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A series of direct numerical simulations, both in two- and three-dimensions, of the
flow past a circular cylinder for Reynolds numbers Re � 600 has been conducted.
From these simulations, the time-mean (and, for the three-dimensional simulations,
the spanwise spatial-mean) flow has been calculated. A global linear stability analysis
has been conducted on these mean flows, showing that the mean cylinder wake for
Re � 600 is marginally stable and the eigenfrequency of the leading global mode
closely predicts the eventual saturated vortex shedding frequency. A local stability
analysis has also been conducted. For this, a series of streamwise velocity profiles
has been extracted from the mean wake and the stability of these profiles has been
analysed using the Rayleigh stability equation. The real and imaginary instability
frequencies gained from these profiles have then been used to find the global frequency
selected by the flow using a saddle-point criterion. The results confirm the success of
the saddle-point criterion when the mean flow is quasi-parallel in the vicinity of the
saddle point; however, the limitations of the method when the mean flow exhibits
higher curvature are also elucidated.

1. Introduction
The periodic vortex shedding into the wake of a circular cylinder is one of the

most well-known examples of a global fluid instability in an open flow. Over a wide
range of Reynolds numbers, the flow selects a single frequency and is essentially
unaffected by small disturbances upstream. This makes it an example of a global
absolute instability (Huerre & Monkewitz 1985), when it is studied in the context of
an open shear flow.

There is a large body of work treating the cylinder wake as a slowly varying, parallel
shear flow (see the review of Chomaz 2005 and references therein). To facilitate
this, either the steady solution is studied or the mean of the time-periodic wake is
investigated. Recent studies have had success studying the mean flow, employing a
saddle-point criterion to find the frequency of the global mode growing on the mean.
These studies have concentrated on the two-dimensional flow (where Re < 190), either
experimentally (Khor, Sheridan & Hourigan 2008a) or numerically.

The global stability of the mean flow has also been studied directly (Barkley 2006),
showing that the mean is marginally stable when the flow is two-dimensional. In that
paper, it was highlighted that analysing the mean flow in this way assumes that the
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Reynolds stresses induced by the fluctuating wake are unperturbed at linear order.
The asymptotic analysis of Sipp & Lebedev (2007) showed that, for the cylinder wake,
the flow can be well represented by a mean and a single mode, with little nonlinear
interaction between them, hence validating the assumption that the Reynolds stresses
are unperturbed. Sipp & Lebedev (2007) concluded that this is not necessarily true
of all periodic flows. It should be noted, however, that their analysis was strictly
valid only very close to the bifurcation point and does not completely explain the
success of the global analysis of Barkley (2006) over a wide range of Reynolds
number.

It is therefore natural to enquire as to whether these analysis techniques can be
extended to situations where the flow is three-dimensional. This paper studies this
question. First, the two-dimensional flow is studied at Reynolds numbers both above
and below the natural transition to three-dimensionality, using both the locally based
saddle-point criterion and a full global stability analysis. The fully three-dimensional
flow is then studied by employing direct numerical simulations (DNSs) to obtain the
mean wake flows.

It is shown that the saddle-point criterion works very well, even when the
flow is three-dimensional, provided the local curvature is not too high, and the
assumption that the flow is slowly varying is reasonable. The global analysis shows
that the spanwise-averaged mean wake remains marginally stable even for the three-
dimensional flow, supporting the hypothesis that the cylinder wake dynamics are
dominated by the first linear mode growing on a nonlinear corrected mean flow.

2. Methodology and validation
2.1. Computational prediction

The time-dependent velocity field was predicted using a spectral-element code
validated extensively from previous studies of related flows (Thompson, Hourigan &
Sheridan 1996; Thompson, Leweke & Williamson 2001; Ryan, Thompson & Hourigan
2005; Leontini, Thompson & Hourigan 2007). The code employs a spectral-element
method for the spatial differencing in a plane and a Fourier decomposition for the
spatial differencing in the spanwise direction. The mesh used had a blockage ratio
of 3.3 %, with the upstream and side boundaries placed 15D from the centre of the
cylinder. The outflow boundary was positioned 30D downstream from the cylinder.
For the three-dimensional simulations, a spanwise extent of 16D was used. Either
96 or 128 Fourier planes were used, depending on the Reynolds number. The mesh
was concentrated towards the cylinder boundary to properly resolve the boundary
and separating shear layers. The resolution could be adjusted at runtime by changing
the order of the tensor-product Lagrangian interpolating polynomials. For the results
shown in this paper, fourth- to seventh-order polynomials were used, depending on
the Reynolds number.

Once the simulation had achieved a periodic state, the velocity field was averaged
over a cycle. For the two-dimensional simulations, the velocity field was averaged
over time. For the three-dimensional simulations, the spatial spanwise mean was first
calculated at each time interval. Because of the use of a Fourier decomposition, this
was achieved by simply extracting the zeroth Fourier mode. The temporal mean of
these spatial means was then calculated to arrive at the final mean flow. Typically,
this was done over about 40 cycles after the asymptotic state was reached, as the
three-dimensional flow is only quasi-periodic.



Global frequency selection in the wake of a circular cylinder 437

2.2. Global eigenfrequencies

The global stability properties of the mean wakes were determined directly,
using a standard linear stability analysis. For this analysis, perturbation equations
were formed from the linearized incompressible Navier–Stokes equations. The
perturbations studied were themselves two-dimensional; no variation along the span
of the cylinder was considered, resulting in the equations

∂u′

∂t
= −[(u′ · ∇)U + (U · ∇)u′] − ∇P ′ + Re−1∇2u′, (2.1)

∇ · u′ = 0, (2.2)

where u′ is the perturbation velocity field, U is the base flow velocity field and P ′ is
the perturbation pressure field. These equations were solved using the same spectral-
element method briefly outlined in § 2.1. The leading global modes were found by
considering the equations for the perturbation as an eigenvalue problem:

∂u′

∂t
= Lu′. (2.3)

The leading eigenmodes and eigenvalues of L were then found using an Arnoldi
decomposition, from which the growth rates and frequencies could be determined.
The method employed for the Arnoldi decomposition was essentially the same as that
described by Tuckerman & Barkley (2000) and Blackburn & Lopez (2003).

2.3. Global frequency selection from local properties: the saddle-point criterion

In an effort to relate the local properties of the mean flow to the global behaviour
and, in particular, the global frequency selection of the cylinder wake, a saddle-point
criterion was employed. The use of a saddle-point criterion for frequency selection
analysis was developed for use with quasi-parallel flows that are slowly varying in
the flow direction (Le Dizès et al. 1996), but has been successfully applied to mean
bluff-body wake flows (Hammond & Redekopp 1997; Pier 2002; Thiria & Wesfreid
2007; Khor et al. 2008b).

In this case, the mean wake flow is treated as a slowly varying parallel flow.
This means that streamwise velocity profiles (blatantly ignoring the cross-stream
component) can be extracted at a series of x stations down the mean wake, where
x denotes the distance downstream from the centre of the cylinder. Because of the
assumption that the flow is slowly varying in the x direction, each of the profiles can
be treated independently, and a characteristic complex frequency can be found for
each.

The characteristic frequency for a given profile is associated with a local group
velocity of zero. To find these zeros, a local dispersion relation is required. For
the current study, the Rayleigh stability equation, derived from the Euler equations
(Drazin & Reid 2004), is used. The equation is

(U − c)

(
d2φ

dy2
− k2φ

)
− d2U

dy2
φ = 0, (2.4)

where U is the base flow profile, c is the complex wave speed and k is the complex
wavenumber. The complex frequency is defined as ω = kc.

The zero-group velocity condition is satisfied at ‘pinch’ points in the complex k

plane, which coincide with cusp points in the complex ω plane (Huerre & Rossi 1998).
Performing this process for each profile results in complex frequency ω as a function
of downstream distance, x. This can be thought of as a global dispersion relation.
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Figure 1. The various stages in the procedure of finding the saddle point to find the globally
selected frequency from local properties. (a) Streamwise velocity profiles are extracted at a
series of x stations in the mean wake; (b) contours, each relating to a different imaginary value
of the wavenumber, are drawn out in the complex ω plane as functions of the real component
of the wavenumber until a cusp point is found defining the local characteristic frequency for
the given profile; (c) the local characteristic frequency as a function of x, which can then be
used to find the location of the saddle point in the complex X plane. The solid line represents
the real component of frequency, ωr and the dotted line represents the imaginary component
of frequency, ωi . The data for all these plots are for the mean wake of a circular cylinder at
Re = 100, and the local profile used to produce (b) was that at x = 1.0

Here, finding a zero group velocity, or ∂ω/∂X =0, will give a characteristic global
frequency. This zero group velocity occurs at saddle points in the complex X plane,
and they are found by extending ω(x) off the real axis using analytic continuation
and the Cauchy–Riemann equations.

While the mathematics and reasoning behind this analysis can seem quite daunting,
in practice it is a relatively mechanical task. The process is as follows:

(i) Compute the mean wake flow;
(ii) From this mean wake, extract profiles of streamwise velocity down the wake,

as shown in figure 1(a);
(iii) Solve the Rayleigh equation for complex frequencies for purely real

wavenumbers for the first profile. This will draw out a contour on the complex
ω plane;

(iv) Negatively increment the imaginary component of the wavenumber and again
solve the Rayleigh equation for complex frequencies as a function of the real
component of the wavenumber, drawing a second contour on the complex ω plane;

(v) Continue this incrementing process until the complex frequency contour drawn
produces a cusp. The complex frequency at this cusp is the characteristic frequency
for the given profile. An example of the series of contours produced by this process
is shown in figure 1(b);

(vi) Repeat this process for each profile, building up ω(x). An example of such a
function is shown in figure 1(c);

(vii) Find the local minima of the real component of ω(x);
(viii) Use a truncated Taylor series expansion and the Cauchy–Riemann equations

to analytically continue the function into the complex X plane, and locate the saddle
point.

This process is referred to as the cusp-map method and is due to Kupfer, Bers &
Ram (1987), and it is also well described by Schmid & Henningson (2001).

The technical details of the current study are as follows. Each extracted profile
consisted of 512 equispaced points from y/D = −3 to y/D = 3. For a given value
of k, the solution of (2.4) presents an eigenvalue problem in ω. Equation (2.4) was
solved over the whole domain by stepping out from one side, employing the boundary



Global frequency selection in the wake of a circular cylinder 439

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0 100 200 300 400 500 600

Re

St

Figure 2. Measured simulation frequencies from the two- and three-dimensional simulations
compared with the experimental data from Williamson (1989). Here, × represents the data
from Williamson (1989); � represents the measured frequency from the two-dimensional
simulations; � represents the measured frequency from the three-dimensional simulations.
Where the dimension of the simulation matches the physical reality, the measured simulation
frequencies are in excellent agreement with the experimental data.

condition at y = −3 that φ = 0, justified by the physical fact that φ → 0 as y → ±∞.
The stepping was done using a standard fourth-order Runge–Kutta method. The
same boundary condition at the other end of the domain, φ = 0 at y = 3, was then
satisfied using a shooting method, employing a complex Newton method to converge
to the correct eigenvalue and therefore ω. Solving over the whole domain in this way,
and not imposing any symmetry condition on the perturbation mode φ, meant any
modes present could be found. In practice, two modes were found for the present
profiles: one symmetric and the other antisymmetric, corresponding to the sinuous
and varicose modes known to exist in the wakes of circular cylinders (Monkewitz &
Nguyen 1987). The sinuous mode is responsible for Kármán-Bénard vortex shedding,
and hence this mode was tracked for the results presented in this paper.

2.4. Validation

As the primary aim of both the analysis methods presented in this paper was to
find the global frequency of a given wake flow, their results are easily validated by
comparing with the measured frequency from the simulation that produced the base
flow. These measured frequencies are compared with existing data in figure 2. Here,
the measured frequencies are compared with the experimental data from Williamson
(1989).

The figure shows that for Re < 180, below the first transition to three-dimensional
flow, the measured frequencies from the two-dimensional simulations are in
excellent agreement with the experimental data. For Re > 180, the measured two-
dimensional simulation frequencies diverge from the experimental measurements,
as three-dimensional effects become more important. However, the results are in
excellent agreement with two-dimensional simulations from other studies (Barkley &
Henderson 1996; Henderson 1997).

The measured frequencies from the three-dimensional simulations show no such
divergence and follow the experimental measurements very closely over all Reynolds
numbers, including those in the discontinuous region of the Strouhal curve, when
180 � Re � 250. These results provide a high level of confidence that the simulations
are adequately resolved in space and time to faithfully capture all of the relevant
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Figure 3. Global eigenfrequencies from analysis of the mean flow, compared with directly
measured frequencies from the simulations. Here, + indicates the directly measured frequency
from the two-dimensional simulations; × indicates the directly measured frequency from the
three-dimensional simulations; � indicates the global eigenfrequency from the two-dimensional
simulations; � indicates the global eigenfrequency from the three-dimensional simulations. In
all cases, the global eigenfrequency closely matches the directly measured frequency.

physics of the problem. Because of this, the global frequencies calculated using both
the local profiles and the global stability analysis are compared with the frequencies
directly measured from the present simulations throughout the rest of the paper.

3. Results
3.1. Global stability analysis

The frequency of the leading global mode growing on the mean cylinder wake
(referred to as the eigenfrequency) as a function of Reynolds number is presented
in figure 3. The match between the eigenfrequencies and the measured frequencies is
very close, for both the mean wakes of the two-dimensional and three-dimensional
simulations. Note that the match occurs for both the modes A and B (Williamson
1988) shedding regimes. The results from the two-dimensional simulations effectively
extend the parameter range of the study of Barkley (2006).

For all the cases tested, the magnitudes of the eigenvalues associated with the
leading global mode were close to unity, suggesting that the mean wake flow is
marginally stable.

While similar findings have been previously reported for the mean cylinder wake
at relatively low Reynolds numbers by Barkley (2006), this is the first time that such
a finding has been reported over such an extended range of Re, and certainly the first
time that this result has been reported for the mean wake of the three-dimensional
flow. This result could not obviously be extracted from the lower-Re results. The
asymptotic analysis of Sipp & Lebedev (2007) showed that the eigenfrequency of the
leading global mode growing on the mean wake closely matched the saturated global
frequency when the level of nonlinear interaction between the mean and the first
global mode is relatively low. The results of this study indicate that this condition is
still met when the cylinder wake is three-dimensional.

Representations of the leading global modes are shown in figures 4 and 5. These
images present the perturbation vorticity. The images show that the spatial wavelength
of the leading global mode in the streamwise direction is similar to that of the eventual
saturated Kármán–Bénard vortex street. For example, the spatial wavelength was
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(a) (b)
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Figure 4. The leading global mode from the two-dimensional simulations. Black (white)
contours represent negative (positive) perturbation vorticity. (a) Re = 100; (b) Re = 200; (c)
Re = 300; (d ) Re = 400. With increasing Re, the global mode becomes more highly concentrated
along the wake centreline, reflecting the narrowing of the mean wake.

(a) (b)

(c) (d)

Figure 5. The leading global mode from the three-dimensional simulations. Black (white)
contours represent negative (positive) perturbation vorticity. (a) Re = 300; (b) Re = 400; (c)
Re = 500; (d ) Re = 600.

estimated by measuring the distance between the points on the wake centreline where
the transverse velocity crossed zero. Doing this for the fully saturated flow and
the global mode at Re = 100 produced a maximum difference of around 10 % in the
estimate of the spatial wavelength. With increasing Re, the global modes become
more highly concentrated on the wake centreline, reflecting the narrowing of the
wake with increasing Re.

Comparing figures 4(c) and 4(d ) with 5(a) and 5(b) shows the direct influence
of the three-dimensionality on the leading two-dimensional global mode growing on
the mean wake at Re =300 and Re = 400, respectively. The main effect of three-
dimensionality is to increase the width of the global mode, reflecting the increased
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Figure 6. Saddle-point frequencies from analysis of the mean flow, compared to directly
measured frequencies from the simulations. Here, + indicates the directly measured
frequency from the two-dimensional simulations; × indicates the directly measured
frequency from the three-dimensional simulations; � indicates the saddle-point frequency
from the two-dimensional simulations; � indicates the saddle-point frequency from the
three-dimensional simulations. The divergence of the saddle-point frequency from the two-
dimensional simulations from the measured frequency for Re > 250 is attributed to the
shortening recirculation length.

width of the mean wake. The general structure of the global mode is essentially
unaffected by the presence of three-dimensionality.

3.2. Local stability analysis

Figure 6 presents the frequencies calculated from the saddle-point criterion, for the
mean wakes from both the two- and three-dimensional simulations. Focusing first
on the results from the two-dimensional simulations, there are a number of features
that justify some explanation. First, the match between the measured frequency and
the saddle-point frequency is very close for Re < 200. This is despite the fact that the
local stability analysis was based on solving the Rayleigh stability equation, which
ignores all viscous damping of the perturbation. Interestingly, Pier (2002) conducted
the same analysis over the Reynolds number range Re < 200 using the viscous Orr–
Sommerfeld equation and found that the frequencies at the saddle point were slightly
underpredicted.

For higher Re, the match between the saddle-point frequency and the measured
frequency is not as close, and the two continue to diverge with increasing Re. At first,
this appears to be counterintuitive, as it would be expected that an inviscid analysis
would become more accurate with increasing Re. However, the current analysis relies
on the fundamental assumption that the base flow is parallel and slowly varying
in the x direction, and it is this assumption that is broken at higher Re for the
two-dimensional simulations.

Figure 7 presents the mean base flow vorticity from the two-dimensional simulations
over 100 � Re � 400. This series of images clearly shows that with increasing Re, the
recirculation length significantly shortens. The recirculation length is the length over
which there is reversed flow on the wake centreline. It therefore represents the end
of the forming vortex pair in the wake. As this length becomes shorter, the local
curvature of the flow in this region becomes higher, and the flow evolves significantly
over a short distance, thereby violating the primary assumption of the analysis. It
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(a) (b) (c) (d)

Figure 7. Mean wakes from the two-dimensional simulations. Black (white) contours represent
negative (positive) vorticity. (a) Re = 100; (b) Re = 200; (c) Re = 300; (d ) Re = 400. With
increasing Re, the mean wake becomes narrower and the recirculation length (mirrored by the
length of the vortices in the near wake) becomes shorter.

(a) (b) (c) (d)

Figure 8. Mean wakes from the three-dimensional simulations. Black (white) contours
represent negative (positive) vorticity. (a) Re = 300; (b) Re =400; (c) Re =500; (d ) Re = 600.
Opposite to the two-dimensional results, the recirculation length (mirrored by the length of
the vortices in the near wake) actually increases slightly with increasing Re.

is for this region that the saddle-point analysis is not able to accurately recover the
global frequency for Re � 250 for the two-dimensional simulations.

Turning to the results from the three-dimensional simulations, the saddle-point
analysis does a surprisingly good job of recovering the global frequency over the range
195 � Re � 600, as shown in figure 6. This is particularly true for 195 � Re � 400,
where the saddle-point frequency from the three-dimensional mean wake is closer
to the measured simulation frequency than its two-dimensional counterpart. Again,
this appears to be a consequence of the local curvature and the rate of variation
with downstream distance. Figure 8 shows the mean wake vorticity from the three-
dimensional simulations. This series of images shows that the recirculation region
does not shorten with increasing Re (at least for Re � 250) when the flow is three-
dimensional. Also, comparing figures 7(c) and 7(d ) (Re = 300 and Re =400 from the
two-dimensional simulations) with figures 8(a) and 8(b) (Re =300 and Re =400 from
the three-dimensional simulations) directly shows the impact of the flow becoming
three-dimensional. The recirculation for the three-dimensional cases is clearly longer,
meaning that the assumptions for the saddle-point analysis are closer to reality,
explaining the success of the analysis over this range of Re.

The recirculation length results are summarized in figure 9, where the recirculation
lengths from both the two- and three-dimensional simulations are plotted as a function
of Re. The recirculation length was defined as the length where the mean streamwise
velocity crossed from negative to positive on the wake centreline. Also plotted in this
figure is the downstream distance to the real location of the saddle point. Also, to
show that the saddle points do indeed lie near the real axis, the imaginary coordinates
of the saddle points are shown.

The shortening of the recirculation length with increasing Re for the two-
dimensional simulations is clearly evident. It is also shown that this trend is reversed
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Figure 9. Recirculation lengths and saddle-point positions from the two- and three-
dimensional simulations. Here, + represents the recirculation length measured from the
two-dimensional simulations; × represents the recirculation length measured from the three-
dimensional simulations; � represents the real coordinate of the saddle-point location from the
two-dimensional simulations; � represents the real coordinate of the saddle-point location from
the three-dimensional simulations; � represents the imaginary coordinate of the saddle-point
location from the two-dimensional simulations; � represents the imaginary component of the
saddle-point location from the three-dimensional simulations.

when the flow is three-dimensional. Figure 9 also shows that the distance to the saddle
point (the real coordinate of the saddle point) correlates with the recirculation length.
While no definitive relation is offered for this, an inspection of the mean wake plots
of figures 7 and 8 shows that the saddle point occurs in a region of the flow where the
mean flow is closest to parallel. This is consistent with the theory, as the saddle point
occurs when ∂ω/∂X = 0. In regions where the mean flow is locally close to parallel,
it is also relatively slowly varying, and hence the local characteristic values of ω for
successive profiles will be quite similar and ∂ω/∂X → 0.

As an aside, note that for all the mean flows investigated, none of them had a
transition from convective to absolute instability in a region of the flow beyond the
base of the cylinder (i.e. beyond x =0.5D). Note that all of the results for this study
were obtained tracking the symmetric sinuous mode, which by definition is largest
on the wake centreline. For profiles where x < 0.5, this centreline is actually inside
the cylinder body. It is therefore not simple to interpret what mode growth in this
region means, and so no other frequency selection criteria such as the initial resonance
condition (Pier & Huerre 2001) were tested.

4. Concluding remarks
Both global and local stability analyses have been conducted for the cylinder wake,

based on both two- and three-dimensional simulations, for Re � 600. In all cases, the
temporal (and for the three-dimensional case, the spanwise-averaged) mean flow was
analysed.

The global analysis showed that for both the two- and three-dimensional flows,
the mean wake remains close to marginally stable and that the eigenfrequency of
the leading global mode is very close to the saturated frequency measured from the
direct numerical simulation, the difference being within 2.5 % over the entire range
tested. Hence, even for the fully three-dimensional flow (at least up to Re = 600),
the nonlinear corrected base flow appears to take the role of a new base state for
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linear modes to grow on, with little nonlinear interaction between the mean and the
leading global mode (Sipp & Lebedev 2007; Thiria & Wesfreid 2007). This behaviour
appears to persist far from the bifurcation point. This result builds upon that of
Barkley (2006).

For the local analysis, a saddle-point criterion has been applied, based on a slowly
varying, locally parallel set of assumptions. When the base flow was two-dimensional,
the global frequency recovered from this analysis matched the measured simulation
frequency very closely for Re < 250, confirming the findings of Pier (2002). However, at
higher values of Re, the saddle-point frequency diverged from the measured frequency,
probably due to the shortening recirculation length increasing the local curvature and
rate of variation, thereby breaking the underlying assumptions of the analysis. For the
three-dimensional flow, the saddle-point frequency reasonably predicted the measured
frequency because of an increase in recirculation length, rendering the analysis valid.

The reasonable success of the local analysis up to Re = 600 and the very good
prediction of the global frequency from the global analysis indicate that, even when
fully three-dimensional, the cylinder wake dynamics are dominated by the first linear
mode growing on a nonlinear corrected mean flow.
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