
Transverse vortex-induced vibration of a circular cylinder on a
viscoelastic support at low Reynolds number

Rahul Mishraa,c,d,∗, Atul Sotib, Rajneesh Bhardwajc, Salil S. Kulkarnic, Mark C. Thompsond

aIITB-Monash Research Academy, IIT Bombay, Mumbai, 400076, India
bDepartment of Aerospace Engineering, IIT Kanpur, Kanpur, Uttar Pradesh 208016, India

cDepartment of Mechanical Engineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
dFluids Laboratory for Aeronautical and Industrial Research (FLAIR) Department of Mechanical and Aerospace

Engineering, Monash University, Clayton 3800, Australia

Abstract
The effect of a viscoelastic-type structural support on vortex-induced vibration (VIV) of a circular
cylinder has been studied computationally for a fixedmass ratio (m∗ = 2.546) and Reynolds number
(Re = 150). Unlike the classical case of VIV where the structural support consists of a spring and
damper in parallel, this study considers two springs and one damper, where the two springs are
in parallel and the damper is in series with one of the springs. This spring/damper arrangement
is similar to the Standard Linear Solid (SLS) model used for modelling viscoelastic behaviour.
The viscoelastic support (SLS type) is governed by the following two parameters: (a) the ratio of
spring constants (R), and (b) the damping ratio (� ). The focus of the present study is to examine
and understand the varied response of the cylinder to VIV as these parameters are varied. For
small � and R, the cylinder response shows characteristics similar to the classical case, where the
amplitude response is composed of an upper- and the lower-type branch. The presence of upper-
type branch at low Re is evident through the peak lift force, frequency and phase response of the
cylinder. As the damping ratio is increased, the vibration amplitude decreases and hence the upper-
type branch disappears. There exists a critical value of � = 1 beyond which the amplitude again
increases asymptotically. The non-monotonic variation of amplitude response with � is presented
in the form of the "Griffin plot". The amplitude, force, frequency and phase-difference response
of cylinder were found to be mirror symmetric in log(� ) about � = 1. In addition, the effect of R
at the critical value of damping, � = 1, was studied. This show that the amplitude decreases with
an increase of R, with suppression of the response branches for high R values. The results suggest
that a careful tuning of the damping may be effectively employed both to enhance power output for
energy extraction applications or to suppress flow-induced vibration.
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Nomenclature

Δf ∗n Increment in frequency for hysteresis computation.

� Kinematic viscosity of the fluid

� Fluid density

� Damping ratio ( = c∕2
√

km)

A∗y,max Amplitude of cylinder oscillation

c Damping coefficient

CA Added mass coefficient for transverse oscillations in still fluid, CA = 1 for circular
cylinder

CL Lift force per unit length of cylinder along transverse direction (= 2Fy∕�DU 2
∞)

D Cylinder diameter

fn Structural natural frequency based on k ( = 1
2�

√

k∕m)

fv Natural vortex shedding frequency of a non-oscillating cylinder

Fy Force exerted on cylinder in the transverse direction

fy Transverse oscillation frequency of cylinder

Fint Internal force due to spring-damper system.

fs Structural natural frequency of system

k Equilibrium stiffness of the spring

kn Non-equilibrium stiffness of the spring

m Mass per unit length of cylinder

m∗ Mass ratio per unit length of cylinder ( = 4m∕��D2)

R Ratio of non-equilibrium stiffness to equilibrium stiffness of the spring, (= kn∕k)

Re Reynolds number (= U∞D∕�)

U∞ Free stream velocity

Ur Reduced Velocity (= U∞∕fsD)

Superscript ∗ represents nondimensional quantity
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1. Introduction

Vortex-induced vibration of a cylinder, and in particular the case where a rigid circular cylinder
is elastically mounted and constrained to oscillate transversely to a free stream, has been well-
studied and reported on, as can be seen from comprehensive reviews of Sarpkaya (1979), Bearman
(1984), Parkinson (1989), Sarpkaya (2004), Williamson and Govardhan (2004), Williamson and
Govardhan (2008), Bearman (2011) and Wu et al. (2012). Vortex-induced vibration (VIV) occurs
when vortex shedding exerts an oscillatory or quasi-oscillatory force on a structure causing it to
vibrate. Indeed, elastically mounted structures near resonance develop flow-induced oscillations
by extracting energy from the flow. In turn, the oscillations of the structure modify the flow and
give rise to a coupled nonlinear interaction.

In general, the VIV response of a circular cylinder in uniform flow is dependent on the Reynolds
number, themass ratio, the damping ratio and the reduced velocity. The Reynolds number is defined
as Re = U∞D∕�, where U∞ is the free stream velocity, D is the cylinder diameter and � is the
kinematic viscosity of the fluid. The mass ratio is defined as m∗ = 4m∕��D2 where m and � are the
mass per unit length and the fluid density, respectively. The damping ratio is the ratio of damping
to the critical damping, given by � = c∕2

√

km, where k is the spring stiffness. Finally, the reduced
velocity as defined by Sumer et al. (2006) is the ratio of the wavelength of the cylinder trajectory to
its diameter and is given by Ur = U∞∕fsD, alternatively, it can be thought of as a non-dimensional
structural oscillation period, hence (VIV) resonance occurs when this matches the shedding period,
typically when Ur ∼ 5 for a circular cylinder.

Most past studies have focused on one-degree-of-freedom cross-flow VIV of a circular cylin-
der. Vortex shedding occurs due to the presence of two separating shear layers that subsequently
roll up alternately into low pressure discrete vortical structures inducing oscillation in a direction
transverse to the free stream. If the vortex-shedding frequency is close to the natural frequency
of the cylinder, large oscillation amplitudes occur. Indeed, such a response can occur over a wide
range of reduced velocities (Bearman (1984)). This reduced velocity range over which the struc-
ture undergoes near-resonant vibration is referred to as the lock-in range. The amplitude of cylinder
vibration can undergo jumps as the reduced velocity is varied, which give rise to different response
branches. For a low mass-damping parameter (product of mass ratio and damping ratio, m∗� ),
Khalak and Williamson (1999) experimentally found three response branches: the initial, upper
and lower branches as the ratio of vortex-shedding frequency to structure natural frequency was
varied (fv∕fn). At higher m∗� , they found only two different branches: the initial and the lower
branch. These branches are identified by the jumps in the amplitude response. The maximum vi-
bration amplitude was observed to be close to one cylinder diameter (D) in the upper branch, with a
relatively lower amplitude of oscillation occurring in the lower branch. A 2S vortex shedding pat-
tern (two single vortices shed per cycle, i.e. a von-Karman street-type wake) in the initial branch, a
2P mode ( two vortex pairs of opposite sign shed per cycle of vibration) in the lower branch and a
2P ∗ mode (similar to 2P except that vortex pairs in one of the half cycles convect away from in front
of the body) in the upper branch (Williamson and Roshko, 1988). At low m∗� , the mode change
between initial and upper response branches involves hysteresis, whereas intermittent switching
of modes occurs at the upper and lower branch transition. Both the transition jumps also show
jumps in amplitude and frequency. The upper-to-lower branch transition is also characterized by a
jump from 0◦ to 180◦ in the phase difference between lift force and displacement signals, whereas
the phase difference is 0◦ for both the initial and the upper branch. The peak vibration amplitude
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is dependent on the mass-damping ratio, m∗� , whereas the synchronization regime (measured by
the range of reduced velocity Ur) is primarily determined by m∗. Khalak and Williamson (1997)
showed that for high m∗� , the frequency of cylinder oscillation ( fy ) was close to structural natural
frequency (fn). At low m∗� , fy is higher than fn in the synchronization regime, yet fy remains
below the vortex-shedding frequency, fv. In the lock-in or synchronization region, the frequency
of cylinder vibration was found to be same as the vortex-shedding frequency, i.e. fv ≈ fy.

The majority of the numerical studies have been performed at low Re using two-dimensional
simulations. Blackburn and Henderson (1996) presented simulation results at Re = 250, and
showed a lower maximum amplitude of approximately 0.6D. They also observed a chaotic re-
sponse over a range of fn∕fv and only the regular 2S mode, implying that the 2P mode need not
necessarily be associated with the large amplitude response plateau in the lock-in regime. The
branching behaviour was numerically investigated by Leontini et al. (2006b) at Re = 200 who
found two synchronous response branches that resembled the upper and lower branches, supported
by instantaneous amplitude rather than peak amplitude. They also suggested that the branching
at higher Re was not the product of three-dimensionality, which was contrary to Govardhan and
Williamson (2000) who implied that the upper branch does not occur at lowRe for two-dimensional
flow. Pan et al. (2007) and Guilmineau and Queutey (2004) performed simulations for the low
mass-damping case, with motion constrained to transverse oscillations to a free stream by employ-
ing a two-dimensional Reynolds-averaged Navier-Stokes (RANS) model based on the Shear-Stress
Transport (SST) k − ! turbulence model. They were able to get the initial and lower branches but
the results did not match the upper branch found experimentally. CFD studies of VIV of a circular
cylinder have also been conducted using three-dimensional numerical models. Wang et al. (2017)
investigated two-degree-of-freedom VIV of a circular cylinder with varying in-line to cross-flow
natural frequency ratios at low mass-ratio (m∗ = 2) at Re = 500. Gsell et al. (2016) simulated
2DOF VIV of a circular cylinder at Re = 3900 through direct numerical simulation of the 3D
Navier-Stokes equations. Notably, the maximum transverse amplitude and structural response com-
pared well with experimental observations. Pastrana et al. (2018) modelled VIV using large-eddy
simulation (LES) at subcritical Reynolds numbers (Re = 3900, 5300, 11 000).

The effects of damping on the vibration response is important as damped VIV can be harnessed
for converting flow energy into electrical energy. A cylinder undergoing VIV has kinetic/potential
energy that can be extracted using a power transducer such as an electromagnetic generator (Soti
et al. (2017)). In the past, the effects of damping on the response behaviour of the system were
explored by Vickery and Watkins (1964); Scruton (1963), who reported peak amplitudes in air
and water against a mass-damping parameter (m∗� ). In early studies, Feng (1968) reported the
effects of damping on both the amplitude and frequency response. They used an electromagnetic
eddy-current-based damper for applying different damping values to the system of circular and D-
shaped cylinders in a wind tunnel. Due to the high mass-damping parameter, the amplitude was
small and there were no discontinuities; two-branch response behaviour (the initial and the lower
branches) was observed. Recently, Klamo et al. (2005) studied the damped system experimen-
tally using a controlled magnetic eddy current technique to provide variable damping, and reported
that the maximum amplitudes (A∗y,max) depend not only on damping but also on Reynolds number.
Subsequently, Klamo et al. (2006) studied the effects of controlled damping on the amplitude and
frequency response, and showed that a VIV system transitions from a two-branch to three-branch
response as damping is varied from high to low. They also observed three distinct branches for the
frequency response, analogous to that seen for the three amplitude branches. They reported hystere-
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sis between the lower branch and the desynchronized region at low Reynolds numbers. Blevins and
Coughran (2009) experimentally measured the steady-state response of the elastically supported
cylinder for six values of damping, for distinct Reynolds numbers from Re ∈ [170, 150 000]. They
observed monotonic decay of maximum amplitude along the transverse direction that was a func-
tion of damping for a constant Re. Soti et al. (2018) studied experimentally the effect of damping
on the VIV response at mass ratio 3 for Reynolds numbers of 1200 to 11 000. Unlike previous
studies, they relied on the frequency response for branch identification and argued for the presence
of the upper branch for a much larger value of mass-damping then previously reported.

All the aforementioned work was done for a circular cylinder elastically supported by a spring-
damper system in parallel. In the spring-damper parallel system (also referred to as the Kelvin-Voigt
model (Findley and Davis, 2013)), the amplitude response decreases with increasing damping due
to an increase in the dissipation of the mechanical energy of cylinder by the damper. de Lima
et al. (2018) have proposed the use of a 1-DOF viscoelastically-mounted cylinder in fluid flow at
Reynolds number 10 000 to suppress the vibrations induced by vortex shedding. Importantly, the
frequency and temperature play a significant effect on viscoelastic properties, and were considered
in that investigation.

However, recent studies by Mishra et al. (2019) on the Standard Linear Solid model (SLS) of
viscoelasticity motivated us to use the two springs and damper system as shown in Fig. 1. They have
simulated the fluid-structure interaction (FSI) of a viscoelastic thin plate attached to the lee side of
the cylinder for Re = 100. The displacement amplitude was found to be a non-monotonic function
of structural damping. The SLS spring-damper system behaves similarly to the parallel spring-
damper system up-to critical damping ratio (�c). However, on a further increase of damping ratio,
the amplitude response does continue to decrease. It will be shown that the higher damping ratio
(� > �c) response is similar to that at lower damping ratio (� > �c). The non-monotonic vibration
amplitude response with damping ratio is summarized in a "Griffin Plot" presented later in the
paper. To the knowledge of the authors, the dynamical behavior of an SLS spring-damper system
at low mass ratios has received little or no attention in the literature, yet it provides an effective
means of tuning the amplitude response for VIV suppression or energy extraction applications.

Fig. 1: Schematic of the spring + spring-damper system used in present VIV study.

The layout of this paper is as follows. In section 2, the governing equations for the structure (SLS
spring-damper system), fluid flow, and coupling of the flow and structural solvers are provided.
The numerical approach to solve this coupled system is also briefly discussed. In section 3, a
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mathematical model of a simple spring-dashpot model of SLS is presented. This model helps to
predict the complex phenomenon of VIV for the SLS system. The simulation results are given in
section 4 as a function of the two governing parameters ofn the SLS model. These parameters are:
(a) damping ratio � , and (b) the ratio of spring constants of the two springs (R). The influence
of these parameters on the amplitude of the vibration is been discussed. The branching based on
the vibration amplitude response and maximum lift force, which leads to the beginnings of the
upper-type branch at low Re is also discussed.

2. Problem definition and methodology

2.1. Governing equations
In the present work, a circular cylinder of diameter D is placed in a free-stream flow. The

cylinder mounted vertically on viscoelastic support, as shown in Fig. 2, is free to oscillate in the
transverse direction, perpendicular to flow. The flow is assumed two-dimensional (2D) based on
the considered Reynolds number. The fluid is assumed to be incompressible and viscous, while the
motion of the cylinder behaves as a spring-mass-damper system as depicted in Fig. 1. Fluid flow is
modelled in the moving reference frame attached to the cylinder. The governing equations are the
non-dimensional Navier-Stokes equations in an accelerated frame of reference

)ui
)t
+
)ujui
)xj

= −
)p
)xi

+ 1
Re

)2ui
)x2j

+ ai, (1)

)ui
)xi

= 0, (2)

where ui and p are the fluid velocity and kinematic pressure, respectively, and ai is the acceleration
of the reference frame attached to the cylinder. The free-stream velocity U∞ and the cylinder di-
ameter D are used as velocity and length reference scales to non-dimensionalise the system. The
motion of the cylinder spring-damper system is derived as follows.

The constitutive equation of the three-element system shown in Fig. 1 is given by

Fint +
c
kn

dFint
dt

= ky + c(1 + k
kn
)
dy
dt
. (3)

Here, Fint is the internal force due to spring-damper system. Combining the constitutive equation
with the dynamic equation, md2y∕dt2 = Fy − Fint, the differential equation of the motion of the
cylinder is

mc
kn
d3y
dt3

+ m
d2y
dt2

+ c(1 + k
kn
)
dy
dt
+ ky = Fy +

c
kn

dFy
dt

. (4)

Using � = c∕2
√

km, fn =
1
2�

√

k
m
and R = kn∕k, eq. (4) can be expressed as:

�
R�fn

d3y
dt3

+
d2y
dt2

+ 4��fn(1 +
1
R
)
dy
dt
+ 4�2f 2n y =

Fy
m
+

�
�fnmR

dFy
dt

. (5)

Next, incorporating non-dimensional variables, Y ∗ = y∕D, t∗ = U∞t∕D, f ∗n = Dfn∕U∞, m
∗ =
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4m∕��D2, and CL = 2Fy∕�DU 2
∞, the dimensionless structural differential equation reduces to:

Y⃛ ∗ +
R�f ∗n
�

Ÿ ∗ + 4�2f ∗n
2(R + 1)Ẏ ∗ +

4�3Rf ∗n
3

�
Y ∗ =

2Rf ∗n
�m∗

CL +
2
�m∗

ĊL. (6)

Here Y ∗ and CL corresponds to the displacement and lift force, respectively. Also, Y⃛ ∗, Ÿ ∗, Ẏ ∗ and
Y ∗ are the non-dimensional jerk, acceleration, velocity and displacement of the cylinder. Addition-
ally, f ∗n is the non-dimensional frequency, where the natural frequency of the system in a vacuum
is fn =

1
2�

√

k∕m, and m∗ is mass ratio. The mass ratio is defined as m∗ = 4m∕��D2 where m and
� are the mass per unit length and the fluid density, respectively.

The coupled fluid-solid system is described by the incompressible Navier-Stokes equations,
given by eq. (1) and eq. (2), together with the equation of motion for the cylinder expressed by
eq. (6).

2.2. Numerical approach
The simulations employed a non-deformable movingmesh fixed to the cylinder causing an extra

non-inertial acceleration term to be added to the right-hand side of the Navier-Stokes equations
(refer eq. (1)) to account for the frame acceleration. A spectral-element technique is employed for
the spatial discretisation (e.g., see Karniadakis and Sherwin, 2013). The implementation of the
spectral-element method is given in Thompson et al. (1996, 2006), hence only a brief description
of the approach is given here.

The spatial domain is discretized into quadrilateral elements, which can have curved sides, thus
accurately accounting for the cylinder curvature. Within each element, the velocity and pressure
fields are represented by high-order tensor-product Lagrangian polynomial shape functions. The
node points of these polynomial functions are given by Gauss-Lobatto-Legendre quadrature inte-
gration points. The time integration of the spatially discretised equation was dealt with by a three-
step time-splitting scheme that sequentially accounts for the advection, pressure and diffusion terms
of Navier-Stokes equations. First, the velocity field is updated taking into account advection and
cylinder acceleration using an explicit third-order Adams-Bashforth method. Second, the pressure
step accounts for the effect of the pressure gradient on the velocity field. This proceeds by taking
the divergence of the update step to form a Poisson equation for the pressure forced by the diver-
gence of the velocity field after the advection step. Once the pressure is evaluated (through LU
decomposition), the intermediate velocity is updated resulting in a divergence-free field. The final
substep corrects the velocity for the effect of diffusion over the timestep. The substep employs the
Crank-Nicholson scheme for the update. A detailed implementation of time-splitting scheme can
be found in Thompson et al. (2006).

The structure motion is solved by a predictor-corrector iterative method. In the first iteration,
the motion is predicted explicitly and then is corrected through several corrector iterations. This
is done in a coupled manner with the Navier-Stokes solver. The details of the coupled predictor-
corrector Navier-Stokes iterations employed are presented in Leontini et al. (2006a); Rajamuni et al.
(2018).

2.3. Computational domain and boundary conditions
As indicated above, we investigate the VIV of a cylinder at low Reynolds number under vis-

coelastic support. A schematic of the computational domain is shown in Fig. 2. The cylinder is
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constrained to move in the transverse direction to the flow. We explore the following parameter
ranges: damping ratio – � ∈ [0.001, 10]; Spring stiffness ratio – R ∈ [0, 10]. The Reynolds num-
ber is fixed at Re = 150, below the transition to three-dimensional flow even for the stationary
cylinder.

The computational domain is shown in Fig. 2. The inlet is semicircular with diameter 30D
and the far-field extends 25D in the downstream direction. This leads to a blockage ratio of ap-
proximately 3%. The vibrating cylinder remains at the centre of the semicircle. The mesh consists
of 518 spectral elements, concentrated towards the cylinder and in the downstream wake to cap-
ture the higher gradients in those regions. The flow boundary conditions are shown in Fig. 2, and
are described as follows. The background fluid velocity is prescribed at the inlet, top, and bottom
boundaries as u = U∞ and v = −vcyl, with u and v are the x and y velocity components, respectively,
and vcyl is the cylinder velocity in the absolute frame. At the surface of the cylinder, the no-slip
condition is imposed. The pressure boundary condition is obtained by taking the dot product with
the boundary surface normal and the (vector) Navier-Stokes equation, which, upon rearranging,
gives an expression for the normal pressure gradient (Karniadakis et al., 1991). This is used to set
the pressure boundary condition at both the cylinder and side/inflow boundaries. At the outflow
boundary, the pressure is set to a constant and the normal velocity component is set to zero.

Fig. 2: Schematic of the computational domain and the boundary conditions for the vortex-induced vibration
problem.

2.4. Resolution studies
All VIV simulations presented in the paper were carried out based on 6 × 6 nodes per elements

for the macro-elements of the mesh. To demonstrate that this resolution is sufficient to resolve the
flow in VIV simulations, the temporal variation of the cylinder displacement is shown in Fig. 3.
Four sets of element resolutions (5×5, 6×6, 7×7, and 8×8) for a parameter set that leads to near-
maximal displacement: Ur = 4, � = 0.001, R = 1. Fig. 3 indicates 6× 6 node elements predict the
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oscillation amplitude to within 0.02% of the high-resolution test cases, providing confidence that
the results presented in this paper are adequately converged.

503 504 505 506
t *

−0.6

−0.3

0.0

0.3

0.6

Y
*

5×5
6×6
7×7
8×8

0.581

0.582

0.583

Fig. 3: The resolution study of spectral-element convergence for VIV of a circular cylinder at Re =
150, Ur = 4, R = 1, � = 0.001. See text for details.

2.5. Code validation
The spectral-element implementation has been previously extensively validated against experi-

ments and other codes, e.g., see Hourigan et al. (2001); Sheard et al. (2003); Leontini et al. (2006a)
and references therein. This solver has also been used to model closely related vortex-induced
vibration problems e.g., for a cylinder: Leontini et al. (2006b,a, 2011); and a sphere: Lee et al.
(2013).

For the present study, we have undertaken further tests of the implementation of the VIVmodule
for a cylinder with a single degree of freedom by considering parameter sets that effectively reduce
to the standard elastically mounted cylinder problem. The schematic of the computational domain
is shown in Fig. 2, in which the cylinder is mounted on a spring-dashpot viscoelastic model and is
free to vibrate only in the transverse direction. To validate against existing elastic results available in
the literature, two viscoelastic cases are considered that reduce to simpler elastic cases: (1) R = 0;
and (2) � → ∞ and R = 1, as depicted in Fig. 4. For R = 0, the mounting system acts as single
spring with frequency f1, whereas for � → ∞ and R = 1, it act as two springs in parallel with an
effective system frequency f2 =

√

2f1. The response curves for these cases can be compared with
previously reported results from the literature.
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Fig. 4: Schematic of the conversion of the viscoelastic system into an elastic one: (a) R(= kn∕k) = 0; and
(b) � (= c∕2

√

km) → ∞, (c) R → ∞. The viscoelastic (Kelvin-Voigt) model is described in (Findley and
Davis (2013)).

For these two cases, simulations were performed at Re = 150 and m∗ = 2.546 over a range of
reduced velocities. The structural frequencies considered are: case (1) fnD∕U∞ = 1∕Ur; and case
(2) fnD∕U∞ = 1∕

√

2Ur. The variation of the maximum displacement of the cylinder with reduced
velocity is shown in Fig. 5. The comparison shows that our results agree well with the results of
Bao et al. (2012) and Zhao (2013). The minor differences at some reduced velocities may be due
to different blockage ratios considered. It should be noted that Bao et al. (2012) quotes a reduced
mass of 2 whereas for present simulations it is 2.546. However, this difference is only due to the
different definitions of the mass ratio. Bao et al. (2012) takes m∗ = m∕�fD2, while in the present
case m∗ = 4m∕��fD2.
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Fig. 5: Comparison of computed maximum displacement amplitude of an undamped cylinder undergoing
transverse VIV for m∗ = 2.546 (Bao et al. (2012), Zhao (2013)) at Re = 150.

3. A simplified mathematical model of a flexibly mounted cylinder

Experiments of Khalak andWilliamson (1999) have shown that in the lock-in region at dynamic
steady state, both the displacement and the fluid force have nearly sinusoidal forms and oscillate at
the same frequency fy. In the region where the cylinder oscillation frequency is synchronized with
the periodic induced force, the transverse displacement and lift coefficient are given by

Y ∗ = A∗ sin(2�f ∗y t
∗) and CL = CL0 sin(2�f

∗
y t
∗ + �). (7)
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Here A∗ and CL0 represent the non-dimensional amplitude of cylinder and the amplitude of the lift
coefficient. Also, f ∗y is the non-dimensional frequency of cylinder oscillation.

The lift force lags the cylinder displacement with a phase difference �. Substituting eq. (7) in
eq. (6) and comparing the coefficient of cos(2�f ∗y t), we get

A∗ =
CL0(2 cos(�)�f

∗
y + sin(�)Rf

∗
n )

4�3f ∗(Rf ∗n
2 − f ∗y

2 + f ∗n
2)�m∗

. (8)

Normalizing by natural frequency of the structure, f ∗s , such that f ∗ = f ∗y ∕f
∗
s and Ur = 1∕f ∗s , we

get

A∗ =
CL0(2 cos(�)�f

∗P + sin(�)R)PUr
2

4�3f ∗(R + 1 − f ∗2P 2)�m∗
. (9)

Here, P = f ∗s ∕f
∗
n , remains constant for a particular � . Similarly, comparing the sin(2�f ∗y t)

term, and rearranging, we get

2A∗�3R(1 − f ∗2P 2) =
CL0
m∗

(RUr
2P 2 cos(�) − f ∗Ur

2P 32 sin(�)�). (10)

The amplitude and frequency expression for limiting case shown in Fig. 4 can be readily derived.
For � = 0 or R = 0, as shown in Fig. 4(a), the SLS model simplifies to a purely elastic system with
spring constant k (say for P = 1), eq. (9) and (10), gives

sin(�) = 0,

cos(�) =
2A∗�3(1 − f ∗2)m∗

CL0Ur
2

.
(11)

These are amplitude and frequency equations (Mittal et al., 2017), which clearly shows the
phase difference can be 00 or 1800.

For � → ∞, SLS converts into an elastic system with two springs (k, kn) parallel (Fig. 4(b) ).
At this limiting case eq. (9) and (10) convert into the equations

sin(�) = 0,

cos(�) =
2A∗�3(R + 1 − f ∗2P 2)m∗

CL0Ur
2P

.
(12)

For R → ∞ , the SLS model becomes the classical spring (k) damper (c) in parallel, as shown in
Fig. 4 (c)). The amplitude and phase equations for this system, assuming fn = fs, are given by

A∗ =
CL0(sin(�))Ur

2

4�3f ∗�m∗
, (13)

2A∗�3m∗(1 − f ∗2) = CL0Ur
2 cos(�). (14)

The response amplitude and frequency expressions are similar to those obtained by Khalak and

12

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672



Williamson (1999).

4. Results and discussion

In this section, the effect of damping (�) and spring stiffness ratio (R) on the vortex-induced
vibration of a circular cylinder will be discussed. There are five independent parameters in the
study: mass ratio (m∗), damping ratio (� ), spring-stiffness ratio (R), reduced velocity (Ur) and
Reynolds number (Re). The reduced velocity is defined as Ur = U∞∕(fsD) = 1∕f ∗s , where U∞
is the free-stream velocity. Also, fs and f ∗s (= fsD∕U∞), respectively, are the dimensional and
non-dimensional natural frequency of the structure considering both the spring and damper. For
the present simulations, the reduced velocity was varied by changing fs while keeping the values
of U∞ and D fixed. The mass ratio is kept at m∗ = 2.546 to correspond to the simpler VIV system
explored in related papers (Bao et al., 2012; Zhao, 2013).

To obtain f ∗s , eq. (6) with CL = 0 is solved analytically. The solution is of the form

y(t) = A1e−atcos(bt + �) + A2e−ct, (15)

where A1, A2 and � are constants obtained using initial conditions, b is the angular frequency and
f ∗s = b∕2�. The input for eq. (6) is f

∗
n and the reduced velocity is defined using f

∗
s . This frequency,

f ∗n , is the frequency considering the spring constant k, whereas f ∗s is the natural frequency of the
structural system considering k, kn, � . Then f ∗s is used to define the reduced velocity, Ur = 1∕f ∗s .
Therefore eq. (15) is solved iteratively to get the f ∗n , such that the output is f

∗
s . The representative

values are given for R = 1 and � = 10 in Table 1.

Table 1: Reduced velocity Ur, system frequency f ∗s = fsD∕U∞, and input frequency (f ∗n ), for R = 1 and
� = 10.

Ur f ∗s f ∗n
2.0 0.5 0.354
3.0 0.333 0.236
4.0 0.250 0.177
5.0 0.200 0.142
6.0 0.167 0.118
7.0 0.143 0.101
8.0 0.125 0.089
9.0 0.111 0.079

4.1. Effect of damping on cylinder response at R=1
The dynamic asymptotic response of cylinder supported by an SLS spring-damper support has

been calculated at seven values of damping ratio for 0.001 ≤ � ≤ 10, for R = 1. This study shows
a non-monotonic variation of amplitude with damping ratio, which will be quantified further in the
‘Griffin Plot’ towards the end of the paper.

4.1.1. Branching behaviour of VIV at low Reynolds number
The effect of damping ratio (� ) on the vibration amplitude (A∗y,max) of the circular cylinder is

shown in Fig. 6, which shows the amplitude of response (A∗y,max) versus reduced velocity (Ur). As
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observed in low Reynolds number elastically mounted studies discussed above (e.g., Bao et al.,
2012; Zhao, 2013), an apparent two-branch response can be seen for the reference case (� = 1), as
shown by the green line. In other viscoelastic cases considered here (� ≠ 1), there appears to be a
more discernible three-branch response, with the blue lines corresponding to an upper-type branch,
the black lines corresponding to a lower-type branch, and the red lines an initial branch. The italics
here indicate that these branches are not necessarily one-to-one related to those observed for high-
Reynolds number VIV at low mass damping ratio. For the lower-type branch, i.e., the black lines in
Fig. 6), the values of the vibration amplitude (A∗y,max) steadily decrease with reduced velocity (Ur).
A similar steady decrease in vibration amplitude at high Re was observed by Klamo et al. (2006)
and Soti et al. (2018) for their highest damped case. In contrast to this steady decrease, Soti et al.
(2018) observed a three-branch response from an experimental study, showing that A∗y,max does not
vary significantly with Ur over the lower branch for the least damped case.

The detailed response and branching were further examined for the lowest damped case (� =
0.001). As evident from Fig. 7(a) the amplitude is a continuous function of Ur, except that there is
a sudden jump at Ur = 3.3 between the initial and upper-type branches, thus defining the branch
ranges as: initial – 2 ≤ Ur ≤ 3.2, upper-type – 3.3 ≤ ur ≤ 3.9, and lower-type – 3.3 ≤ Ur ≤ 7.5.
The desynchronisation region is visible over the reduced velocity range: Ur > 7.6. Although
the amplitude varies continuously (or nearly continuously) over 3.3 ≤ Ur ≤ 7.5, Fig. 7(b) shows
there is a sudden jump in the amplitude of the lift force (shown by the blue line), thus allowing
the identification of a branch transition from the upper to lower branch at Ur ≃ 4.0. Indeed, this
jump in peak lift force was also observed by Leontini et al. (2006b) for the standard transverse low
Reynolds number VIV case.
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Fig. 6: Response for the cylinder mounted on a viscoelastic support. Variation of amplitude (A∗max) versus
reduced velocity (Ur) for damping coefficient in the range � ∈ [0.001 − 10]. The stiffness ratio (R = 1) and
mass ratio (m∗ = 2.546) are fixed.

14

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784



0.0

0.3

0.6

A
* y,
m
ax

(a) ζ=0.001

0.0

1.5

3.0

C L
,m

ax

(b)

0

1

2

f* y

fv/fs
f *y =1

(c)

0

90

180

ϕ t
ot

(d)

2 3 4 5 6 7 8 9
Ur

0

90

180

ϕ v
or

(e)

Fig. 7: Response of the cylinder mounted on a viscoelastic support for � = 0.001. (a) Maximum oscillation
amplitude (A∗max); (b) Peak lift coefficient, CL,max; (c) Normalized frequency, f ∗y = fy∕fs (Green dotted line
represents the vortex shedding frequency due to stationary cylinder); (d) Mean phase difference between lift
force and cylinder displacement, �tot; (e) Mean phase difference between vortex force and cylinder displace-
ment, �vor.

Interestingly there are also branch-to-branch jumps in the oscillation frequency, represented in
terms of normalized frequency. The variation of normalized frequency (f ∗y = fy∕fs) for lowest
damping, � = 0.001, is shown in Fig. 7(c), where fy is the frequency corresponding to the highest
power in the power-spectral density (PSD) plot of displacement, and fs is the natural frequency of
the system, calculated using eq. (6). In the region 2 ≤ Ur ≤ 3.2, the vibration frequency (fy∕fs)
overlaps with the vortex-shedding frequency associated with a stationary cylinder (f ∗v = fv∕fs)
(represented by the green dotted line in Fig. 7(c)). The vortex-shedding frequency for a stationary
cylinder is calculated by computing the FFT of lift force of the stationary cylinder. In this (initial
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branch) range, the PSD plot of displacement (Y ∗) and lift force (CL) signal, Fig. 8(a), shows that
a single frequency is present in Y ∗ and CL, which is close to the vortex-shedding frequency for a
stationary cylinder, f ∗v . The upper branch shows the dominant oscillation frequency matches the
system frequency, whilst for the lower branch, the oscillation frequency approximately matches
the natural shedding frequency (dotted green line). However, in the (upper branch) range 3.3 ≤
Ur ≤ 3.9, multiple frequencies are present as shown in Fig. 8(b,h). The Lissajous figures (phase
plots of CL versus Y ∗), as shown in Fig. 10(b,h), suggest that the time signals of CL and Y ∗ are
associated with multiple frequencies. Fig. 10 indicate the periodic nature of the oscillations in the
lower branch (Fig. 10(i,o), and the relatively less steady dynamics of the upper branch (Fig. 10(b,
h)). The Fig. 10 also suggests the phase changes from 00 (Fig. 10(a, m)) to 1800 (Fig. 10(n, p)).
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Fig. 8: Power spectral density (PSD) of the cylinder response for displacement (black colour) and lift force
(blue colour): (a) Ur = 3.2; (b) Ur = 3.3; (c) Ur = 3.4; (d) Ur = 3.5; (e) Ur = 3.6; (f) Ur = 3.7; (g)
Ur = 3.8; (h) Ur = 3.9.
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Fig. 9: Power spectral density (PSD) of the cylinder response for displacement (black colour) and lift force
(blue colour): (a) Ur = 3.2; (b) Ur = 3.3; (c) Ur = 3.9; (d) Ur = 4; (e) Ur = 6; (f) Ur = 7; (g) Ur = 7.5; (h)
Ur = 7.6.

The peak frequency over 3.4 ≤ Ur ≤ 3.9 is lower than that atUr > 4, as shown in Fig. 7(c). Over
the range 3.9 ≤ Ur ≤ 7.5 – the high-amplitude region – the vibration frequency moves away from
the shedding frequency of the fixed cylinder and approaches the natural frequency of the system (as
f ∗ ⟶ 1). In this region (Fig. 9 (d)), one component of frequency is present in the displacement
signal that corresponds to the vortex-shedding frequency for a stationary cylinder. In the PSD of
CL, two prominent peaks are visible in the lift forces Fig. 9 (e,f,g). The first peak corresponds to
vortex shedding and becomes more dominant with an increase of Ur and other is due to the natural
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frequency of the system. In the desynchronisation region, (Ur ≥ 7.6), only one frequency is present
that is closer to f ∗v .
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Fig. 10: Lissajous figures of the cylinder response forCL (along y-axis) and Y ∗ (along x-axis): (a)Ur = 3.2;
(b) Ur = 3.3; (c) Ur = 3.4; (d) Ur = 3.5; (e) Ur = 3.6; (f) Ur = 3.7; (g) Ur = 3.8; (h) Ur = 3.9 ; (i) Ur = 4.0;
(j) Ur = 4.1; (k) Ur = 4.5; (l) Ur = 5.0; (m) Ur = 6.0; (n) Ur = 7.0; (o) Ur = 7.5; (p) Ur = 7.6.

This high amplitude region, (3.3 ≤ Ur ≤ 7.5), shows two behaviours based on peak lift force
and frequency, with a weak transition between the two occurring at approximately Ur ≈ 4. This
branching has been previously reported by Leontini et al. (2006b) for a low mass-damping param-
eter (m∗� = 0.1) for Re = 200. The regime 3.3 ≤ Ur < 4 coincides with an upper-type response
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and the synchronized regime 4 ≤ Ur ≤ 7.5 coincides with a lower-type branch, consistent with the
low Reynolds number characterisation of Leontini et al. (2006b). This (beginning of an) upper-
type branch response is also evident in the phase difference plot Fig. 7(d), which shows that the
difference between the lift force and the cylinder displacement is zero in the initial and upper-type
branches. The phase between the lift force and displacement in Fig. 7(d) shows a gradual change:
from 0◦ to 180◦ for 3.3 ≤ Ur ≤ 7.5. This gradual change become less steep for � = 1 as shown in
Fig. 17. This gradual change in phase difference was observed by Leontini et al. (2006b). As pre-
viously indicated, at high Reynolds numbers, Khalak and Williamson (1999) have experimentally
observed two distinct synchronous branches: the upper and lower branches. The upper branch was
characterized as having a vibration frequency close to vortex-shedding frequency, with the phase
difference between the lift force and the cylinder displacement of zero. The lower branch was char-
acterised as having the vibration frequency close to the natural frequency of the cylinder system,
and the phase difference close to 180◦. Fig. 7(d) shows the change of phase difference is gradual
along the lower branch contrary to the 180◦ difference observed by Khalak and Williamson (1999)
over the entire range. This difference in phasing is presumably due to the low Reynolds number
investigated. Fig. 7(e) shows the plot for mean phase difference between vortex-force and cylinder
displacement, �vor vs Ur. The calculation of vortex-force and the corresponding phase difference
has been discussed in section 4.1.3. In addition to the jump in the total phase between the upper
and lower branches, there is a jump in the vortex phase at the initial to upper branch transition,
Fig. 7(e) shows this jump at Ur = 3.3 in the vortex phase (�vor). The vortex phase (�vor) is the
phase difference between displacement and vortex force (total force − potential added-mass force).
The detailed evaluation of the vortex force and the vortex phase is explained in the subsequent sec-
tion (§4.1.3). This jump in the vortex phase was observed in high Reynolds number experiments
of Govardhan and Williamson (2000) at the initial to upper branch transition. Overall, based on
the jump in peak lift, �vor and the broader response spectrum, the region 3.3 ≤ Ur ≤ 3.9 has been
designated as an upper-type branch (Leontini et al., 2006b). The vorticity shedding patterns for
initial branch (Ur = 3) and lower type branch (Ur = 4.5) are shown in Fig. 11. In both cases, a 2S
vortex shedding mode is observed. In the initial branch, it is a single-row configuration, whereas
in the lower-type branch it is a double-row configuration.
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(a)

(b)

Fig. 11: The cylinder wake depicted by vorticity contours (scale -2 to 2), representative of: (a) the initial
branch, Ur = 3; (b) the lower-type branch, Ur = 4.5; The damping coefficient � = 0.001.

The amplitude response signal for Ur = 3.7 is shown in Fig. 12, and the corresponding wake
patterns for Ur = 3.7 corresponding to different periods are shown in Fig. 13. When the amplitude
of oscillation is small, the 2S mode of vortex shedding is observed with vortices shed in a single
row, whereas a double-row configuration is observed when the amplitude is high. The frequency
responses for the displacement and lift are depicted in Fig. 14, which clearly shows noisy frequency
spectra. Hereafter, we refer to this region as the upper-type branch.
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Fig. 12: The amplitude response signal for Ur = 3.7, � = 0.001.
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Fig. 13: The wake evolution for Ur = 3.7 and � = 0.001, representative the variation in the wake observed
for the upper-type branch. (a) Double row 2S mode; (b) Disordered wake; (c) Wake organizes to single-row
configuration; (d) Single-row 2S mode.
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Fig. 14: Power spectral density (PSD) of the cylinder response for (a) Displacement; (b) Lift; (c) Lissajous
figure for Ur = 3.7, � = 0.001.

The cylinder response may exhibit hysteresis due to a delay in mode switching during a transi-
tion. Hysteresis is caused by the nonlinearity of the system, flow or structural components. Since
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the structural component is taken as a linear oscillator, hysteresis originates from the fluid system.
As shown in Fig. 15, the present simulation results do display hysteretic behaviour, which may fur-
ther help to demarcate the branches (Khalak and Williamson (1997). Brika and Laneville (1993)
have observed that the cylinder response is sensitive to changing the reduced velocity in small in-
crements, ΔUr. As reduced velocity is defined as the inverse of the oscillator natural frequency,
computations of hysteresis have been carried out with decrements of structural natural frequency,
Δf ∗n . For the increasing-velocity curve, the reduced velocity is increased from Ur = 2 in small
increments with the initial condition at each Ur being the saturated response before the increment.
The reduced velocity is increased by decreasing non-dimensional structural natural frequency, f ∗n
with decrements size taken isΔf ∗n = 0.001. For the decreasing velocity-curve, the reduced velocity
is decreased from Ur = 9 by increasing f ∗n , with the initial condition again corresponding to the
fully saturated state for the next level ofUr. A very small hysteretic loop is observed at the onset of
the upper-type branch in the range 3.2 ≤ Ur ≤ 3.3. Hysteresis for the transition between the lower
branch and desynchronization regime is shown in Fig. 15, for a wider range of reduced velocity
7.35 ≤ Ur ≤ 8.58. The distinct behaviour in the upper-type branch (3.33 ≤ Ur ≤ 3.94) is further
reinforced by the quasi-periodic response, illustrated by the phase-plane plots in Fig. 16.

Fig. 15: Response for the cylinder mounted on a viscoelastic support. Variation of amplitude (A∗max) versus
reduced velocity (Ur) for � = 0.001, R = 1 using increasing and decreasing Ur.
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Fig. 16: Phase-plane plots to depict the quasi-periodic behaviour close to the onset of the upper branch,
3.24 ≤ Ur ≤ 3.29, and the upper-type branch, 3.33 ≤ Ur ≤ 3.94.

Next consider the response for the critical damped case (� = 1). Fig. 17 shows the variation
of amplitude with reduced velocity is continuous without any sign of distinct jumps. As shown in
Fig. 17(c), beyondUr ≥ 6.6, f ∗ deviates towards f ∗v , clearly showing the start of desynchronisation.
The upper-type branch has disappeared. There is no demarcation based on jumps in amplitude,
frequency or peak lift force for the initial and lower-type branches. The phase difference Fig. 17(d,e)
shows there is a continuous increase of phase as Ur is increased.
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Fig. 17: (a) Amplitude; (b) Peak lift coefficient; (c) Normalized frequency (Blue line represents vortex
shedding frequency for stationary cylinder); (d) Mean phase difference between lift and displacement; (e)
Mean phase difference between vortex and displacement. All variables are plotted against reduced velocity
for � = 1 – the critically damped case.

For the lower ( � = 0.001, 0.01, 0.05 ) and much high damping values ( � = 5, 10 ), although the
variation of vibration amplitude is continuous (Fig. 6), there is a sudden jump in the amplitude of
the lift force (represented by blue lines in Fig. 18). The jump in lift amplitude at the initial to upper
branch transition is lost at � = 0.1, 1, 1.5, 2. The transition between branches becomes continuous,
clearly indicates missing upper branch for � = 0.1, 1, 1.5, 2. This indicates there is a change in
the very character of the flow as damping is increased. The variation of the amplitude of the lift
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force together with the normalized frequency and phase difference will be used to demarcate the
upper-type branch.
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Fig. 18: Variation of maximum lift (CL,max) versus reduced velocity (Ur) for damping coefficients � ∈
[0.001, 10].

4.1.2. Vibration amplitude and the frequency response
The vibration amplitude in Fig. 6 is seen to decrease with an increase in the damping ratio for

any reduced velocity until reaches the critical damping ratio. On a further increase of damping, the
amplitude increases. It is interesting to note that above or below the critical damping value (� = 1),
the vibration response is similar. This (seemingly) anomalous behavior has been shown for � =
0.01 and � = 10 in Fig. 19. This non-monotonic behaviour of amplitude with structural damping
occurs due to the SLS type of viscoelastic support considered. This characteristic is expected as
the structural model considered behaves purely elastically without damping at the extreme values
of damping. As shown in Fig. 4, at � = 0, the SLS model acts as a single spring system, whereas
for � →∞ it acts as a two-spring system without damping.
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Fig. 19: Comparison for the response for the vibrating cylinder at � = 0.01 and � = 10: (a) Amplitude;
(b) peak lift coefficient; (c) normalized frequency (green line represents the vortex-shedding frequency for
a stationary cylinder); (d) mean phase difference between lift and displacement; (e) mean phase difference
between vortex force and displacement.

It is evident from Fig. 18 that the jump from the initial to the upper-type branch is delayed as
the damping coefficient is increased. It occurs at Ur = 3.3 for � = 0.001, whereas at Ur = 3.8 for
� = 0.05; beyond this it is not possible to distinguish a jump. We also observe that as damping
is increased up to the critical value (� = 1), the value of Ur corresponding to the system entering
the desynchronised region (pink lines) decreases. For � = 0.001, desynchronisation starts from
Ur = 7.6, whereas for � = 0.05, it starts from Ur = 7.0. The early start of desynchronisation can be
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justified by the normalized frequency plot Fig. 20, which shows an early departure from the f ∗ = 1
line on increasing the damping. As Fig. 20(a) shows, the departure for desynchronisation is shifted
towards the left from � = 0.001 (black line) to � = 0.1 (purple line). The monotonic decrease
in the desynchronised region with damping has been reported by Klamo et al. (2006). The end
of the initial branch is shifted towards the right as the damping ratio is increased, as evident from
Fig. 20(a). The delay in the initial branch and early start of the lower-type branch with damping
ratio, narrows the lock-in region. This trend is reversed on further increasing the damping beyond
� = 1 as shown in Fig. 20(b). For � = 1.5, desynchronisation starts from Ur = 6.9, while for
� = 10, it starts from Ur = 7.5. The lock-in region broadens with the increase of damping ratio.
The non-monotonic trend observed in our results is due to the structural system (SLS) considered.
As discussed, it can be observed that if � = ∞, the SLS model of spring-damper system represents
two springs (Fig. 4(b)) in parallel, where again the vibration is purely elastic. Again, for � = 0, the
SLS model behaves as the vibration of a single spring (Fig. 4(a)).
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Fig. 20: Comparison of normalized frequency, f ∗ = fy∕fs, with various damping ratio. The green dotted
line represent the vortex-shedding frequency for the stationary cylinder.
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4.1.3. Force coefficient and phase difference
The root-mean-square (RMS) lift coefficient (CL,rms) as function of reduced velocity is plotted

in Fig. 21 for different damping ratios. Fig. 21 (a) depicts, below the critical damping ratio (� = 1),
the peak value of CL,rms decreases with an increase in damping, but plateaus near � = 1. For a low
damping ratio, CL,rms shows a rapid increase with Ur in the initial branch. In the upper-type branch,
CL,rms attains a peak value in the beginning then after a slight decrease, it again increases. At the
end of the upper-type branch, there is a sudden decrease in CL,rms. In the lower-type branch CL,rms
decreases exponentially. Finally, in the desynchronisation region, it remains constant. For higher
damping ratios (i.e. near to � = 1), as only the initial and lower-type branches exist, in between
there is a negligible change inCL,rms withUr, presumably because of the missing upper-type branch.
For damping ratios where it exists, the upper-type branch shows a drastic variation of CL,rms with
Ur. The trend of curves for � = 0.001, 0.01, 0.05, 0.1 (Fig. 21(a)) in ascending order is similar to
that for � = 10, 5, 2, 1.5 (Fig. 21(b)) in descending order. This clearly shows the phenomenon is
reversed for damping ratio, � > 1.
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Fig. 21: Response of the mounted cylinder in term of RMS of lift force (CL) versus reduced velocity, for
damping ratios in the range � = [0.001, 10]. Here, R = 1.
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As discussed byWilliamson and Govardhan (2004), the total lift force in the y-direction, Fy can
be split into a potential-force component, Fpot, and a vortex-force component,Fvot. Fpot is due to the
added mass effect, whereas Fvot occur due to vorticity in the flow system. The vortex force can be
calculated by

Fvor = Fy − Fpot. (16)

Here, Fy is the total lift force, Fpot = −maÿ(t), ma is the added mass due to acceleration of fluid
surrounding the body, calculated by considering the hydrodynamic force acting on it as it accelerates
from potential flow theory. For a circular cylinder ma =

�
4
�D2L, where D and L are the diameter

and length of the cylinder. Substituting the expression for forces in eq. (16) and normalizing them
by 0.5�U 2

∞�D
2∕4, we get the standard result

Cvor = CL − Cpot. (17)

In this equation, CL = Fy∕(0.5�U 2
∞�D

2∕4) is the lift coefficient, Cvor is vortex-force coefficient,
calculated using eq. (17).

The RMS vortex-force coefficient,Cvor,rms is shown in Fig. 22 for different damping ratio values.
It shows Cvor,rms increases with Ur in the initial branch up to the start of upper-type branch. It then
decreases in the middle of upper-type region. At the end of the upper-type branch range, Cvor,rms
further decreases to a minimum at the start of the lower-type branch. Towards the end of the upper-
type branch, Cvor,rms decreases at a faster rate than CL,rms due to higher acceleration resulting in
higher potential force. At the beginning of the lower-type branch, Cvor,rms increases. On further
increase in Ur, Cvor,rms drops linearly.
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Fig. 22: Response for the mounted cylinder by comparing the RMS of the vortex force ( Cvor ) with reduced
velocity, for damping ratio � = [0.001 − 10] and R = 1.

An important quantity to the physics describing vortex-induced vibration is the phase difference
between fluid forces and cylinder displacement, obtained using a Hilbert transform (as described by
Khalak and Williamson (1999)). The calculated phase difference between the lift force and cylin-
der displacement is shown in Fig. 23. For very low damping (Fig. 23(a)) and very high damping
(Fig. 23(b)), the total phase remains at 0◦ during the initial and upper-type branch, whereas the total
phase switches to 180◦ on transition to the lower branch. This is evident from eq. (11) by neglecting
the damping, � is limited to be 0◦ or 180◦. The value depends of the sign of cos(�), which shows
that � = 0 for f ∗ < 1 and � = 180 for f ∗ > 1. A similar argument can be made for very high
damping by using eq. (12). Now for � = 1, as shown in Fig. 23, the phase is not restricted to 0◦
or 180◦ as can be seen from eq. (10), because both sin(�) and cos(�) exist. The vortex phase, for
very low and very high damping, shows a jump (black line in Fig. 24) at the start of the upper-type
branch. The jump is not visible for � near to 1, where the upper-type branch disappears. The phase
difference moves away from 0◦ on increasing the damping ratio towards � = 1, and on further
increasing � beyond � = 1, � again moves towards 0◦. A similar effect is seen in the initial-type
branch and desynchronization regime for � = 180◦. The trends can be understood mathematically
by manipulation of eq. (10).
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Fig. 23: Response for the mounted cylinder by comparing the mean phase difference of the lift force and
cylinder displacement versus reduced velocity, for damping ratio � = [0.001 − 10], R = 1.
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Fig. 24: Response for the mounted cylinder by comparing the mean phase difference of the vortex force and
cylinder displacement versus reduced velocity, for damping ratio, � = [0.001 − 10], R = 1.

4.1.4. The Griffin plot
The variation of maximum amplitude with mass and damping ratio is an important design pa-

rameter expressed through the Griffin plot. Griffin (1980) plotted the peak vibration amplitude of
circular cylinder with the product of mass and damping ratio (m∗� ). Khalak andWilliamson (1999)
plotted the Griffin plot in terms of A∗y,max and (m

∗ + CA)� , which becomes important of low mass
ratios. Here CA is added mass coefficient of a circular cylinder. The plot gives a clear functional
relationship between them. For the classical spring-damper VIV system, the plot of peak vibra-
tion amplitude versus the mass-damping parameter is an exponentially decaying function (Khalak
and Williamson (1999)). In Fig. 25, peak vibration amplitude corresponding to an SLS mounted
cylinder is plotted against the mass-damping parameter, (m∗+CA)� . The plot shows the maximum
amplitude is symmetric about (m∗+CA)� ≈ 1. At a very low value of damping ratio, the amplitude
is 0.58. As the damping is increased, the amplitude decreases slowly initially and then it decreases
at a faster rate, as evident from the steeper variation towards (m∗+CA)� = 1. On further increasing
the damping beyond (m∗+CA)� = 1, it mirrors this behaviour again increasing to a maximum value
(0.58). The logarithmic x-axis shows that there is a rapid decrease in amplitude with an increase
of � , whereas the growth of amplitude with � beyond (m∗ +CA)� > 1 is slower. Though the equiv-
alent frequency is different at the extremes of the damping ratio (� = 0, � → ∞), the maximum
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amplitude of vibration remains the same. For � = 0, the frequency f�=0 =
√

k∕m, whereas for
� →∞ and R = 1, f�=→∞ =

√

2k∕m. Clearly, f�=→∞ =
√

(2)f�=0 and the maximum amplitude is
0.58 for both cases. Thus, as expected, the maximum amplitude is not frequency dependent.

Fig. 25: Griffin plot of the peak amplitude data against logarithm of the mass-damping parameter, (m∗+CA)�
for R = 1.

4.2. Effect of stiffness ratio on the cylinder response at the critical damping ratio
The effect of spring constant ratio R is shown in Fig. 26. Fig. 26(a) shows the amplitude re-

sponse curves for R = 0.001, 0.1, 0.5, 1, 2, 10, for a fixed damping ratio of � = 1. For this com-
ponent of the study, a damping ratio of unity has been chosen because for extreme values of � the
structural system behaves as a purely elastic system. This choice incorporates the maximal damp-
ing effect for theR = 1 case. It is observed that the amplitude response on increasingR is similar to
that observed for increasing � for � < 1. As shown in Fig. 26(a), the vibration amplitude decreases
with an increase inR for all values of the reduced velocity. ForR = 0.01, 0.1, 0.5, there is a sudden
jump in the peak of lift force (refer to Fig. 26(b)), which may help to demarcate the initial, upper-
type and lower-type branches, as explained in the previous section. The initial to upper-type branch
jump is clearly visible for R = 0.01, 0.1 in the normalized frequency and vortex phase-difference
plots given in Fig. 27.
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Fig. 26: Response of the cylinder for varying spring stiffness ratio R = [0.001 − 10] at Re = 150, � = 1
and m∗ = 2.546: variation of (a) A∗y,max, (b) CL,max, versus reduced velocity (Ur) .

It is observed in Fig. 26 and Fig. 27(a) that there is a delay in the jump from the initial to
upper-type branch as R is increased. The jump corresponding to R = 0.01 occurs at Ur = 3.3,
whereas it occurs at Ur = 3.4 for R = 0.1. There is also an earlier start of desynchronisation
with an increase in R. The delay in the jump from initial to upper-type branch and earlier entry
into the desynchronization region with R shorten the lock-in region; which is clearly visible in
Fig. 27(a). There is barely any distinguishable lock-in for R > 2. This behaviour is expected,
as, for the very low values of R, the SLS mechanism converts to a single spring elastic system,
similar to the situation for very low values of � , which also becomes effectively a single spring
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elastic system. For a very high value of R, the SLS mechanism becomes a classical spring-damper
in parallel (refer to Fig. 4(c)). This system (Fig. 4(c)) with considerable damping � = 1 will show
strongly reduced vibration without jumps between transitions. As R is increased, the change in
phase difference between different branches become more continuous and tends to reduce (refer to
Fig. 27(b,c)). The difference is no longer 0◦ or 180◦, and takes intermediate values as the reduced
velocity is varied. Setting R to a high value effectively corresponds to a change from the SLS
to the Kelvin-Voigt model – the classical damped VIV system. As shown by Soti et al. (2018);
Klamo et al. (2006), the vibration amplitude decreases with damping for the Kelvin-Voigt model
for a damped VIV system.
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Fig. 27: (a) Variation of normalized frequency (f ∗) versus reduced velocity (Ur)). The green dotted line
represents the vortex-shedding frequency of a stationary cylinder. (b) The variation of phase difference
between vortex force and cylinder displacement (�vor) versus Ur).
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5. Conclusions

The effect of a viscoelastic-type structural support on the response of vortex-induced vibration
(VIV) of a circular cylinder has been investigated numerically using a spectral-element based FSI
solver, for mass ratio m∗ = 2.546 at Re = 150. A survey of the literature indicates that the effect of
this type of SLS spring-damper system on VIV has received little attention, even through the mech-
anism allows further control on enhancing or suppressing the VIV response. The spring-damper
system used to provide viscoelastic support is similar to the Standard Linear Solid (SLS) model,
consisting a spring together with a spring-damper combination connected in parallel. This response
is governed by two parameters: the damping ratio, � , and spring constant ratio, R. The amplitude
response of cylinder vibration is calculated at different reduced velocities by varying these parame-
ters. In this case, the reduced velocity,Ur, is calculated based on the natural frequency of the system
taking into consideration the damping. Themaximum amplitude is calculated as � andR are varied.
In particular, the effect of structural damping was determined for � = 0.001, 0.01, 0.05, 0.1, 1, 2, 5
and 10, over the range ofUr covering themain resonant response. It is found that for very low values
of � (=0.001), two regimes of synchronized response exist, which show resemblance to the upper
and lower branches observed in higher Reynolds number experiments. These regimes are referred
to as the upper-type and lower-type branches. As there is no clear jump in vibration amplitude at
the transition, evidence for these separate branches comes from a jump in the magnitude of peak
lift forces, oscillation frequency and phase difference between the vortex force and vibration dis-
placement. In addition, an initial branch is observed. This is associated with vibration frequencies
close to vortex-shedding frequency of stationary cylinder, a monotonic increase in the RMS lift co-
efficient and vortex force, and total- and vortex-phase difference 0◦. At higher reduced velocity, the
upper-type branch is characterised by the jump in peak lift force, reduced periodicity, and zig-zag
variation of RMS of lift coefficient and vortex force, a jump in vibration frequency to be close to
the natural frequency of the structural system, a total phase difference 0◦ and a jump in vortex phase
difference at the start of branch. Beyond this, transition to the lower-type branch is defined by a
jump in peak lift force, constant vibration frequency remaining close to the natural frequency of the
system, and total phase difference∼ 180◦. As damping is increased, the initial branch increases and
identification of the upper-type branch becomes difficult. On further increasing � beyond � > 1, a
higher amplitude response is again observed.

Indeed, the effect of varying � shows that there is a critical damping ratio at (m∗+CA)� ≈ 1 about
which similar behaviour is seen as � is either decreased or increased from this point. The predictions
show that for (m∗ + CA)� < 1 on increasing damping, the amplitude decreases from a maximum
of 0.58D to 0.25D, whereas on further increasing damping above (m∗ + CA)� > 1, the amplitude
again increases asymptotically towards 0.58D. This non-monotonic variation of amplitude with
damping is a characteristic of the SLS model, which tends towards a purely elastic system at very
low and very high values of damping ratio. The effect of damping on the peak vibration amplitude
is quantified in theGriffin plot. This plot of peak amplitude against mass-damping parameter shows
a well-shaped curve, distinctly different to that seen for the classical (Kelvin-Voigt) VIV system.

The effect of varying R was also studied for R = 0.01, 0.1, 0.5, 1, 2 and 10 at � = 1, and
shows that the maximum amplitude of vibration decreases as R is increased. For a very low value
of R = 0.01, an upper-type branch exists. For larger values of R, the amplitude of the cylinder
vibration becomes very small and does not show distinct branches of cylinder response. High values
of R effectively convert the SLS model to the Kelvin-Voigt model (i.e. the classical spring-damper
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VIV system), where the vibration amplitude decreases with increased damping.
The present results suggest that it may be possible to tune the behaviour of a structural system by

actively modifying the damping. This approach could be potentially exploited for applications that
require control of VIV. It could allow tuning of damping to generate large amplitude oscillations,
while in other cases where VIV is detrimental oscillations could be suppressed.
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