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SUMMARY

The two-dimensional inviscid incompressible flow at high Reynolds number
over an isothermally heated flat semi-infinite plate with a square
leading edge is simulated numerically using a discrete-vortex model.
Both the instantaneous and mean thermal fields are predicted using an
alternating direction implicit finite difference approximation of the
energy equation. The mean local heat transfer rate is found to be a
global maximum near the point of mean reattachment, in 1line with
observation. The mean flow field does not reveal the large velocity
fluctuations that occur near reattachment. It is the instantaneous flow
field that gives insight into the large-scale vortex formation and the
strong vortical influence on the flow and heat transfer rates.
Instantaneously, local maxima of heat transfer rates occur just
downstream of a vortex, and local minima are found immediately trailing
the vortices and in the separation bubble. A second case is considered
in which the elemental vortices that represent the separating shear layer
near the leading edge undergo lateral oscillation resulting in a reduced
reattachment length. This results in an increase in both the global heat
transfer rate and the mean rate at the mean point of reattachment.

1, INTRODUCTION

The high Reynolds number flow over the square leading edge of a long flat plate
is characterized by the separation of a shear layer at each corner, its reattachment
downstream, and the shedding of vortices that are convected along the plate
surface. This type of flow has been modelled numerically using the discrete vortex
method by a number of authors (e.g. Nagano et al., 1982, Kiya et al., 1982). These
models have been found to satisfactorily predict many of the mean characteristics of
the flow in addition to providing useful insight into its instantaneous features.

The present paper 1is concerned with using the discrete-vortex model as a basis
for investigating the extended problem in which the forced convection takes place
over a heated plate. Motivation for this research has been provided by experiments

that show reduction of the mean reattachment length by sound stimulation can
ilncrease the Nusselt number on the plate by up to 40% in the mean and 100% locally
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at reattachment (Cooper et al., 1983). It is also observed, for sufficiently long
plates, that the local heat transfer coefficient begins to decrease with reducing
reattachment length some distance downstream of reattachment. It has been suspected
that the large-scale vortex dynamics are important in determining these observed
features. The precise means by which they do so has been difficult to infer from
experimental results, which are collected in an averaged form. The present model is
intended to additionally predict the instantaneous characteristics of the flow and
the thermal field, thereby providing an insight into the mechanism of augmentation
of heat transfer,

2. MATHEMAT ICAL DESCRIPTION OF MODEL

The mode!l under consideration consists of the flow past a rigid two-dimensional
heated flat plate with a square leading edge. The sides of the semi-infinite plate
are aligned parallel to an approaching flow of uniform velocity and temperature.
The fluid is assumed to be inviscid, incompressible and irrotational everywhere
except at points where a simple inviscid line vortex is located. The flow is
assumed to separate at the corners of the leading edge. Attention is focussed on
the behaviour of the separated shear layer on the upper surface, taking as
negligible the influence in this region of the vorticity generated at the lower
leading edge corner.

2.1 Discrete-Vortex Model

2.1.1 Velocity potential

The separated shear layer is approximated by an array of line vortices. The
local fluid velocity, which is determined kinematically from the vorticity field and
the irrotational field, then determines the inviscid motion of these elemental
vortices. In aorder to satisfy the condition of zero flow normal to the solid
boundary, the plane is mapped conformally into one where the boundary is a half-plane
and the boundary condition can be satisfied by including mirror-image vortices. The
fol lowing Schwarz-Christoffel conformal transformation is used

1

z == [(A2 - 1)2 - arcoshA] + iH,

4|

where H is the semi-thickness of the plate.

The complex velocity potential & at position A is then given by

iG.

Ao Byt lee (- ag) - dog (A - A I,

b = V0

H
n
where the first term on the right is due to the irrotational flow and the second
term is due to the flow induced by the N vortices. Here, Vo is the velocity at

upstream infinity, Gj is the strength of the j-th vortex and ® denotes a complex
conjugate.

The velocity field in the physical plane is given by dé/dz at points other than
vortex centres. The limiting net velocity at the centre of a vortex is obtained by
subtracting in the image plane the potential due to the vortex. The velocity in the
physical plane at the k-th vortex centre then contains the Routh correction term
(e.g. Clements, 1973).
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Other details of the model are essentially the same as those provided by
Kiya et al. (1982), except that vorticity reduction along the plate is introduced
differently, as follows.

2.1.2 Vorticity generation and the Kutta condition

A determination is required of the strength of each elemental vortex, which
represents a segment of the vortex sheet shed from the leading edge. The rate of
creation of vorticity at a separation point is normally obtained from the kinematic

condition dG/dt = 1/2 V 2, where V is the velocity at the outer edge of the shear
layer.. In this model, %he velocity V is determined at a fixed point at a distance
0.0lH in front of, and parallel to, the top surface of the plate. This point is
chosen to represent the position of the outer edge of a shear layer separating from
the front face. The rate of generation of vorticity is equal to the relative
tangential acceleration of the fluid and the boundary without taking viscosity into
account. In the case of a fixed plate, the vorticity generating mechanism therefore
involves only the tangential pressure gradient within the fluid (Morton, 1984). The
large pressure drop around the leading edge thus results in substantial vorticity
production. The distance from the plate used to determine Vg is selected to give a
vorticity generation rate consistent with the pressure drop around the leading edge.

The Kutta condition requires that the velocity is zero at the point in the
transformed plane corresponding to the leading edge corner. This condition,
together with the assumption that the boundary layer separates tangentially to the
body surface, uniquely determines the nascent vortex positiom.

2.1.3 Surface pressure gradients and vorticity reduction

In addition to the pressure drop at the leading edge, there is a significant
recovery in the mean tangential pressure gradient near reattachment of the separated -
shear layer. This leads to production of vorticity of sense opposite to that
generated at the leading edge. The effect of the entrainment of this new vorticity
into the large scale vortical structures is to reduce their overall circulation.
This is accounted for in the present model by reducing the strengths of elemental
vortices that recirculate upstream as a result of passing close to the plate
surface. The amount of vorticity reduction is fixed so that the mean circulation
passing further downstream is consistent with the mean tangential pressure recovery
along the surface.

2.2 Incorporation of Heat Transfer

The dimensionless energy equation to be solved is given by

% |
3T 4 4 9T = Pe v2T ,
] R

where T is the local fluid temperature, u is the local fluid velocity and Pe is the
Peclet number. The normalizing quantities are the difference in temperature between
the wall and the incident fluid, the fluid velocity at upstream infinity and the
plate sem!-width. Here, the fluid velocity is determined through the Biot-Savart
integral which describes the motion induced by vorticity in the flow. In the
present case, the vorticity distribution is determined through solution of the
vorticity equation by the discrete vortex model, as described above.

The boundary conditions are that the temperature is constant along the top

surface of the plate and a different constant in the uniform flow at upstream
infinity.
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2.2.1 Finite—-difference procedure

A non-conservative finite-difference approximation to the energy equation ig
used. The diffusion and convection terms are replaced by second-order centra]
difference approximations. The scheme is then solved using the Peaceman-Rachforq
ADI algorithm. The advancement of the energy equation solution for each time step
of advancement of the discrete vortices is performed by alternating between rows and
columns of the finite difference mesh system at the corresponding half time-steps.

The origin of the finite-difference mesh was placed at a distance 0.2y
downstream of the plate corner to avoid the singularity in potential at that
pointe A 50 x 30 mesh system representing an area 20H x 2.5H above the plate was
used in each calculation.

33 RESULTS AND DISCUSSION

The heat transfer characteristics for two different cases are considered: in
each case, the heat and flow parameters have the same values with the exception that
.a pseudo-sound field 1is applied 1in one case. That 1is, a periodic 1lateral
stimulation of the separating shear layer, represented by the elemental vortices, is
employed. The oscillation had amplitude H/4n and frequency 0.2(U/H) and was
restricted to the first five elemental vortices in the shear layer. This crudely
approximates the effect of a transverse sound field. It. is found in this case that
the frequency of vortex shedding from the separation bubble is locked to the
frequency of shear layer oscillation. This 1is precisely the result obtained
experimentally using sound as the perturbing mechanism (Parker and Welsh, 1983).

The Peclet number used was 20. This is sufficiently large relative to unity to
make convection the dominant mechanism of heat transfer on a global scale, but small
enough that satisfactory solutions can be obtained using a limited number of finite
difference mesh points.
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FIGURE 1. MEAN VELOCITY VECTOR FIELDS FOR d. NO STIMULATION and b. STIMULATION

Figures l.a and l.b show the local mean velocity vectors for the flows without
and with shear-layer stimulation. The perturbation reduces the mean reattachment
length from approximately 9 to less than 4 plate semi-widths. In each case, a thin
shear layer originating close to the leading edge separates an outer region of high
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velocity from the inner bubble region containing recirculating flow of 1low
velocity. This picture coincides closely with the classic separation bubble derived
from averaged experimental data. The non-zero normal gradient of the velocity along
the plate surface indicates the flow of vorticity shed from the leading edge. There
was found to be agreement between the positions of maximum normal velocity gradient
and maximum normal thermal gradient, which are located near reattachment. That is,
the position of maximum vorticity is associated with that of highest heat transfer
rate, in the mean. The time-averaged isotherm profiles for the two cases are shown
in Figures 2.a and 2.b. However, details of large-scale vortex formationm, their
shedding from the bubble and their local influence on the heat transfer rate are
left unrevealed by the mean results.

FIGURE 2. MEAN ISOTHERMS FOR a. NO STIMULATION AND b. STIMULATION.
PECLET NUMBER IS 20. THE ISOTHERM VALUES REPRESENT
DIFFERENCES OF 107 IN TEMPERATURE

Plots of local instantaneous velocity vectors, characteristic of the flows
without and with stimulation, are shown in Figures 3.a and 3.b, respectively. The
dynamic nature of the separation bubble and flow downstream of reattachment is now
evident. It is true that the flow inside the bubble close to the leading edge is
not dissimilar to the mean case, although some early-stage shear-layer roll-up is
apparent. However, an entirely different picture emerges near reattachment. Here,
large-scale vortical structures are manifest and significant normal velocities and
velocity gradients appear near the plate surface. The 'smoothed out' appearance of
the mean flow evidently masks the rapidly swirling nature of the instantaneous flow
near reattachment. The higher heat transfer rate in this region appears to result
from the action of this highly fluctuating flow, in which colder fluid is moved
quickly towards and away from the heated plate surface.

The intense local influence of the vortices shed from the separation bubble on
the heat transfer is apparent from the instantaneous isotherms plotted in Figures
4b,a (no stimulation) and 4.b (stimulation). It is interesting to note that local
maximum heat transfer rates obtain just downstream of the shed vortices and local
minimum values are found close by upstream. Why this should be so becomes clear when
the instantaneous velocity vectors near the large vortical structures are considered
(see Figureé 3.a and 3.b). The flow near the plate just upstream of a vortex is
fairly uniform - this laminar-like condition providing higher thermal resistivity.
In contrast, the fluid impacting on the plate just downstream of the vortex has come

from colder regions further away from the plate. This results in the larger thermal
gradients there, as shown by the isotherm plots in Figure 4.
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FIGURE 3. INSTANTANEOUS VELOCITY VECTOR FIELDS FOR

a. NO STIMULATION and b. STIMULATION

FIGURE 4. INSTANTANEOUS ISOTHERMS FOR a. NO STIMULATION AND b. STIMULATION.
PECLET NUMBER AND ISOTHERM VALUES AS FOR FIGURE 2

The local mean Nusselt number along the plate for the two cases is shown in
Figure 5. The effect of applying shear layer stimulation is the movement of the
point of peak heat . transfer, along with the mean reattachment position, towards the
leading edge. The maximum local Nusselt number 1is increased by about 27% and the
average Nusselt number is greater by about 10%. However, the local Nusselt number in
the stimulated case falls below that of no-stimulation past 8 semi-plate widths.
There appears to be a limiting effect on the ability of the vortices to transport
heated fluid away from the surface and mix it with distant colder fluid. These
trends are in line with those observed experimentally by Cooper et al. (1983).
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The increase in the maximum heat transfer rate as the mean bubble length is
reduced is also in line with experimental results (Cooper et al., 1983). In the
experiments of Ota and Kon (1974) and those of McCormick et al. (1984), it is found
that the mean local Nusselt number along the plate scales as the two—thirds power of
the Reynolds number. In what is essentially inviscid flow, the Reynolds number does
not appear 1in the momentum or vorticity equations. It 1is only implicit in the
normalized energy equation; the Peclet number being the product of the Prandtl and
Reynolds numbers. It is hypothesized then that in these forced convective flows over
flat plates 1in which the velocityzfield attains a limiting form at high Reynolds
number, the distribution of Nu/Pe will in fact be independent of the Peclet
number. This is supported by the near—colncidence of the scaled Nusselt number at
reattachment in the present unperturbed case with that obtained experimentally by
McCormick et al. (1984) - a value close to 0.16 is obtained in each case in spite of
a difference in Peclet number of several orders of magnitude. It 1is therefore
possible to compare predictions of the model with experimental results.
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FIGURE 5. LOCAL MEAN NUSSELT NUMBER Nu VERSUS DISTANCE (x) ALONG PLATE SURFACE
O NO STIMULATION
® STIMULATION

4, CONCLUSIONS

A discrete-vortex model in conjunction with a finite difference scheme has been
used to simulate the heat transfer in a two-dimensional separated flow over a flat
heated plate. A much fuller understanding of the heat transfer characteristics of
the flow 1s provided by considering the instantaneous flow. The mean flow masks the
highly fluctuating nature of the separation bubble. The effect of an oscillation of
the separating shear layer is to couple the frequency of large-scale vortex
formation with the oscillation frequency. This reduces the mean reattachment length
and 1Increases the mean Nusselt number at reattachment. The point of mean
reattachment 1s found close to the position of maximum mean local Nusselt number.

Plogs of the instantaneous velocity and thermal fields show that the vortices play
an important role in determining the heat transfer characteristics of the flow.
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