 190 (Barkley &
Henderson 1996). While it is possible to use higher Reynolds numbers, the predictions
are likely to be less relevant to the higher-Reynolds-number experiments. This is
because the formation length rapidly becomes unphysically short, and the Strouhal
number diverges from its near-Reynolds-number independent value of about 0.2. In
addition, since the flow is almost certainly two-dimensional at Re = 180, the set of
predictions will be a true representation of reality at Re = 180, and thus stand in their
own right.

3. Results
3.1. Overview of the different regimes

Figures 3 and 4 show typical vorticity fields covering a range of Froude numbers and
gap ratios. These plots provide a broad overview of the different types of wake beha-
viours that can occur. Figure 3 corresponds to a gap ratio of h/d = 0.55 and shows
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(a)

(b)
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(d )

Figure 4. Vortex streets for a gap ratio of h/d =0.16 and for Froude numbers
of (a) Fr = 0, (b) 0.3, (c) 0.4 and (d) 0.6.

the changes in the vorticity field and free-surface behaviour as the Froude number
is increased. Figure 3(a) provides a reference case of Fr= 0, a horizontal free-slip
boundary. The wake is not too dissimilar to that from the reference case of flow
past a cylinder submerged in an infinite medium. The wake has reasonable symmetry
about the centreline, although there is some diffusion of vorticity into the surface
and the centreline of the wake is directed downwards slightly. The Fr = 0.30 case is
similar to this, except that there is some local surface distortion up to one diameter
downstream of the cylinder owing to the presence of strong compact vortex structures
formed from the shear layers rolling up. This ratio of the inertial to gravitational force
is proportional to Fr2, so for this case the ratio is about 10 %. This Froude number
approximately marks the boundary between the low- and high-Froude-number cases.
At the next highest Froude number shown, Fr = 0.40, there is a marked difference
in the downstream wake. Here, the surface distortion is considerably larger, and the
induced surface curvature leads to a diffusive flux of vorticity from the surface of
opposite sign to the vorticity immediately below. This secondary vorticity is diffused
outward and then convected away from the surface to cross-annihilate with the wake
vorticity, causing the wake to become much more asymmetric downstream. The last
case shown is for Fr= 0.60. Here, the wake is considerably different from the previous
cases. Surface distortion is substantial, with the large amount of surface vorticity
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Figure 5. Existence or non-existence of shedding as a function of Froude number
and gap ratio.

diffused and convected into the wake to interact strongly. The wake is now very much
lop-sided or skewed, and much less regular.

Figure 4 shows vorticity plots for the same set of Froude numbers, but for a gap
ratio of 0.16. The wake structure is quite different from the larger gap ratio cases.
The formation length is significantly longer, increasing progressively as the Froude
number increases. The negative (clockwise) vorticity from the top half of the wake has
been largely dissipated by approximately 5d downstream, even in the zero Froude
number case. This is due to restriction of flow in the gap and some diffusion into the
surface. Thus, further downstream the wake consists of only positive (anticlockwise)
Strouhal vortices originating from the bottom half of the wake. The difference between
the Fr = 0 and Fr = 0.3 vorticity patterns is larger than for h/d =0.55 shown in the
previous figure. This is probably because the local Froude number in the vicinity of
the cylinder is higher in the former case; indeed this will be explored later. At Fr = 0.6,
the surface interaction and associated flux of surface vorticity is so large that even
in the near wake shedding is suppressed. From approximately 2 diameters downstream,
the wake consists of only positive vorticity. The formation length is extremely long.

3.2. Suppression of vortex shedding

Figure 5 shows the occurrence or non-occurrence of vortex shedding as a function
of Froude number and gap ratio. Triantafyllou & Dimas (1989) showed that in the
extreme case where the cylinder is only half submerged, the wake instability changes
from absolute to convectively unstable. This is consistent with suppression of vortex
shedding when the cylinder is placed in close proximity to the surface. We have
examined Froude numbers in the range 0.25 � Fr � 0.40, for a wide range of gap
ratios. This covers the range where the Froude number starts to have a strong effect
on the wake dynamics and surface distortion. For a free-slip surface (Fr= 0), if the



Flow past a cylinder close to a free surface 279

gap ratio is reduced to zero, there is no flow over the top of the cylinder and hence
the wake will be one-sided. On the other hand, even for small gap ratios at low
Froude numbers, there is considerable flow over the cylinder and hence considerable
vorticity generated, nominally with shedding into the wake. However, the proximity
to the surface causes this vorticity to diffuse into the surface, thereby leading to
rapid reduction of vorticity to form vortices from the top half of the wake. As the
Froude number is increased into the region where surface distortion begins to become
significant (Fr � 0.3), a flux of positive vorticity from the surface results, owing to
the surface curvature induced by the nearby negative vorticity from the top half of
the wake. This cross-annihilates with the wake vorticity, decreasing the wake vorticity
still further. Hence, at higher Froude numbers, vortex shedding will be suppressed at
larger gap ratios, as figure 5 shows.

Strictly speaking, there is some irregular vortex shedding for the higher-Froude-
number small-gap-ratio cases. For instance, for h/d = 0.19 and Fr =0.40, several fre-
quencies were apparent in the Fourier spectrum of the cylinder lift coefficient, but the
amplitudes were small and spread over broad frequency bands. In contrast, the spec-
trum for h/d = 0.19 and Fr= 0.25 showed a narrow band response; indeed the signal
was almost sinusoidal and periodic. Price et al. (2000) found a number of distinct
frequencies unrelated to the Kármán shedding frequency for flow past a cylinder
close to a no-slip surface. They suggested that there was a frequency scaling with the
separation of the wall boundary layer from the surface in addition to the dominant
Kármán frequency. Two other frequencies were also apparent, being due to the
addition of these frequencies and the first harmonic of the Kármán frequency. The pre-
sence of multiple frequency components appears to be similar here, despite the
distinctly different surface boundary condition.

3.3. Surface sharpening and wave breaking

As mentioned before, surface distortion starts to have a major impact for Fr � 0.30.
Figure 6 focuses on the relatively sudden onset of severe surface distortion as the
Froude number is incrementally increased. Figures 6(a) and 6(b) show the surface
shape at times of maximum and minimum lift for gap ratios of 0.55 and 0.40,
respectively, for Fr= 0.35. Figures 6(c) and 6(d) show the surface shape for the same
gap ratios, but for Fr = 0.40. Clearly, the surface distortion increases substantially
at the slightly higher Froude number. In fact, the surface profiles for Fr =0.40 show
distinct surface sharpening and evidence of localized wave breaking. In steady flows,
surface curvature leads to the kinematic generation of vorticity equal to twice the
local angular velocity multiplied by the local curvature (e.g. Lugt 1987; Rood 1995).
Thus, where the surface is strongly distorted, i.e. highly curved, considerable surface
vorticity results. Presumably, strong surface curvature and associated large velocity
gradients will also assist this vorticity to first diffuse and then convect into the main
flow to interact with existing wake vorticity.

As alluded to previously, the distinct sharpening of the surface shape that occurs
for Fr � 0.35 shown in the previous figure, is presumably due to the local Froude
number in the gap, FrL = ū/

√
gh, approaching unity. Here, ū is a measure of the

velocity through the gap. For linear shallow-water waves, the Froude number is equal
to the ratio of the flow speed to the wave speed. For waves to travel upstream requires
FrL < 1. At higher Froude numbers, hydraulic jumps may form. These sudden changes
in surface height correspond to changes from locally supercritical (FrL < 1) to locally
subcritical (FrL > 1) flow (e.g. see Acheson 1990).
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Figure 6. The surface position at the two extremes in the lift cycle for different Froude
numbers and gap ratios (as marked). —, maximum lift; - - -, minimum lift.

To investigate whether the local Froude number was reaching critical values in
the fluid above the cylinder, FrL was evaluated for a range of Froude numbers and
gap ratios and the results are shown in figure 7. The maximum velocity through the
gap at the time of maximum lift was used as the velocity scale for the local Froude
number, but the curves are generally representative of the typical behaviour over a
shedding cycle. For a gap ratio of h/d =0.4, the local Froude number varies between
0.62 � FrL � 0.91, corresponding to the global Froude number range 0.25 � Fr � 0.40.
Thus, not surprisingly, the local Froude number in the gap is considerably higher
than the global Froude number for small gap ratios. Figure 6 shows that the surface
distortion becomes very large, and possibly forms a breaking wave as Fr is increased
from 0.35 to 0.40, for this gap ratio. The local Froude number for the Fr = 0.40 case
approaches unity (FrL =0.91) at the time of maximum lift. In fact, examination of
figure 6(c) shows that as the fluid flows over the cylinder, the free-surface curvature
is such that the distance between the cylinder and the surface is a minimum past
the vertical centreline. Thus, the local Froude number based on h and the maximum
velocity on the vertical centreline will be an underestimate of the maximum local
Froude number. Hence, the local surface sharpening in this case is consistent with the
local Froude number attaining or exceeding the critical value. Figure 7 also shows
that FrL increases as the gap ratio is reduced, indicating that the critical global Froude
number at which wave breaking occurs should decrease with gap ratio as might be
expected.

3.4. Strouhal number variation with gap ratio

The behaviour of the Strouhal number with gap ratio is shown in figure 8. Again the
Froude number is varied over the range 0.25 � Fr � 0.40. The proximity of the surface
causes an initial increase in the Strouhal number as the cylinder is moved towards
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Figure 7. Variation of the local Froude number with gap ratio (the Froude number based on
maximum velocity in the region directly above the cylinder), at both the points of maximum.
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Figure 8. Variation of Strouhal number normalized with respect to Strouhal number of the
reference cylinder, i.e. St/St0) with gap ratio for Froude numbers of 0.25, 0.30, 0.35 and 0.40.

the surface, but this trend reverses as the gap ratio becomes small. The maximum
Strouhal number occurs in the range 0.5 <h/d < 1.0 and is a function of Froude
number. The maximum increase is approximately 10 %.

While the trend in the Strouhal number is interesting in itself, the controlling
mechanism is of greater interest. Green & Gerrard (1993) suggest that the period
of vortex shedding is largely determined by the time taken for sufficient vorticity to
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Figure 9. Plot showing the average velocity in the region directly above the cylinder as a
function of gap ratio at the point of maximum lift, for Froude numbers of 0.25, 0.30, 0.35 and
0.40.

accumulate outside a region of high shear stress. Their model provides a possible
explanation of the suppression of shedding observed by Strykowski & Sreenivasan
(1990) when a small control cylinder is placed close to the large one. In addition, for
the current problem, the supply of fluid into the vortex formation region is partially
controlled by the presence of the free surface. It is hypothesized that the increase in
period as the cylinder becomes close to the surface is due to the increase in the time
required for fluid to collect in the vortex formation region, where it forms into discrete
vortex structures. In turn, this time will be influenced directly by the proximity of the
surface and the time-dependent nature of the surface. To investigate this hypothesis
further, it is necessary to examine the transport of fluid through the gap between the
cylinder and surface.

The height-averaged velocity through the gap at the time of maximum lift is given
in figure 9. This figure illustrates the same trends as seen in the Strouhal number
behaviour. As the Froude number is increased, the peak in the average velocity
curve occurs at a higher gap ratio. As the gap becomes small, all the velocity curves
approach the origin, as expected. The average velocity is closely related to the amount
of circulation available to be shed into the wake. The curves indicate that as the gap
is decreased, the transport of fluid into the wake decreases and the circulation is
also reduced. This is consistent with the observed reduction in Strouhal number.
Conversely, for intermediate gap ratios there is an increase in Strouhal number over
the reference case. The average velocity curves are also consistent with this behaviour
because of the increased flux of vorticity into the wake.

3.5. Formation length

Some changes to the observed wake behaviour may be associated with the position
at which vortices form in the region behind the cylinder. This will certainly have an
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(a) 0.25, (b) 0.30, (c) 0.35 and (d) 0.40.

impact on the magnitudes of the time-dependent forces. There does not appear to
be a universally accepted definition of formation length in the literature, however,
different methods tend to agree at least semi-quantitatively, and it is certainly a useful
concept in understanding wake dynamics. Griffin (1995) reviews a number of ways
of calculating the formation length. Two different ways of calculating the formation
length were used for the current study. These measures are the distance from the
cylinder to the point of maximum standard deviation of either vertical velocity or the
vorticity. The methods give similar results.

Figure 10 reveals how the formation length (determined by the vorticity method)
varies with gap ratio for Froude numbers in the critical range. Also shown is the varia-
tion in Strouhal number for each gap ratio. For each Froude number, the formation
length decreases to a minimum as the gap ratio is reduced from a large value. The
minimum occurs in the range 0.5 <h/d < 1.0. As the gap ratio is further reduced, the
formation length rapidly increases. The normalized Strouhal number curves are close
to mirror images of the normalized formation length curves, indicating the strong
association between these variables.

3.6. Convective velocity of vortices

The influence of the free surface on the path and speed of the shed vortices is of
particular relevance to understanding the modification to the wake behaviour from
the reference case. Figure 11 shows the region in the wake where the convection
speeds of vortices were recorded. Note that for the smallest gap ratios and largest
Froude numbers, the wake is not strictly periodic, however, the data presented provide
a representative guide. The variation of the convective velocity with Froude number
is shown in figure 12 for a discrete set of gap ratios. These results indicate that the
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Figure 11. Plot showing the vorticity field for a gap ratio of 0.40 and a Froude number of
0.40. The Reynolds number for this case is 180. The two vertical lines denote the domain size
used for calculating the vortex convection speeds and tracking the vortex paths.

convective velocity of the positive vortices originating from the bottom shear layer
remains relatively constant or decreases only slightly with Froude number. However,
the variation of convective vortex velocity with Froude number is a strong function
of gap ratio. There is little effect for deep submergence. For small gaps, the convective
velocity of the negative vortices is higher than the positive vortices, presumably owing
to the image vortex on the other side of the surface aiding the forward motion.
This situation reverses for large Froude numbers. In that case, the weakening of
the negative vortices through entrainment and diffusion of, and cross-annihilation
with, surface vorticity results in a significant change in wake dynamics. It is probably
associated with the metastable states observed at even higher Froude numbers. The
associated wake dynamics will be described in later sections.

3.7. High-Froude-number cases and experimental comparisons

Most experimental studies on the flow past submerged cylinders have been done at
larger Froude numbers than were the focus of previous sections. High Froude numbers
can result in large surface deformation with a corresponding significant impact on
the wake development. Sheridan et al. (1995, 1997, 1998) and Hoyt & Sellin (2000)
considered Froude-number and gap-ratio ranges that will be examined in this section.

The broadest range of parameter space was considered by Sheridan et al. (1997).
They indicated that flow can be categorized loosely by the behaviour of the jet of
fluid passing over the cylinder. Three basic wake states were identified where the jet
(i) followed the free surface, (ii) occupied the space between the free surface and the
cylinder, or (iii) remained attached to the cylinder so that it was almost directed
vertically downwards. These wake states are not mutually exclusive, in that the flow
may switch between them, either in a semi-regular way or through external interaction.
In the comparisons that follow, numerical parameters were chosen to be as close as
possible to the experimental values given the discrete coverage of the parameter space.
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Figure 12. Plots showing the variation in vortex convection speed with Froude number for
both the positive and negative vortices. (a) Gap ratio of 5.00, (b) 2.50, (c) 1.00, (d) 0.70,
(e) 0.55 (f ) 0.40 —, positive; - - -, negative.

Prior to presenting these numerical comparisons, it is worth summarizing the
metastable states observed by Sheridan et al. (1995, 1997). Sheridan et al. (1997) note
that at a Froude number of 0.60 for gap ratios in the range 0.75 � h/d � 0.24, the jet
tended to move progressively from a state of attachment to the free surface to being
almost attached to the rear of the cylinder. Little information was provided on the
time-dependent nature of the flow; however, it seems reasonable to assume that the
wake was indeed time dependent. Hoyt & Sellin (2000) also examined this flow, but
at a slightly lower Froude number of 0.53. Their dye visualizations clearly showed
time dependence and distinct Strouhal shedding was noted for h/d =0.75.

For some cases, Sheridan et al. (1995, 1997) found that more than one wake state
could be observed at a fixed Fr–h/d combination. For these cases, the wake spon-
taneously changed from one state to another in a pseudo-periodic manner. The non-
dimensional cycle time was not given, but it was noted that it was typically two orders
of magnitude longer than the Strouhal period.
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(a)

(b)

Figure 13. Comparison of the velociy fields between (a) the experimental results of Sheridan
et al. (1997) (for h/d = 0.40, Fr =0.47 and for a Reynolds number between 5990 and 9120,
and (b) the numerically predicted results for h/d = 0.40, Fr = 0.50 and Re= 180.

The metastable behaviour observed by Sheridan et al. (1995) for parameters Fr =
0.60 and h/d =0.45 involved the jet switching from a state of attachment to the
surface to the intermediate position between the surface and the cylinder. They noted
that the flow state could be switched to the other state by transiently piercing the free
surface at a downstream position or temporarily altering the flow velocity. For the
same Froude number and h/d =0.31, the jet switched between the state of attachment
to the rear of the cylinder and the intermediate state.

3.7.1. Surface jets

The first wake state described above, where the jet follows the surface, can be
seen in figure 13. Numerically, the parameters are Fr = 0.50 and h/d = 0.40, which
closely match the experimental values of Fr = 0.47 and h/d = 0.40. For the particular
snapshots chosen, the comparison is remarkably good, despite the huge difference in
Reynolds number. The amplitudes of the surface distortions are very similar, as is
the surface jet width. The region of fluid in the near wake shows some differences,
with the numerical velocity field much more coherent. Of course, this is not surprising
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(a)

(b)

Figure 14. Comparison of the velocity fields between (a) the experimental results of Sheridan
et al. (1997) for h/d = 0.43, Fr =0.60 and for a Reynolds number between 5990 and 9120,
and (b) the numerically predicted results at h/d = 0.40 (gap 5.9 diameters upstream is 0.45),
Fr = 0.60 and Re= 180.

given the Reynolds number difference. In terms of vorticity (not shown), both the
experimental and numerical results indicate there is only slight secondary surface
vorticity entering the flow with subsequent entrainment by the surface jet.

In fact, the numerical simulations indicate that for this gap-ratio/Froude-number
combination, the flow regularly switches between a state of attachment to the surface
and the intermediate state in which it spends the majority of time. This flapping is at
a much lower frequency than the shedding frequency, but the frequency is not well
defined.

3.7.2. Intermediate jets

If the Froude number is increased slightly to Fr =0.60, but with the same gap ratio,
the tendency is for the jet to be deflected more. Figure 14 shows the comparison of
wake velocity fields when the jet is directed into the intermediate region between the
surface and cylinder. Again, the match is good. The deflection angles of the jet and
the shear layer from the bottom of the cylinder are similar, as is the almost stagnant
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(a)

(b)

Figure 15. Comparison between (a) the experimental vorticity field of Sheridan et al. (1997)
for h/d = 0.43, Fr = 0.60 and for a Reynolds number between 5990 and 9120, and (b) the
numerically predicted vorticity field at h/d = 0.40 (gap 5.9 diameters upstream is 0.45), Fr = 0.60
and Re= 180.

region between the separating shear layers. The region of fluid above the jet is slowly
recirculating upstream in both cases. There is also little surface distortion downstream
apart from the adjustment in height as the fluid flows over the cylinder.

The bubbles appearing in the numerical simulation are due to minor entrainment
of the light fluid into the heavy fluid as the jet penetrates (i.e. dives) into the relatively
stagnant fluid at the rear of the cylinder. These also appear in some other simulations
described later in this paper. Surface tension is not included in the numerical model,
which will probably artificially enhance this process. Note that entrainment of bubbles
is not mentioned in the experiments of Sheridan et al. (1997). In any case, the effect
is relatively minor.

The experimentally derived and numerically simulated vorticity fields for this case
are shown in figure 15. Of particular interest is the large amount of positive vorticity
from the surface which enters the wake parallel to the main jet. The high vorticity flux
has a significant effect on wake development, as described in more detail later. Vortex
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shedding has effectively ceased at this time. The shear layers eventually reattach to
the surface approximately 8 diameters upstream, encompassing a stagnation region
with very little flow. At this point in the cycle, the character of the wake has changed
such that the absolute instability is suppressed.

One notable difference between the experimental and numerical vorticity fields is
the appearance of Kelvin–Helmholtz or Bloor–Gerrard vortices in the wake shear
layers in the higher-Reynolds-number experimental flow. For the reference case these
secondary vortices also develop strongly in this Reynolds-number range. Typically,
they are associated with a shortening of the formation length; indeed, this is consistent
with the slightly shorter formation length observed at the higher Reynolds number
of the experiments.

3.7.3. Jets attached to the cylinder

The deflection of the jet increases if the gap ratio is reduced further to h/d � 0.30.
Recall that for these parameters, the experimental results of Sheridan et al. (1995,
1997) indicate that the jet switches from a state of attachment to the cylinder to the
intermediate state. Figure 16 shows that experimental velocity field of Sheridan et al.
(1997), the numerical velocity field and dye visualizations of Hoyt & Sellin (2000),
all for approximately the same Froude number–gap ratio combinations. The angle of
deflection of the jet is clearly greater than the previous case, and the stagnant region
between the shear layers is smaller. Again, the region above the angled wake is slowly
recirculating. No vortex shedding is observed for this combination of parameters. The
wake state bears some resemblance to those calculated by Fornberg (1985) for flow
past a cylinder with enforced symmetry about the centreline.

Figure 17 provides comparison of the vorticity fields. As for the previous
combination of parameters, considerable positive vorticity enters the wake from
the free surface. This vorticity results in the rapid and severe weakening of the top
shear layer associated with the jet, through cross-diffusion and cross-annihilation.

3.7.4. Very small gaps

The final experimental comparison is for Fr =0.60 and h/d = 0.10–0.16. Here, the
gap is sufficiently small to lead to a significant reduction in the velocity and flux
of fluid through the gap over previous cases. Coupled to this, the closeness of the
surface results in increased diffusion into the surface and the strong convection of
surface vorticity into the flow. These effects lead to only a weak rapidly dissipated
jet, which is closely attached to the rear of the cylinder, as shown in figure 18. The
region between the shear layers is now very small, and the recirculating flow above
the jet has become almost stagnant. In fact, the recirculation region in the wake can
be exceptionally long, typically reattaching more than 15 diameters downstream.

3.7.5. Switching frequency

It is difficult to determine accurate values of the switching frequency from numerical
simulations because of the long time integration periods required and the irregularity
of the signal. The Fr= 0.55 and h/d = 0.40 combination represents a case where
the switching occurred relatively regularly for the simulations. A Fourier analysis of
the lift signal indicated a strong modulation frequency of approximately 0.015. In
contrast, the shedding frequency was about 0.21, about 14 times greater. Sheridan
et al. (1997) indicated that for a similar case, the switching frequency was about
two orders of magnitude smaller than the Strouhal frequency, although quantitative
results were not given.
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Figure 16. Comparison between (a) the experimental results of Sheridan et al. (1997) for
h/d =0.31, Fr = 0.60 and a Reynolds number between 5990 and 9120, (b) the current
numerically predicted results at h/d = 0.25 (gap 5.9 diameters upstream is 0.26), Fr = 0.60
and Re= 180, and (c) experimental results of Hoyt & Sellin (2000) at h/d =0.31, Fr = 0.53
and Re= 27 000.

In any case, it might be expected that the switching frequency would be sensitive
to Reynolds number and other factors. For example, inaccuracies in capturing wave
breaking, the presence of turbulence and even the distribution of surfactants (e.g.
Sarpkaya 1996) are likely to have a substantial effect on the switching frequency.

4. Discussion and conclusions
Results have been presented for the parameter space defined by 0.0 � Fr � 0.7

and 0.1 � h/d � 5.0. Generally, where comparisons can be made, the predictions
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(a)

(b)

Figure 17. Comparison between (a) the experimental vorticity field of Sheridan et al. (1997)
for h/d = 0.31, Fr = 0.60 and a Reynolds number between 5990 and 9120, and (b) current
numerically predicted results at h/d = 0.25, Fr = 0.60 and Re= 180.

are in good agreement with previous results. The low-Froude-number results agree
surprisingly well with previous predictions and experimentally observed behaviour for
the flow past a cylinder near a no-slip boundary examined by a number of authors
(e.g. Göktun 1975; Roshko et al. 1975; Bearman & Zdravkovich 1978; Angrilli et al.
1982; Price et al. 2000). In particular, the observed wake behaviour variation with
gap ratio, and the Strouhal number, force coefficients and formation length show at
least qualitative agreement.

Perhaps surprising is the relative sensitivity of surface deformation to Froude
number. For example, for h/d = 0.4 and 0.55, figure 6 indicates that severe local
surface deformation is minimal at Fr = 0.35, but substantial at Fr = 0.40. This appears
to be due to the local Froude number in the gap reaching or exceeding the critical
level of unity as the Froude number is incrementally increased. For smaller gap ratios,
this transition occurs at slightly lower Froude numbers. Free-surface sharpening and
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(a)

(b)

Figure 18. Comparison between (a) the experimental velocity field of Sheridan et al. (1997) at
h/d =0.16, Fr =0.60 and a Reynolds number between 5990 and 9120, and (b) the numerically
predicted velocity field at h/d = 0.10, Fr = 0.60 and Re= 180.

wave breaking can lead to the introduction of a substantial quantity of vorticity
into the wake, which can interact with the top shear layer through diffusion and
cross-annihilation, substantially changing the wake evolution. Apart from the greater
amount of resident surface vorticity, high curvature allows easier entry of this surface
vorticity into the wake. This is because diffusion away from the surface is more
effective owing to the higher velocity gradients and it needs to act only over a short
distance before convection can transport the vorticity away from the surface, since
the velocity generally becomes non-parallel to the free surface over a short distance.

For small gaps, the convection velocity of the vortices formed from the top shear
layer is strongly dependent on Froude number. At low Froude numbers, these vortices
convect faster than their counterparts formed from the lower shear layer. This is due
to the induced velocity from the image vortex on the other side of the surface.
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However, as the Froude number is reduced, the convection velocity of these top
vortices slow considerably.

Overall, the agreement with experimental studies, at Reynolds numbers typically
30–50 times larger, indicate that the flow is largely controlled by two-dimensional
flow structures (vortex shedding, a diffusive flux of vorticity from curved surface
and subsequent convection into the bulk flow). It appears that three-dimensionality
and turbulence cause only relatively minor modifications to the wake evolution, as
suggested by Sheridan et al. (1997).

The semi-periodic switching between wake states that can occur at high Froude
numbers appears to be under the control of a feedback loop. The elements of this
hypothesized feedback loop are described with reference to the parameter set Fr = 0.55
and h/d = 0.40, chosen because it shows clearly the intermediate wake states involved.
This combination of parameters results in the top shear layer switching between
attachment to the free surface and an intermediate state where it is angled between
the cylinder and the free surface.

Figure 19 provides a sequence of images showing the evolution of the vorticity
field as the jet flow switches between the attached and angled states, and back again.
Each image corresponds to approximately the same phase in 10 consecutive Strouhal
shedding cycles. Further examples of image sequences and animations showing this
switching behaviour are given in Reichl (2001).

In terms of the feedback loop, consider an initial state where the jet is currently
attached to the free surface (corresponding to the first image of figure 19).

(a) The formation of Strouhal vortices from the negative shear layer close to the
surface induces strong time-dependent surface curvature, which in turn introduces
substantial positive vorticity from the surface to cross-diffuse and cross-annihilate
with the negative vorticity from the top shear layer. Over a few shedding cycles, this
severely weakens the top shear layer. There is a strong asymmetry in the vorticity
content of the upper and lower shear layers at the end of this phase.

(b) The top shear layer is now directed downwards and contains relatively less
circulation per unit length than the bottom shear layer. Because of the near wake
asymmetry, the absolute instability is at least partially suppressed, and Strouhal vortex
formation and shedding become weaker over subsequent cycles. (Note that Koch
(1985) has indicated that the absolute instability is destroyed by wake asymmetry).

(c) The weakening and redirection of the top shear layer, and the reduction in
the formation of strong compact Strouhal vortices, lead to a reduction in the surface
curvature and associated positive surface vorticity entering the flow. This allows the
top shear layer to recover in strength and drift back towards the surface. As the
shear-layer symmetry is re-established, the wake again becomes absolutely unstable
and Strouhal shedding recommences.

Figure 9 shows that for small gap ratios, as the gap ratio is decreased, the average
velocity of fluid moving through the gap rapidly decreases. Dimensional analysis
indicates the flux of vorticity feeding into the shear layer depends on the square of
the average velocity. Thus, the vorticity flux drops off very rapidly with decreasing gap
ratio. For low Froude numbers, some diffusion into the surface, owing to the proximity
of the shear layer to the surface, also acts to reduce the strength of the shear layer.
For high Froude numbers, the effect is compounded by the introduction of positive
vorticity at the surface, which enters the wake and further destroys the negative shear
layer through cross-diffusion and cross-annihilation. Hence, it is not surprising that
shedding ceases, leading to an extremely-long quasi-steady recirculation zone at the
rear of the cylinder in this case.
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Figure 19. Evolution of the wake vorticity over a jet switching cycle for Fr = 0.55 and
h/d =0.40. Images correspond to approximately the same phase in consecutive Strouhal
shedding cycles. The order of the sequence is column 1 followed by column 2.

For the metastable wake states it is not surprising that Sheridan et al. (1995) found
that external disturbances to the downstream region could cause switching between
states. Piercing the surface is likely to induce roll-up of the negative shear layer if
the shear layer is already attached. This causes a chain of events resulting in the
jet deflecting downwards. On the other hand, if the jet is already angled down, then
piercing may disturb the large-scale recirculation which helps to sustain the deflected
jet. If the recirculating flow is subsequently convected downstream, then the shear
layer may reattach to the surface.
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