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This study experimentally investigates the influence of structural damping on the transverse8
flow-induced vibration (FIV) of an elastically mounted thin elliptical cylinder. The cylinder9
tested has an elliptical ratio of 𝜀 = 𝑏/𝑎 = 5, where 𝑎 and 𝑏 are the stream-wise and cross-10
flow dimensions, respectively, and a mass ratio (i.e. the total oscillating mass/the displaced11
fluid mass) of 17.4. The FIV response was characterised over a reduced velocity range of12
2.30 ⩽ 𝑈∗ = 𝑈/( 𝑓nw𝑏) ⩽ 10.00 (corresponding to a Reynolds number range of 300 ⩽ Re =13
(𝑈𝑏)/𝜈 ⩽ 1300) and a structural damping ratio range of 3.62 × 10−3 ⩽ 𝜁 ⩽ 1.87 × 10−1.14
Here, 𝑈 is the free-stream velocity, 𝑓nw is the natural frequency of the system in quiescent15
fluid (water), and 𝜈 is the kinematic viscosity of the fluid. The FIV response was characterised16
by four wake-body synchronisation regimes (defined as the matching of the dominant fluid17
forcing and oscillation frequencies, and labelled I, II, III, and the Hyper Branch) and a18
desynchronisation region, with the Hyper Branch representing a high amplitude regime19
not observed for a circular cylinder. Interestingly, the major vortex shedding mode was20
predominately two single opposite-signed vortices shed per body vibration cycle. Moreover,21
hydrogen-bubble-based flow visualisations revealed a secondary vortex street forming in22
the elongated shear layers associated with largest-scale vibration amplitudes (𝐴∗ = 𝐴/𝑏 up23
to 7.7) in the Hyper Branch and regime II. As the structural damping ratio was increased24
beyond 1.92×10−2, the Hyper Branch was found to be suppressed. The results have potential25
ramifications for the efficient extraction of energy from free-flowing water sources, which26
has become increasingly topical over the last decade.27
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1. Introduction29

Flow-induced vibration (FIV), arising from the coupled interaction between a fluid and a30
structure (often termed fluid-structure interaction), is an important phenomenon prevalent31
in a great variety of engineering areas. Often observed as the swaying of large structures,32
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such as bridges and high-rise buildings in strong winds as well as offshore platforms and oil33
risers in ocean currents, FIV is both detrimental in applications where structural failure or34
long-term fatigue is undesirable, and advantageous as a potential source of renewable energy35
(e.g. Wang et al. 2017; Soti et al. 2018; Lv et al. 2021). As such, the importance of FIV has36
motivated ongoing extensive research with the intention to characterise, predict, and control37
FIV (e.g. Govardhan & Williamson 2000; Khalak & Williamson 1996; Morse & Williamson38
2009; Wong et al. 2017).39

The FIV response of an elastically mounted bluff body in a cross flow can typically be40
characterised by two distinct phenomena: vortex-induced vibration (VIV) and galloping.41
VIV occurs as a result of the periodic shedding of vortices from an elastic or elastically42
mounted body in a pattern known as a vortex street, which in turn exerts unsteady fluid43
forces to cause the structural vibration. In general, VIV is characterised by its self-limited44
amplitudes due to the process of vortex shedding alternately from both sides of the body. On45
the other hand, galloping is driven by a movement-induced aerodynamic instability arising46
from the asymmetric pressure distribution caused by the changes in the instantaneous flow47
incidence angle as the body translates in the fluid (see Parkinson & Smith 1964; Naudascher &48
Rockwell 2005; Zhao et al. 2014b, 2018c). As both manifestations of FIV are dependent on the49
properties of the flow and the cylinder (e.g. flow velocity, Reynolds number, geometry, mass50
ratio, applied damping, and structural stiffness), many past studies have chosen parameters51
such that VIV and galloping occur separately and can be individually investigated (Brooks52
1960). However, more recent studies (see Nemes et al. 2012; Zhao et al. 2018a) have shown53
that profound and complex fluid-structure interactions can also be observed when both VIV54
and galloping occur concurrently in an FIV system.55

To date, while extensive investigations have been conducted on VIV of a circular cylinder56
(see Bearman 1984; Sarpkaya 2004; Williamson & Govardhan 2004), much less attention57
has been given to FIV of elliptical cylinders. Herein, the cross-sectional profile of an elliptical58
cylinder is described by the elliptical ratio 𝜀 = 𝑏/𝑎, where 𝑎 and 𝑏 are the stream-wise and59
cross-flow (transverse) dimensions, respectively. The circular cylinder, which is considered60
a special case of the elliptical geometry (with 𝜀 = 1), exhibits a pure VIV response in61
free-stream flow due to the axial symmetry of the system; however, when the axial symmetry62
is broken, i.e. when 𝜀 deviates from unity, the cylindrical body may become potentially63
susceptible to a movement-induced instability like galloping (see Naudascher & Rockwell64
2005). Few studies have been conducted on FIV of elliptical cylinders and even fewer on65
geometries with high 𝜀. Leontini et al. (2018) numerically investigated the influence of66
the angle of attack on both the FIV response and wake modes of an 𝜀 = 1.5 elliptical67
cylinder at a low Reynolds number of Re = 100. Here, the Reynolds number is defined68
by Re = 𝑈𝑏/𝜈, where 𝑈 is the freestream velocity, and 𝜈 is the kinematic viscosity of the69
fluid. Hall (1984) demonstrated that the flow induced by a transversely oscillating elliptical70
cylinder is most unstable when 𝑏 > 𝑎, in line with the numerical study of Navrose et al.71
(2014) which showed maximum vibration amplitude increases with 𝜀 for a mass ratio of72
𝑚∗ = 10.00, and a Reynolds number and elliptical ratio range of 60 ⩽ 𝑅𝑒 ⩽ 140 and73
0.7 ⩽ 𝜀 ⩽ 1.43, respectively. This also concurred with the results obtained by Zhao et al.74
(2019a) who investigated the VIV elliptical cylinders with mass ratio of 𝑚∗ = 6.00 for an75
elliptical ratio range of 0.67 ⩽ 𝜀 ⩽ 1.50 at moderate Reynolds numbers (860 ⩽ Re ⩽ 8050).76
They found that the body vibration was enhanced, rather than attenuated, as the elliptical77
ratio was increased to 𝜀 = 1.50; i.e. the afterbody was reduced for an elliptical cylinder. Note78
that the afterbody is defined as the structural part of a bluff body downstream of the flow79
separation points (see Brooks 1960; Bearman 1984; Zhao et al. 2018a).80

More recently, Vijay et al. (2020) conducted a numerical study into the effect of the81
elliptical ratio, over the range 1 ⩽ 𝜀 ⩽ 10, as well as mass ratio, on the FIV response at82
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low Reynolds number (Re = 100). In agreement with the results of Zhao et al. (2019a),83
the largest elliptical ratio was found to incite the highest amplitude response, approximately84
twice the amplitude observed for the case of the circular cylinder under identical conditions.85

In summary, studies in the literature have shown that the FIV behaviour of a bluff body is86
strongly dependent on the geometric properties and flow conditions, such as geometric shape,87
afterbody, structural damping ratio, reduced flow velocity, and Reynolds number. However,88
the effect of structural damping on the FIV response of large-elliptical-ratio geometries89
at Reynolds numbers that can sustain the very large amplitude oscillations remains poorly90
understood. Filling this gap in the literature could have profound implications in the field91
of renewable energy generation, where the maximum amount of power extracted by the92
system can be considered as an optimisation problem between two negatively correlated93
parameters: structural damping and oscillation amplitude. A recent example is the VIVACE94
converter, pioneered by Bernitsas et al. (2008), which demonstrated that VIV of a circular95
cylinder is a viable method of extracting renewable energy from bodies vibrating naturally96
in flowing fluids. However, as a result of the circular cylinder VIV being self-limited to one97
body diameter and within discrete ranges of flow speeds, many studies have investigated98
optimal experimental parameters (e.g. surface modifications (Ding et al. 2016), geometries99
that undergo galloping (Tamimi et al. 2019), and structural properties (Lee & Bernitsas100
2011; Soti et al. 2018)) to maximise the energy harvesting performance. Whilst the current101
progress on applying FIV for hydrodynamic energy generation has been aptly reviewed102
by Lv et al. (2021), no study on the utilisation of elliptical cylinders for power extraction103
to date has addressed flow conditions and geometric parameters conducive to very high104
oscillation amplitudes. As such, a further understanding of the impact of damping on the105
FIV of elliptical geometries, especially one with unprecedented amplitudes at relatively low106
reduced velocities, could pave the way for more efficient methods of energy generation based107
on this approach.108

This study presents a comprehensive investigation into the influence of the effect of109
structural damping on FIV of a thin elliptical cylinder with an elliptical ratio of 𝜀 = 5. The110
study aims to experimentally elucidate the FIV response of a thin elliptical cylinder as a111
function of reduced velocity over a wide range of structural damping ratios (3.62 × 10−3 ⩽112
𝜁 ⩽ 1.87 × 10−1) at moderate Reynolds numbers.113

The article proceeds by outlining the experimental method in § 2. The amplitude response114
as well as frequency contours of the displacement and fluid forces are presented in § 3.1.115
§ 3.2 describes the fluid forces and their phases relative to the body displacement, followed116
by an analysis of the observed wake modes in § 3.3 to understand the complex fluid-structure117
interaction that causes these substantially large oscillations. Finally, the conclusions are118
drawn in § 4, highlighting the important findings and the significance of the current study.119

2. Experimental method120

2.1. Fluid-structure system modelling121

Figure 1 depicts the schematic of an elliptical cylinder undergoing FIV, which is constrained122
with one degree of freedom to oscillate transversely to the freestream flow. The system123
dynamics can be described by a simplified second-order governing equation for a linear124
mass-spring-damper oscillator:125

𝑚 ¥𝑦(𝑡) + 𝑐 ¤𝑦(𝑡) + 𝑘𝑦(𝑡) = 𝐹𝑦 (𝑡), (2.1)126

where 𝑚 is the total oscillating mass, 𝑐 is the structural damping, 𝑘 is the spring constant,127
𝑦 is the cylinder displacement, and 𝐹𝑦 is the transverse fluid forcing term, noting that the128
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Figure 1: (Left) A schematic defining the problem of interest: an elastically mounted elliptical cylinder
model constrained to oscillated transverse (𝑦) to the free stream flow of velocity 𝑈, which is in the positive
𝑥 direction. Here, the geometry is characterised by the elliptical ratio 𝜀 = 𝑏/𝑎, where 𝑎 and 𝑏 are the
stream-wise and cross-flow dimensions, respectively. Additionally, 𝑚 is the oscillating mass, 𝑘 denotes the
spring constant, 𝑐 is the adjustable structural damping, and 𝐹𝑥 and 𝐹𝑦 represent the respective drag and the
transverse (lift) fluid forces acting on the body. (Right) A photograph showing the experimental set-up used
in the present study.

Elliptical ratio 𝜀 𝑏/𝑎
Amplitude ratio 𝐴∗ 𝐴/𝑏

Mass ratio 𝑚∗ 𝑚/𝑚𝑑

Structural damping ratio 𝜁 𝑐/(2
√︁
𝑘 (𝑚 + 𝑚A))

Reynolds number Re (𝑈𝑏)/𝜈
Reduced velocity 𝑈∗ 𝑈/( 𝑓nw𝑏)
Strouhal number St 𝑓St𝑏/𝑈

Fluid force coefficient
(i.e. Lift, Vortex force, Drag) 𝐶𝑦 , 𝐶v, 𝐶𝑥 {𝐹𝑦 , 𝐹𝑣 , 𝐹𝑥}/(𝜌𝑈2𝑏𝐿/2)

Frequency ratio
(i.e. Displacement, Lift, Vortex force, Drag) 𝑓 ∗𝑦 , 𝑓 ∗

𝐶𝑦
, 𝑓 ∗

𝐶v
, 𝑓 ∗

𝐶𝑥
{ 𝑓𝑦 , 𝑓𝐶𝑦

, 𝑓𝐶𝑣
, 𝑓𝐶𝑥

}/ 𝑓nw

Table 1: Relevant non-dimensional parameters. Here, 𝐴 is the vibration amplitude in the 𝑦 direction, 𝑚d is
the displaced mass of the fluid, 𝑚A is the added mass, 𝜈 is the kinematic viscosity of the fluid, 𝑓nw is the
natural frequency of the system in quiescent water, 𝑓St is the fixed-body vortex shedding frequency, 𝐿 is
the immersed length, 𝜌 is the fluid density, and 𝑓𝑦 is the body oscillating frequency. 𝐹𝑦 , 𝐹𝑣 , and 𝐹𝑥 are the
transverse lift, vortex, and streamwise drag forces, respectively, with the corresponding frequency for each
term being 𝑓𝐶𝑦

, 𝑓𝐶𝑣
, and 𝑓𝐶𝑥

.

over-dot symbols represent derivatives with respect to time (𝑡). Table 1 shows the relevant129
non-dimensional parameters for the study.130

The present experiments were undertaken in the free-surface recirculating water channel131
of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash132
University. The water channel has a test section of 4000 mm in length, 600 mm in width and133
800 mm in depth. The mass-spring-damper system was modelled based on a low-friction134
air-bearing rig, which was placed atop the water channel working section and transverse to135
the freestream flow direction. Further details on the platform and the air-bearing rig used136
in the current study can be found in Zhao et al. (2018a,b). The test elliptical cylinder was137
manufactured from aluminium and had streamwise and cross-flow (transverse) dimensions138
of 𝑎 = 5 ± 0.10 mm and 𝑏 = 25 ± 0.10 mm, respectively, resulting in an elliptical ratio of139
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Figure 2: (𝑎) Structural damping 𝜁 and (𝑏) natural frequencies as a function of the gap (G) between the
magnet and copper plating of the electromagnetic damper system developed by Soti et al. (2018). (𝑏.𝑖) and
(𝑏.𝑖𝑖) denote the respective natural frequencies in both air, 𝑓na, and water 𝑓nw.

𝜀 = 5. The immersed length of the cylinder was 614 ± 0.50 mm with an aspect ratio of140
𝐴𝑅 = 𝐿/𝑏 = 24.6. To promote parallel vortex shedding through the attenuation of end141
effects, an end-conditioning platform was positioned approximately 1 mm (4% of 𝑏) below142
the free end of the cylinder (see Khalak & Williamson 1996). The use of the platform to143
reduce end effects has been validated and utilised extensively by Zhao et al. (2014b, 2018b),144
Wong et al. (2017), and Soti et al. (2018).145

The total oscillating system mass was 𝑚 = 1046.4 g and the mass of the displaced water146
was 𝑚𝑑 = 𝜌𝜋𝑎𝑏𝐿/4 = 60.0 g, giving a mass ratio of 𝑚∗ = 𝑚/𝑚𝑑 = 17.4. The spring constant147
was provided by a pair of precision extension springs. The structural damping was controlled148
using an eddy-current magnetic damper mechanism developed by Soti et al. (2018). The149
desired damping was achieved by adjusting the gap (𝐺) between the magnet and copper150
plate, via a micro-drive stage with a resolution of 0.01 mm.151

Free-decay tests were conducted individually in both air and quiescent water to determine152
the natural frequency of the system and structural damping ratios. The system characteristics153
were described using the structural damping ratio with added mass (𝑚A) considerations.154

Defined as 𝜁 = 𝑐/(2
√︁
𝑘 (𝑚 + 𝑚A)), the damping ratio is a function of the potential flow added155

mass given by 𝑚A. In practice, it can be shown that this can be determined experimentally156
through the relationship 𝑚A = (( 𝑓na/ 𝑓nw)2 − 1)𝑚, which in turn is dependent on the natural157
frequencies in both air ( 𝑓na) and water ( 𝑓nw). As the damping force exerted by the damper158
mechanism is controlled by the gap, 𝐺, figure 2 shows the variations in 𝜁 , 𝑓na and 𝑓nw with159
the gap distance.160

It should be noted that in the present study, streamwise drag and the transverse lift are de-161
scribed in dimensionless forms defined by 𝐶𝑥 = 𝐹𝑥/(𝜌𝑈2𝑏𝐿/2) and 𝐶𝑦 = 𝐹𝑦/(𝜌𝑈2𝑏𝐿/2),162
respectively, where 𝜌 is the fluid density, and 𝐿 is the immersed length of the cylinder.163
In addition, the dimensionless form of the vortex force is given by 𝐶𝑣 = 𝐹𝑣/(𝜌𝑈2𝑏𝐿/2),164
which was computed through a decomposition of the total transverse force into a vortex force165
component (𝐹𝑣) and a potential force component (𝐹𝑃), namely 𝐹𝑦 = 𝐹𝑣 +𝐹𝑃 , noting that the166
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potential force (in an inviscid fluid) is given by 𝐹𝑃 = −𝑚𝐴 ¥𝑦, with 𝑚𝐴 being the added mass167
(see Govardhan & Williamson 2000; Morse & Williamson 2009; Zhao et al. 2014a,b).168

2.2. Data acquisition and processing169

The control of the freestream velocity as well as data acquisition (DAQ) were automated170
through customised LabVIEW (National Instruments, USA) software with measurements171
taken using a USB DAQ device (model: USB6218-BNC, National Instruments, US) sampling172
at 100 Hz for 300 seconds. Transverse displacement was measured using a non-contact173
digital optical linear encoder (model RGH24; Renishaw, UK) with a range of ±200 mm at a174
resolution of 1µm, whilst the transverse force (𝐹𝑦) was obtained based on (2.1) where the175
first- and second-order derivatives were determined through numerical differentiation of the176
displacement signal (see e.g. Sareen et al. 2018). The drag force (𝐹𝑥) was directly measured177
using a two-component force balance based on semiconductor strain gauges arranged in a178
Wheatstone bridge configuration.179

The fluid-structure interaction between the fluid flow and elliptical cylinder was investi-180
gated over the structural damping ratio range 3.62× 10−3 ⩽ 𝜁 ⩽ 1.87× 10−1, encompassing181
a variation by a factor of ∼ 50, for reduced velocities of 2.3 ⩽ 𝑈∗ = 𝑈/( 𝑓nw𝑏) ⩽ 10. The182
freestream velocity range tested was 40 ⩽ 𝑈 ⩽ 180 mm s−1, corresponding to the Reynolds183
number range 980 ⩽ Re ⩽ 4410, where Re = 𝑈𝑏/𝜈 with 𝜈 being the kinematic viscosity of184
the fluid. The freestream turbulence level was less than 1% over the flow velocities of interest.185
To further test the mechanism of movement-induced vibration as well as the hysteresis effect186
in transitions between different FIV response regimes, experiments of both increasing and187
decreasing reduced velocities were conducted.188

To visualise the wake structures responsible for the oscillations of the elliptical bluff body,189
Particle Image Velocimetry (PIV) was employed to image through the cross-sectional plane190
of the cylinder. After seeding the flow with hollow micro-spheres (model Sphericel 110P8;191
Potters Industries Inc.) of normal diameter 13µm and specific weight 1.10 g cm−3, the images192
were captured with a high-speed camera (Dimax S4, PCO AG, Germany) with resolution193
2016 × 2016 pixel2 and equipped with a 50 mm lens (Nikon Corporation, Japan). The optical194
magnification factor was approximately 6.23 pixel mm−1. Illumination was provided by a195
3 mm thick laser sheet from a 5 W continuous laser (model: MLL-N-532nm-5W, CNI). For196
each trial, a set of 3100 image pairs was recorded at a sampling rate of 10 Hz. Validated197
in-house software, originally developed by Fouras et al. (2008), was then used to correlate198
32×32 pixel2 interrogation windows with 50% window overlap to obtain the time-dependent199
vector fields of the wake flow. Finally, the resultant fields were phase averaged by dividing200
them into 48 phases based on the cylinder displacement and velocity, and averaging over201
each bin (see Zhao et al. 2018b).202

3. Results and discussion203

3.1. Structural vibration response204

Figure 3 shows the normalised amplitude response of the elliptical cylinder of 𝜀 = 5 as a205
function of reduced velocity for a range of structural damping ratios. Note that the normalised206
amplitude is defined by 𝐴∗ = 𝐴/𝑏, with 𝐴 being the dimensional vibration amplitude for a207
given reduced velocity, and 𝐴∗

10 represents the mean of the top 10% of amplitude peaks (see208
Nemes et al. 2012; Zhao et al. 2014b, 2019a). In this study, measurements with increasing209
and decreasing 𝑈∗ are displayed by unfilled and solid markers, and denoted by 𝑈∗ ↑ and210
𝑈∗↓, respectively. In this figure, the amplitude responses are plotted in two sub-plots: (𝑎) for211
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Figure 3: Normalised amplitude response (𝐴∗10) for the elliptical cylinder of 𝜀 = 5 as a function of reduced
velocity for various structural damping ratios (𝜁). The cases with the presence of Hyper Branch are plotted
in (𝑎), whilst the the other cases with the absence of Hyper Branch are shown in (𝑏). Note the difference in
the ranges of 𝐴∗10 for the two sub-figures.

responses displaying a Hyper Branch (i.e. 𝜁 ⩽ 1.88 × 10−2) and (𝑏) for responses without212
the appearance of a Hyper Branch.213

It should also be noted that the vibration amplitude would exceed the limit of the air-214
bearing rig (𝐴∗ ≈ 8) for 𝜁 ⩽ 1.88 × 10−2 when 𝑈∗ was increased beyond 8. To prevent the215
growing amplitude cylinder from hitting the physical limit of the air-bearing rig, the flow216
was set to zero velocity when the vibration amplitude was close to the limit (at 𝑈∗ ≈ 7.6)217
via the LabVIEW data acquisition program. After this temporary stop, the flow velocity was218
resumed from rest to sweep through the rest of the programmed𝑈∗ values (in an increment of219
0.05 or 0.1). This procedure could prevent the occurrence of “hard” movement-induced FIV220
response (one that requires a “hard” trigger, as discussed in Zhao et al. (2018a)), and thus the221
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FIV responses in figure 3(𝑎) fall onto a lower branch for 𝑈∗ ≳ 7.6. Thus, it is not clear how222
much further the Hyper Branch response would continue beyond this water-channel based223
𝑈∗ limit.224

3.1.1. FIV response regimes225

For increasing and decreasing 𝑈∗ trends, figures 4 and 5 respectively present the normalised226
power spectral density (PSD) contours of the body vibration frequency ( 𝑓 ∗𝑦 ) and transverse227
lift frequency ( 𝑓 ∗

𝐶𝑦
) as a function of 𝑈∗ for selected 𝜁 values. Note that the frequency228

components are normalised by 𝑓nw; i.e. 𝑓 ∗𝑦 = 𝑓𝑦/ 𝑓nw, and 𝑓 ∗
𝐶𝑦

= 𝑓𝐶𝑦
/ 𝑓nw. Further details229

of the construction method for the PSD contours can be found in Zhao et al. (2014b).230
Whilst the vortex-force frequency responses appeared identical to those of 𝑓 ∗

𝐶𝑦
in the present231

experiments, their PSD contours are not provided in our current study.232
As shown in figures 4 and 5, the FIV response can be categorised by four distinct233

synchronisation (or “lock-in”) regimes and a desynchronised region. These domains were234
classified based on an overall evaluation of the amplitude and frequency responses, as well235
as the fluid forces and their phases relative to the body displacement. The lock-in regions236
are labelled I, II, Hyper Branch (H), and III, according to the characteristics of the response237
at low damping. These labels are drawn from commonality in both the amplitude response,238
and the displacement and lift coefficient frequency response across damping ratios, and are239
discussed in detail below. Sample time traces of the body displacement (𝑦∗), the fluid forces240
(represented by their coefficients 𝐶𝑥 and 𝐶𝑦), and the total phase (𝜙𝑡 ) selected from each241
synchronisation regime are also shown in figure 6 to illustrate the periodic dynamics.242

To quantify the effect that hysteresis and damping have on the FIV of the elliptical cylinder,243
the response at the minimal damping ratio tested (𝜁 = 3.62 × 10−3) for increasing 𝑈∗ will244
be described in detail here and used as a baseline in later parts of the section to highlight the245
effects of 𝑈∗ direction and increased 𝜁 values on the resultant dynamic responses.246

In the present study for the baseline case (figure 4(𝑏)), the first regime (I) occurs over247
a reduced velocity range of 𝑈∗ ≲ 3.2, where a wake-body synchronisation (represented by248
the matching of the dominant frequencies of 𝑓 ∗𝑦 and 𝑓 ∗

𝐶𝑦
) is clearly present, occurring at249

𝑓nw. It should be noted that the fluid forcing frequency also sees a weak second harmonic250
component (i.e. 𝑓 ∗

𝐶𝑦
≃ 2). In this regime, the amplitude response 𝐴∗

10 exhibits an almost251

linear growth with increasing 𝑈∗. In regime II (over 3.2 ≲ 𝑈∗ ≲ 4.8), the 𝐴∗
10 response252

continues the linear growth trend as in regime I. However, in addition to a second harmonic253
in 𝑓 ∗

𝐶𝑦
, a third harmonic also develops as shown in figure 4(𝑏.𝑖𝑖).254

As 𝑈∗ is further increased to regime H (the Hyper Branch regime over 4.8 ≲ 𝑈∗ ≲ 7.05),255
the beginning of the Hyper Branch is marked by a sudden jump in 𝐴∗

10 but with a small256
step-like decrease in the third harmonic of 𝑓 ∗

𝐶𝑦
. Similar to the upper branch of the VIV257

response for a circular cylinder, the Hyper Branch regime is featured by the largest-scale258
body oscillation amplitudes for this damping case (𝐴∗

10 up to 7.7 at 𝑈∗ = 7.05 prior to a259
temporary reset of the flow velocity to zero). It is important to highlight that the upper limit260
of this regime is artificial since the flow velocity was deliberately reset to zero when the261
body vibration approached the limit of the experimental rig, as discussed above. Due to262
the largest-scale amplitudes in this regime being driven by the “hard” movement-induced263
instability, allowing the cylinder to return to rest before the flow was restarted causes the264
premature onset of regime III (Lower Branch), which sees its 𝐴∗

10 value decreasing to 0.967,265
12.6% of the peak value of Hyper Branch (figure 3(𝑎)). As such, the onset of “true” transition266
from Hyper Branch to Lower Branch, which is solely dependent on the “natural” response267
of the FIV system alone, will occur at higher 𝑈∗.268
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Figure 4: The (𝑎.𝑖–𝑎.𝑖𝑖) normalised amplitude response (increasing𝑈∗) and logarithmic-scale PSD contours
of the (𝑏.𝑖–𝑔.𝑖) normalised vibration ( 𝑓 ∗𝑦 ), and (𝑏.𝑖𝑖–𝑔.𝑖𝑖) transverse fluid force ( 𝑓 ∗

𝐶𝑦
) frequencies as a

function of 𝑈∗ for selected 𝜁 values from figure 3. In (𝑏)–(𝑔), the horizontal dashed line highlights the
frequencies at 𝑓 ∗ ∈ {1, 2, 3}; the vertical dashed lines represent the boundaries of different response regimes
(i.e. I, II, Hyper Branch (H), III, and desynchronisation (D)); and the dot-dashed line represents the Strouhal
frequency measured for a stationary cylinder.
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Figure 5: The (𝑎.𝑖–𝑎.𝑖𝑖) normalised amplitude response (decreasing𝑈∗) and logarithmic-scale PSD contours
of the (𝑏.𝑖–𝑔.𝑖) normalised vibration ( 𝑓 ∗𝑦 ) and (𝑏.𝑖𝑖–𝑔.𝑖𝑖) transverse fluid force ( 𝑓 ∗

𝐶𝑦
) frequencies as a function

of 𝑈∗ for selected 𝜁 values from figure 3. More details can be found in the caption of figure 4.
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Occurring over 7.05 ≲𝑈∗ ≲ 8.10 with a maximum amplitude of 𝐴∗
10 ≃ 0.967, regime III269

is analogous to the lower branch in VIV of the circular cylinder response and corresponds270
to a monotonically decreasing 𝐴∗

10 trend with increasing 𝑈∗. The fall in body vibration271
amplitude also coincides with an increase in the body and transverse fluid force frequencies272
to 1.06 𝑓nw (figure 4(𝑏)). Meanwhile, the contribution of the second and third harmonics273
to the frequency response of the 𝑦-direction fluid force becomes negligible in this regime.274
Unlike the frequency response in the Hyper Branch, the harmonic contributions in Regime275
III gradually increase with 𝑈∗.276

Outside the four synchronisation regimes, the fluid–structure interaction becomes desyn-277
chronised as the frequency response of the transverse lift becomes a broadband centred278
about a main signal at the Strouhal vortex shedding frequency, 𝑓St (figure 4(𝑏)). The same279
contribution was also observed in the body vibration PSD contours, as well as an additional280
broadband signal close to the natural frequency of the system in water. Note that the Strouhal281
number was experimentally measured to be St = 𝑓St𝑏/𝑈 = 0.169 for the stationary cylinder282
case.283

3.1.2. Hysteresis effects in the amplitude response284

We will now address the effect of changing the direction of the 𝑈∗ increments on the285
amplitudes and lock-in response regimes (see figure 5 for PSD contours). In relation to286
the baseline case (𝑈∗ is increased, 𝜁 = 3.62 × 10−3), the hysteretic nature of the observed287
FIV phenomena can be investigated through comparisons with data obtained for the same288
damping ratio but with decreasing 𝑈∗ increments. Whilst the peak amplitude over the tested289
𝑈∗ range for both increment directions follows a typical three-branch response, the reduced290
velocity ranges in which these regions occupy differ. This is most apparent in the transition291
between the Hyper Branch and Regime III, which occurs at a lower value of 𝑈∗ = 6.15 for292
decreasing increments as compared to 7.05 for the baseline case. As such, the reduced 𝑈∗293
value results in a smaller maximum Hyper Branch response (𝐴∗

10 ≃ 5.99) and an increased294
maximum lower branch-like (III) response (𝐴∗

10 ≃ 2.42) relative to the baseline. Therefore,295
the hysteretic behaviour indicates that the Hyper Branch regime is dependent on the initial296
state of the elliptical cylinder system (i.e. the oscillation amplitude), and explains why the297
direction of the 𝑈∗ increment will determine the manifestation of either Regime III or the298
Hyper Branch for intermediate reduced velocities (𝑈∗ = 6.2 – 7.05). The movement-induced299
nature of the Hyper Branch, which is the cause of this hysteresis, will be further discussed in300
§ 3.3. Furthermore, the presence of a weak second-harmonic component, undetected when301
𝑈∗ was increased and the strength of which increases as the transition to the Hyper Branch302
is approached, was also observed in the transverse fluid forces of Regime III (figure 5(𝑏.𝑖𝑖)).303

Aside from the aforementioned aerodynamic instability regime, hysteresis was also present304
in the boundary between the desynchronisation and third regimes, with the onset of the former305
region occurring for a lower reduced velocity of 𝑈∗ = 7.8. Regime III can be considered306
predominantly VIV in nature due to its similarities to the lower branch of the circular307
cylinder amplitude response, as well as an absence of higher harmonic contributions to308
the 𝐶𝑦 frequency contours in this region (refer to § 3.2 for further justification). As such,309
the observed hysteresis phenomena can be attributed to the effect of transverse cylinder310
oscillations on the after-body wake structure Blevins & Scanlan (1977). In the case when 𝑈∗311
was increased, the amplitude response of Regime III likely prolonged the synchronisation312
of the wake and body to the natural frequency and hence delayed the desynchronisation to313
higher reduced velocities as compared with the reverse 𝑈∗ direction.314
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Figure 6: Sample time traces of the cylinder vibration for the minimum damping ratio tested (𝜁 = 3.62×10−3)
at different reduced velocities selected from the four synchronisation regimes: (𝑎) 𝑈∗ = 3.0 (I), (𝑏) 𝑈∗ =
4.0 (II), (𝑐) 𝑈∗ = 6.0 (Hyper Branch), and (𝑑) 𝑈∗ = 8.0 (III). Note that the total phase 𝜙𝑡 (the relative phase
of 𝐶𝑦 with respect to 𝑦∗) is shown in degrees, and the time is normalised 𝑓nw, namely 𝜏 = 𝑡 𝑓nw.

3.1.3. Impact of structural damping on the overall dynamic response315

The question now arises as to how increasing 𝜁 from the minimum value tested (baseline case)316
affects the FIV characteristics of the elastically mounted elliptical cylinder. Figure 7, a two-317
dimensional contour plot of figure 3, indicates the variation of the synchronisation regimes318
in the 𝑈∗ − 𝐴∗ parameter space as a function of 𝑈∗ and 𝜁 . This effect can be categorised into319
two 𝜁 domains: 𝜁 ⩽ 1.88 × 10−2 where the Hyper Branch regime is present (figure 3(𝑎)),320
and 𝜁 ⩾ 1.92 × 10−2 with the absence of the Hyper Branch response (figure 3(𝑏)). Though321
not the focus of this study, the boundaries of the FIV response regimes shown in figure 7 can322
also be affected by the value of the Reynolds number.323

As indicated by figure 3(𝑎), increasing the structural damping of the system results in324
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Figure 7: The normalised amplitude contours plotted in 𝑈∗– 𝜁 space. Based on an overall examination
of the vibration amplitude and frequency responses as well as fluid forcing phases, the FIV response is
characterised by five different regimes: Regime I, Regime II, Hyper Branch (H-branch), Regime III and
the desynchronised region. The approximate boundaries of each region are marked by the dashed lines.
The overlaid crosses denote the damping and reduced velocity values at which spot PIV measurements (as
further discussed in § 3.3) were taken, with the red crosses representing the locations of the PIV contours in
figures 12-16. (a) corresponds to 𝑈∗ increasing, and (b) to 𝑈∗ decreasing.

an overall delay in the onset of all four lock-in regimes to higher 𝑈∗ values. An additional325
desynchronisation region for which the 𝑈∗ range expands with 𝜁 , emerged on the left of326
Regime I. Hysteresis, due to the same reasoning applied to the VIV-dominated Regime III,327
also occurs to the transition between the desynchronisation region and Regime I. As such, the328
𝑈∗ value for which the transition occurs increases with 𝜁 for both 𝑈∗ increment directions.329
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Whilst the damping-induced delaying effect is especially noticeable in the onset of Regimes330
I and II as well as in the Hyper Branch, the same retardation in𝑈∗ with increased 𝜁 is minimal331
for Regime III as evidenced by the general concurrence in amplitude across all damping ratios332
below 𝜁 = 1.88 × 10−2 (figure 3(𝑎)). The main source of deviation was observed near the333
boundary between Regime III and the Hyper Branch for decreasing𝑈∗, with higher 𝜁 resulting334
in the curvature of the lower branch-like amplitude response being less pronounced. Along335
with the delay in the onset of the Hyper Branch regime, the increase in damping ratio for336
decreasing𝑈∗ increments also leads to a reduction of the maximum amplitude in the regime.337

For the third harmonic components in the transverse fluid forces observed for Regime II of338
the baseline case, increasing the damping ratio caused an overall decrease in both the strength339
of the harmonics (see figures 4(𝑏–𝑐) and 5(𝑏–𝑐)) as well as the overall𝑈∗ range of the lock-in340
region (figure 7). As this decrease in higher-order frequency components also corresponds341
to the delay of the amplitude response of the four lock-in regions (i.e. a higher 𝑈∗ value342
required to attain a given 𝐴∗

10), the presence of the harmonic components may be important343
in the development of large transverse oscillations in the system. This conclusion concurs344
with the suggestions made by Zhao et al. (2014b) and Wang et al. (2017) for transverse FIV345
and Zhao et al. (2018b) for in-line FIV, where large-scale body vibrations were attributed346
to the harmonic synchronisations in the fluid forces. However, an exception to the above347
generalisations was observed during the transition from Regime III to the Hyper Branch for348
decreasing 𝑈∗, where the 𝑓 ∗ = 3 contribution to 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶v
both increases with damping.349

The effect of wake modes and flow structures downstream of the cylinder on higher-order350
frequencies will be discussed in § 3.3.351

3.1.4. Hyper Branch suppression for 𝜁 ⩾ 1.92 × 10−2352

After examining low-damping cases where the Hyper Branch is present, we will now consider353
𝜁 ⩾ 1.92 × 10−2. With this degree of damping, Regime II and the Hyper Branch are354
completely suppressed, and non-negligible amplitudes are only observed in Regimes I and355
III. As such, the amplitude response changes drastically from the cases detailed in § 3.1.1 and356
can be considered a predominantly one-branch response (figure 3(𝑏)). The transition between357
Regimes I and III can be defined by the value of 𝑈∗ at which the wake-body synchronisation358
deviates from the 𝑓 ∗𝑦 = 1 natural frequency. Since this divergence away from 𝑓nw occurs359
with no noticeable jump, the point of deviation stated in this study can only be taken to360
be an approximate location. Nonetheless, a clear trend is observed where increasing 𝜁 both361
delays the onset and restricts the domain of Regime II. Correspondingly, the deferment of the362
lock-in region leads to an expansion of the initial desynchronisation region to higher reduced363
velocities.364

For 𝜁 = 4.98 × 10−2, the amplitude curve begins to split from a mainly one-branch365
response into multiple distinct branches as categorised by the sudden drop in 𝐴∗

10 at 𝑈∗ =366
6.60 in figure 3(𝑏). Regime II becomes completely suppressed when structural damping367
is increased to 𝜁 = 6.30 × 10−2 (figures (4–5)( 𝑓 )), and the third region (III) becomes the368
only region of synchronisation. The reduced velocity range of the latter lock-in region will369
shrink with further increases in damping, resulting in the gradient of the vibration and370
transverse fluid force frequencies as a function of 𝑈∗ becoming steeper. The multi-branched371
amplitude response collapses back into a single branch when the applied damping reaches372
𝜁 = 1.40 × 10−1, with complete desynchronisation observed for 𝜁 = 1.87 × 10−1. The373
FIV response for the latter damping ratio is characterised by the suppression of all four374
lock-in regimes, resulting in the main frequency contribution now following the Strouhal375
frequency across the reduced velocity range of interest (figures (4–5)( 𝑓 )). It should be376
noted that there was significantly less contribution by the second and third harmonics to377
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Figure 8: Maximum amplitude, as a function of damping, observed for FIV responses where the Hyper
Branch is suppressed (𝜁 ⩾ 1.92 × 10−2). Data collected for both increasing and decreasing 𝑈∗ increments
were utilised in the plot. The red dotted line denotes the inverse function (with the equation shown in the
legends) fitted over the data points, resulting in a fit with R-squared value of 0.987.

the frequency response of the transverse fluid forces ( 𝑓 ∗
𝐶𝑦

, 𝑓 ∗
𝐶v

) after the suppression of the378

Hyper Branch oscillation, further supporting the conclusion that harmonic synchronisation379
plays an important part in the development of large oscillation amplitudes. An exception380
to this generalisation is the strengthening of the third harmonic on the right-hand side381
of the transition between Regime I and III (see figures 4(𝑒.𝑖𝑖) and 5((𝑑–𝑒).𝑖𝑖)), which is382
only suppressed when 𝜁 ⩾ 2.16 × 10−2. With the Hyper Branch response being absent in383
the response, hysteresis effects were mainly observed in the transition between the lock-384
in (either Regime II or III) and the desynchronisation regions. In general, decreasing 𝑈∗385
increments will reduce the range of the initial desynchronised regime and cause the onset386
of the final desynchronisation regime to occur at lower reduced velocities when compared387
to the increasing 𝑈∗ case. However, this does not apply to the cases where 𝜁 = 6.30 × 10−2388
(figure 5( 𝑓 )) and 8.10×10−2 since vibrations in Regime III can be excited for higher reduced389
velocity compared to other damping values (see figure 3(𝑏)) when 𝑈∗ was decreased.390

Interestingly, when plotting the maximum amplitude for both increasing and decreasing391
𝑈∗ directions as a function of the applied structural damping (figure 8), the curve was found392
to be well approximated by an inverse fit. However, a similar relationship could not be found393
when the Hyper Branch was present in the amplitude response.394

3.2. Damping effects on fluid forcing and phase angles395

An important component of the fluid-structure interaction is the transverse fluid force exerted396
by the flow on the elastically mounted elliptical cylinder, as well as the relative phase to the397
body displacement. Shown in figure 9, the root mean square (r.m.s.) of the fluid force398
coefficient in the 𝑦 direction is highest in the Hyper Branch regime, exceeding values of399
𝐶𝑦

rms ≈ 1. Whilst 𝐶𝑦
rms generally decreases with increased structural damping over the400

tested reduced velocity range, the general shape of the plotted curves within each subplot of401
figure 9 remains relatively consistent. Exceptions to this trend, however, were observed in402
Regime III for 6.30 × 10−2 ≲ 𝜁 ≲ 1.40 × 10−1. Instead of the bell-shaped trend of lower403
damping values in figure 9(b), 𝐶𝑦

rms increases with 𝑈∗ before decreasing in a discontinuous404
step-like manner until the onset of desynchronisation. This deviation could explain why the405
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Figure 9: The root mean square value of the total transverse fluid force (𝐶𝑦
rms) as a function of 𝑈∗ for a

range of fixed 𝜁 values. The structural damping values where the Hyper Branch is present and absent are
separately shown in (a) and (b), respectively.

initially single-branch amplitude response of the figure breaks up into multiple branches406
with increasing damping. For all lock-in regions as shown in figure 6, the transverse fluid407
forces were strongly periodic, with deviation away from a pure sinusoid for Regime II and the408
Hyper Branch alluding to the presence of harmonic components observed in the frequency409
contours of figures 4 and 5.410

In terms of the phase response, figure 10 shows the phase difference (𝜙𝑡 ) between the411
total transverse fluid force and the body displacement for the various structural damping412
ratios tested. The mean phase and its variant were calculated following the method used in413
McQueen et al. (2021); Zhao et al. (2022). Taken as the average of the instantaneous phases414
(𝜙total, j) over the recording period consisting of 𝑁 samples, the circular nature of this quantity415
means that the arithmetic mean cannot be used. Instead, 𝜙𝑡 is found by first calculating the416
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Figure 10: The relative phase between the total transverse fluid force and body displacement (𝜙𝑡 ) as a function
of 𝑈∗ for a range of fixed 𝜁 values. Here the phase values are reported in degrees. The structural damping
values where the Hyper Branch is present and absent are separately shown in (𝑎) and (𝑏), respectively, whilst
increasing and decreasing 𝑈∗ increments are respectively presented in (i) and (ii).

mean vector of the total phase distribution, expressed as417

�̄� =
1
𝑁

𝑛∑︁
𝑘=1

e𝑖𝜙total, j . (3.1)418

The resultant vector can then be used to obtain both a mean and variation of the phase angles,419

𝜙𝑡 = Arg(�̄�), (3.2)420

Var(𝜙𝑡 ) = 1 − |�̄�| ∈ [0, 1] . (3.3)421422

The variant value Var(𝜙𝑡 ) can be used as the index of phase synchronisation: the minimum423
possible value 0 indicates that all phase angles are equal (i.e. perfect phase synchronisation),424
whereas the maximum possible value 1 indicates that phase angles are spread uniformly over425
the circular space (i.e. no phase synchronisation or uncorrelated phase differences) (Zhao426
et al. 2022).427

As shown in figure 10, for the minimum damping case (𝜁 = 3.62 × 10−3) with increasing428
𝑈∗ increments, the total phase 𝜙t in both regimes I and II peaks at 𝜁 ≈ 17.8◦ about𝑈∗ = 3.9,429
whilst the onset of the Hyper Branch corresponds to a discontinuous drop in 𝜙t. The Hyper430
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Figure 11: The circular variance of total phase between the total transverse fluid force and body displacement
(𝜙𝑡 ) as a function of 𝑈∗ for a range of fixed 𝜁 values. The organisation of subplots follow figure 10.

Branch regime can be categorised as an asymptotic curve plateauing towards an almost431
constant value of 𝜙𝑡 ≈ 7.5◦ at 𝑈∗ ≈ 7. Moreover, the total phase in the Hyper Branch being432
close to 0◦ is indicative of the cylinder oscillation being mostly in-phase with the fluid forcing,433
potentially leading to positive feedback between the two quantities (i.e. a self-reinforcing434
process where a positive increase in displacement leads to an increase in transverse fluid435
force, which in turn amplifies the displacement). Whilst this in-phase relationship extends to436
Regimes I and II as well, the fluid forcing in Regime III is nearly in constant anti-phase to437
the cylinder motion (𝜙t ≈ 177◦).438

Furthermore, the effect of increasing 𝜁 on the phase response in figure 10 can be439
characterised by the respective increases and decreases of the lower (Regimes I, II and Hyper440
Branch) and upper (Regime III) phase plateaus towards 𝜙𝑡 ≈ 90◦. In figure 10 (𝑎.𝑖) and (𝑏.(𝑖–441
𝑖𝑖)), the transition between the two plateaus becomes increasingly less abrupt and follows a442
more continuous curve over a range of intermediate phase values. The presence of a phase443
jump between the two phase plateaus coincides with third harmonic frequency components444
in 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶v
at the regime III to Hyper Branch transition (as previously discussed in § 3.1).445

As such, the disappearance of the harmonics for damping ratios 𝜁 ⩾ 2.16 × 10−2 could be446
linked to the phase response becoming completely continuous.447

Outside of the synchronisation regimes, the desynchronisation region is also clearly448
observed in the phase responses by the large spread in variance values shown in figure 11.449
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Figure 12: Evolution of phase-averaged vorticity contours for structural damping of 𝜁 = 1.49 × 10−2 at
𝑈∗ = 3.0 (Regime I), with the flow moving from left to right. The normalised vorticity field is 𝜔∗

𝑧 = 𝜔𝑧𝑏/𝑈
, where 𝜔𝑧 is the vorticity out of the 𝑥-𝑦 plane. The blue and red contours represent clockwise and anti-
clockwise vorticity, respectively. The black dot at the far left denotes the body centre position of the cylinder
and the black vertical line between two horizontal bars indicates the peak-to-peak vibration amplitude. A
single vortex is shed every half cycle as part of the observed 2S wake mode.

While desynchronisation is present at high 𝑈∗ values and at low 𝑈∗ for the damping ratios450
above the minimum value tested, the phase response between these two scenarios differs.451
For 𝜁 = 1.87 × 10−1, where all synchronisation regimes are not present, the phase smoothly452
transitions from 𝜙𝑡 ≈ 11◦ to 𝜙𝑡 ≈ 158◦, and reaches 90◦ at approximately 𝑈∗ = 1/St ≈ 6.453

Whilst not presented here, the vortex phase (𝜙𝑣), defined as the phase angle between the454
vortex force and the cylinder movement (see Govardhan & Williamson 2000), generally455
behaves in a manner similar to the total phase, albeit with a larger magnitude. As such, the456
above arguments are equally valid for both phases.457

3.3. Wake modes458

To extend the description of the FIV response for the elliptical cylinder, the dynamics459
can be further characterised through PIV measurements to visualise the wake structures in460
different regimes. The measurement locations in the 𝑈∗ − 𝜁 parameter space are marked461
on the contour plot (figure 7). Figures 12-15 show the phase-averaged vorticity contours at462
𝑈∗ ∈ {3.0, 4.8, 5.2, 7.0}, respectively, for 𝜁 ≃ 1.49 × 10−2 to illustrate the wake patterns463
for the four synchronisation regimes. Not shown are the wake-body interactions in the464
desynchronisation region, with no discernible regular wake structure observed.465

The major wake structure encountered in all the synchronisation regimes is the 2S mode466
(Williamson & Roshko 1988), which consists of two large counter-rotating vortices shed467
per body oscillation cycle. These large vortices are responsible for the dominant frequency468
component of both the vortex shedding process and the body vibration (see the PSD contours469
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Figure 13: Evolution of phase-averaged vorticity contours for structural damping of 𝜁 = 1.49 × 10−2 at
𝑈∗ = 5.2 (Regime II). More details can be found in the caption of figure 12. Along with the 2S wake mode
that was previously found in Regime I, additional vorticity was also observed in the region between the
counter-rotating vortex pair forming a zigzag pattern.

of 𝑓 ∗
𝐶𝑦

and 𝑓 ∗𝑦 ). However, the second and third harmonic components of 𝑓 ∗
𝐶𝑦

observed for470

all synchronisation regimes aside from Regime I (figure 12) can be attributed to additional471
vortical structures, which appear as elongated shear layers between the two major opposite-472
signed single vortices shed from either side of the cylinder (see figure 13). As shown in the473
cases of Regime II (figure 13) and the Hyper Branch (figure 14), the elongated shear layers474
form a zigzag-like structure in the near-wake (i.e. 𝑥/𝑏 < 4), whose strength and definition475
are found to increase with the body vibration amplitude. However, the ”zigzag” structure476
dissipates into an inner much weaker vortex street travelling downstream. Corresponding to477
a weak harmonic component in 𝑓 ∗

𝐶𝑦
, the ancillary wake structure in Regime III (figure 15)478

consists of a thin shear layer that forms a tail that connects the major vortices to the elliptical479
cylinder. This feature is short-lived and is quickly dissipated by the free-stream flow.480

While previous studies of VIV of circular cylinders (e.g. Govardhan & Williamson 2000;481
Zhao et al. 2014a) have shown that changes in wake modes could be associated with jumps482
in the total and vortex phases from 0◦ to 180◦, it is observed in the present study that the483
major 2S wake pattern in all synchronisation regimes is independent of the jumps from 0◦484
to 180◦ in 𝜙𝑡 or 𝜙𝑣 . This behaviour is similar to that observed by Zhao et al. (2018a) for485
a reverse D-section cylinder (orientated with its flat surface facing downstream), where a486
strong 2S wake mode was also consistently observed through all synchronisation regimes.487
The results from the present study and Zhao et al. (2018a) suggest that the relation of wake488
mode changes to the fluid forcing phases (i.e. 𝜙𝑡 and 𝜙𝑣) may depend on the presence of an489
appreciable afterbody, such as for circular or ”diamond-shaped” (a square cylinder oriented490
at 45◦ incident angle) geometries (Zhao et al. 2014b).491

It is interesting to note that, relative to the free stream, the angle of the zigzag-like wake492
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Figure 14: Evolution of phase-averaged vorticity contours for structural damping of 𝜁 = 1.49 × 10−2 at
𝑈∗ = 5.6 (Hyper Branch). More details can be found in the caption of figure 12. With the exception of the
zigzag pattern being more well-defined, the wake structure is almost identical to that found in Regime II.

structure is equivalent to the maximum angle of the relative flow Urel = 𝑈i + ¤𝑦j (where i and493
j are unit vectors in the 𝑥 and 𝑦 directions, respectively) experienced by the elliptical cylinder494
during its oscillation cycle. The angle was calculated by fitting linear functions over the495
contour plots as illustrated in figure 16. As the peak in the angle of attack occurs at 𝑦∗ = 0,496
an accurate comparison can be achieved by only measuring the angle of the zigzag-like497
wake structure over the domain 𝑦∗ ∈ [−1, 1]. Care was taken to choose a PIV contour frame498
just after the ellipse crosses the zero-displacement line and when the zigzag-like structure499
was clearly visible. For instance, the averaged angle with respect to the two fitted lines was500
found to be approximately 𝜃𝑐 = 81.14◦, a difference of 3.1% compared to the maximum501
relative flow angle (with respect to the freestream velocity) of 78.67◦ for 𝜁 = 1.49 × 10−2 at502
𝑈∗ = 6.20.503

The equivalence of the two angles can be explained by using hydrogen-bubble-based flow504
visualisations taken for the Hyper Branch at 𝑈∗ = 5.60, as shown in figure 17 with the505
corresponding video also provided in supplementary movie 1. As can be seen, the zigzag-506
like structure consists of a coalescence of vortices that resemble a von Kármán vortex street,507
which will henceforth be referred to as the secondary vortex street (SVS). As a result of the508
high elliptical ratio (i.e. resulting in a thin elliptical shape) as well as the large instantaneous509
relative flow angle (with respect to the freestream velocity) experienced by the cylinder, the510
body essentially acts as an airfoil with a small angle of attack (relative to the semi-major axis511
of the cylinder in motion). Due to the conservation of vorticity, changes in the circulation512
around the elliptical cylinder, resulting from changes in the body velocity or the relative513
angle of attack during an oscillation cycle, must be offset by the shed SVS. As the cylinder514
accelerates in the cross-flow direction, the SVS grows in length as the cylinder moves forward515
whilst being transported by the free-stream flow 𝑈, and thus the resultant angle (relative to516
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Figure 15: Evolution of phase-averaged vorticity contours for structural damping of 𝜁 = 1.49 × 10−2 at
𝑈∗ = 7.0 (Regime III). More details can be found in the caption of figure 12. Whilst still predominantly a
2S wake mode, the zigzag pattern of Regime II and the Hyper Branch are replaced by a quickly-dissipating
tail-like shear layer that connects the shed vortex to the elliptical cylinder.
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Figure 16: The phase-averaged vorticity contour for structural damping of 𝜁 = 1.49 × 10−2 at 𝑈∗ = 6.2
(Hyper Branch). The black dotted lines are the linear fits used to approximate the angle of the secondary
vortex street (SVS) relative to the freestream velocity over the domain 𝑦∗ ∈ [−1, 1] for a single oscillation
cycle, which was found to be 𝜃𝑐 ≈ 81.14◦. More details about the contour can be found in the caption of
figure 12.

the freestream velocity) appears to be approximately equal to 𝜃𝑐. Furthermore, the placement517
of vortices within the elongated shear layers indicates that the zigzag structure is a drag-518
inducing vortical signature (Freymuth 1988). During the upwards movement of the elliptical519
cylinder (figure 16 and 14(𝑖𝑣-𝑣𝑖)), it is found that the vortices on the left and right of the520
cylinder are counterclockwise and clockwise, respectively, thereby inducing upon each other521
a jet-like flow with a velocity component in the upwards direction (Biot-Savart law, which is522
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Δτ = 0.119Δτ = 0.048 Δτ = 0.072 Δτ = 0.095Δτ = 0.024Δτ = 0

Δτ = 0.143 Δτ = 0.215

SVS

Main vortex

Figure 17: Temporal evolution of the wake, visualised using hydrogen bubbles, for 𝑈∗ = 5.6 and 𝜁 =

3.64× 10−3. The cylinder travels from the bottom to the top of the image frame with the free stream flowing
from left to right. The single main vortex (part of the 2S wake structure) located at the bottom of the frame
grows and advects downstream. Additional vortex shedding from the back (relative to the cylinder motion) of
the elliptical cylinder resembles a von Kármán vortex street (henceforth referred to as the secondary vortex
street, SVS), and forms the zigzag structure observed in the PIV contours of figure 14. The dashed line
indicates the 𝑦 = 0 position of the cylinder, with the time elapsed since the first frame (when the cylinder is at
the peak negative displacement or 𝜏 = 3𝑇/4 ) scaled by the natural system frequency such that Δ𝜏 = Δ𝑡 𝑓nw.
For the video of the hydrogen bubble visualisation, see supplementary movie 1.

used in aerodynamic theory to calculate the velocity induced by a vortex filament) as well.523
Through conservation of momentum, the coalescence of vortices within the shear layers is524
indicative of a “drag”-like force that impedes the motion of the cylinder along the 𝑦-axis.525

Furthermore, it is also interesting to note that the SVS is similar to the alternating vortex-526
pair shedding mode observed in the numerical study by Kurtulus (2016) for NACA0002527
and NACA0012 airfoils over angles of attack from 0◦ to 180◦ at Re = 1000, and Gupta528
et al. (2023) for a NACA0012 airfoil over angles-of-attack from 0◦ to 20◦ and 500 ⩽ Re ⩽529
5000. For a clear comparison between our results and that of the literature on airfoils, we530
will be characterising the flow in the following discussion based on the angle of attack531
𝛼 = tan−1(abs(𝑈/ ¤𝑦)), which is equivalent to the angle of attack for an airfoil and defined532
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Figure 18: A side-by-side comparison between (𝑎) the secondary vortex street of figure 17 and (𝑏) the
time-averaged wake pattern observed by Gupta et al. (2023) for a NACA0012 airfoil with an angle of attack
of 8.0◦ and a Reynolds number of 2000. Note that the free stream is moving downwards in both images.
More details about the flow conditions and structural damping of (𝑎) can be found in figure 17.

as the acute angle between the relative flow (Urel) and the semi-major axis, and Rerel =533

Re(𝑈rel/𝑈) = Re(
√︁

1 + ( ¤𝑦/𝑈)2), the Reynolds number with respect to the relative flow534
(analogous to the Reynolds number in the airfoil literature).535

A side-by-side comparison between the SVS visualised in the present study and the most536
alike wake pattern observed by Gupta et al. (2023) is presented in figure 18. The similarity537
between these cases is perhaps unsurprising given the thin elliptical shape of the cylinder538
and the small relative angle of attack 𝛼. However, whilst there are differences in both the539
geometric and flow conditions (i.e. angle of attack and Reynolds number for Kurtulus (2016)540
and Gupta et al. (2023) whereas both analogous parameters, 𝛼 and Rerel, are constantly541
varying in our study), the similarity between the cases means a qualitative analysis appears542
warranted given that, as far as the authors are aware, there are no studies on the wake structure543
of elliptical airfoils undergoing FIV over identical experimental conditions.544

Figure 19 shows the time variation of the relative Reynolds number (Rerel) and 𝛼 under the545
same experimental conditions as in figure 17. As expected, 𝛼 = 90◦ occurs every 𝜏 = 𝑇/4546
and 3𝑇/4 (where𝑇 = 1/ 𝑓nw is an oscillation period) and corresponds to the cylinder reaching547
its peak displacement with zero body movement velocity ( ¤𝑦 = 0) and a minimum relative548
Reynolds number of Rerel ≈ 2500. Similarly, the lowest 𝛼 ≈ 10.5◦ and highest Rerel ≈ 13 400549
values similarly occur every 𝜏 = 𝑇/2 and 𝑇 when the cylinder has zero displacement and550
maximum movement velocity. Although Gupta et al. (2023) were able to further distinguish551
between the different sub-types of the vortex-pair shedding mode, the aforementioned time-552
varying nature of both Rerel and 𝛼 means that the exact configuration of the vortex pairs553
within the SVS will evolve over an oscillation period as well.554

Noting that the range of Rerel = 11 000–13 500 and 𝛼 = 13◦–10.5◦ values corresponding555
to the stable formation of vortex pairs in the SVS occupy the top side of the wake regime556
map presented by Gupta et al. (2023), it agrees well with the conclusion that the SVS in557
the present study is primarily a non-chaotic vortex-pair shedding mode. The stability of558
the vortex formation is due to the narrow range of 𝛼 and Rerel values caused by the vortex559
shedding occurring over the turning point of the two time-dependent parameters. Since the560
experimental parameters do not vary much over this turning point region, the vortex pairs561
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Figure 19: Time trace of the relative Reynolds number and the 𝛼 angle (presented in degrees) experienced
by the cylinder under the same experimental conditions as in the flow visualisation experiment of figure 17
and 18. The time axis is scaled by the natural system frequency such that 𝜏 = 𝑡 𝑓nw.

Figure 20: Schematics showing the flow around the elliptical cylinder for two different 𝛼 angles: (𝑎) with
a large 𝛼 (i.e. 45◦) and hence substantial flow separation, and (𝑏) with a small 𝛼 (i.e. 10.5◦) and flow
attachment. The cylinder is not at its peak displacement, where it is assumed that the contributions of the 2S
wake to the flow around the body are negligible. The cylinder induces a lift (𝐶𝐿,rel) and drag force (𝐶𝐷,rel)
with respect to the relative flow (𝑈rel), where the net fluid force acting in the y direction denoted by 𝐹𝑦 . The
shading represents regions of vorticity, with the secondary vortex street shown in (𝑏). Note that the vectors
are not drawn to scale.

are similar in nature as evidenced by the standard deviation of the vortex pairs being only562
5.5% of the mean spacing of 0.48𝑏 for the experimental conditions in figure 17.563

Whilst vortex formation outside of the above ranges (i.e. Rerel < 11 000 and 𝛼 > 13◦)564
does occur, the vortices are shed irregularly and become much smaller and difficult to detect565
(Δ𝜏 = 0.167 in figure 17) due to the chaotic nature of the shedding where both unpaired and566
paired vortices were being generated. Gupta et al. (2023) also observed chaotic alternating567
vortex pair formation as well over similar flow conditions as this study (i.e. the upper right-568
hand side of the wake regime map in figure 7(a) of their study), thereby further indicating569
that the wake dynamics of the cylinder in motion bears a marked resemblance to that of an570
airfoil.571

Building upon these observations, the presence of this secondary vortex street (and in572
turn, the harmonics in 𝑓 ∗

𝐶𝑦
) indicates the existence of flow attachment around the elliptical573

cylinder as it moves in the 𝑦 direction. This flow attachment is an important feature that574
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allows the elliptical cylinder to reach vibrational amplitudes unattainable for other common575
geometries in FIV research (e.g. circular, D-section, square, etc.). For example, the Hyper576
Branch was not observed by Zhao et al. (2019b) for a rectangular cross-section with side-ratio577
𝜎 = ℎ/𝑏 = 5 (where ℎ and 𝑏 are the respective cross-flow and stream-wise side widths) even578
though the dimensions when projected to the 𝑥 and 𝑦 axes are identical to the 𝜀 = 5 elliptical579
geometry of interest. As the lowest angle of attack for oscillations in the Hyper Branch regime580
is near 0◦ for the elliptical cylinder, it indicates the importance of the cross-flow profile of the581
cylinder, especially for large-scale oscillations that are ‘fast’ (i.e. vibrating at near the natural582
frequency). As the flat rectangular geometry in the cross-flow direction provides greater583
drag to transverse movements than an elliptical cross-section, this resistive force scaling584
with the second power of body speed ¤𝑦2 could explain why the galloping response of the585
𝜎 = 5 rectangular cylinder cannot reach the transverse velocities and oscillation amplitudes586
observed by the elliptical cylinder when undergoing oscillations in the Hyper Branch regime.587

To further investigate the aerodynamic properties of the 𝜀 = 5 elliptical cylinder, figure 20588
schematically describes the forces that act on the elliptical cylinder for two 𝛼 values as the589
cylinder travels between the points of peak displacement. The following discussion will first590
ignore the contribution made by the main 2S wake mode to the vibrational dynamics and591
instead focus on the forces produced by the cylinder movement only.592

In figure 20(𝑎), the case for a large 𝛼 value corresponding to a small ¤𝑦 with relative to593
the freestream velocity) is shown and it is representative of Regimes I and III where large594
elongated shear layers do not appear in the wake. This absence indicates that the dynamics595
for the above regimes are dominated by the separated flow and the elliptical cylinder can596
hence be treated as a bluff body. As illustrated in figure 20(𝑎), when the ellipse is equivalent597
to an airfoil stalling due to flow separation at a large angle of attack (𝛼), the corresponding lift598
(𝐶𝐿,rel) and drag (𝐶𝐷,rel) with respect to the relative flow will be small and large, respectively.599
This resultant force experienced by the cylinder in the 𝑦 direction (i.e. the axis of motion)600
will be opposite to the motion and hence resists the body oscillations. However, at a low 𝛼601
value (see figure 20(𝑏) due to a large ¤𝑦 relative to the freestream velocity), as is the case602
for parts of the oscillation cycle in regime II and the Hyper Branch regime (figure 19), 𝛼603
will be small enough so that the ellipse acts like an airfoil with the flow largely attached.604
Although the ellipse does experience drag with respect to the relative flow (which includes605
contributions by the SVS that make up the zigzag flow structure), the increased relative lift606
results in either a reduction in the resistant force or in some cases, a thrust in the 𝑦 direction.607
This would explain why the elliptical geometry can oscillate at the natural frequency with608
amplitudes significantly greater than the body diameter, a phenomenon unseen for the other609
geometries.610

The above conclusion is further supported by analysing the contribution that the 2S wake611
mode makes to the total fluid forces experienced by the elliptical cylinder. As a result of612
the inherent symmetry of the problem, the following discussion will focus on the structural613
motion as a major vortex is being shed at the bottom shown in figure 14 and the body is614
moving upwards from its maximum negative displacement. Note that the same arguments615
are equally applicable when the cylinder is moving downwards from its maximum positive616
displacement. Since the system is similar/equivalent to an airfoil accelerating from rest, the617
main vortex is analogous to a starting vortex with circulation that is equal in magnitude but618
opposite in sign to that enveloping the airfoil. To measure the contribution to this “bound”619
vorticity and hence the fluid forcing that is attributed to the shedding of the main vortex, the620
Kutta-Joukowski theorem is employed to approximate the fluid forces based on the circulation621
around the elliptical cylinder that is explained by the main vortex.622

From figure 21, which is a frame selected from the PIV measurements in figure 14, the623
circulation of the main near-body anti-clockwise vortex (positive) is extracted from the area624
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Figure 21: Phase-averaged vorticity contours from the PIV measurements in figure 14 when the bottom
anti-clockwise vortex (bounded by the black dashed rectangle box) of interest is detached from the cylinder
and has been shed into the free-stream.

enclosed by a rectangle box. From Stokes’ theorem, the magnitude of the “bound” vorticity625
about the cylinder attributed to the circulation of the shed vortex is hence Γ ≈ 9.85 ×626
10−3 m2/s. Note that the dimensionless circulation is given by Γ∗ = Γ/(𝑏𝑈rel) = 𝐶𝐿,rel/2.627
As such, the coefficients of lift and drag with respect to the relative flow direction are628
found to be 𝐶𝐿,rel = 𝜌𝑈relΓ/( 1

2 𝜌𝑈
2
rel𝑏) ≈ 2.81 and 𝐶𝐷,rel = 𝜌( ¤𝑦 sin (𝛼))Γ/( 1

2 𝜌𝑈
2
rel𝑏) ≈629

0.94, respectively. As 𝛼 ≈ 21◦ at the instant the main vortex is completely detached from630
the cylinder, the transverse lift coefficient is found to be 𝐶𝑦 = (𝑈rel/𝑈)2(𝐶𝐿 sin (𝛼) −631
𝐶𝐷 cos (𝛼)) ≈ 1.01. Comparing this value with the total peak value of𝐶𝑦 = 2.26 experienced632
by the cylinder, the maximum force accounted for by the main vortex alone only contributed633
to 44% of the total transverse lift. This result agrees well with the study by Chang et al. (1993),634
where it was shown that the starting vortex was not the only source of lift for a NACA0012635
airfoil that was impulsively started from rest to a constant speed, and that the other regions of636
vorticity attached to the airfoil must also be accounted for. Since the generation of vorticity637
occurs at the cylinder surface due to adverse pressure gradients and the acceleration of the638
bluff body, the main contribution of the large main vortices (i.e. 2S wake mode) to the639
transverse fluid forces occurs when the cylinder is near the point of peak displacement and640
the flow is largely unattached due to the large 𝛼 angle. As such, it can be concluded that the641
2S wake mode does not fully explain the transverse fluid force acting on the cylinder, with642
the remaining dynamics arising from a movement-induced instability that is characterised643
by additional transverse fluid forces due to the body motion promoting attached flow over644
both lateral sides of the elliptical cylinder.645

A more holistic understanding of the structural dynamics can now be reached by consid-646
ering both the contributions of VIV and movement-induced instability (i.e. galloping) to the647
body motion in the Hyper Branch and regime II. When the cylinder approaches its maximum648
positions, the 𝛼 angle becomes large enough (i.e. when ¤𝑦 is small relative to the freestream649
velocity) to cause large flow separations. This yields a strong 2S wake mode, where each650
main vortex generates an impulse that propels the body in the opposite direction to its motion.651
As the cylinder accelerates away from its maximum displacements, the decreased 𝛼 angle652
promotes flow attachment, generating a relative lift (𝐶𝐿,rel) that reduces the resistant force or653
even provides a thrust in the 𝑦 axis. By minimising the fluid forcing that impedes the body654
motion during an oscillation cycle, the additional contribution of the movement-induced655
instability to the structural vibration allows the strong 2S wake pattern to be sustained at656
large-scale oscillations (i.e. 𝐴∗ > 4) previously unseen for other geometries. An absence657
of this contribution, as in VIV of a circular cylinder, results in the same 2S pattern only658
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existing for self-limiting amplitudes (e.g. 𝐴∗ ≈ 0.8 in Blevins & Scanlan (1977)). As such,659
the above arguments support our conclusion that the FIV behaviour of the elliptical cylinder660
in the Hyper Branch can be attributed to the combined effect of VIV and movement-induced661
instability.662

4. Conclusions663

The transverse flow-induced vibration of an elastically mounted elliptical cylinder with an664
elliptical ratio of 𝜀 = 5 and a mass ratio of 𝑚∗ = 17.4 has been experimentally investigated665
over a wide parameter space across the structural damping ratio range of 3.62 × 10−3 ⩽666
𝜁 ⩽ 1.87 × 10−1 and reduced velocity range of 2.30 ⩽ 𝑈∗ ⩽ 10.00. The FIV response667
was extensively characterised through a detailed examination of the vibration amplitude and668
frequency responses, the fluid forces and their phases, as well as the wake structures.669

Four synchronisation regimes (I, II, Hyper Branch, and III) were observed for low structural670
damping ratios, 𝜁 ⩽ 1.88 × 10−2. Generally, increasing 𝜁 reduces the amplitude for a given671
reduced velocity, resulting in the delayed onset of the synchronisation regimes. Of particular672
interest, the Hyper Branch was found to be a result of the combined effect of VIV and673
movement-induced instability. The results also showed that the Hyper Branch and Regime674
II were suppressed for 𝜁 ⩾ 1.92 × 10−2. Moreover, for 1.92 × 10−2 ⩽ 𝜁 ⩾ 1.40 × 10−1, the675
amplitude response was found to be typically a single branch, with the peak value following676
an approximately inverse relationship with 𝜁 (figure 8). The highest structural damping ratio677
where Regime I was still present in the FIV response was 𝜁 = 4.98 × 10−2, and beyond678
𝜁 = 1.87 × 10−1 the fluid-structure interaction becomes completely desynchronised (with679
vortex shedding frequency following the Strouhal frequency of a fixed body).680

Furthermore, the major wake structure was found to be a predominately 2S mode for all the681
synchronisation regimes regardless of the structural damping ratio tested. The 2S mode was682
found to be responsible for the dominant component in both 𝑓 ∗𝑦 and 𝑓 ∗

𝐶𝑦
in all synchronisation683

regimes. Of particular interest, a secondary vortex street in a zigzag configuration was684
detected for the Hyper Branch regime as well as Regime II, where a secondary vortex street685
(SVS) was found to be associated with the second and third harmonic components of the686
fluid forcing (i.e. 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶v
) in these regimes. The presence of the SVS indicates that the687

flow remains attached as the elliptical cylinder translates in the 𝑦 direction, which arises due688
to the small induced angle of attack 𝛼 when ¤𝑦 is large relative to the freestream flow. The689
role of the attached flow in maximising the net transverse fluid force acting on the cylinder690
explains why the elliptical geometry can oscillate at the natural frequency with amplitudes691
significantly greater than the body diameter, whilst the dependence of flow attachment on692
the body velocity elucidates the movement-induced nature of the substantially large body693
vibration in the Hyper Branch.694

The present study has demonstrated that structural damping does have a profound effect695
on the synchronisation regimes in FIV of an elliptical cylinder of 𝜀 = 5. Future work is696
warranted to understand how other parameters of the system (such as mass ratio, angle of697
attack, elliptical ratio, etc. ) can impact the transverse FIV response regimes and mechanisms698
of fluid-structure interaction of elliptical cylinders.699
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