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Summary

Two lines of investigation being undertaken at Monash University and of relevance
to the aeronautics industry will be presented. First, the prediction of vortex break-
down, a fluid structure that bedevils high angle of attack aircraft but may assist the
breakup of tip vortices, has been undertaken using an in-house parallelized spectral
element code. Second, aeroelasticity has been identified as one of the most impor-
tant problems presently facing the designers of turbomachinery blades as well as
aircraft control surfaces. A 3-dimensional solver implementing the compressible
Navier-Stokes equations coupled with the k-ω turbulence model has been devel-
oped to solve the unsteady flow through oscillating annular or linear turbine cas-
cades. Simulations have been performed in parallel in a time accurate manner using
a Jameson-type dual time Runge-Kutta scheme. This is then used to investigate the
effects of 3-dimensionality and secondary flows on the unsteady aerodynamics and
flutter characteristics of turbine cascades.

1 Introduction

The control of the transition from laminar to turbulent flow is of crucial impor-
tance in various flows, including those found in swirling flows and the flows around
bluff bodies. Swirling flow is a basic ingredient of many important industrial and
aerospace flows. Modern high-performance aircraft generate considerable aerody-
namic lift forces at high angles of attack. However, the resulting highly swirling
vortex structures that result are prone to rapid dilatation called Vortex Breakdown,
leading to restriction of the angle of attacks and the operational flight envelope. Sim-
ilarly, turbomachinery can produce flows of sufficiently high swirl in which vortex
breakdown and loss of efficiency are observed. On the other hand, vortex break-
down can be utilised as flame holders in combustion chambers and to break u p the
tip vortices of large aircraft. In the case of bluff body flows, the transition to turbu-
lence in the wake leads to significant drag changes on the body and the character
of the wake that interferes with downstream bodies. Significant improvements in



processes in the aerospace, mineral processing, wind engineering and manufactur-
ing industries can result from the control of the transitions of flow in high swirl and
wakes.

As designers in the turbomachinery industry strive to design machines that are
lighter, more powerful and more efficient, blade flutter has become one of the most
important limiting factors on the design process. The aeroelastic response is a com-
plex phenomenon that is not well modeled or predicted by current design tech-
niques. Codes that implement 2-dimensional models can simulate this behaviour in
a meridional plane; however the flow structures found in blade passages are gener-
ally 3-dimensional and such models provide a qualitative rather than a quantitative
analysis. Furthermore, important flow phenomena are not modeled including hub
and casing vortices and tip effects.

A structured 3-dimensional Navier-Stokes code is developed to solve the unsteady
governing equations. These are solved using an explicit Runge-Kutta scheme, im-
plementing residual averaging and multigrid. The problem is then solved in a time
accurate manner through a fully implicit scheme as proposed by Jameson [10].
This scheme has already been used in a 2-dimensional model of aeroelasticity in
turbomachinery [19, 12]. The development of the present code is an extension of
the previous two-dimensional method to three dimensions. Similar algorithms have
been successfully implemented in a 3-dimensional Navier-Stokes external solver
that models flow over a flexible wing [24, 14].

In this paper, the numerical methods being employed to study the transition to tur-
bulence in swirling flows are first described. Then, the numerical methods used to
study the aeroelastic response of aerofoils in turbulent flow are reported.

2 Time-Dependent Simulations of Vortex Breakdown

Two- and three-dimensional time-dependent spectral-element simulations of the
swirling flow in a torsionally driven cylinder were undertaken. The aim was not
to impose unphysical symmetries on the solution fields; in particular, there was no
enforcement of either non-axisymmetry or time-independence.

Numerical Method

The time-dependent simulations employed a spectral/spectral-element method for
axisymmetric geometries. A spectral-element discretisation was used in the r–z
planes and, for the three-dimensional simulations, Galerkin-Fourier expansion in
the θ direction. Within each spectral-element the solution variables (u, p) are repre-
sented by a tensor-product of Lagrangian interpolants. The internal node points are
chosen to correspond to the Gauss-Legendre-Lobatto quadrature points. This leads
to considerable efficiency gains when evaluating the integrals from the application



of the Galerkin weighted residual method used to obtain the discretised equations.
The order of the interpolation can be selected during run-time. This is a significant
advantage since the spatial convergence of the simulations can be easily validated.
When run in this mode, for smooth problems the method achieves spatial exponen-
tial (or spectral) convergence rates usually associated with global spectral methods.

The spatially-discrete equations are then independently discretised in time using
a classical three-step splitting scheme described in [13]. This involves splitting
each time-step into substeps accounting separately for convection, pressure gradi-
ent/continuity and diffusion. The convection substep employs the third-order Adams-
Bashforth extrapolation and the diffusion substep uses the second-order Crank-
Nicolson method (with the θ correction to improve high-frequency stability (see
[4]). Overall second-order accuracy is achieved by using the higher-order pressure
boundary condition described in [13].

The implementation has been validated on numerous problems and the expected
convergence behaviour confirmed. For example, it has been used to predict the two-
shedding modes occurring in a circular cylinder wake [22], the flow transitions in
the wake of a sphere [23], and the feedback stability mechanism governing lock-on
states for the flow past long rectangular plates ([8, 21]). More details of the imple-
mentation can be found in these papers and references therein.

A combination of temporal and spatial resolution studies were undertaken for the
three-dimensional simulations described in the following section.

Parallelisation Issues

Three-dimensional simulations are inherently expensive and put considerable strain
on computational resources. Fortunately, the spectral/spectral-element method de-
scribed here can be parallelised efficiently allowing accurate simulations to be per-
formed on clusters using the MPI (message passing interface) routines.

The application of the time-splitting scheme to the Navier-Stokes equations results
in the following set of equations

û − un

∆t
= N(u), (1)

ˆ̂u − û
∆t

= −∇P/ρ, (2)

un+1 − ˆ̂u
∆t

= L(u). (3)

Here, N(u) and L(u) represent the nonlinear (convection) and linear (diffusion)
terms in the Navier-Stokes equations, P is the pressure, ρ the fluid density, u =
(uz, ur, uθ) is the velocity vector and, at the completion of the three steps, the time



has been advanced from time tn to tn+1. Further details are given in ([13])

For a Cartesian coordinate system, if a (Galerkin) Fourier expansion is used to de-
scribe the dependence of a variable on the azimuthal coordinate, the second and
third substeps decouple into a set of equations for each Fourier plane. This means
these substeps can be done efficiently in Fourier space. In addition, the equations for
each Fourier mode (consisting of two planes) can be solved on a separate processor
and the associated memory requirements shared between the processors. The intro-
duction of axisymmetric coordinates introduces some complications. In this case,
the equations for ur and uθ from the diffusion step are coupled; however, decou-
pling can be achieved by introducing the complex variables u1 = ur + iuθ and
u2 = ur − iuθ. Once this is substitution is performed, the pressure and diffusion
substeps can still be solved in Fourier space with each Fourier mode evaluated on a
different processor.

The convection substep in usually performed in physical space (because it is non-
linear) using an explicit scheme such as Adams-Bashforth. The transformation to
physical space means that significant interprocess communication is required. For-
tunately, optimised MPI routines exist to make this process reasonably efficient. The
physical space domain is split into a number of approximately equal parts corre-
sponding to the number of processors used. The different Fourier mode components
are collected on each of these parts and a fast Fourier transform used to convert
to physical space velocity components. The velocity components are then updated.
To take account of the convection substep of the time-splitting algorithm, a Fourier
transform is applied to transform back to Fourier space and the Fourier components
are again distributed amongst the processors so that each processor once again has
one (or more) Fourier mode(s). Overall, the interprocess communication between
the processors is considerable, and hence the method requires high-speed intercom-
munication. Tests on a Compaq Alpha cluster built from ES40 processor units with a
low-latency high-bandwidth Quadrics interconnect indicate typical parallel efficien-
cies of 80% or greater are achieved on 32 nodes. In addition, memory requirements
are shared between the processors and hence order-of-magnitude larger simulations
are possible using multi-processor machines. The code has been validated for ax-
isymmetric and non-axisymmetric problems (e.g., [23].

Three-Dimensional Simulation Results

Two cases are examined in this section. The first is vortex breakdown in a confined
circular cylinder where rotation is induced by a spinning lid. The second case is
vortex breakdown in a swirling pipe flow. Both cases lead to many different flow
behaviours depending on the governing parameters.

Case A: Spinning-Lid Rig Three-dimensional simulations of the confined flow in
a circular cylinder at Re ≥ 1850 were undertaken to establish the final asymptotic



three-dimensional time-dependent state. This study was motivated by a similar nu-
merical investigation of the flow using a non-axisymmetric mesh which showed that
the flow evolved to an asymptotic state with four-fold rotational symmetry ([20]).
Other studies based on stability analyses, (e.g., [6]) have suggested that the flow
should remain axisymmetric to much higher Reynolds numbers.

The mesh used was the same as for a two-dimensional resolution study extended to
three dimensions using a Fourier expansion in the azimuthal direction. Typically, 32
Fourier planes were used. Simulation undertaken evolved the flow from an initially-
stationary state in a confined cylinder. In order to accelerate the development of any
three-dimensionality, a white noise perturbation of amplitude 10−3 was added to
each velocity component at each node after the first few time-steps. The flow field
was subsequently evolved for a time corresponding to approximately 100 lid revo-
lutions. All Fourier components (except the zeroth mode) decayed quickly leaving
the flow in the same axisymmetric state as calculated with the axisymmetric code.
In addition, an independent stability analysis indicated the stability of the flow to
non-axisymmetric perturbations verifying the results of ([6]).

Case B: Swirling Flow in a Pipe A three-dimensional simulation of the swirling
flow in a pipe is shown in Figure 1. In this case Re = 1280 with the pipe geometry
and inlet velocity profile based on the experiments of Faler and Lebovich ([5]).

Figure 1 Transition state of swirling flow in a pipe showing vortex breakdown bubble and
downstream spiral structure. Vortical flow structures are highlighted using the method of
Jeong and Hussain. ([11])

Figure 2 Final spiral breakdown state.

In the first part of the figure, the transition stage is shown with a vortex breakdown
bubble apparent and spirals developing downstream. In the second figure, the bubble



has disappeared and has been replaced by a spiral breakdown. Note that the isosur-
face structures near the pipe entrance are due to the developing boundary layer and
initial adjustment of the flow. An interesting feature is the outer spirals close to the
pipe outer wall. These may be a transient feature indicating a convective instabil-
ity although they appear both during the initial development and after the flow has
evolved to its asymptotic state.

3 Fluid Model for the Aeroelastic Problem

The present three-dimensional multiblock and parallel code has been developed
from a proven steady solver designed to model turbomachinery cascade flow [15, 18,
16]. The governing equations for the unsteady fluid problem in a Eulerian reference
frame with a moving mesh.

∂

∂t

∫∫
Ω

w dΩ +
∮

f dSx + g dSy + h dSz = 0 (4)

where

w =




ρ
ρu
ρv
ρw
ρE


 (5)

f =




ρū
ρuū + p

ρvū
ρwū

ρEū + pu


, g =




ρv̄
ρuv̄

ρvv̄ + p
ρwv̄

ρEv̄ + pv


, h =




ρw̄
ρuw̄
ρvw̄

ρww̄ + p
ρEw̄ + pw


 (6)

The time dependent and semi-discrete form of the governing equations may be writ-
ten as

dw
dt

+ R(w) = 0 (7)

A dual time stepping scheme [10] is used to calculate the unsteady flow problem.
A second order accurate, fully implicit scheme is used to integrate Equation (7) to
evolve the unsteady problem in a time accurate manner.

The discrete form of (7) is

3wn+1 − 4wn + wn−1

2∆t
+ R(wn+1) = 0 (8)

This equation may be recast into

dw
dt∗

+ R∗(w) = 0 (9)



where

R∗(w) =
3w

2∆t
+ R(w) − 2

∆t
wn +

1
2∆t

wn−1 (10)

The steady state solution w in equation (9) is then equivalent to the time accurate
solution wn+1 of equation (8). Any efficient algorithm may be used to obtain the
steady-state solution to (9). In this paper, the above mentioned Runge-Kutta type
scheme with multigrid is used. Minimum modification of the steady solver if re-
quired to make it time accurate in the above manner.

4 Multiblock and Parallel Implementation

A method using multiple blocks of structured grids is used to maximize the use of
computational resources and to allow the generation of grids for complex geome-
tries. While each block consists of a structured grid, the blocks can be connected to
each other in an unstructured manner provided the mesh geometry is matched at the
block interfaces.

It was decided early in the development of the code to make use of MPI and some of
the high level programming constructs available in Fortran90. A number of different
objects were created in the code data structure to facilitate the parallel calculation of
the fluid problem. Each fluid block is treated as a single object or entity. A schematic
of the multiblock data structure is shown in Figure 3. A processor may be allocated
more than one fine grid block and each fine grid block will have associated a number
of coarser, multiblock grids. The machine calculates for each multigrid level simul-
taneously, then copies the solution or interpolates the residual to the next multigrid
level.

A subface is defined as another object. This is used for the interface between the
present block and another block, or a region to which a single boundary condition is
to be applied. These objects are cycled through each time the boundary of the blocks
are to be updated, upon which communication is effected or a boundary condition
is applied. So that separate boundary conditions are not required for each coordi-
nate direction, subface objects are transformed into a single coordinate system. This
increases code complexity marginally. However it maintains that the code that is
relatively compact.

The structured cell numbering within each block is unimportant as transformations
are used to reorient the face so that the numbering matches with the neighboring
face. Consider the example of a C-grid where a single block is wrapped around
the blade. At the interface downstream of the trailing edge, the cell numbering will
be different on the upper and lower blocks, thus requiring reorientation of the 2-
dimensional arrays.

In keeping with the use of high levels of Fortran90 code, the communication module
also exploits some of the more sophisticated MPI routines. The use of MPI derived
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Figure 3 Schematic of multigrid and multiblock communication.

types allows the direct access of memory for the transfer of data, reducing the num-
ber of copies required during the communication of ghost cells. Due to the repetitive
nature of the CFD computation, the “pipe-lining” of message passing calls is also
implemented.

5 The Moving Grid

The movement of the fluid boundary requires the fluid grid to be regenerated over
the entire flow domain. Thus in the multiple block code, given that the grid for each
structured block is regenerated independently, the position of the corner points of
each block must be somehow defined. This is effected by using a spring network
analogy as proposed by Batina [2] to maintain grid regularity, which is particularly
important where Navier-Stoke calculations are performed.

The network is formulated by connecting each block corner with hypothetical springs
and corner positions are determined by a solution of the static equations. This simple
and efficient calculation is performed on a single processor. Initially an unstructured
grid network is constructed on the root processor. This contains nodal locations for
each block corner and the connecting node information. New nodal positions are de-
termined for free nodes through a predictor-corrector scheme. These are distributed
to the respective processors, where transfinite interpolation (TFI) is performed to



interpolate the local grid at the previous time step to the new position. The details
of this method may be found in Wong [24].

6 Model Validation and Results

Forced Airfoil Oscillation

To demonstrate the validity of the moving mesh, multiblock and unsteady imple-
mentation, the NACA64A010 case is presented. Computational results are com-
pared in Figure 4 for different configurations and with experiment. An unsteady
Euler calculation is performed in the flow solver. In the first case, a single block
O-grid is used in combination with TFI to deform the grid to the oscillating airfoil.
The far field boundary remains rigid. The second case involves a mesh that is not
deformed, but rotates rigidly with the displacement of the airfoil surface. For the
third calculation, the same grid as used for the single block cases is divided into
32 equal blocks, with 4 blocks in the radial direction and 8 in the circumferential
direction. In this case the block corners were located using the spring analogy. The
results for inviscid flow compare similarly with results presented elsewhere [1, 17]
and there is little difference between the results for the different configurations.
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Figure 4 Comparison of unsteady NACA64A010 results with experiment.



7 Coupled Airfoil Model

With the integration of the structural solver, it was necessary to validate the imple-
mentation of the coupled model. The Isogai wing model [9] is a simple case that
exhibits unsteady fluid-structure interaction and has proved useful in testing numer-
ical models. It has been used previously by other researchers where the mesh moved
in a rigid fashion [1]. The structural parameters for the case were chosen to simulate
the vibrational characteristics of a swept back wing that are often used in military
fighter aircraft.

The model is shown in Figure 5. Note the springs attached to both the plunging
and pitching axes and the axis of rotation is actually well forward of the airfoil
leading edge. Initially the airfoil is forced to oscillate for one period in pitch and
then released. Once released the structural equations are applied to ascertain the
new airfoil location at every time step. The aerodynamics force the response of
the structural system. Inner iterations are used whereby the structural equations are
updated within each real fluid time step. The initial oscillation was necessary to
perturb the model from rest, as some disturbance is required to move the model
from a stable configuration.
The important parameters for this simulation are the free stream Mach number Ma
and the flutter velocity Vf . The flutter velocity is defined as

Vf =
U∞

bωα
√

µ
. (11)

This is used to determine the effect of freestream velocity U∞ on the stability and
involves the ratio of fluid momentum to structural inertial terms,

µ =
m

πρb2
,

the airfoil chord b, the fluid density ρ and the structural natural frequency ωα.
Predicted results for the flutter boundary are shown in Figure 6 and compare well
with those of Alonso [1]. The flutter boundary is defined as where the amplitude
of oscillation neither increases nor decreases with time. Simulations were carried
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Figure 5 Isogai wing model.



out at fixed far field Mach number while the flutter velocity was varied. Each point
required approximately five simulations to locate the flutter boundary. The line of
best fit indicates the flutter boundary for the model.

0.7 0.75 0.8 0.85 0.9

Ma∞

0

0.5

1

1.5

2

2.5

3

3.5

Sp
ee

d 
In

de
x 

V
f

Alonso 1997 [2]
CAT

Figure 6 Flutter boundary for Isogai wing model

8 Turbomachinery Cascade

Few 3-dimensional experimental measurements exist in the field of unsteady aero-
dynamics in turbomachinery. A large effort has been made to compile measurements
for oscillating cascades that are typical of those found in industry through the Work-
shop on Aeroelasticity in Turbomachines [3], however measurements in these cases
are made at mid span and blade motion is symmetric in the radial plane to minimise
the 3-dimensional effects on results.



The Standard Test Case 4 is described as a highly loaded turbine rotor, involving
typical sections of modern free standing turbine blades [3]. The flow is high sub-
sonic and the blade normally exhibits flutter in the first bending mode. To simulate
the unsteady flow, the blade is forced to oscillate in this bending mode by translation
at an angle to the axial axis in the radial plane. Viscous effects in two-dimensional
models have been simulated numerically for this case by other authors using the
Navier-Stokes equations with the algebraic Baldwin Lomax Model [7] and the k-ω
turbulence model [12].

Recently, complete conditions at the cascade inlet and outlet plane have been made
available for Standard Test Case 4. This allows the authors to validate the 3- dimen-
sional implementation and investigate the difference between a number of different
cascade models. Blade stability will be calculated by way of the energy method.

Inviscid and Navier-Stokes simulations were performed for both 2-dimensional and
3-dimensional configurations of Standard Test Case 4. Within Test Case 4 there
are a number of measurements; results here are compared with Test 627. In this
case, the passage flow was in the high subsonic regime with a reduced frequency of
kc = 0.1187 and involving a bending amplitude of bc = 3.8 × 10−3. At the inlet
Main = 0.18 and at the outlet Maout = 0.9. It was found that using the present
method approximately 4 oscillations were required for a converged unsteady solu-
tion as described in previous work [12].

The unsteady results were investigated along the span of the blade, as shown in Fig-
ure 7. The effects of the passage vortices on the unsteady pressure coefficient appear
minimal and the coefficient on the suction side collapses onto each other towards
the trailing edge. However at 10 percent span for the inviscid result, the suction side
pressure deviates from the viscous results. Unsteady pressure coefficients in this
figure are referenced to the static pressures at the mid-span of the passage inlet.

9 Concluding Remarks

Two lines of research, involving different numerical techniques for parallelised pro-
cessing, are looking at the problem of transition to turbulence and of aeroelastic
response. The spectral element method allows high order prediction of flow insta-
bilities; in particular, it has been applied to the problem of highly swirling flows and
vortex breakdown. A novel multiblock and parallel, integrated structural and fluid
solver has been used for the investigation of aeroelastic response in compressible
flows. The implementation is general and is not limited to particular geometries and
thus is flexible in that it may be applied to a broad range of problems. The moving
mesh and structural model allow for the coupled solution of aeroelastic problems. A
number of different cases have been presented that compare computed results with
experiment or other numerical results.
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