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The wake transitions of generic bluff bodies, such as a circular cylinder, near a wall are important because
they provide understanding of different transition paths towards turbulence, and give some insight into
the effect of surface modifications on the flow past larger downstream structures. In this article, the
fundamentals of vorticity generation and transport for the two-dimensional flow of incompressible
Newtonian fluids are initially reviewed. Vorticity is generated only at boundaries by tangential pressure
gradients or relative acceleration. After generation, it can cross-annihilate with opposite-signed vorticity,
and can be stored at a free surface, thus conserving the total vorticity, or circulation. Vorticity generation,
diffusion and storage are demonstrated for a cylinder translating and rotating near a wall. The wake
characteristics and the wake transitions are shown to change dramatically under the influence of
cylinder rotation and wall proximity. At gaps between the cylinder and the wall of less than
approximately 0.25 cylinder diameter, the wake becomes three dimensional prior to becoming unsteady,
while for larger gaps the initial transition is to an unsteady two-dimensional wake. At a gap of
0.3 cylinder diameter, we observe a sharp increase in the critical Reynolds number at which three-
dimensionality sets in. As the gap is further increased, the critical Reynolds number initially decreases
before increasing to that for an isolated cylinder. The effect of cylinder rotation on these transitions is
also quantified, with forward (prograde) rotation enhancing three-dimensional instability and reverse
(retrograde) rotation stabilising the wake. High retrograde rotation leads to suppression of three-
dimensional flow until beyond the highest Reynolds number investigated (Re¼750).

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fundamental to understanding flows around, and forces on,
stalled airfoils and bluff bodies in aeronautics and wind engineer-
ing are the wake flow structures and the transitions between
different wake modes, which substantially control wake develop-
ment. The circular cylinder is a generic bluff body that has been
used extensively to gain insight into the effect of these transitions
on the wake. The classic theoretical model is an infinite cylinder, in
practice experimentally modelled by high aspect ratio cylinders in
wind or water tunnels (and, of course, cylindrical geometry is
clearly the basis of the design of tall buildings for very high
Reynolds number flows). The current paper focusses on much
13 Published by Elsevier Ltd. All ri
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lower Reynolds number flows, with direct relevance to under-
standing wall-particle interactions that commonly occur in indus-
trial processes such as sedimentation and mixing tanks, heat
exchangers, etc). The Reynolds number for these latter applica-
tions is Re¼UD=ν¼Oð102–103Þ, where U is the velocity, D is the
characteristic length and ν is the kinematic viscosity of the fluid.
Experimental results at higher Reynolds numbers often show
that the initial three-dimensional instability modes for these
simplified geometries are still present and strongly influence the
fully turbulent flow. For instance, mode B, which appears in a
cylinder wake at Re≃230 persists and is observable at much
higher Reynolds number when the flow is fully turbulent
(e.g., Wu et al., 1996), whilst the Strouhal number of the wake
remains approximately constant over the range 200≤Re≤105

(e.g., Batchelor, 1967). Thus, as well as their direct relevance to
specific industrial applications, the results from such studies may
eventually assist with interpreting higher Reynolds number flows
in vehicular aerodynamics, flow past low rise buildings, surface
ghts reserved.
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roughness effects of mounted structures over roofs of build-
ings, etc.

Vorticity is one of the most important physical quantities in
fluid mechanics used to characterise a flow. Boundary layers,
wakes and turbulence in bluff body flows owe their presence to,
and are essentially defined by, vorticity and vortices, whose
motions are associated with fluctuating forces in a flow, including
those leading to VIV (Vortex induced vibration). To understand
wake structures and transitions, and how they can be controlled, it
is important to determine and understand the mechanism of
vorticity generation and its subsequent evolution. In this study,
we focus on the canonical geometry of a circular cylinder to gain
an understanding of the variety of wake structures and transitions
that arise as the influence of both wall proximity and cylinder
rotation are increased.

The flow past a circular cylinder in freestream has been widely
investigated through both experimental (Williamson, 1988, 1996;
Roshko,1954) and numerical techniques (Karniadakis and Trintafyllou,
1992; Thompson et al., 1996; Barkley and Henderson, 1996). At low
Reynolds numbers, steady flow is observed with the formation of two
recirculation regions in the near wake until Re≃47. Beyond this
Reynolds number, unsteady flow is observed. Vortices are alternately
shed into the wake from the cylinder leading to the classical
Bénard–von Kármán wake. Around Re¼190, the flow becomes
three-dimensional with a spanwise wavelength of approximately
four cylinder diameters; this instability is commonly referred to as
the mode A instability (Barkley and Henderson, 1996; Williamson,
1988, 1996; Thompson et al., 1996). At slightly higher Reynolds
number, Re≃230–240, a short wavelength instability develops with a
spanwise wavelength of approximately one diameter on the already
three-dimensional wake, and this has been termed mode B. The
equivalent two transitions to three-dimensional flow have been
observed in other bluff bodies wakes such as for square and elliptical
cylinders, which undergo these transitions at slightly lower Reynolds
numbers.

For a rotating circular cylinder in freestream, the onset of
vortex shedding depends on the combination of the Reynolds
number and the rotation rate, α, where α¼ ωD=2U, the ratio of the
surface tangential velocity to the freestream flow speed. The
critical Reynolds number at which periodic flow is observed is
delayed to higher Reynolds number as the rotation rate is
increased (Kang et al., 1999). For α≳2, vortex shedding was
suppressed even at high Reynolds numbers (Akoury et al., 2008;
Pralits et al., 2010) and the flow remains steady. However, at still
higher rotation rates, a secondary shedding regime was observed
for α≳4:35 (Mittal and Kumar, 2003; Stojković et al., 2003; Akoury
et al., 2008; Kumar et al., 2011). In this shedding regime, single-
sided vortex shedding occurs by release of positive vorticity into
the wake at a low shedding frequency. For α≳5:5, the flow remains
steady. For a rotating cylinder, the onset of three-dimensionality
has been well documented in a recent investigation by Rao et al.
(2013) for α≤2:5. While mode A and mode B instabilities are
delayed to higher Reynolds numbers at low rotation rates, a
subharmonic mode becomes unstable for α≃1:5. Two other
three-dimensional modes, whose spatio-temporal characteristics
are similar to the mode A instability, occur on the unsteady base
flow, and two other modes are observed on the steady base flow
for α≥2.

Although the flow structures and the forces on a body in
isolation have been well documented, fewer investigations have
been performed for bodies near a plane boundary. One of the
earliest investigations for bodies moving near a wall was made by
Taneda (1965), who observed the flow structures for a circular
cylinder translating along a wall at Re¼170. For the cylinder very
close to a wall (G=D¼ 0:1), a single-sided vortex street was
observed. Here, G=D is the non-dimensionalised gap height, where
the distance between the cylinder and the wall is G and the
cylinder diameter is D. The vortices were unstable and diffused as
they convected downstream.

Experimental investigations were performed by Bearman and
Zdravkovich (1978) for a cylinder near a fixed wall at Re¼4:5� 104

for 0 ≤G=D≤3:5. The cylinder was located approximately 36D from
the start of a turbulent boundary layer, which developed along the
wall. They observed the suppression of regular vortex shedding for
G=Do0:3, with the Strouhal number remaining constant until this
gap height was approached. Bailey et al. (2002) performed experi-
mental investigations for a square cylinder near a stationary wall at
Re¼18,900 and observed that the flow becomes increasingly two-
dimensional in the range 0:53≤G=D≤0:7.

Using a finite-difference method, Lei et al. (2000) performed
numerical simulations for a circular cylinder for gap heights between
0:1≤G=D≤3 and Reynolds numbers between 80≤Re≤1000. The
frame of reference was such that the flow moved past the fixed
lower wall and the cylinder, leading to the development of a
boundary layer (16D upstream of the cylinder). They observed that
the gap height at which vortex shedding was suppressed decreased
as the Reynolds number was increased up to Re¼600. Beyond this
value, the critical gap height remained constant. At higher Reynolds
numbers, Price et al. (2002) observed periodicity in the upper shear
layer for all gap heights G=D40:125. While the pairing of shear layers
from either side of the cylinder was observed for 0:25≤G=D≤0:375,
vortex shedding was observed at higher gap heights of G=D40:5.

Mahir (2009) investigated the onset of three-dimensional flow
for a square cylinder near a fixed wall for Re≤ 250 as the gap
height was increased from 0:1≤G=D≤4. At Re¼185, mode A type
vortex structures with spanwise spacing of ≃3D were observed for
gap heights greater than G=D¼ 1:2, while at G=D¼ 0:8, mode B
type vortex structures of 1D spanwise wavelength were observed.
Below G=D¼ 0:5, neither mode A nor B type vortex structures
were observed. At Re¼250, mode B type vortex structures were
observed at larger gap heights, while at lower gap heights, the
vortex structure was distorted in the vicinity of the cylinder.

Cheng and Luo (2007) investigated the flow structures and
forces on a rotating circular cylinder near a wall at Re¼200. As the
cylinder was moved away from the wall, they observed the
suppression of vortex shedding (G=D≃0:5), followed by a region
of aperiodic vortex shedding and finally a region of alternate
Bénard–von Kármán shedding (G=D≃1:5). They further quantified
the lift and drag coefficients experienced by the cylinder.

Experimental investigations were performed by Nishino et al.
(2007) for a circular cylinder near a moving wall for higher
Reynolds numbers (O(105)). For a cylinder with endplates, they
reported that the flow essentially remained two-dimensional, with
Bénard–von Kármán type vortices being shed for gap heights
G=D40:5, and an intermediate shedding regime was observed
in the range 0:35≤G=D≤0:5. Complete cessation of shedding
occurred for G=Do0:35. However, for a cylinder without end-
plates, they reported that Bénard–von Kármán type wake vortices
were not being generated, and a near constant drag coefficient was
recorded.

Huang and Sung (2007) performed two-dimensional simula-
tions for a circular cylinder moving near a wall for gap heights in
the range G=D40:1 for Re≤600. The gap heights at which
alternate vortex shedding disappeared decreased from 0.28D to
0.25D as the Reynolds number was increased from 300 to 600. The
non-dimensionalised shedding frequency (St ¼ fD=U, with f the
shedding frequency) at different Reynolds numbers increased as
the cylinder was brought close to the wall (≃0:5D), followed by a
rapid decrease as the gap height was decreased. They further
quantified the lift and drag coefficients, with the lift coefficient
showing a linear increase as the cylinder was brought closer to the
wall. They however acknowledged their restriction of two-



Fig. 1. Schematic representation of the circular cylinder of diameter D at a distance
G from a stationary wall. The cylinder translates at a constant speed U to the left.
For the numerical simulations, the frame of reference is attached to the cylinder. In
that frame the cylinder is stationary, while the fluid and wall move at a constant
speed U to the right.

K. Hourigan et al. / J. Wind Eng. Ind. Aerodyn. 122 (2013) 2–94
dimensional simulations, and hence did not rule out possible
important three-dimensional effects over their parameter range.

In a similar study by Yoon et al. (2010), numerical investiga-
tions were performed for a circular cylinder moving parallel to a
wall for Re≤200 at different gap heights using an immersed
boundary technique. The time-averaged lift and drag coefficients
decreased exponentially as the gap height was increased to higher
values. The onset of vortex shedding was delayed to higher
Reynolds numbers as the gap height was decreased. Vortex
shedding persisted at Re¼120 for the cylinder moving at a gap
height of G=D¼ 0:1.

Arnal et al. (1991) investigated the flow structures for a square
cylinder sliding along a wall. Their numerical simulations showed
that periodic flow was observed for Re4100, with vortex pairs
convecting downstream after formation, and moving further away
from the sliding wall. However, for the case of a fixed wall, vortex
pairs formed but convected parallel to the lower wall.

The ground effect of a half-cylinder using a moving ground
for Reynolds numbers between 6:8� 104 ≤Re≤1:7� 105 was
investigated by Zhang et al. (2005). The critical gap height at
which vortex shedding was suppressed was in the range
0:525≤G=D≤0:55. The drag force was nearly constant below this
height and a sharp increase to twice the value was observed
around the critical gap height. The lift coefficient decreased as the
gap height was increased. Furthermore, the Strouhal number was
invariant to the gap height.

Zerihan and Zhang (2000) investigated the variation of force
coefficients on a single element wing (of chord c) at high Reynolds
numbers ðOð104Þ. For their airfoil tested, the (negative) lift coeffi-
cient increased from low gap heights to a maximum value at
height h=c¼ 0:08, beyond which a decrease in the lift coefficient
was observed. The drag coefficient decreased with increasing gap
height. They further varied the incidence angle of the airfoil and
observed that the gap height at which the maximum (negative) lift
was generated varied marginally, reducing the sensitivity to ride
height.

Rao et al. (in press) investigated the variation in flow structures
for a circular cylinder translating parallel to a wall at different gap
heights for Re≤200. As the gap height was reduced from G=D¼ ∞
(free-stream) to G=D-0, the onset of unsteady flow was delayed
to higher Reynolds numbers. For G=D≳0:3, alternate vortex shed-
ding was observed in the flow, accompanied by an increase in the
shedding frequency. They further investigated the onset of three-
dimensionality at various gap heights. For G=D≳0:28, the onset of
three-dimensional flow occurred in the unsteady regime, while for
gap heights below this value, three-dimensionality occurred in the
steady regime. For bodies near a wall, they observed that several
modes became unstable in the unsteady regime. Their three-
dimensional direct numerical simulations (DNS) showed that the
flow eventually becomes chaotic, possibly due to non-linear
interactions of these modes.

In further investigations of cylinders near a wall, Stewart et al.
(2006, 2010) and Rao et al. (2011) investigated the effect of
rotation for translating cylinders near a wall for Re≤750. Relative
to the non-rotating case, for forward rolling cylinders, the transi-
tion to periodic wake flow occurred at lower Reynolds numbers,
while for reverse rolling, the transition was delayed to higher
Reynolds numbers, with vortex shedding ceasing altogether for
α≤−1:5. Three-dimensional flow occurred at lower Reynolds
numbers for forward rolling cylinders, while for reverse rolling
cylinder, the transition was delayed to higher Reynolds numbers.
For α¼ −2, the flow remained two-dimensional for Re≤750. Their
experimental investigations in a water tunnel confirmed the flow
structures predictednumerically.

The flows past a circular cylinder moving near a free-slip
surface at different gap heights for different Froude numbers were
investigated by Reichl et al. (2005). For the zero-Froude-number
case corresponding to a non-deformable surface, vortex shedding
was observed for gaps greater than 0.15D. At smaller gap heights,
vortex shedding was suppressed, while for gap heights greater
than 0.5D, vortex shedding appeared similar to regular Bénard–
von Kármán shedding. For non-zero Froude numbers, surface
deformation was observed downstream of the cylinder at low
gap heights, and for larger gap heights a surface jet was observed.
The shedding frequency increased as the gap height was increased
from low values to G=D≃0:8, followed by a decrease as the
submergence depth was further increased.

The aims of this paper are
�
 to review briefly how vorticity is generated at boundaries,
redistributed into the flow, and interacts with other
boundaries;
�
 to examine the 3D transitions that arise in the vorticity
generated at, and shed from, circular cylinders;
�
 to evaluate the effect of wall proximity and cylinder rotation on
wake structures and transitions.

The structure of this article is as follows. After the descrip-
tion of the flow problem and methods, we first review the
important previous works of Morton (1984) and Lundgren and
Koumoutsakos (1999) to understand the generation and conserva-
tion of vorticity at both solid and stress-free surfaces. Following
this, the two-dimensional modes of shedding from a circular
cylinder are reviewed for an isolated cylinder, a cylinder moving
parallel to a wall for decreasing gap widths, and then the addition
of both pro- and retro-grade rotation of the cylinder are consid-
ered. Next, the development of three-dimensional wakes modes
from the initial two-dimensional vorticity shed from cylinders is
studied, with emphasis on the difference in the order of appear-
ance and characteristics of the modes. Finally, a discussion of the
effect of wall proximity and cylinder rotation on the wake
structures and stability is presented, followed by concluding
remarks.
2. Problem definition and methodology

The schematic representation of the cylinder moving parallel to
the wall is shown in Fig. 1. The cylinder of diameter D is moving at
a gap height of G from the wall. However, in the numerical setup,
the frame of reference is centred at the cylinder, with the fluid and
the lower wall moving at an uniform speed and the cylinder
stationary. The controlling parameter is the Reynolds number,
Re¼ UD=ν, where ν is the kinematic viscosity of the fluid. It is varied
here over the range 25≤Re≤750. The computational domains were
constructed for different gap heights from freestream (G=D¼ ∞) to
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near wall (G=D¼ 0:005). The small gap was maintained to prevent
singular mesh elements between the bottom of the cylinder and the
lower wall. Previous studies (Rao et al., 2011; Stewart et al., 2006,
2010) have shown good agreement between the flow structures
visualised in the experiments and those observed numerically,
although the force coefficients recorded are more sensitive to this
gap height. For this numerical study, the cylinder was modelled as a
smooth body.

As the body moves through the non-Newtonian fluid, both
viscous and pressure forces act on it. The lift force (Fl) and drag
force (Fd) are normalised by the dynamic pressure and frontal area
per unit width (0:5ρU2D) to obtain the lift and drag coefficients,
respectively. In the unsteady regime of flow, vortex shedding
occurs and the force coefficients vary periodically. In those cases,
time-averaged quantities are reported. The frequency of shedding
f is normalised by the cylinder diameter and flow speed, thereby
obtaining the Strouhal number, given by St ¼ fD=U.

2.1. Numerical formulation

The incompressible Navier–Stokes equations are solved using a
spectral-element method based on the Galerkin finite-element
method. The computational domain is constructed from quadri-
lateral elements, mainly rectangular, while some have curved
boundaries to model the surface of the cylinder. These macro-
elements are further subdivided into internal node points, which
are distributed according to the Gauss–Legendre–Lobatto quad-
rature points, with the velocity and pressure fields represented by
a tensor product of Lagrangian polynomial interpolants within the
elements. Such methods are known to provide spectral conver-
gence as the number of internal nodes per element (N) is increased
(Karniadakis and Sherwin, 2005). The number of node points is
specified at runtime, with the interpolant polynomial order being
N−1. A fractional time-stepping technique is used to integrate the
advection, pressure and diffusion terms of the Navier–Stokes
equation (Karniadakis et al., 1991; Chorin, 1968). The unsteady
solver is used to investigate the parameter range covering both the
steady and unsteady regimes of flow. More details on this method
can be found in Thompson et al. (2006a). It has been used
previously in related studies of bluff bodies in a free-stream
(Thompson et al., 1996; Leontini et al., 2007; Thompson et al.,
2006b), and for bodies near a wall (Stewart et al., 2006, 2010; Rao
et al., 2011), and for spheres and cylinders impacting a wall
(Leweke et al., 2004; Thompson et al., 2007).

2.2. Linear stability analysis

The onset of three-dimensionality is an important aspect in the
understanding of bluff body flows as a route to chaos and fully
turbulent flow. For an isolated cylinder, three-dimensional flow
first occurs at Re≃188 (Barkley and Henderson, 1996) after the
wake has already undergone a transition to two-dimensional
periodic flow at Re≃47. For bodies close to a wall, the transition
sequence is reversed, with the flow becoming three dimensional
prior to becoming unsteady (Stewart et al., 2010; Rao et al., 2011).
We here investigate the variation between these two extremities,
mapping the variation at different gap heights. Linear stability
analysis is used to determine the growth or decay of infinitesimal
spanwise sinusoidal perturbations imposed on the two-dimensional
steady or unsteady base flow. Numerically, the Navier–Stokes equa-
tions are linearised and the spanwise perturbation fields can be
expressed as a sum over Fourier modes corresponding to different
spanwise wavelengths (λ). Linearity of the equations allows exam-
ination of each Fourier mode separately. The resulting equations are
marched forward in time, and after several periods, the fastest
growing modes dominate the system. For unsteady flows, the period
of monitoring the solution is equal to the period of the base flow
period (T), while an arbitrary time period is chosen for cases with a
steady base flow. The ratio of the magnitude of the perturbation field
over consecutive periods is denoted by μ¼ esT , where μ is the Floquet
multiplier (for periodic base flows) or the amplification factor, and
s is the growth rate. For exponentially growing modes, the Floquet
multiplier returns a value of μ41, or a positive growth rate (s40).
A parameter space over a range of Reynolds number and normalised
spanwise wavelengths (λ=D) is mapped, obtaining the value of the
Floquet multiplier/growth rate. Polynomial interpolation is then
carried out to obtain the critical values at which the flow becomes
unstable to three-dimensional perturbations.

For a circular cylinder wake, the first two fastest-growing
three-dimensional modes are purely real, with the periodicity of
the three-dimensional perturbations being commensurate with
the base flow period. However, other modes that are incommen-
surate with the base flow have been found in the wakes of circular
and square cylinders, where the Floquet multiplier has a complex
component (Robichaux et al., 1999; Blackburn and Lopez, 2003).
Modes whose periods are twice the period of the base flow have
been found in the wake behind rings and are termed sub-
harmonic modes (Sheard et al., 2005a, 2005b).

2.3. Resolution studies

The computational domain used for the two-dimensional flow
computations had boundaries at significantly large distances from
the cylinder-wall system. The inlet and outlet boundaries where
placed at 100D from the cylinder, while the upper boundary was
located 150D from the lower wall. The computational domain and
mesh system used is similar to that shown in Fig. 2 of Stewart et al.
(2010). The macroelements were concentrated in the vicinity of
the cylinder and were distributed sparsely 30D away from the
cylinder. Similar studies conducted by Rao et al. (2011) showed
minimal variations of the force coefficients and Strouhal number
for the maximum tested flow speed. Furthermore, spatial resolu-
tion studies were conducted for G=D¼ 0:01 at Re¼200 by
varying the polynomial order of the interpolants between
N2¼42 and 102. For N2¼72, maximum variation in the force
coefficients and Strouhal number was less than 0.1%. However,
to ensure adequate resolution of the flow structures in the far
wake and to capture the spanwise component of flow, the
resolution of the macroelements was increased to N2¼92.
Further, to ensure stability of the solver at these resolutions,
the time-step used was 0:001D=U.
3. Results

3.1. Two-dimensional flows

3.1.1. Review of vorticity generation and conservation
A dynamical formulation for the generation of vorticity has

previously been presented by Morton (1984) for an incompressi-
ble, homogeneous, Newtonian fluid. Considering mainly the flow
next to a solid wall, it was concluded that
1.
 Vorticity is generated instantaneously at boundaries by the
relative acceleration of the fluid and wall produced:
(a) from the fluid side by tangential pressure gradients;
(b) from the wall side by acceleration of the boundary, where

generation is again partially masked by viscous diffusion
when there is continuing generation.
2.
 For an impulsive change, wall stress does not produce vorticity.

3.
 The only means of decay or loss of vorticity is by cross-diffusion

and annihilation of vorticity of opposite signs.



Fig. 2. Flow structures at Re¼180 for the circular cylinder moving from right to left at the specified gap heights. Vorticity contours levels are between 75D=U. The wake is
visualised for a streamwise distance in excess of 25D downstream of the cylinder. (a) G=D-∞. (b) G=D¼ 2. (c) G=D¼ 1. (d) G=D¼ 0:75. (e) G=D¼ 0:5. (f) G=D¼ 0:4.
(g) G=D¼ 0:25. (h) G=D¼ 0:1. (i) G=D¼ 0:01. (j) G=D¼ 0:005. Red and blue shading is used to indicate positive and negative vorticity contours, respectively.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 3. Flow structures at the specified rotation rates and Reynolds numbers captured at the instant of maximum instantaneous lift coefficient. The contour levels are
between 75D=U. (a) α¼ þ 2; Re¼ 180. (b) α¼ þ 1; Re¼ 180. (c) α¼ 0;Re¼ 180. (d) α¼ −1;Re¼ 750. (e) α¼ −2;Re¼ 750.
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The case of a stress-free surface has also been studied, and it
has been shown that vorticity is conserved (Lundgren and
Koumoutsakos, 1999). That is, vorticity (in terms of total circula-
tion) is not lost through the free surface but rather is “stored” in
the vortex sheet representing the free surface. This is an important
result that needs to be considered in our analyses.

The findings of Morton (1984) and Lundgren and Koumoutsakos
(1999) provide guidelines for our understanding of the origin and
conservation of vorticity in cylinder wakes in the following cases.

3.1.2. Non-rotating translating cylinder and wall effect
Shown in Fig. 2 are the vortical wake flow structures for a circular

cylinder translating parallel to a solid wall at Re¼180, for various gap
heights. The red and blue shading indicates negative and positive
vorticity, respectively, originating from the detached shear layers
from the translating cylinder. Because the integrated tangential
pressure gradient around the whole cylinder must necessarily be
zero, then according to Morton (1984), the net vorticity generation is
also zero. That is, equal amounts of positive and negative vorticity are
generated. For an isolated cylinder, vortex shedding occurs alter-
nately from the upper and lower separation points, and the shed
vortices form what is commonly known as a “Bénard–von Kármán
vortex street”. As the gap height is decreased to ≃0:25, single-sided
vortex shedding occurs, where the shear layers separating from the
top of the cylinder combines with the wall shear layer vorticity to
form a vortex pair, which advects away from the wall as it moves
downstream. Clearly discernible from these images is the drop in
shedding frequency as the cylinder is positioned closer to the wall.

The critical Reynolds number for the transition to unsteady
flow increases from Rec≃47 for G=D-∞ to Rec≃160 as G=D-0. This
clearly indicates the stabilising effect of the wall, delaying the
onset of periodic flow. The Strouhal number or non-dimensional
shedding frequency, St ¼ fD=U, with f the frequency, is a func-
tion of both the Reynolds number and the gap height. This
variation has been documented in Fig. 6 of Rao et al. (in press)
for Re≤200.

3.1.3. Rotating cylinder translating on a wall
We now consider the case of the circular cylinder rolling along

a wall at different rotation rates (−2≤α≤2). Again, equal amounts
of opposite-signed vorticity are generated over the cylinder sur-
face. Pressure gradients are also induced on the wall and therefore
vorticity is generated there locally. As the rotation rate is increased
to higher positive values, the onset of vortex shedding is observed
at lower Reynolds numbers, while on decreasing the rotation rate
to negative values, the onset of shedding is delayed to higher
Reynolds numbers. It is suppressed entirely for α≤−1:5 for Re≤750
(also see Fig. 7). Fig. 3 shows the flow structures observed in the
wake of the rotating cylinder. The process of vortex shedding for
these cases has been shown in Fig. 13 of Stewart et al. (2010) and in
Fig. 4 of Rao et al. (2011). Furthermore, comparison of these flow
structures with experimental dye visualisations has been shown in
Figs. 15 and 16 of Stewart et al. (2010) and in Fig. 12 of Rao et al.
(2011).

3.1.4. Cylinder rolling in reverse along a free slip surface
Shown in Fig. 4 is the comparison between the flow structures

for a cylinder rolling in reverse along a no-slip wall with those for
a slip wall. The process of shedding in the two cases is vastly



Fig. 4. Flow structures for a reverse rolling cylinder at α¼ −1; Re¼ 450 along (a) a no-slip surface and (b) a slip surface. The contour levels for both images are between
75D=U. The Strouhal numbers for the no-slip and slip cases are 0.218 and 0.196, respectively.

Fig. 5. (a) Transition diagram showing the variation of the critical Reynolds number for the onset of three-dimensional flow and as gap height is increased from G=D≃0 to
G=D¼ 2:5. The steady–unsteady transition is represented by the dotted line over this range. The open circles (○) indicate the critical Reynolds number for the onset of three-
dimensional transition for G=D≲0:25 in the steady regime of flow and closed circles (�) indicate the critical Reynolds number for the onset of three-dimensional transition for
G=D≳0:25 in the unsteady regime. (b) Variation of the critical spanwise wavelength with gap height. Figures from Rao et al. (in press).

Fig. 6. Spanwise perturbation vorticity contours for the cylinder translating parallel to a wall at the specified gap height and Reynolds number. For G=D≤0:25, the transition
to three-dimensionality occurs in the steady regime of flow, while for G=D40:25, the transition occurs in the unsteady regime. The contour shading is between levels
70:1D=U, and the dashed lines show the base flow vorticity contour levels between 71D=U. (a) G=D¼ 4; Re¼ 180; λ=D¼ 4. (b) G=D¼ 0:6; Re¼ 165; λ=D¼ 3:6.
(c) G=D¼ 0:35; Re¼ 165; λ=D¼ 4. (d) G=D¼ 0:15; Re¼ 120; λ=D¼ 8.
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different. For the no-slip wall, vorticity from the top shear layer
combines with opposite-signed vorticity generated beneath it at
the wall to form a vortex pair which moves parallel to the wall.
In the case of a slip wall, a single-sided vortex is shed, which then
translates along the surface. In terms of vorticity generation, the
pressure gradient along the interface at the free-slip surface
generates vorticity (in the form of a vortex sheet, as presented
by Lundgren and Koumoutsakos (1999). The total vorticity in the
system is found to be conserved. However, as opposed to the no-
slip wall, vorticity cannot diffuse out of the planar free-slip surface,
and therefore we do not see the vortices of the opposite sign being
formed at the wall in this case.

3.2. Transition to three-dimensionality

For an isolated cylinder translating in a free stream, the onset of
three-dimensional flow occurs for an unsteady base flow at
Rec≃190 (Barkley and Henderson, 1996), while for a non-rotating
cylinder almost touching a no-slip wall, the transition occurs in
the steady regime at Re≃71 (Stewart et al., 2010). For the inter-
mediate gap heights, this transition is mapped and is shown in
Fig. 5. Fig. 5(a) shows the variation of the critical Reynolds number
for the transition to three-dimensional flow as the gap height is
varied. For G=D≲0:25, the transition occurs in the steady regime
and shows a monotonic rise in critical Reynolds number as the gap
height is increased. For G=D≳0:25, the transition occurs on an
unsteady base flow. At G=D¼ 0:28, the flow was found to remain
two-dimensional for Re≤200. At greater gap heights of G=D≳0:6,
the critical Reynolds number approaches that observed for an
isolated cylinder (Rao et al., in press). Fig. 5(b) shows the variation
of the critical spanwise wavelength at the onset of three-
dimensional flow. At large gap heights, the onset of three-
dimensionality manifests as the mode A instability, with a critical
spanwise wavelength of ≃4D.

Fig. 6 shows the spanwise perturbation vorticity contours at
Reynolds numbers slightly greater than the critical values for the
onset to three-dimensional flow. At large gap heights, the contours
resemble the mode A type instability observed for bodies in
isolation. Although the gap height is decreased to ≃0:3D, the
signature of the mode A is retained, with vortex shedding pre-
dominantly becoming single sided. At very low gap heights
(G=D≤0:2), the transition to three-dimensionality occurs in the
steady flow with the spanwise perturbations growing in the
recirculation regions.



Fig. 8. Spanwise perturbation vorticity contours for the cylinder rolling along a wall at the specified rotation rate. The contour shading is between levels 70:1D=U, and the
dashed lines show the base flow vorticity contour levels between 71D=U. (a) α¼ þ 2; Re¼ 25; λ=D¼ 11. (b) α¼ þ 1:5; Re¼ 30; λ=D¼ 10. (c)
α¼ −1:25; Re¼ 250; λ=D¼ 1:8. (d) α¼ −1:5; Re¼ 400; λ=D¼ 1:5.

Fig. 7. (a) Variation of the critical Reynolds numbers for the onset of unsteady flow (○) and three-dimensional flow (�) for cylinders sliding and rotating along a wall.
(b) Variation of the critical spanwise wavelength with rotation rate.
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For cylinders on a wall, the onset of three-dimensional flow
occurs at lower Reynolds number as the positive rotation rate is
increased, while for negative rotation rates, the onset occurs at
higher Reynolds number. For rotation rates αo1:5, the flow
remains two-dimensional for Re≤750. Fig. 7(a) shows this varia-
tion on an α−Re plot. This figure also shows the critical Reynolds
number for the onset of unsteady flow as the rotation rate is
varied. As the rotation rate is increased from negative values, the
onset of three-dimensionality occurs at lower Reynolds number.
A similar trend is observed with respect to onset of unsteady flow.
Fig. 7(b) shows the variation of the critical spanwise wavelength
with rotation rate. As the rotation rate is increased, the spanwise
wavelength at which the flow becomes three-dimensional mono-
tonically increases.

Spanwise perturbation vorticity contours obtained from stabi-
lity analysis are shown in Fig. 8 for selected rotation rates. These
coloured contour plots show regions in the wake of the rolling
cylinder where the fastest-growing three-dimensional mode has
the large amplitudes. The variation in the spanwise direction is
sinusoidal. Not surprisingly, the amplification of the instability is
associated with the attached regions of positive and negative
spanwise vorticity in the wake. For other rotation rates, the reader
is referred to Figs. 22 and 23 of Stewart et al. (2010).

For cylinders near a wall, multiple unstable three-dimensional
modes can be identified after the wake has already undergone a
transition to unsteady periodic flow. Rao et al. (in press) observed
four modes for a cylinder sliding along a wall at Re¼200.
Furthermore, they performed three-dimensional Direct Numerical
Simulations (DNS) to investigate the nonlinear interactions
between these (linear) modes. While the wake was observed to
be periodic initially, the flow evolved to be chaotic, no longer
resembling the two-dimensional periodic base flow.

The effect of a nearby wall on a cylinder wake is therefore
profound. For a translating cylinder located close to a wall
(G=Do0:25), direct shedding of vortices from the lower side of
the cylinder ceases. The transition to three-dimensionality in this
case occurs prior to the transition to an unsteady wake. In the case
of a no-slip wall, secondary vorticity is generated at a wall via a
tangential pressure gradient induced by a primary vortex above it.
That secondary vorticity initially diffuses away from the wall
before being advected by the flow to form a vortex structure.
The opposite-signed primary and secondary vortices pair and self-
propel away from the wall. In the case of a free-slip surface, some
secondary vorticity is induced at the back surface of the cylinder,
which diffuses out slowly but it does not form identifiable vortex
structures. Vorticity is also generated at the free-slip surface but it
is trapped there and cannot diffuse away. In this case, apart
from some opposite-signed vorticity close the cylinder, the wake
consists of vortices of a single sign. The effect of rotation of a
cylinder translating along the wall is to accentuate the shedding
and pairing in the case of increasing prograde rotation, and to
mitigate this effect in the case of increasing retrograde rotation,
with vortex shedding eventually becoming suppressed as the
retrograde rotation rate is increased.
4. Conclusions

Vorticity generation at a boundary has been reviewed, with
the identified mechanisms being a tangential acceleration of the
boundary or a tangential pressure gradient in the fluid at the
boundary. Subsequent redistribution of the vorticity occurs
through diffusion away from the boundary and then advection
with the fluid. Vorticity (in terms of total circulation) is conserved
and cannot be lost at a boundary; for the special case of a slip
boundary, vorticity is stored at the boundary interface in the form
of a vortex sheet.

We have investigated the flow past a circular cylinder translat-
ing parallel to, and at different distances from, a wall using
spectral-element simulations. Two-dimensional simulations showed
the onset of unsteady flow in the wake was delayed to higher
Reynolds numbers as the gap height was decreased, except very
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close to the wall (G=D≲0:1). Using linear stability analysis, we
studied the variation of the critical Reynolds number and the
associated spanwise wavelength for different gap heights for
three-dimensional transition. For G=D≤0:25, the transition occurs
while the wake is still steady. Beyond this gap height, three-
dimensional flow transition is delayed until after the wake has
already become unsteady. The critical Reynolds numbers for
G=D¼ 0:3 and 0.4 are Rec ¼ 185 and 137, respectively. Above
G=D¼ 0:4 the critical Reynolds number increases monotonically
towards the value observed for an isolated cylinder (Re≃188)
(Barkley and Henderson, 1996).

The effect of cylinder rotation on wake transitions has also been
quantified. In general, forward (or prograde) rolling reduces the
critical Reynolds number, while reverse (or retrograde) rolling has
the opposite effect. When the cylinder is close to a wall, strong
retrograde rolling encourages the wake to wrap around the
cylinder, thereby reducing the height of the wake and the cross-
stream size of positive and negative vorticity regions within it. For
α¼ −2, three-dimensional transition was suppressed up to
Re¼750.

Clearly, the presence of a wall and cylinder rotation strongly
affect wake development both qualitatively and quantitatively.
This is especially apparent in terms of vorticity injected into the
flow, trapped vorticity at free-slip surfaces, subsequent wake
dynamics, and the initial transition to either three-dimensional
steady or two-dimensional unsteady wake flow. Furthermore, wall
proximity and rotation affect the appearance and stability of three-
dimensional wake modes, which in turn strongly affect the path to
wake turbulence at higher Reynolds numbers.
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