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submergence depth (h) was systematically varied between 1 and -0.75 
sphere diameters (D) and the response simulated over the reduced 
velocity range U* ∈ [3.5, 14].   The incompressible flow was coupled with 
the sphere motion modelled by a spring-mass-damper system, treating 
the free-surface boundary as a slip wall. In line with the previous 
experimental findings, as the submergence depth was decreased from h* 
=h/D =1, the maximum response amplitude of the fully submerged 
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increased until h* = -0.375, and then decreased beyond that point. The 
fluctuating components of the lift and drag coefficients also followed the 
same pattern.  The variation of the near-wake vortex dynamics over this 
submergence range was examined in detail to understand the effects of 
h* on the VIV response. It was found that h* = 1 is a critical 
submergence depth, beyond which, as h* is decreased, the vortical 
structures in the wake vary significantly. For a fully submerged sphere, 
the influence of the stress-free condition on the VIV response was 
dominant over the kinematic constraint preventing flow through the 
surface. For piercing sphere cases, two previously unseen vortical 
recirculations were formed behind the sphere near times of maximal 
displacement, enhancing the VIV response. These were strongest at h* = 
-0.375, and much weaker for small submergence depths, explaining the 
observed response-amplitude variation.

 

Cambridge University Press

Journal of Fluid Mechanics



This draft was prepared using the LaTeX style �le belonging to the Journal of Fluid Mechanics 1

Vortex-induced vibration of a sphere close to
or piercing a free-surface

Methma M. Rajamuni1,2†,Kerry Hourigan1 and Mark C. Thompson1

1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of
Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
2School of Engineering and Information Technology, University of New South Wales Canberra,

Northcott Dr, Campbell ACT 2612, Australia

(Received xx; revised xx; accepted xx)

Vortex-induced vibration (VIV) of an elastically mounted sphere placed close to or
piercing a free-surface (FS) was investigated numerically. The submergence depth (h)
was systematically varied between 1 and −0.75 sphere diameters (D) and the response
simulated over the reduced velocity range U∗ ∈ [3.5, 14]. The incompressible �ow was
coupled with the sphere motion modelled by a spring-mass-damper system, treating the
free-surface boundary as a slip wall. In line with the previous experimental �ndings, as
the submergence depth was decreased from h∗ = h/D = 1, the maximum response
amplitude of the fully submerged sphere decreased; however, as the sphere pierced
the FS, the amplitude increased until h∗ = −0.375, and then decreased beyond that
point. The �uctuating components of the lift and drag coe�cients also followed the
same pattern. The variation of the near-wake vortex dynamics over this submergence
range was examined in detail to understand the e�ects of h∗ on the VIV response.
It was found that h∗ = 1 is a critical submergence depth, beyond which, as h∗ is
decreased, the vortical structures in the wake vary signi�cantly. For a fully submerged
sphere, the in�uence of the stress-free condition on the VIV response was dominant
over the kinematic constraint preventing �ow through the surface. For piercing sphere
cases, two previously unseen vortical recirculations were formed behind the sphere near
times of maximal displacement, enhancing the VIV response. These were strongest at
h∗ = −0.375, and much weaker for small submergence depths, explaining the observed
response-amplitude variation.

Key words:

1. Introduction

Vortex-induced vibration of a blu� solid body placed in a �uid �ow has been studied
for many years because of its practical signi�cance to various engineering �elds. Due to
the alternate shedding of periodic or quasi-periodic vortices from such a body, large-
amplitude vibrations can be excited. This is known as vortex-induced vibration or VIV.
O�shore structures, underwater submarines, marine turbines, buoys, oil conduits and
platforms are some examples that can be subject to VIV. The VIV response depends
on many factors: the shape of the solid body, its density, the method of mounting, the
Reynolds number, and even the proximity of the body to a wall or to a free-surface
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(FS). While potential practical applications exist concerning VIV of a blu� body in close
proximity to a FS or piercing one, for example, �oating o�shore ocean structures, such
as buoys, �oating wind-farms, oil-rig platforms and wave power plants, limited research
has been conducted to examine e�ects of the FS on VIV. Thus, this article focuses on
VIV of a three-dimensional blu� body in close proximity to a FS or piercing it, using the
most generic body shape of a sphere.
Flow past a blu� body placed beneath a FS mainly depends on the scaled distance

between the body and the FS, h∗ = h/D (D = sphere diameter), and the ease of distorting
the FS, measured by the Froude number Fr = U∞/

√
gh (U∞ = �ow speed). The

numerical study of Reichl et al. (2005) examined the wake of a cylinder close to a FS for
Froude numbers Fr ∈ [0, 0.7] and submergence depths h∗ ∈ [0.1, 5], at a Reynolds number
of 180. They revealed that for low values of Fr, when surface deformation is minimal,
the FS interface can be approximated with a slip wall, as the �ow is mainly governed
by geometric constraints. However, when Fr exceeds 0.3�0.4, the surface deformation
becomes substantial; and indeed as the local Froude number becomes close to unity,
localised FS sharpening and wake breaking can occur. At moderate Fr, Reichl et al.
(2005) observed previously seen metastable wake states observed in the experimental
studies of Sheridan et al. (1995) and Sheridan et al. (1997), who examined the �ow past
a cylinder close to a FS over the Froude number range 0.47 6 Fr 6 0.72 and Reynolds
number range 5990 6 Re 6 9120.
The �ndings of Reichl et al. (2005) were consistent with the observations of Kawamura

et al. (2002) on the �ow past a piercing circular cylinder. That study was conducted using
Large Eddy Simulations (LES) at Re = 2700 and for Fr = 0.2, 0.5 and 0.8. They found
that at Fr = 0.2 and 0.5, surface deformation was small, and that the time-mean �ow
near the surface was similar to that near the bottom symmetry boundary. On the other
hand, surface wave generation was large and strongly unsteady at Fr = 0.8. Yu et al.
(2008) conducted a similar study varying the Froude number up to Fr = 3 and Re up
to 1× 105 with a piercing circular cylinder, and found that the FS attenuated the vortex
generation in the near wake. This e�ect of the FS was found to be stronger as Fr was
increased, and at Fr = 2, vortex shedding was no longer regular.
Hassanzadeh et al. (2012) applied LES to investigate the wake �ow behind a sphere

placed close to a FS at Re = 5000 for submergence depths h∗ = 0.25, 0.5, 1 and 2. They
found that the interaction between the FS and the downstream wake was maximum at
h∗ = 0.25, and increasing h∗ resulted in decreasing the level of interaction. At h∗ = 2,
the FS e�ect was minimal, and beyond that, �ow past the sphere may be assumed to be
in a free-stream �ow. The experimental studies of Ozgoren et al. (2012, 2013a,b); Do§an
et al. (2018) also revealed that the wake structures behind a sphere strongly depend on
the sphere submergence depth.
Compared to a �ow-induced vibration (FIV) of a cylinder, much less attention has been

directed to FIV of a sphere. Some of the fundamentals of FIV of a sphere were revealed
through the systematic series of experimental studies conducted by Williamson & Go-
vardhan (1997); Govardhan & Williamson (1997); Jauvtis et al. (2001) and Govardhan &
Williamson (2005), using tethered and elastically-mounted spheres. When only a single
degree-of-freedom is allowed for the sphere movement, the vibration synchronises with
the vortex shedding behind the body, with a characteristic large amplitude oscillation, as
happens for a cylinder. Four distinct modes of sphere vibrations (named modes I-IV) were
identi�ed with varying characteristics in terms of sphere oscillation amplitude and phase,
and wake structures. The �rst two modes have been identi�ed as VIV, which appears
in the reduced velocity range 5 . U∗ . 12. Mode I is the most robust vibration state,
associated with the natural resonance. As the reduced velocity is increased, the sphere
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motion smoothly transitions to mode II (Govardhan & Williamson 2005). Interestingly,
the amplitude of mode II was observed to be about twice that of mode I. In contrast
to these experimental observations at high Reynolds numbers, the transition between
modes I and II was obscure in the amplitude response at low Reynolds numbers (Behara
et al. 2011; Behara & Sotiropoulos 2016; Rajamuni et al. 2018a,b). The recent study of
Rajamuni et al. (2020b) numerically investigated vibration modes of a tethered sphere,
and found that the e�ect of Reynolds number on the modes I and II regimes was
signi�cant over the Reynolds number range 300 6 Re 6 2000, although it was found
to be insigni�cant beyond that range for 2000 6 Re 6 12000 in the experimental studies
of Govardhan & Williamson (2005). Rajamuni et al. showed that the sphere response
amplitude progressively increased as the Reynolds number was increased, especially in
the mode II regime. Their response predictions at higher Reynolds numbers (Re = 1200
and 2000) were close to those seen in previous experimental studies. Importantly, the
wakes in the modes I and II regimes consisted of vortex streets of interlaced hairpin-like
vortex loops, with the modes distinguished by the phase di�erence between the vortex
force and displacement.
The mode III state, �rst observed by Jauvtis et al. (2001) in the reduced velocity range

U∗ ∼ 20�40, was later identi�ed as a movement-induced vibration (MIV) by Govardhan &
Williamson (2005). Compared to the �rst three highly periodic modes, mode IV, found by
Jauvtis et al. (2001) for U∗ > 100, was characterised by intermittent bursts of vibration.
Interestingly, both Rajamuni et al. (2018a, with a sphere of m∗ = 2.6) and Rajamuni
et al. (2020b, with a sphere of m∗ = 0.8) observed mode IV type aperiodic response right
after the mode II regime, without the intervening mode III response. In fact, mode III has
been seen only with heavy spheres. As the mass ratio of the sphere was increased from
0.8 to 80, at U∗ = 30, Rajamuni et al. (2020b) observed a smooth transition from mode
IV to mode III. With this observation, Rajamuni et al. (2020b) hypothesized that mode
III is a delicate state that manifests only with the larger inertia of dense spheres. By
analysing the sphere response trajectories and Poincare maps, Rajamuni et al. (2020b)
showed that sphere response is chaotic in mode IV.
The above-mentioned studies have been conducted with a fully submerged sphere far

away from a wall boundary. Little research has been undertaken to examine the e�ect
on VIV of the presence of a wall boundary or a FS. Barbosa et al. (2017) examined the
e�ects of a plane boundary on the VIV of a freely vibrating cylinder and found that the
vibration amplitude increased for gap ratios smaller than 0.75D, while the amplitude
decreased for gap ratios between 2D and 0.75D. Chung (2016) numerically investigated
2-DOF VIV of a horizontal circular cylinder near a FS at Re = 100 for Fr = 0.2 and
0.8 for various submergence depths. It was stated that proximity to a FS strengthened
and suppressed the VIV for low and high Froude numbers, respectively.Saelim (1999)
examined self-excited transverse vibrations of a horizontal, elastically-mounted cylinder
located beneath a free-surface for 0 6 h∗ 6 3. Although the amplitude response curves
agreed with past studies when the cylinder was well submerged, there were dual amplitude
response curves when the cylinder was su�ciently close to the free-surface. In addition,
for small submergence depths, very large regions of hysteresis occurred in the variation
of oscillation amplitude as a function of the reduced velocity.
Mirauda et al. (2014) studied the dynamic response of a sphere immersed in shallow

water �ow with a sphere of mass ratio m∗ = 1.34. For small submergence depths
(0 6 h∗ 6 0.5), the transverse amplitude was signi�cantly smaller with respect to
the completely submerged sphere, inhibiting the formation of mode II. Nevertheless,
for h∗ > 0.5, both modes were observed. However, no attempt was made to examine the
e�ect on �uid forces or the wake behind the sphere to support their claims. Sareen et al.
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(2018) experimentally investigated VIV of a sphere close to a free surface over a range of
reduced velocities 3 6 U∗ 6 20, by varying the submergence depth from −0.75 to 1. For
the fully submerged case (0 6 h∗ 6 1), the vibration amplitude decreased monotonically
and gradually, as h∗ decreased, with greater in�uence on modes II and III. On the other
hand, when the sphere pierced the FS, the response amplitude �rst increased, even beyond
that observed for a completely submerged sphere, as h∗ decreased from 0 to −0.5, and
then it decreased as h∗ was decreased further. Sareen et al. (2018) found both mode I and
II type responses, even when the sphere was piercing the FS, in contrast to the �ndings
of Mirauda et al. (2014), although the mass ratio was quite di�erent. Sareen et al. (2018)
also found that the sphere response was insensitive to the Froude number for the range
0.05 6 Fr 6 0.45.
Recently, Chizfahm et al. (2021) numerically investigated the transverse �ow-induced

vibration of an elastically-mounted sphere in the vicinity of a free surface at h∗ =
−0.25, 0, and 1, over the reduced velocity range 3 6 U∗ 6 20. The response amplitude
decreased as h∗ decreased from 1 to 0, but it increased as h∗ further decreased to −0.25,
consistent with the �ndings of Sareen et al. (2018). They also reported that the surface
deformation was not substantial for the Froude number range Fr 6 0.44, although the
amplitude response decreased by ∼ 30% as the Froude number was increased from
Fr = 0.22 to 0.44. However, the wake �ow structure was also observed to be similar
across this range.
The main limitation of the experimental study of Sareen et al. (2018) was that the

three-dimensional (3D) wake could not be adequately quanti�ed or even characterised.
Although through-plane vorticity was determined in a downstream cross-plane, no con-
crete physical explanation could be drawn about the in�uence of the FS on the wake, and
hence, the changing VIV state. The wake structure of a sphere is intrinsically 3D, and
hence di�cult to characterise the wake with in-plane velocity measurements on one plane
through the wake. Whilst spatio-temporal reconstructions of the wake were attempted
by Sareen et al., these may not provide a good representation of the wake dynamics, and
especially the near-wake dynamics in particular, that govern the coupled VIV forcing.
On the other hand, the study of Chizfahm et al. (2021) was limited to three submergence
depths, and although they presented the global changes to the vortical wake structure
over that depth range, the focus was more on the e�ect of surface distortion on near-wake
vorticity than directly relating the details of the near wake to the changes in amplitude
response. Thus, further research is called for to understand the �ndings of Sareen et al.
(2018) and Chizfahm et al. (2021), and to address the questions: (i) what happens to the
lift and drag forces when the sphere is close to a FS; (ii) why does the sphere response
become weak as it approaches a FS; and (iii) why does the response subsequently become
stronger when the sphere slightly pierces the surface? The present study investigates the
in�uence of the free surface on the VIV response, for fully and semi-submerged spheres,
and attempts to answer the above questions through a thorough examination of �uid
forces and detailed near-wake dynamics.
Prior to proceeding further, it is noted that in the experiments of Sareen et al. (2018),

the Froude number was found to be small, with only minor surface deformation detected,
and its e�ect on the VIV response of fully and semi submerged spheres appeared relatively
minor. In particular, as the surface deformation is small for small Froude numbers,
through a comparison with experiments Reichl et al. (2005) concluded that a FS can
be approximated with a slip wall in such cases. Therefore, rather than modelling this
problem as a two-phase �ow system, the FS was approximated as a free-slip wall. This
also will provide a reference case that can be used to establish the e�ects of non-negligible
Froude number in future studies.
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Parameter Symbol

Amplitude ratio A∗ =
√
2Arms/D

Drag coe�cient Cd = 2Fd/(ρπU
2D2)

Lift coe�cient Cl = 2Fl/(ρπU
2D2)

Froude number Fr = U/
√
gD

Frequency ratio f∗ = f/fn
submergence depth h∗ = h/D

Mass ratio m∗ = m/md

Reynolds number Re = DU/ν

Strouhal number St = fvoD/U

Reduced velocity U∗ = U/(Dfn)

Normalized velocity Un = U∗St/f∗ = fvo/f

Periodicity of vibration λA =
√
2Arms/Amax

Table 1. Non-dimensional parameters. The streamwise direction is parallel to the x�axis, the
y and z are axes are orthogonal to the �ow and referred to as the transverse and vertical
directions, respectively. Here, m and md are the mass of the sphere and mass of the displaced
�uid, respectively; D is the diameter of the sphere; h is the vertical distance from the FS to the
top of the sphere, U is the upstream velocity; ν is the kinematic viscosity of the �uid; f is the
sphere vibration frequency; fn is the natural frequency of the system (without the added mass
e�ect); fvo is the vortex shedding frequency; Fd and Fl are the drag and lift forces, respectively;
and Arms and Amax are the r.m.s. and the maximum of the sphere displacement signals in y
direction, respectively.

The governing parameters for this study are tabulated in table 1. The article is
organized as follows: section 2 describes numerical methods used together with validation
studies; results on the sphere response near a FS are presented in section 3.1, then force
predictions are given in section 3.2, while section 3.3 provides a comprehensive discussion
on the in�uence of FS on the VIV of a sphere in terms of the vortical structure of the
wake in induced forces; �nally, concluding remarks are provided in section 4.

2. Numerical methodolgy and validation

The computational study employed the open-source �nite-volume CFD package Open-
FOAM (https://openfoam.org). E�cient parallelisation has been implemented in Open-
FOAM, allowing it to tackle reasonably large �ow problems e�ciently. Recent versions of
OpenFOAM enable the solving of �uid-structure interaction problems based on dynamic
grid techniques. As the technique requires the reconstruction or movement of the grid
at the end of each time step, this approach can add signi�cant computational overhead
for problems having continual structure motion. However, the present �uid-structure
interaction problem of a single rigid body can be solved e�ciently and accurately by
using a body-�xed reference frame and a non-deformable grid, as used by Blackburn &
Henderson (1996); Leontini et al. (2006, 2013). In this section, the problem formulation
and FSI solver are discussed, the computational details are provided, and �nally the
validity of the approach and selected resolution for the main simulations are discussed.

2.1. Problem formulation

Figure 1 shows a schematic of the set-up used for the study. A solid sphere was mounted
in a �ow domain with elastic supports in the transverse direction (y direction) near a FS.
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Free-surface
(a) (b)

Figure 1. Schematic of the elastically mounted sphere near a FS. Panel (a) shows the side
view (x�z plane), while (b) shows the plan view (x�y plane).

The �ow was assumed to be in the x direction. The diameter of the sphere is D and the
vertical distance between the top of the sphere and the FS is h. To achieve the maximum
vibration amplitude, the sphere was supported with springs without dampers.
The �uid �ow was modelled in the moving reference frame attached to the centre of the

sphere, to avoid grid deformation. This is a non-inertial reference frame, as the velocity of
the sphere is not �xed. Therefore, the �xed-frame (momentum) Navier-Stokes equations
need to be adjusted by adding the acceleration of the sphere to the momentum equations,
as a source term. The �uid was assumed incompressible, Newtonian and viscous. The
sphere was taken as a rigid body with a uniformly distributed mass, while its motion was
controlled through its setup as a spring-mass-damper system.
The fully coupled �uid-solid system can be described by the incompressible Navier-

Stokes equations given by (3.1) and the continuity equation given by (2.2), together with
the governing equation for the motion of the sphere by (2.3):

∂u

∂t
+ (u · ∇)u = −∇p + ν ∇2u − ÿs, (2.1)

∇ · u = 0, (2.2)

m ÿs + c ẏs + k ys = fl. (2.3)

Here, u = u(x, y, z, t) is the velocity vector, p is the scalar kinematic pressure, and ν is the
kinematic viscosity of the �uid. The vectors ys, ẏs and ÿs are the sphere displacement,
velocity and acceleration, respectively (the x and z components of these vectors are set
to zero, as the sphere motion was restricted to the y direction only). In addition, m is
the mass of the sphere, c is the damping constant (taken as zero), k is the structural
spring constant and fl is the �ow-induced vector �uid force acting on the sphere.

2.2. The �uid-structure solver

Recently, we developed a fully coupled FSI solver named vivIcoFoam to e�ciently solve
FIV problems of an elastically-mounted single rigid body. Rajamuni (2018); Rajamuni
et al. (2018a, 2019) and Rajamuni et al. (2020a) have documented this solver in detail,
so only brief details are provided here.
This FSI solver is based on the pre-built icoFoam transient solver, which is implemented

according to the pressure implicit splitting of operators (PISO) algorithm introduced by
Issa (1986). The vivIcoFoam solver employs a predictor-corrector iterative method, which
initially predicts the solid motion and corrects it in several corrector iterations. At the
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end of each iteration, the �uid equations given in equations 3.1 and 2.2 are solved with
the predicted or subsequently corrected solid acceleration, and the �uid forces induced on
the solid are calculated. Readers are referred to Rajamuni et al. (2020a) for the details
of the solver. The iterative process to move from one timestep to the next terminates
when the relative error of the magnitudes of the solid acceleration and the �uid forces
are less than a given error bound, typically ε = 0.001. As for the �uid solver, the overall
vivIcoFoam solver is of second-order temporal accuracy.
The �uid domain was modelled in a moving frame-of-reference. The frame motion is

acknowledged through adjusting the outer domain velocity boundary conditions (except
the outlet boundary). In this study, the velocity is prescribed on all outer boundaries
except the outlet. Once the predictor-corrector iterative process has been completed, the
velocity at the inlet boundaries is updated according to the velocity of the solid body,
ẏs, before proceeding to the next time step.

2.3. Computational details

As �gure 2 shows, a cubical domain was chosen for the �uid. The sphere was placed
at the middle of the �uid domain such that it is at a distance h to the FS and 50D to
other �ve boundaries. Four of these boundaries were treated as inlets with the velocity
supplied, and the remaining one is the outlet. At the inlet boundaries, a varying Dirichlet
boundary condition was prescribed for the velocity, while a zero-gradient Neumann
boundary condition was prescribed for the pressure (see �gure 2). At the free surface, a
slip boundary condition for the velocity was applied. The sphere surface was treated as
a solid wall and no-slip and no-penetration boundary conditions were applied on it. At
the outlet boundary, the pressure was set to zero while the velocity was prescribed as
zero gradient in the normal direction.
A set of block-structured grids were generated for the simulations by varying the

submergence depth in the range h∗ ∈ [−0.75, 1]. Each grid was created such that it
was concentrated towards the sphere surface with help of �O-grid� blocking. The grid
generation process is similar to that of Rajamuni et al. (2018a), and as such, details are
omitted here. Figure 3 displays the mesh for the h∗ = −0.5 case, for which the sphere
pierces the FS by exposing half of it. A grid of this study looks similar to that of Rajamuni
et al. (2018a) which is cut o� by the FS. Grids were generated by �xing the minimum cell
thickness in the radial direction from the sphere surface, δl, at 0.002D, having similar
characteristics to grid 3 of Rajamuni et al. (2018a). This yielded approximately 1.2
million total cells in a grid. Rajamuni et al. showed that their grid 2 (δl = 0.004D) is
su�cient for accurate simulations predictions, noting that it has approximately 10�16
cells in the boundary layer before the separation, with further re�nement providing little
bene�t.

2.4. Validation of the solver

Rajamuni et al. (2018a) provides several validation studies of the implemented numer-
ical model, including a standard validation study of the vivIcoFoam solver by comparing
the results of VIV of a cylinder at Re = 200 with the results of Leontini et al. (2006).
This solver with a similar computational setup was used for the computational study of
Rajamuni et al. (2016, 2018b) to examine the e�ect of transverse rotation on the �ow-
induced vibration of a sphere. In addition, Rajamuni et al. (2019) used it to examine the
VIV of a sphere having three degrees-of-freedom for Reynolds numbers up to 2000. To
provide further evidence of the validity and accuracy of the solver for this case, �gure 4
shows the prediction of the amplitude response of a completely submerged sphere far
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x

yz

Inlet
u = (U, 0, 0)− ẏs

∇p · η = 0

Inlet
u = (U, 0, 0)− ẏs

∇p · η = 0

Free surface
u = Slip
∇p · η = 0

Outlet

∇u · η = 0
p = 0

u = 0
∇p · η = 0

Figure 2. Schematic of the computational domain and boundary conditions.

(a) (b)

(c)

Figure 3. The unstructured-grid computational domain for h∗ = −0.5: (a) isometric view, (b)
grid at the FS and (c) grid near the sphere surface at x�z plane.

away from a wall boundary as a function of normalized velocity (Un) at Re = 2000
in comparison to experimental curves of Govardhan & Williamson (2005) and Sareen
et al. (2018). As can be seen, the current predictions match well the �ndings of both
Govardhan & Williamson (2005) and Sareen et al. (2018) over both mode I and II
regimes. Although the damping ratio, ζ, was non-zero in those studies, the mass damping
parameter, (m∗+Ca)ζ, was small, and hence they could achieve the saturation amplitude
which is similar to the case of ζ = 0. Note that further convergence studies are provided
in the previously mentioned papers (Rajamuni et al. 2020b, 2019), con�rming that the
predictions are insensitive to further increases in grid resolution, even at this Reynolds
number.

3. Results

The in�uence of a FS on VIV was examined for an elastically mounted sphere at
Re = 2000, by systematically varying the submergence depth from h∗ = −0.75 to 1. A
positive submergence depth corresponds to a fully submerged sphere, while a negative
submerged depth represents a piercing sphere. The mass ratio of the sphere was m∗ = 3
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Vortex-induced vibration of a tethered sphere 9

Un

A∗
Mode I

Mode II

Figure 4. Comparison of the amplitude response of a completely-submerged sphere with results
from the experimental studies of Govardhan & Williamson (2005) and Sareen et al. (2018). The
present study was carried out at Re = 2000 with a sphere of m∗ = 3 and ζ = 0. The mass
damping, (m∗ + Ca)ζ, was approximately 0.03 and 0.0169, for the Govardhan & Williamson
(2005) and Sareen et al. (2018) studies, respectively, where Ca is the added-mass coe�cient.

for the fully submerged cases. However, since the mass ratio was de�ned as the ratio of
the mass of the sphere to the mass of the displaced �uid, it increased from 3 to 19.2,
as h∗ decreased from 0 to −0.75. The VIV response of the h∗ = 1 case was e�ectively
identical to that of a fully submerged sphere placed far away from a wall boundary. For the
h∗ = −0.75 case, the sphere almost remained stationary having no VIV response, except
at U∗ ' 5. Most probably this is because only a very small portion of the sphere was
submerged in the �uid and so the weaker wake forcing was not strong enough to trigger
vibrations. These simulation predictions collapse well with the experimental response
curves of Sareen et al. (2018), as discussed below; however, unlike the experiments, they
provide the detailed near-wake dynamics which are linked to the structural response. No
attempt was made to examine submergence depths of h∗ > 1 or h∗ < −0.75.
The results are presented in the following three subsections. Initially, the e�ect of FS on

the sphere response is discussed with its oscillation amplitude, periodicity and frequency
of the oscillation. Next, the forces exerted on the sphere are given in terms of time-mean
values and �uctuation amplitudes. Finally, the nature of the �ow is analyzed through the
vortical structures in the wake behind the sphere.

3.1. The sphere response

Figures 5 and 6 display the e�ect of the FS on the sphere response, in terms of the
response amplitude, A∗ =

√
2Arms, periodicity of the vibration, λA =

√
2Arms/Amax

(see Govardhan & Williamson (2005)), and frequency ratio of the signal, f∗ = f/fn,
when the sphere was fully and semi-submerged, respectively. Here Arms is the root mean
square of the amplitude and Amax is the highest sphere amplitude recorded, f is the
sphere vibration frequency and fn is the natural frequency of the system taking account
of the in�uence of added mass.

3.1.1. VIV of a fully submerged sphere (Regime I)

For the fully submerged case (Regime I: 0 < h∗ 6 1), the sphere response amplitude
monotonically and gradually decreased as the sphere was moved closer to the FS, as shown
in �gure 5(a). These �ndings reasonably match those of Sareen et al. (2018) in general,
although the Reynolds number of their study varied in the range 5000 6 Re 6 30 000,
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f∗

Mode I

Mode II

(a) (b)

(c)

Regime I: 0 < h∗ 6 1

Figure 5. VIV response of a fully submerged sphere in the reduced velocity range U∗ = [3.5, 14]:
(a) the sphere response amplitude, A∗, (b) the periodicity of the sphere vibration, λA and (c)
the frequency ratio, f∗ = f/fn.

while Re was �xed at 2000 in the present study. However, it is relevant that Govardhan &
Williamson (2005) showed the e�ect of Re is negligible over the range 2000 6 Re 6 12 000
for fully submerged spheres. Therefore, it is reasonable to expect similar observations to
Sareen et al. (2018) despite the Reynolds number di�erence. It can be seen that the
sphere response curves of a fully submerged sphere reasonably reproduce those of Sareen
et al. (2018), as shown in �gure 7(a) for h∗ = 0.5 and 0.0625.

The e�ect of the FS was signi�cant over the mode II regime compared with that for
the mode I regime. This is perhaps not surprising since mode II was found to be less
robust than mode I (Rajamuni et al. 2020b), as the latter is due to the natural resonance
between the normal shedding frequency and the system frequency. As h∗ was decreased,
the maximum response amplitude was smaller and it occurred at a progressively lower
reduced velocity. Nevertheless, the sphere response was highly periodic over both mode
I and II regimes, even when it was in the vicinity of the FS. This is evident from
�gure 5(b), which plots the periodicity of the response λA as a function of U∗, noting
λA = 1 corresponds to a purely periodic signal. As h∗ was decreased, the mode II regime
also narrowed. At higher U∗ values, both the response amplitude and the periodicity
decreased. Especially when the sphere was very close to the FS (at h∗ = 0.0625 and
0.03125), the responses were less periodic (λA ≈ 0.7), and with amplitudes less than
0.2D for U∗ > 10.

As �gure 5(c) shows, the vibration frequency was close to the natural frequency of the
system (f∗ ≈ 1), at each h∗ value. Within the modes I and II regimes, f∗ uniformly
increased with increasing U∗, following the same trend observed for VIV of a blu� body
placed far away from a wall boundary. Nevertheless, beyond the mode II regime, f∗

�uctuated as the response was less periodic, especially at lower h∗ values.
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U∗ U∗

Regime II: −0.4 < h∗ < 0 Regime III: −0.75 6 h∗ < −0.4

A∗

λA

f∗

(a) (b)

(c) (d)

(e) (f)

Mode I

Mode II

Figure 6. VIV response of a semi-submerged sphere in the reduced velocity range U∗ = [3.5, 14]:
(a,b) the sphere response amplitude, A∗, (c,d) the periodicity of the sphere vibration, λA and
(d,f) the frequency ratio, f∗ = f/fn.

3.1.2. VIV of a semi-submerged sphere (Regimes II and III)

When the sphere was positioned so that it pierces the FS, the sphere response ampli-
tude �rst increased, and then decreased, as h∗ decreased from 0 (or the piercing height of
the sphere increased), as found by Sareen et al. (2018). Therefore, to analyse the results,
the semi-submerged range was partitioned into two: Regime II (−0.4 < h∗ < 0) and
Regime III (−0.75 6 h∗ < −0.4).
The sphere response when it was slightly below the FS (at h∗ = 0.03125, plotted in

�gure 5(a) by H) and slightly piercing the FS (at h∗ = −0.125, plotted in �gure 6(a)
by 4) was similar in terms of the response amplitude. However, the response curve
for h∗ = −0.125 was shifted to the right (higher U∗ values) compared with that for
h∗ = 0.03125. In addition, at h∗ = −0.125, the amplitude was roughly 0.6D until it
tapered o� towards the end of the U∗ range. The periodicity of the signal was noticably
lower at this h∗ value, compared to the fully submerged cases.
In regime II, as h∗ decreased from −0.125 to −0.375, the sphere response amplitude

increased monotonically and globally, see �gure 6(a). This e�ect was signi�cant in mode
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(a) (b) h∗ = −0.125

(c)

h∗ = −0.375

(d) h∗ = −0.625

A∗

A∗

Figure 7. Comparison of the sphere response curves, © (color), with the response curves
observed by Sareen et al. (2018), � (gray), at h∗ = 0.5, 0.0625, −0.125, −0.375, and −0.625.

II, while it was barely noticeable in mode I. Moreover, the periodicity of the signal lifted
as h∗ decreased, throughout the mode I and II ranges (see �gure 6(c)). At h∗ = −0.375,
the maximum oscillation amplitude was 0.93D at U∗ = 9.5, which is even higher than
that of a fully submerged sphere placed far away from a wall boundary. Consistently,
Sareen et al. (2018) also found that the sphere vibration is at its strongest when the
submergence depth is −0.375, in agreement with the current predictions.
Figures 7(b) and (c) compare two response curves in regime II with those of Sareen

et al. (2018). Comparatively, their response curves were shifted slightly to the right. Also,
in their experiments, the sphere vibrated with a relatively larger amplitude at higher
reduced velocities. This is likely due to the higher Reynolds number of the experiments.
In regime III, the sphere response amplitude decreased gradually and monotonically

and the lock-in regime narrowed, as h∗ was decreased beyond −0.375. As �gure 6(b)
shows, the e�ect was more signi�cant over the mode II range. The current predictions
for regime III also collapse well with the �ndings of Sareen et al. (2018), except for the
fact that the latter observed two distinct peaks in the vibration response curves. For the
current predictions, there was only a small trace of a secondary peak at U∗ = 10.5, for the
submergence depths h∗ = −0.5 and −0.575. As can be seen from �gure 7(d), the response
curve at h∗ = −0.625 closely matches with that of Sareen et al. (2018) until U∗ = 9,
beyond which they observed a second peak, while there were no signi�cant vibrations in
the current predictions. At this submergence depth, only a small portion of the sphere
is submerged in the water, and consequently, it may be considered to act as an almost
`dry' mass-spring-dashpot system with only weak forcing from the wake. Notably, Sareen
et al. (2018) observed that a slight reduction of the submergence depth (from h∗ = −0.625
to −0.688), caused the sphere to reduce its response amplitude signi�cantly, and cease
vibrations for U∗ > 11. Perhaps also relevant, is that the angle between the sphere and
�uid surfaces in this case is small, so relatively minor surface distortion may lead to larger
e�ects on the wake forcing. At a given submergence depth, the vibration response was
periodic and sinusoidal (λA = 1) in the synchronisation regime, while it was signi�cantly
less periodic outside the synchronisation regime � see �gure 6(d). Piercing of the surface
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τ/T

A/D

Figure 8. Time history of the sphere displacement, A, at h∗ = −0.75 and U∗ = 5. The sphere
undergoes a very long transition period before reaching the asymptotic state. In this case, even
after 320 cycles, it has not achieved this state.

A∗
max

h∗

Regime III

Regime II Regime I

Fully submerged sphere

���

Figure 9. Plot of the maximum vibration amplitude, A∗
max, as a function of the submerged

depth, h∗.

by the sphere did not signi�cantly a�ect the f∗�U∗ variation, as observed for the fully
submerged cases.
When the submergence depth was −0.75, where only one quarter of the sphere height

was in the �uid, only synchronised vibrations were seen at U∗ = 5, 5.5 and 6. At this
depth, the simulations had to go through a very long transition period before reaching
the asymptotic state. This is because the mass ratio of the sphere becomes very large
(m∗ = 19.2) in this case with only a small portion of the solid immersed in the �uid.
Figure 8 displays the time-history of the sphere displacement at U∗ = 5, for 320 oscillation
cycles. The vibration amplitude increases only slowly as the simulation time increases
and is yet to reach the asymptotic state after three hundred oscillation cycles. It is
possible that the simulation would still take hundreds more oscillation cycles to reach
the asymptotic state. These extremely long simulations are very costly and were not
continued further. The sphere response curve for h∗ = −0.75 given in �gure 6(b) was
obtained by considering the last 10 vibration cycles, although the signal has yet to reach
the asymptotic state. However, to con�rm, simulations at other submergence depths
reported in these �gures were integrated long enough to reach their asymptotic states.
For an overall view of the e�ect of FS on the VIV response of a sphere, �gure 9

plots the maximum oscillation amplitude observed at each submergence depth, A∗max,
as a function of h∗. As discussed in section 3.1.1, in regime I, the maximum vibration
amplitude decreased as the submergence depth decreased from h∗ = 1 and sphere was
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moved closer to the FS. This reduction was larger near the FS. As the submergence
depth was decreased further by raising the sphere until h∗ ≈ −0.4, A∗max continued to
increase, indicating the strong e�ect of the FS and its e�ect on the wake. In regime III,
raising the position of the sphere further, A∗max decreased gradually, as h∗ decreased
from −0.4. This decrement of A∗max is probably due to the reducing immersed portion
of the sphere and/or due to the mass ratio of the sphere increasing rapidly, as h∗ is
decreased. Interestingly, for submergence depths of h∗ = −0.25, −0.375, −0.45 and −0.5,
the maximum response amplitude was even larger than that of a fully submerged sphere
placed far away from a wall boundary. Figure 9 also plots the A∗max�h

∗ curve reported
by Sareen et al. (2018). The current prediction matches well with that of Sareen et al.
(2018), especially in Regime III. However, Sareen et al. (2018) found a local minimum of
A∗max = 0.65D near h∗ = 0.2, while the current local minimum was A∗max = 0.6D close
to h∗ ≈ −0.1. Thus, the current prediction of the trend of A∗max deviates slightly from
that of Sareen et al. (2018), around zero submergence depth. This is probably a slight
Reynolds number e�ect, since in the experiments the Reynolds number varies as the
reduced velocity is changed; however, there are also weak surface waves and quasi-steady
surface distortion generated in the experiments which cannot be entirely ruled out as
having some e�ect on the wake.

3.1.3. E�ect of mass ratio on the sphere response

Although the mass ratio was �xed at 3 for the fully submerged sphere simulations,
it varies with the submergence depth when the sphere pierces the free surface. As h∗ is
decreased from 0 to −0.625, the mass ratio gradually increases from m∗ = 3 to 9.48, and
beyond this, as h∗ is decreased further to −0.75, the corresponding mass ratio reaches
19.2. Figure 10 plots the amplitude response curves for di�erent mass ratios at two
representative submergence depths: (a) h∗ = −0.375 for m∗ = 3, 4.38 (the nominal case)
and 10; and (b) h∗ = −0.75 for m∗ = 3 and 19.2 (nominal case). As can be seen from
�gure 10(a), there is very little e�ect of mass ratio over the range 3 6 m∗ 6 10 for the
moderately piercing case (h∗ = −0.375). Note that this mass ratio range corresponds to
submergence depths −0.625 6 h∗ 6 1. In a previous study, Rajamuni et al. (2018a) also
reported a similar �nding for a range of 1.2 6 m∗ 6 10 with a sphere placed far from
a free-surface. However, for simulations at h∗ = −0.75, the sphere response amplitude
was noticeably higher for the mass ratio of 3 than for 19.2. However, because of the high
mass ratio and weaker forcing in this case, the sphere response at m∗ = 19.2 did not
reach the �nal asymptotic state. From these studies, we can assert that the variation of
the sphere response curves is due to the in�uence of h∗ and not the changing mass ratio,
except perhaps for the extreme h∗ = −0.75 case.

3.1.4. Sphere response for 2-DOF movement

As discussed previously, the e�ect of the FS was found to be substantial when the
sphere was free to translate only in the transverse (y) direction. Nevertheless, a lot of
applications exist for systems having 2-degrees-of-freedom (DOF) movement. Thus, to
broaden the applicability to a wider range of FSI problems, a set of simulations was
conducted at h∗ = −0.375, by allowing the sphere to freely move in the streamwise (x)
direction as well. The ratio between the natural frequencies of x and y directions is 1.
Figure 11 compares the responses when the sphere was allowed to have 1-DOF or 2-DOF
movement. The sphere response curves almost coincide on each other, indicating the
e�ect of the FS on the vibration response is not very sensitive to the degrees of freedom,
at least for the highest amplitude piercing case. Hence, results presented in this paper
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(a) (b)

U∗ U∗

A∗

Figure 10. The e�ect of mass ratio on the amplitude response of a piercing sphere: (a)
h∗ = −0.375; and (b) at h∗ = −0.75. The sphere response is found be insensitive to mass
ratio over the range 3 6 m∗ 6 10 (−0.625 6 h∗ 6 1). For the simulations reported in this paper,
as h∗ is decreased from 0 to −0.75, the mass ratio increases from 3 to 19.2.

U∗

A∗

Figure 11. Comparison of the response amplitude of 1-DOF (y-only) and 2-DOF (xy) VIV
responses.

allowing y only motion are tentatively applicable to a sphere have two-degrees-of-freedom
movement.

3.2. E�ect of the free surface on �uid forces

As the sphere vibrated symmetrically, the time-mean lift coe�cient, Cl, was close to
zero at each submergence depth and reduced velocity considered. Thus, an analysis of Cl

was not indcluded here. Figures 12(a), (b) and (c) show the variation of the time-mean
drag coe�cient, Cd, with the reduced velocity at each submergence depth in regimes
I, II and III, respectively. At each h∗, the time-mean drag coe�cient increased through
the synchronisation regime from its pre-oscillatory value, as has been previously found
for a blu� body undergoing VIV (Govardhan & Williamson 1997; Behara et al. 2011;
Rajamuni et al. 2018a, 2019, 2020b). At a given submergence depth, the value of Cd

increased sharply at approximately U∗ ≈ 5, as synchronised vibration is triggered. Then,
this increment generally lessened, as the reduced velocity was increased. For h∗ = 1,
Cd increased approximately 80% at U∗ = 4.5, and this increment of Cd was negligible
at U∗ = 14. As h∗ decreased to 0, the increment of Cd monotonically increased over
the reduced velocity range 4.5 6 U∗ 6 7 and slightly decreased for U∗ > 9.5 � see
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Figure 12. Variation of the time-mean drag coe�cient, Cd for di�erent h∗ values in regime I
(a), regime II (b) and regime III (c).

Cd

U∗

Figure 13. Comparison of the time-mean drag coe�cient at h∗ = 1 with predictions of
Rajamuni et al. (2020b) for a tethered sphere. The Reynolds number of the �ow is 2000 and
the mass ratio is 3 and 0.8, in the current study and the study of Rajamuni et al. (2020b),
respectively.

�gure 12(a). The value of Cd = 1.06 observed at h∗ = 0.03125 and U∗ = 4 was the
largest from all the cases considered in this study.
The variation of Cd with U∗ in regimes II and III was signi�cantly di�erent from

that of regime I. As can be seen from �gure 12 (b) and (c), the Cd�U
∗ curves were
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roughly bell-shaped when the sphere pierces the FS. In regime II, the peak of Cd shifted
progressively to the right (higher U∗), as h∗ decreased. Thus, at h∗ = −0.2 and −0.375,
the peaks of Cd were observed at the heart of mode II. In regime III, the peak of Cd

always occurred close to the peak sphere response of mode II. Consistent with the sphere
response, the peak of Cd monotonically decreased and was observed at a progressively
lower U∗ value, as h∗ decreased � compare �gures 6(b) and 12(c). The above observations
indicate that the response of a piercing sphere is signi�cantly di�erent from the response
of a fully submerged sphere.

The variation of Cd of a fully-submerged elastically-mounted sphere reasonably
matches with that for a tethered sphere, as can be seen from �gure 13, which provides
a comparison of current prediction at h∗ = 1 with that for a tethered sphere from our
previous study (Rajamuni et al. 2020b). Consistently, there were two peaks in the current
prediction in the Cd �U

∗ curve. Nevertheless, the value of Cd was slightly di�erent for
mode II. In the mode II regime, a tethered sphere experiences a large time-mean drag
compared to an elastically mounted one. As can be seen from �gure 12(a), at each h∗

value in regime I, there were two peaks in the Cd �U
∗ curves.

The �uctuating components of the force coe�cients were analysed using the root mean
square (r.m.s.) values. Figure 14 shows the variation of the r.m.s. of the drag and lift
coe�cients (Cd,rms and Cl,rms) with reduced velocity for various submergence depths,
covering all three regimes. In regime I, as evident from �gures 14(a) and (b), there are
sudden jumps in both Cd,rms and Cl,rms associated with the sudden increase in the
amplitude response at the beginning of the synchronisation regimes. Both Cd,rms and
Cl,rms generally decreased as U

∗ increased. However, there were two peaks in the Cd,rms�
U∗ curves, as shown in �gure 14(a). Here, both Cd,rms and Cl,rms roughly decreased with
decreasing h∗, having a signi�cant e�ect in mode II. This is consistent with the reduction
of the response amplitude as the sphere gets close to the FS. Cl,rms dropped back to its
original value at a progressively lower reduced velocity, as h∗ decreased towards 0. The
current predictions of Cl,rms for a fully submerged sphere match well with those of Sareen
et al. (2018).

In contrast to sudden jumps of Cd,rms in regimes I and III, it increased gradually
in regime II, associated with a gradual increase of the sphere response amplitude. The
r.m.s. of the drag coe�cient increased with decreasing h∗, especially in mode II, as did
the sphere response amplitude � see �gure 14(c). Similar to Cd,rms, Cl,rms also increased
with decreasing h∗ in regime II. However, as can be seen from �gure 14(d), the Cl,rms�
U∗ curve of h∗ = −0.125 was di�erent from that of other h∗ values, which have local
peaks near U∗ = 7.5. In regime III, both Cd,rms and Cl,rms decreased with decreasing
h∗, associated with the reduction in sphere vibration amplitude. As observed for fully
submerged cases, Cd,rms�U

∗ curves of semi-submerged cases also consist of two peaks
that can be related to the mode I and II vibrations.

To explore the e�ect of FS on the mode of sphere vibration, the vortex phase, φv, and
total phase, φt, were examined. The total lift force acting on the body, Ftotal, can be
decomposed into to a potential force component, Fpotential = −maÿs(t), that arises due
to the potential added-mass force, and a vortex force, Fvortex, that is due to vorticity
within the �ow domain (Lighthill 1986; Govardhan & Williamson 2005),

Fvortex = Ftotal − Fpotential, (3.1)

here,ma is the added mass due to the acceleration of the sphere. It is the product of added
mass coe�cient and the displaced mass of �uid (ma = CAmd). For a fully-submerged
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Figure 14. Variation of the r.m.s. drag coe�cient, Cd,rms, (a,c,e) and the r.m.s. lift coe�cient,
Cl,rms, (b,d,f), with reduced velocity for various submergence depths in regimes I (a,b), II (c,d)
and III (e,f).

sphere placed far away from a wall boundary, CA = 0.5 and md = (4/3)π(D/2)3ρ, and
thus ma = πD3ρ/12.
As the sphere approaches or pierces the surface, the added mass varies from the fully

submerged value. This can be estimated by setting up a simulation where a constant
force is applied to the sphere and the acceleration is measured. The di�erence between
predicted acceleration (assuming no added-mass e�ect) and the actual acceleration
extrapolated to time zero can be used to calculate the added mass. Figure 15 shows the
predicted added-mass coe�cient as a function of h∗, when the free surface is approximated
with a non-deformable free-slip boundary. Note that the value quickly asymptotes to the
fully submerged value of CA = 0.5 as the sphere is increasingly submerged: at h∗ = 0.5,
CA ' 0.515. The estimated accuracy of the added-mass coe�cient is approximately 1%,
given that the predicted value at h∗ = 9.5 was CA = 0.503 � approximately 0.6% larger
than the accepted value from potential �ow theory.
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Figure 15. Computed variation of the added-mass coe�cient with the submergence ratio for
the zero Froude number (non-deformable free-slip surface) case.
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Figure 16. Variation of the vortex phase, φv, and total phase, φt, with U
∗ (a,c) in regime I and

(b,d) regimes II and III. Shift of φv from 0◦ to 180◦ indicates the vibration mode transitions
from mode I to mode II.
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The vortex and total phases are the phase di�erences between the total and vortex
forces, and the sphere displacement, respectively. The sphere vibration mode transition
between modes I and II was found to be associated with approximately a 180◦ phase
shift in φv (Govardhan & Williamson 2005; Sareen et al. 2018; Rajamuni et al. 2018a,
2020b). The study of Govardhan & Williamson (2000), on VIV of an elastically-mounted
cylinder, showed that a shift in φv or φt of a purely sinusoidal vibration response with
zero damping ratio should be abrupt, as the phase can only be either 0◦ or 180◦ in the
equilibrium state. The switching from φv = 0◦ to 180◦, occurs as the vibration frequency
crosses the natural frequency of the system (f∗ = 1 line). Rajamuni et al. (2018a) also
veri�ed this behaviour for the mode transition of a tethered sphere between modes I and
II.
Consistently, we found that φv switched suddenly from 0◦ to 180◦ with increasing U∗,

indicating a vibration mode transition from mode I to mode II at each submergence
depth, see �gure 16(a) and (b). Govardhan & Williamson (2005) explained that the shift
in vortex phase is due to the shift in the timing of vortex formation. For a fully-submerged
sphere, the mode transition occurred in the range, 4 6 U∗ 6 6. However, for a piercing
sphere, the mode transition was delayed, by expanding the mode I regime. For h∗ < 0,
the mode transition occurred in the range, 7.5 6 U∗ 6 9.
As shown in �gure 16(c) and (d), the total phase was also switched from 0◦ to 180◦,

when the sphere response reached the peak saturation value. Within mode I, the sphere
vibrated with an amplitude of A∗ ' 0.5 by phase aligning with both vortex and total
forces. The sphere vibrated with a large amplitude during the U∗ range when φv = 180◦

and φt = 0◦, for example, at h∗ = 1 and 6 6 U∗ 6 9.5. This regime can be identi�ed
as Mode II. Beyond this regime, both φv and φt were 180◦, and the sphere response
amplitude decreased with increasing U∗. Rajamuni et al. (2018a) also reported a similar
result for an elastically mounted sphere placed far away from a FS. Even for a cylinder,
there are sudden jumps in φv and φt, which are related to the switching of the vibration
branches. Consistent with the current predictions, the upper branch for vortex-induced
vibrtion of a circular cylinder was also observed when φv = 180◦ and φt = 0◦.

3.3. Analysis of vortical structures in wake

Although Sareen et al. (2018) have previously investigated VIV of a sphere close to a
FS experimentally, the �uid-structure interaction was not well explained, as it was not
possible to map the wake in any detail. The streamwise vorticity �eld was obtained on a
single downstream cross plane. From these data, the wake was visualised through spatio-
temporal reconstructions using phase-averaged vorticity �elds. Figure 17 compares one
spatio-temporal reconstruction from Sareen et al. (2018) with the predicted instantaneous
wake visualised by the Q criterion for a similar parameter set. Such reconstructions can
provide only limited information about the actual wake, and are not representative of
any instantaneous snapshot of the wake structure. In particular, as the wake near the
sphere was not quanti�ed, that study could not provide much insight into why the sphere
vibration varies as its position approaches a FS and pierces it. To try to increase our
understanding of the role of the near-wake dynamics on the varying VIV response, here
we carefully examine the near wake for di�erent submergence depths, focusing on both
the vorticity �eld and iso-surfaces of the Q criterion. Both the near wake and far wake are
characterised and analysed, and concrete interpretations for the distinct sphere responses
as h∗ is varied are provided below.
To explore the wake structures behind the sphere, very �ne grids having a large number

of cells near the sphere surface and the downstream were generated for eight submergence
depths, to better resolve the very �ne details of the near-wake vortical structures. Each of
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(a) (b)

Figure 17. Comparison of the spatio-temporal reconstruction of the vorticity �eld from
experiments with the predicted wake structure: (a) Spatio-temporal reconstruction of the
streamwise vorticity crossing the transverse plane at a distance of 1.5D from the sphere rear
surface at (h∗, U∗) = (0.125, 10) from Sareen et al. (2018), and (b) the numerically predicted
wake structures at (h∗, U∗) = (0.0625, 9) visualised by the Q-criterion at Q = 0.01.

these grids contains approximately 5.3 million hexahedral cells. The results presented in
this section were acquired by simulating the �ow on these grids for one to two oscillation
cycles starting from snapshots from the existing simulations.
The wake structure behind the sphere under VIV was found to be modi�ed substan-

tially as the sphere approached the FS and pierced it. To explore the e�ect of the FS,
wake structures were observed at various submergence depths, by �xing the reduced
velocity at U∗ = 9, as the sphere vibration was approximately maximum close to this
reduced velocity in almost all of the cases. In section 3.1, the submergence depth range
−0.75 6 h∗ 6 1 was partitioned into three regimes based on the characteristics of the
sphere response. Covering all three regimes, �gure 18 displays iso-surfaces of the wake
visualised by the Q-criterion in two orthogonal planes for eight h∗ values. In each case,
the sphere is in its peak position of a vibration cycle. As can be seen, the wake behind the
sphere varied gradually, as h∗ decreased from 1; nevertheless, it has a distinctly di�erent
structure in each regime. Hence, partitioning the submergence depth range based on the
sphere response agrees well with the changing wake pattern.

3.3.1. Regime I

At h∗ = 1, the wake behind the sphere consists of two trails of two-sided hairpin
loops, as shown in �gure 18 (a). This wake strongly resembles the wake observed in the
synchronisation regime of a sphere placed far away from a wall boundary by Govardhan
& Williamson (2005); Behara et al. (2011); Rajamuni et al. (2018a, 2020a,b). It also
supports the �nding that the e�ect of FS on VIV of a sphere was insigni�cant for h∗ > 1.
Figure 19 shows the evolution of the wake over a vibration cycle at four h∗ values:
h∗ = 1 & 0.0625 from regime I and h∗ = −0.125 & − 0.375 from regime II. As shown
in the �rst column of �gure 19 and in supplementary movie 1, at h∗ = 1, there are
two large-scale vortex loops shed per oscillation cycle from the opposite sides of the
sphere. Although these two vortex loops were connected near the sphere, they become
disconnected as they convect downstream. The wake is approximately symmetric in the
x�y plane, thus, the wakes viewed from above and below the FS are nearly identical �
compare the structures given in the last two rows of the second column of �gure 19.
As the sphere vibrates in the y direction, the thickness of the wake in the x�z plane is

comparatively small. For h∗ = 1, it spans only 3 diameters, i.e. vortex loops were always
below the FS, and the largest vortex ring was about to connect to the FS; consequently,
the interaction of the FS and sphere vibration was negligible. Thus, h∗ = 1 again can
be identi�ed as the minimum submergence depth, or critical submergence depth, where
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Figure 18. Iso-surfaces of the wake visualised using the Q criterion (Q = 0.01) and coloured
according to the velocity at U∗ = 9, for h∗ = 1, 0.25, 0.0625, −0.125, −0.2, −0.375, −0.45,
and −0.625: (a,b,c) regime I, (d,e,f) regime II, and (g,h) regime III. The asterisks indicate the
presence of a vortex bubble. Flow is from left to right.
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the sphere response is not altered by the FS. Extrapolating from this, for h∗ < 1, vortex
loops connected to the FS are expected to appear.
In regime I, as evident from �gures 18(b) and (c), the wake structures adjust substan-

tially as the distance between the top of the sphere and the FS becomes smaller than
one diameter. For 0 < h∗ < 1, downstream vortex loops are connected to the FS, as
expected. The shape of the vortex loops is also modi�ed, by stretching and twisting.
These observations of vorticity transformation in the current results closely relate to
the case of a vortex ring approaching a FS, as reported by Zhang et al. (1999). They
explained that the mechanisms of vorticity transformation via turning, stretching and
di�usion take on distinct roles in the surface layers: an inner thin viscous layer resulting
from the dynamic free-stress boundary condition at the FS and a thick outer blockage
layer, due to the kinematic boundary condition at the FS. The dominant mechanism in
the blockage layer is vortex turning, which in the viscous layer is due to viscous di�usion,
while vortex stretching remains important throughout. Similar observations of vortex
disconnection and connection at a FS were reported by Bernal & Kwon (1989); Ohring
& Lugt (1991); Gharib & Weigand (1996); Reichl et al. (2005) and Campagne et al.
(2009).
Wakes at h∗ = 0.25 and 0.0625 were moderately dense with small structures, compared

with the wake for the h∗ = 1 case. Consequently, the wake convected downstream in a
zig-zag pattern, displaying many interconnected loops, rather in two distinct trails as for
the h∗ = 1 case. At h∗ = 0.25, the near wake appears less a�ected by the FS, albeit that
the near wake for h∗ = 0.0625 is certainly a�ected by the FS, as the sphere is then very
close to the FS � see �gures 18(b) and (c). For su�ciently large submergence depths,
only the far wake is in the viscous layer, not the near wake. For example, at h∗ = 0.25,
vortex di�usion to the FS is observed approximately 3.75 diameters downstream from
the centre of the sphere, as indicated in �gure 18(b).
In section 3.1.1, we reported a systematic reduction in the sphere vibration amplitude

with decreasing h∗ in regime I. Speci�cally, at U∗ = 9, the sphere vibration amplitude
reduced from A∗ = 0.8 to 0.51, as the submergence depth decreased from h∗ = 1 to
0.03125. However, the reduction of A∗ remains negligible until approximately h∗ = 0.375
� see �gure 9. This reduction of the response amplitude is strictly associated with the
surface layer(s) in which the near wake resides. For large h∗ values, the near wake
is a�ected only by the blockage layer, resulting in a small reduction of the vibration
amplitude. Nevertheless, for small submergence depths, the near wake is a�ected also by
the viscous layer, causing a signi�cant reduction of the VIV response amplitude, due to
substantial modi�cation of the wake with vorticity di�usion at the FS. From this, we can
conclude that the VIV response of a fully submerged sphere is sensitive to the proximity
of the sphere to the viscous layer.
The second column of �gure 19, together with supplementary movie 2, show the

evolution of the wake at h∗ = 0.0625 for one oscillation cycle of the sphere. The wake
has been adjusted signi�cantly compared to the wake at h∗ = 1, especially near the
sphere surface. Obviously, the wake is no longer symmetric through the x�y plane, as
the elongated vortex core that wraps the sphere opens from the FS side � see the last
two rows of the second column of �gure 19. Nevertheless, two large-scale vortex loops are
shed per oscillation cycle, maintaining the VIV response.

3.3.2. Regime II

An interesting wake structure is found when the sphere pierces the FS. Figures 18
(d,e,f) display a visualisation of the wake using iso-surfaces of the Q criterion for h∗ =
−0.125, −0.2, and −0.375, respectively. As can be seen, the wake behind the sphere in
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Figure 19. Evolution of the wake structures for one sphere oscillation cycle in regime I
(h∗ = 1 & 0.0625) and regime II (h∗ = −0.125 & − 0.375). The left most column shows
the position of the sphere oscillation for one period, while the other four columns show the
instantaneous wake structures observed at each of these positions for h∗ = 1, 0.0625, −0.125
and −0.375, respectively. First four rows display wake structures viewed from above the FS,
while the last row displays wake structure viewed from below the FS at T , where T is the length
of a vibration cycle.

regime II consists of a collection of small structures that are more dispersed, compared
with a more regulated wake in regime I. The wake consists of both: vortex tubes, which are
spiralled, elongated and located strictly below the FS; and vortex loops that are twisted,
elongated and connected to the FS. Obviously, the e�ect of the viscous layer is pronounced
everywhere, including in the near wake. Interestingly, a vortex bubble connected to the
FS appeared protruding in the near wake behind the sphere that is not seen for a fully
submerged sphere; these vortex bubbles are indicated by ∗ in �gures 18(d,e,f) and are
shown in more detail later in �gure 20. These vortex bubbles can be recognised as an
added feature in the modi�cation of the hairpin vortex ring of the h∗ = 1 case, indicated
by ∗∗ in �gure 18(a), as the sphere pierces the FS. Readers are encouraged to watch
the supplementary movies, to get a clear view of these vortex bubbles. The evolution of
the wake and the e�ect of this new vortex bubble are discussed below in detail, for the
h∗ = −0.125 case.
The third column of �gure 19 and supplementary movie 3 display the evolution of

the wake for a sphere vibration cycle for h∗ = −0.125. Over a vibration cycle, vortex
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Figure 20. Vortex whirling in the near wake at h∗ = −0.125: (a, b) iso-surfaces of Q criterion
at Q = 0.001 when the sphere in the valley and peak positions, respectively; (c, d) iso-surfaces
of pressure at p = −0.1, −0.2, −0.3, −0.4, −0.5, and −0.6, with the sphere in the valley and
peak positions, respectively. With the sphere is in its valley (peak) position, vortices behind it
whirl in the counterclockwise (clockwise) direction. The second row shows the wake viewed from
below the FS, indicating the asymmetric vortex loops.

Figure 21. Schematic of the action of vortex bubbles over a vibration cycle. Red arrows indicates
the strength of the induced velocity on the sphere. The induced velocity is aligned with the
direction of the sphere motion, providing an additional energy enhancing sphere vibration.

shedding from the opposite sides of the sphere is evident. In the near wake, two large
vortex loops that are connected to the FS are shed per oscillation cycle. These vortex
loops shed asymmetrically, with the attached vortex bubble that consists of many small
vortex tubes and rings, from the outer side. These vortex bubbles evolve in size and
strength during a vibration cycle, and are strongest at 1

2T and T , marked by A and B in
�gure 19, respectively. Figures 20(a) and (b) display close-up views of the near wake, when
the sphere is in its valley (minimum y) and peak (maximum y) positions, respectively.
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Figure 22. Formation of two vortical trails behind the sphere as it turns: (a) streamlines that
passes though a line in the FS that is 1D downstream from the sphere centre, coloured by the
rotation; (b,c) closeup views of the lower and upper vortex spirals shown in (a), respectively;
(d) two streamline spirals viewed below the FS; and (e) the wake visualised by an iso-surface
of the Q criterion at Q = 0.001. The submergence depth is h∗ = −0.125, reduced velocity is
U∗ = 9, and the sphere is in its valley position.

When the sphere moves towards its valley position, the �ow behind the lower part of the
sphere swirls in the counterclockwise direction, creating a vortex bubble located below
the stagnation point. Similarly, as the sphere moves towards its peak position, the �ow
behind the upper part of the sphere swirls in the clockwise direction, creating a vortex
bubble located above the stagnation point. Although these vortex bubbles are initially
small and hard to visualise, they grow in size and become strongest at the peak and
valley positions of the sphere, as indicated in �gure 21. In addition to the induced force
from the hairpin vortex loops, these vortex bubbles also induce a periodic force on the
sphere, enhancing the VIV response. In particular, the vortex bubble that swirls in the
clockwise (counterclockwise) direction generates an induced velocity on the sphere in the
y (−y) direction during the sphere movement towards the maximum (minimum) y. Of
course, at equilibrium, when the amplitude reaches an approximately constant value, the
net power transfer from the �uid to the sphere is zero; so the interpretation here is that
the additional near-wake vortex-bubble structures observed in the piercing case allows
the amplitude to build up to higher values prior to saturation.
Such a vortex bubble is associated with a low-pressure core region that develops behind

the sphere. Figures 20(c) and (d) display 6 iso-surfaces of pressure in the range −0.6 6
p 6 −0.1 when the sphere is in its valley and peak positions, respectively. As can be seen,
the low-pressure cores closely resemble the wake visualised through surfaces of Q. As the
sphere vibrates and reaches its extreme positions, highly swirling �uid forms these vortex
bubbles. As a result, the wake convects downstream with some spiralling structures. For a
clearer visualisation of the swirling motions in the newly attached vortex bubbles, please
refer to supplementary movie 3.
Figure 22(a) shows two views of the streamlines that pass through the line in the x�y

plane that is 1D downstream from the centre of the sphere and lies in the FS when
the sphere is in its valley position. Two counter-rotating spirals of streamlines can be
seen downstream of the sphere at the FS. As shown from �gures 22(b,c,d), two nearby
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streamlines coming from the upstream create these counter-rotating spirals. In one case,
the �uid coming from underneath the sphere enters into the core of the lower spiral, then
spins in the counterclockwise direction, and is later convected downstream by mixing
with the �uid coming below the sphere. In the second case, �uid coming underneath the
sphere rises and convects downstream to a point in the FS, and then returns creating
the upper spiral that spins in the clockwise direction. The �ow exiting from the core of
the upper spiral splits and convects in two directions, creating two trails, as indicated
in �gure 22(a). Simultaneously, two vortical trails can be seen in the wake, as shown in
�gure 22(e).
To extend and clarify this analysis, the vorticity �eld in a plane was also examined.

Figure 23 compares the vorticity contours in the x�y plane that passes through the centre
of the sphere (centre plane) and that in the FS, for various submergence depths. The
sphere is approximately in its peak position. At h∗ = 1, vorticity is close to zero at the FS,
as expected, and not shown in the �gure. Vorticity contours through the centre plane are
modi�ed as h∗ is decreased from 1, which have a signi�cant e�ect for the piercing sphere
cases. Simultaneously, vorticity contours at the FS are also reshaped with decreasing h∗.
In regimes II and III, two counter-rotating vortex pairs that attach to the sphere are
evident at the FS, in agreement with the counter-rotating streamline spirals discussed
earlier � see �gure 23 (e-j). The upper blue contours are larger in size and further away
from the sphere compared to the lower red contours. These structures are also evident in
the centre plane but are smaller in size, indicative of the 3D vortex bubble that is found
in the wake discussed previously.
The characteristics of the counter-rotating vortex pair in the near wake and the two vor-

tex trails in the far wake were analysed to help answer the question, `why does the sphere
response amplitude increase in regime II with decreasing h∗? At the FS, the location,
orientation and size of the vortex pair varied signi�cantly with decreasing submergence
depth. At h∗ = −0.375, both the upper and lower vortices were located closer to the
sphere surface compared to those for h∗ = −0.125. Moreover, the clockwise rotating
upper vortex structure wraps back to attach to the sphere surface, see �gure 23(i).
Consequently, the 3D vortex bubbles, representing recirculating �ow regions attached
to the sphere, when the sphere is in its valley and peak positions, are more prominent
at h∗ = −0.375 compared to h∗ = −0.125 � see the vortex cores indicated by A and
B in the last two columns of �gure 19. Indeed, these vortex bubbles appear to have a
signi�cant in�uence in amplifying the VIV response of the sphere.
Figure 24 displays the evolution of the vorticity �eld at the FS for a cycle of sphere

vibration for h∗ = −0.125, −0.375 and −0.625. The shed vorticity for the h∗ = −0.125
case rolled up into discrete vortical structures that do not reattach to the sphere surface at
each phase of the sphere vibration. The equivalent vortical structures were comparatively
less spread in the near wake at h∗ = −0.375, especially at 0.25T and 0.75T phases
where there are clear signs of reattaching to the sphere surface. As a result, the low
pressure associated with these attached structures causes the sphere to vibrate with a
large amplitude at h∗ = −0.375 compared to h∗ = −0.125. As can be seen from fourth
column of �gure 19 and supplementary movie 4, at h∗ = −0.375, the wake also appears
more regular. These strong vortex bubbles located close to the sphere surface appear to
empower the sphere vibration, as they add a �uctuating component of lift in phase with
the displacement. Hence, the sphere achieves a vibration amplitude that is even larger
than that of a sphere located far from a boundary.
As shown by �gure 23, similar to the h∗ = −0.125 case, a secondary vortex trail is

visible in the wake for all other submergence depths in regime II as well. Generation of
this secondary vortex trail in the wake, as a result of the sphere piercing the FS, can be
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Figure 23. A comparison of vorticity contours in the x�y plane that pass through the
centre of the sphere (middle column) and the free-surface (right column) at U∗ = 9, for
h∗ = 1, 0.0625, −0.125, −0.2, −0.375 and −0.625. The sphere in its peak position.
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Figure 24. Evolution of the vorticity �eld at the FS for one cycle of sphere oscillation at
submergence depths h∗ = −0.125, −0.325 and −0.625. The two solid lines in each image show
peak-to-peak vibration amplitude and indicate the position of the sphere in a vibration cycle.

identi�ed as a disturbance to the VIV response of the sphere. The starting point of this
trail progressively shifts downstream and it is connected to the �rst vortex trail, as h∗ is
decreased. Therefore, its e�ect on the sphere response is more signi�cant at h∗ = −0.125
and is smaller, as the submergence depth decreased in regime II. This may be a reason
for less periodicity of the sphere vibration at h∗ = −0.125.

3.3.3. Regime III

When only a small portion of the sphere is above the FS (h∗ ≈ −0.125), the wake is
dispersed with numerous small-scale structures. However, as the submergence depth is
decreased, the scattered nature of the wake diminishes, and at h∗ = −0.45, the wake
becomes more regular with a zig-zag shape and fewer smaller-scale structures � see
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�gure 18 (d-h). Beyond this, at h∗ = −0.625, the wake consists of two trails of vortex loops
that are connected to the FS. Although only 37.5% of the sphere height is submerged
in the �uid at h∗ = −0.625, two vortex loops are shed per oscillation cycle, contributing
to the formation of two vortex trails, see supplementary movie 5. The wake is more
organised at this submergence depth, as it consists mainly of large-scale structures, and
is somewhat similar to that for h∗ = 1 but trimmed o� by a plane parallel to the x�y
plane � compare �gures 18(h) and (a). However, as the sphere vibration amplitude was
small at h∗ = −0.625, the distance between the upper and lower vortex trails is smaller.
In regime III, the secondary vortex trail seen in regime II completely disappears. As

explained in section 3.1, unlike in the �rst two regimes, the sphere vibrated sinusoidally
in regime III. This is consistent with the more organised wake found in this regime that
consists mainly of larger-scale structures. Nevertheless, a vortex bubble still forms behind
the sphere at h∗ = −0.45, as indicated by the symbol ∗ in �gure 18(g). At h∗ = −0.45,
the size of the vortex bubble is comparatively small, since a smaller portion of the sphere
resided in the �uid. Furthermore, at h∗ = −0.625, the existence of such a bubble is
obscure. To provide a clearer view, �gure 25 displays the near wake viewed from above
and below the FS, and the vorticity �eld at the FS for these two submergence depths, at
the time when the sphere is in its peak position.
Although the vortex bubble becomes stronger with decreasing submergence depth until

h∗ = −0.375, it subsequently becomes increasingly weaker. Simultaneously, the sphere
vibration amplitude increases with decreasing h∗ until −0.375, and then it gradually
decreases as h∗ is decreased further. As discussed earlier, the vorticity �eld at the FS
can be used to investigate the nature of this vortex bubble. At h∗ = −0.375, the positive
and negative vortices forming behind the sphere at the FS plane at the 0.5T and T
phases, respectively, are relatively circular in shape and located immediately behind the
sphere � see �gure 23. This combination results in the maximum sphere vibration. As
h∗ is decreased to −0.45, these vortices become even more elongated in the streamwise
direction, although strong circulation is still evident, see �gure 25(c). At h∗ = −0.625,
the shape of the near-wake vortex structure dramatically changes. Both positive and
negative vortex structures are elongated in the streamwise direction, are oriented close
to each other, and form away from the rear of the sphere � see �gure 25(d). These features
are consistent the low-level vibration observed at smaller submergence depths.
Unlike the almost sudden wake transition between regimes I and II, the wake transition

between regimes II and III is more continuous. This is to be expected as the sphere is
semi-submerged in both regimes II and III. As discussed in section 3.1.2, the sphere
response amplitude decreases with decreasing h∗ in regime III. This reduction of the
sphere response amplitude can be directly attributed to the reduction of the energy that
the sphere can receive from the �uid, as the submerged surface area of the sphere reduces
with decreasing h∗. Because of the convex shape of the sphere, two hairpin-type vortex
loops shed from the opposite sides of the sphere in a vibration cycle persist even at a
very small submergence depth. These are associated with the �uid-structure interaction,
and hence sphere vibrations persist, although they are much smaller, even with only 25%
of the sphere height immersed in the �uid.

3.3.4. Energy transfer

The rate of energy transfer (or `power input') from the �uid to the sphere was examined,
to further investigate why the strength of the VIV response varies in each regime. The
normalized rate of energy transfer can be obtained by

ėv = Cvortex ∗ ẏ, (3.2)
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Figure 25. Near wake in regime III: (a, b) wake visualized Q criterion at Q = 0.001 at
h∗ = −0.45 and −0.625, respectively; (c, d) vorticity �eld at the FS at h∗ = −0.45 and −0.625,
respectively. The second row shows the wake viewing below the FS. Sphere is at its peak position.
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Figure 26. Time history of the sphere response amplitude, A∗, and energy transfer to the
sphere, ėv: (a) at h

∗ = 1 & U∗ = 8 and (b) at h∗ = 0.5 & U∗ = 6. The energy transfer over a
vibration cycle is positive during the transient response.

as described by Govardhan & Williamson (2005), where Cvortex = 2Fvortex/(ρπU
2D2) is

the vortex force coe�cient, and ẏ is the transverse velocity of the sphere normalised by
the diameter. Figure 26 displays the time history of ėv and response amplitude for two
h∗ and U∗ combinations. As can be seen, the energy transfer is mostly positive during
the transient response for both cases, whereas it �uctuates about zero in the asymptotic
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Figure 27. Plots of the net energy transfer per cycle, ėv,T , and the response amplitude, A∗ at
the corresponding cycle at U∗ = 8 and h∗ = 1, 0.5, 0.125, 0.03125, −0.125, −0.375, −0.5.
The value of ėv,T strictly positive in the transient response, as h∗ decreased the variation of the
maximum value of evt collaps well with the varition of A∗

max.

states. This positive energy transfer during the period of amplitude growth essentially
fuels the VIV response, resulting in the amplitude increasing until the average energy
transfer over a cycle reduces to zero, as the response saturates and the �ow about the
sphere changes concurrently. For the following discussion, it is useful to de�ne the net
energy transfer rate (per cycle) as

ėv,T =

∫ T

0

Cvortex ∗ ẏ dt. (3.3)
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(a) (b)τ = 115.8 τ = 249.0

Figure 28.Wake visualized using the Q criterion at Q = 0.005 at h∗ = −0.375 and U∗ = 8: (a)
and (b) at the time instances shown in the bullseye of �gure 27 (f), which corresponds to the
transient and saturated responses, respectively. For a piercing sphere, the formation of swirling
vortex bubbles behind the sphere is evident at the transient response as well.

With the assumption of sinusoidal sphere vibration and sinusoidal vortex force with
a phase di�erence of φv, one can show that ėv,T = C sin(φv), where C is a constant.
The vortex phase of this study is either approximately 0◦ or 180◦ (see �gure 16). Thus
ėv,T is ideally = 0 at the asymptotic state. Nevertheless, even though the asymptotic
response is nearly sinusoidal, the vortex force is not close to a pure sinusoidal signal in
many cases. Thus, for cycles after the sphere vibration saturates, ėv,T can be expected
to vary around zero.

Figure 27 displays the variation of net energy transfer per cycle and the response
amplitude at the corresponding cycle at eight submergence depths (U∗ = 8). In each
case, ėv,T is positive and increased with the simulation time over the transient stage,
providing the energy to achieve a large saturation amplitude. Once the sphere vibration
reached saturation, ėv,T �uctuated around zero. The �uctuation of ėv,T was signi�cantly
larger in regime II, where the sphere response was far from sinusoidal � see �gures 27(e)
and (f).

The variation of ėv,T with submergence depth over the transient growth phase could
be a useful predictor of the asymptotic response. Thus, we examined ėv,T values that
correspond to the transient response of the signal for this analysis. For h∗ = 1, during
the transient response, ėv,T reached a maximum value of 4. This maximum value of ėv,T
steadily decreased, as h∗ was decreased in regime I, consistent with the VIV response
amplitude monotonically decreasing � see the �rst column of �gure 27. However, as h∗

was decreased through regime II, the maximum value of ėv,T increased to a value of
approximately 6 at h∗ = −0.375, see �gure 27(e) and (f). This increase of ėv,T , perhaps
together with the increased number of cycles over which the amplitude is allowed to grow,
essentially provides more energy to the sphere so that it can vibrate with an even larger
vibration amplitude than for the fully submerged case. As h∗ was decreased further in
regime III, the maximum value of ėv,T reduced indicating a smaller power input. Indeed,
the saturated VIV amplitude across each regime is strictly dependent on the maximum
energy transfer per cycle the sphere receives during the transient growth phase.

Given this analysis, it seems reasonable to argue that it is the added feature of counter-
rotating vortex bubbles in the wake of a piercing sphere that essentially leads to the
additional energy transfer per cycle to maintain the higher amplitude response compared
to that for fully submerged sphere. Also supporting this conclusion is that these vortex
bubbles can be observed from the beginning of the transient response � see �gure 28 and
supplementary movie 6.
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4. Conclusions

The e�ects of the proximity to a free-surface on transverse vortex-induced vibration of
a sphere were investigated numerically at a Reynolds number of 2000. Past studies have
indicated that this is su�ciently large to be relevant to many previous experimental
studies discussed in the introduction. The free-surface boundary was modelled with a
slip wall, as the e�ect of low Froude number in previous experiments (Sareen et al. 2018)
was found to be negligible on the VIV response. To determine the in�uence of the FS
on sphere vibration, a comprehensive set of simulations was conducted over the reduced
velocity range U∗ ∈ [3.5, 14] and the submergence depth range h∗ ∈ [−0.75, 1]. The
submergence depth range was itself partitioned into three regimes delineated by h∗ = 0
and −0.375, based on the characteristics of the sphere response and the wake. The major
�ndings of this study over the previous experimental study of Sareen et al. (2018) can
be summarised as follows.

The e�ect of the viscous layer (associated with the zero stress condition) is signi�cant
on the VIV response of a fully submerged sphere. The submergence depth h∗ = 1 was
identi�ed as the critical depth such that the sphere response is not altered by the FS.
The formation of two streets of hairpin vortex loops was observed in the wake, as found
in previous experimental and computational studies of a sphere placed far away from a
wall boundary. Since the thickness of the wake in the vertical direction was restricted to
3 diameters, vortex loops remained strictly below the FS and the in�uence of the FS on
the sphere response was minimal. As the submergence depth was decreased in regime I
(0 < h∗ 6 1)), i.e. moving the sphere towards the surface, the wake was modi�ed under
the in�uence of the surface, and as a result, the sphere response amplitude decreased
globally and monotonically, with a greater e�ect at higher reduced velocities. However,
the relative reduction of maximum response amplitude was less than 5% until h∗ = 0.375,
and it reached approximately 25% for h∗ ≈ 0. The reduction of response amplitude
was associated with the simultaneous reduction of the �uctuating component of the lift
coe�cient and the reduced energy transfer per cycle during the transient growth phase.
Nonetheless, the mean drag coe�cient monotonically increased with decreasing h∗. As
seen for a vortex ring approaching a FS, the vortex loops are twisted and stretched under
the in�uence of the thick blockage layer, and large downstream vortex loops connect to
the FS through di�usion. The in�uence of the zero stress condition at the surface on
the near wake was only pronounced for the range 0 < h∗ < 0.375, and hence, the
sphere response was a�ected strongly for submergence depths close to zero. From these
observations, we can conclude that the e�ect of the viscous layer (associated with zero
stress) on VIV of a fully submerged sphere is more signi�cant than that of the thicker
blockage layer (preventing �ow through the surface).

Two counter-rotating vortex bubbles formed on opposite sides of a piercing sphere being
strongest close to the positive and negative peak displacements, as it vibrated during a
cycle. As the submergence depth was decreased beyond zero with the sphere piercing the
FS, both the near- and far-wake structures were modi�ed signi�cantly. Nevertheless, as
found for a fully submerged sphere, two vortex loops connected to the FS were shed in
each vibration cycle for a piercing sphere, leading to the extra transfer of �uid energy
to the sphere for large amplitude VIV to persist. However, in this regime attached
vortex bubbles formed in the near wake, consisting of �ner-scale vortical �ow features.
Previously unseen, these counter-rotating vortex bubbles were only clearly visible in the
instantaneous �ow �eld when the sphere was close to times of maximal displacement.
However, these vortex bubbles were clearer in the dynamic �eld. They provided an
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additional induced force enhancing the VIV response. The characteristics of the wake
and these vortex bubbles were highly dependent on the submergence depth.
Vortex bubbles strengthen the VIV response in regime II. In regime II (−0.375 6 h∗ <

0), with less than half of the sphere piercing the FS, the swirling of the �uid forming
a vortex bubble resulted in the generation of a secondary vortex trail. These secondary
vortex trails act as a disturbance to VIV, leading to a less periodic VIV response. As
h∗ was decreased in regime II, the vortex bubbles strengthened and the e�ect of the
secondary vortex trail lessened; consequently the sphere response amplitude increased
to be above even that of a fully submerged sphere. The predicted trend was similar
to that reported from experimental studies by Sareen et al. (2018); however, they did
not examine the near-wake structure to provide a physical explanation. By carefully
analysing the near-wake structure and evolution, we can conclude that the development
of two vortex bubbles per vibration cycle enhances VIV, leading to larger amplitude
vibration than for the fully submerged case, as they enhanced the energy transfer rate
during the transient response.
Strength of the vortex bubbles reduces in regime III. As the submergence depth was

decreased below −0.375, i.e. in Regime III, the size of the vortex bubbles reduces, due
to the reduction of the portion of the sphere immersed in the �uid. Together with the
overall weakening of the wake, the reduced vortex bubbles result in less energy transfer
with decreasing h∗, resulting in a reduction in the saturated sphere response amplitude.
As well as the �uctuating components of the drag and lift coe�cients, the time-mean drag
coe�cient and energy transfer rate during the transient response decreased in regime III
with decreasing h∗.
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