
J. Fluid Mech. (2023), vol. 0, A1, doi:10.1017/jfm.2023.268

Vortex-induced vibration forever even with high1

structural damping2

Peng Han1, Emmanuel de Langre2, Mark C. Thompson3, Kerry Hourigan3
3

and Jisheng Zhao3,4,†4

1AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China5

2LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France6

3Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and7

Aerospace Engineering, Monash University, Victoria 3800, Australia8

4School of Engineering and Information Technology, University of New South Wales, Canberra,9

ACT 2600, Australia10

(Received 20 September 2022; revised 4 March 2023; accepted 27 March 2023)11

This study investigates the effect of structural damping on vortex-induced vibration (VIV)12

of a circular cylinder when the mass ratio is below its critical value. It is confirmed13

by water-channel experiments and a reduced-order model (ROM) that the previously14

identified phenomenon of VIV forever, i.e. resonance oscillations at any reduced velocity,15

persists even with high structural damping. Of interest, the ROM results reveal that the16

wake mode for VIV forever is unstable with a constant positive growth rate with increasing17

reduced velocity, while the experimental results suggest that VIV forever is associated18

with a synchronisation between the non-stationary cylinder vibration frequency and the19

vortex-shedding frequency.20

Key words: flow-structure interactions, vortex instability, vortex shedding21

1. Introduction22

When an elastic or elastically mounted bluff body is subjected to a fluid flow, it may23

react to the vortex shedding and experience a phenomenon typical of fluid–structure24

interaction: vortex-induced vibration (VIV). One of the most profound characteristics25

of VIV is synchronisation (or ‘lock-in’), where both the vortex shedding frequency26

and the body vibration frequency are locked and close to the natural frequency of the27

fluid–structure system (Williamson & Govardhan 2004; Païdoussis, Price & De Langre28

2010). Generally, for cross-flow VIV of a circular cylinder with low mass and damping,29

the lock-in phenomenon occurs over a discrete finite range of reduced velocity. The lock-in30
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starts from the beginning of an upper branch, when the vortex-shedding frequency locks31

onto the body vibration frequency of the system in quiescent fluid, and extends through a32

lower branch, where the body vibration as well as the locked frequencies remain consistent.33

For a cylinder with a mass ratio above some value, desynchronisation may eventually occur34

at higher reduced velocity (e.g. Khalak & Williamson 1996; Williamson & Govardhan35

2004). The reduced velocity is defined by Ur = U/( fnwD), where U is the free-stream36

velocity, D is the cylinder diameter and fnw is the natural frequency of the system in37

quiescent fluid. It has been well established that the mass ratio (denoted by m∗, as the38

ratio of the total oscillating mass to the mass displaced by fluid) is an important parameter39

affecting the lock-in region as well as the body vibration amplitude response (Williamson40

& Govardhan 2004; Han & de Langre 2022). In a sequence of experiments, Govardhan41

& Williamson (2000) predicted and confirmed the existence of a critical mass ratio42

m∗
c = 0.54, below which resonant large-amplitude oscillations occurred at an infinite Ur43

for the Reynolds number range 4000 < Re < 22 000, where Re = UD/ν, with ν being the44

kinematic viscosity of the fluid. This situation is referred to as ‘VIV resonance forever’ or45

briefly ‘VIV forever’. It should especially be noted that, in the experiments of Govardhan46

& Williamson (2002), infinite reduced velocity (U∞
r ) is achieved by removing the physical47

restoring springs to realise fnw = 0 and thus Ur = ∞. In the present study, we follow this48

concept first introduced by Govardhan & Williamson (2002) to perform VIV experiments49

at infinite reduced velocity.50

Moreover, it has been demonstrated by both experimental and numerical studies that the51

critical mass ratio for VIV forever is dependent on the Reynolds number. For example, a52

critical mass ratio of m∗
c = 0.25 was found in a numerical study at Re = 100 of Shiels,53

Leonard & Roshko (2001). Later, Ryan, Thompson & Hourigan (2005) showed the54

existence of m∗
c in two low-Re regions in numerical simulations: the value of m∗

c decreased55

from approximately 0.5 to 0.1 for 40 ≤ Re ≤ 95, and it remained approximately at 0.1 for56

180 ≤ Re ≤ 200, while no critical mass ratio was observed for the Re range in between57

these two regions. In their experimental study, Morse & Williamson (2009) reported that58

m∗
c increased with Re in the range from 4000 to 16 000, and then remained almost constant59

at m∗
c = 0.54 for 16 000 < Re < 30000. Recently, Navrose & Mittal (2017) investigated60

the effect of Reynolds number on the value of critical mass ratio. They confirmed the61

decreasing trend of m∗
c with Re increasing from 40 to 95 as reported by Ryan et al. (2005),62

and also showed that m∗
c increased from approximately 0.1 to 0.3 as Re was increased63

from 1000 to 4000, in line with the trend seen in the high-Re regime in the experiments of64

Morse & Williamson (2009).65

On the other hand, the structural damping ratio is another parameter as important as the66

mass ratio and Reynolds number that can affect the characteristics of VIV such as the body67

vibration amplitude response and lock-in region. Generally, increasing the damping will68

reduce and even suppress the body vibration and the VIV lock-in region, as demonstrated69

by Blevins & Coughran (2009), Soti et al. (2018) and Zhao, Thompson & Hourigan70

(2022a). Research on the effect of structural damping on VIV is of great interest due71

to its implied influence on energy harvesting from VIV (see Soti et al. 2018; Zhao et al.72

2022a).73

Therefore, the following important open questions remain: (i) Will VIV be suppressed74

by high structural damping for a cylinder with a mass ratio below the critical value? (ii)75

Will the phenomenon of VIV forever disappear at high damping ratio? And, importantly,76

(iii) what is the mechanism underlying the phenomenon of VIV forever? Thus, in this77

study, by combining experiments and reduced-order modelling (ROM) in both nonlinear78
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Figure 1. (a) A schematic of the problem studied, with the key parameters illustrated: free-stream velocity
U, structural damping factor cs, spring constant k and wake oscillator variable q(t). (b) A photograph of the
experimental set-up.

and linear forms, we aim to provide answers to the above questions. Indeed, VIV forever79

does persist even with high structural damping.80

2. Methodologies81

2.1. Experimental details82

The flow–structure system was modelled based on a low-friction air-bearing rig in83

conjunction with a free-surface recirculating water channel of the Fluids Laboratory for84

Aeronautical and Industrial Research (FLAIR) at Monash University. Figure 1 shows a85

schematic of VIV of a circular cylinder and a photograph of the experimental set-up.86

The test cylinder used was made from a lightweight and rigid carbon fibre tube, and87

it was precision manufactured using a grinding machine to have an outer diameter of88

D = 71.34 ± 0.01 mm. The immersed length of the cylinder was L = 614 mm. The total89

oscillating mass was ms = 1003.8 g, and the displaced fluid mass by the cylinder was90

md = 2450.3 g, giving a mass ratio of m∗ = ms/md = 0.41. In addition, for a better91

understanding of VIV below the critical mass ratio (m∗
c ≈ 0.54), additional three mass92

ratios, m∗ = 0.50 (close to the critical value), 6.07 and 25 (well above the critical value),93

were also included for comparison. An eddy-current-based damping mechanism was94

employed to control the structural damping by adjusting the gap between a magnetic95

element and a copper plate via a micro-drive stage with a resolution of 0.01 mm96

(see figure 1b). More details of this damper device can be found in the article of97

Soti et al. (2018). The structural damping ratio used in the present work is given98

by ζ = cs/(2
√

k(ms + ma)) = ζafnw/fna, where ma is the (potential-flow) added mass99

given by ma = ( f 2
na/f 2

nw − 1)ms, ζa ∼= cs/(2
√

kms) is the damping ratio measured from100

free-decay tests in air and fna = 0.377 ± 0.01 Hz and fnw = 0.197 ± 0.01 Hz are the101

natural frequencies measured in quiescent air and water, respectively. Accordingly, an102

added mass coefficient was given by CM = m∗( f 2
na/f 2

nw − 1) ≈ 1.05 from the free-decay103

tests. The topic of added mass has been discussed by Lighthill (1986), Govardhan &104

Williamson (2000), Limacher (2021) and Zhao, Thompson & Hourigan (2022b).105

In the present cases of m∗ = 0.41 with extension springs used, the VIV response was106

examined over a reduced velocity range of 3.0 ≤ Ur ≤ 15; beyond this, an infinite Ur was107

tested in the absence of springs. The turbulence level of the free stream was less than 1 %.108

The corresponding Reynolds number range was 2870 ≤ Re ≤ 14 330, with an uncertainty109
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of ±10. The cylinder displacement was measured using a non-contact digital optical linear110

encoder (model RGH24; Renishaw, UK) that had a resolution of 1 μm. For each reduced111

velocity, the measurement data were acquired at a sampling rate of 100 Hz for 300 s. More112

details of the experimental facility used can be found in the studies of Soti et al. (2018),113

Zhao, Hourigan & Thompson (2018) and Zhao et al. (2022a).114

2.2. Reduced-order modelling115

2.2.1. Model description116

Along with the experiments, a numerical reduced-order model proposed by Facchinetti, de117

Langre & Biolley (2004) was also adopted to investigate the VIV problem. As shown in118

figure 1(a), the dynamics of a circular cylinder undergoing cross-flow VIV is considered119

simply as that of a linear oscillator governed by120

mŸ + (cs + cf )Ẏ + kY = Fv, m = ms + ma, (2.1)121

where Y is the cylinder displacement, with the overdots representing time derivatives; and122

ma, cs and k represent the added mass, structural damping and stiffness, respectively. The123

added mass ma is given by ma = CMρD2π/4, where ρ is the fluid density and CM = 1.05124

is obtained for the present experiments. It should be noted that the measurement of CA is125

5 % above the theoretical value CA = 1 (in potential flow), which has a negligible effect126

on both the experimental and ROM results. (The previous study of Zhao et al. (2022b)127

also showed that a CA value with 8 % above the theoretical value had a negligible effect128

on the fluid force decomposition for inline VIV of a circular cylinder.)129

In the second term of (2.1), cf represents the fluid-added damping, and it is given130

by cf = CD/(2ρUD) to describe the fluid loading, where CD represents the ‘amplified131

drag coefficient’ (Facchinetti et al. 2004), noting that, herein, CD is not the traditional132

drag coefficient (e.g. for flow past a fixed cylinder). The effect of fluid damping has133

been demonstrated in the recent study of Konstantinidis et al. (2020) showing that the134

drag acting in the direction opposite to the instantaneous relative velocity between the135

free-stream flow and the moving cylinder can induce a pure damping force (one that is 180◦
136

out of phase with respect to the cylinder movement velocity). In fact, the amplified drag137

coefficient CD is a (nonlinear) function of the vibration characteristics and the traditional138

drag coefficient of flow over a fixed cylinder CD0. However, for the sake of simplicity, it is139

often assumed to be constant (Facchinetti et al. 2004), typically CD ≈ 2.0 (e.g. Facchinetti140

et al. 2004; Violette, de Langre & Szydlowski 2007; Grouthier et al. 2013). In the present141

study, CD was set to be constant at 1.9. The forcing term in (2.1), namely the transverse lift142

due to the unsteady vortex shedding Fv , can be obtained by143

Fv = ρU2DCv
L/2 = ρU2DqCL0/4, (2.2)144

where Cv
L represents the unsteady vortex-induced lift coefficient of a vibrating cylinder,145

while CL0 represents the magnitude of lift coefficient of the fixed cylinder and the146

parameter q/2, as the ratio of Cv
L to CL0, can be interpreted as a reduced vortex147

(or ‘fluctuating’) lift coefficient. A van der Pol nonlinear wake oscillator equation is148

introduced here to model the dimensionless wake variable q, coupled to the displacement Y149

q̈ + εωf (q2 − 1)q̇ + ω2
f q = (A/D)Ÿ, (2.3)150

where ωf is the vortex-shedding angular frequency defined as ωf = 2πStU/D,151

with St being the Strouhal number for flow over a stationary cylinder. In (2.3),152

ε = 0.3 and A = 12 are constant coefficients derived from experimental correlations153
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Figure 2. A comparison of the dimensionless amplitude response y10 as a function of reduced velocity Ur
between the present experiments and ROM, with four mass ratios: m∗ = 0.41 (well below m∗

c ), 0.50 (close to
m∗

c ), as well as 6.07 and 25 (well above m∗
c ). Note that the shaded areas represent the standard deviations of the

experimental measurements of y10.

(see Facchinetti et al. 2004; de Langre 2006). We now introduce the dimensionless154

drag-related parameter γ , time t, amplitude y, mass ratio m∗, structural angular frequency155

ωs and damping ratio ζ , as follows:156

γ = CD

4πSt
, t = Tωs, y = Y/D, m∗ = 4ms

πρD2
, ωs =

√
k/m,157

ζ = cs

2
√

km
= cs

2mωs
. (2.4)158

Substituting the dimensionless parameters into (2.1)–(2.3) yields coupled equations159

governing the displacement y(t) and the wake variable q(t)160

ÿ +
(

2ζ + 4γ UrSt
πm∗ + πCM

)
ẏ + y = U2

r CL0

4π3(m∗ + CM)
· q, (2.5)161

q̈ + εUrSt(q2 − 1)q̇ + (UrSt)2q = Aÿ. (2.6)162

2.2.2. Validation163

Numerically solving (2.5) and (2.6) with a second-order finite difference scheme in time164

subject to an initial perturbation to the cylinder displacement results in a limit cycle of165

y(t) and q(t). The simplicity of this set of equations allows modelling of the dynamics for166

an extremely low computational cost, yet well reproducing the effect of varying parameter167

values on the system response (see Facchinetti et al. 2004; de Langre 2006; Grouthier et al.168

2013; Han & de Langre 2022). An additional validation is presented here as the ROM is169

applied to VIV for mass ratios below and well above the critical value. Figure 2 shows the170

dimensionless amplitude response, y10, for different mass ratios obtained from the present171

experiments and the ROM. Note that y10 represents the mean of the top 10 % of the highest172

vibration amplitudes at each Ur. The model parameters for the ROM were set the same as173

for the experiments, except values for St ≈ 0.2 and CL0 ≈ √
2/2 for flow over a fixed174

cylinder taken from Norberg (2003) in the same Re range as the present experiments. As175

can be seen in figure 2, the ROM results agree qualitatively and semi-quantitatively with176

the experiments, even though the mass ratio m∗ = 0.41 is well below the critical value177

(m∗
c ≈ 0.54). Additional comparisons with m∗ = 0.50, 6.07 and 25 are also included in178
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figure 2, showing that the ROM can capture the approximate VIV magnitude and the179

extent of the resonant region for cases from close to m∗
c to well above m∗

c .180

Moreover, at an infinite reduced velocity U∞
r (i.e. by removing the restoring springs in181

experiments or by setting zero spring stiffness in the ROM), both experiments and ROM182

show substantially large vibration amplitudes for m∗ = 0.41 in figure 2, confirming that183

the occurrence of VIV forever in the present study, and that the ROM is an effective tool184

to investigate the problem of VIV forever.185

We acknowledge that there are some discrepancies between the ROM predictions and186

experimental results, particularly in its failure to predict the lower branch for cases well187

above the critical mass ratio. This is mainly because the form of the proposed ROM,188

which is coupled only with the body acceleration ÿ (see the right-hand term in (2.6)),189

cannot capture the classical upper–lower-branch transition in VIV (Facchinetti et al. 2004).190

Possibly, introducing an out-of-phase term (i.e. the velocity ẏ) coupled together with191

the acceleration (Han et al. 2021), or adding a frequency-dependent term (e.g. Ogink &192

Metrikine 2010) may improve the accuracy of ROM; however, this would make the ROM193

implementation become more complicated, noting that the focus of this study is modelling194

of the effect of structural damping on VIV forever. The discrepancies between the ROM195

and experimental results may also be improved by optimising the input coefficients used196

in our ROM. For instance, the lift coefficient CL0 and the Strouhal number St of flow over197

a stationary cylinder in (2.5) and (2.6) have been found to scatter over certain Reynolds198

number ranges, depending on the authors (see Moeller 1982; Szepessy & Bearman 1992;199

Norberg 2003). A sensitive analysis of the parameters CL0 and St on ROM has been200

reported recently by Han & de Langre (2022). However, note that a different set of201

input coefficients for ROM will not change the mechanisms for the VIV phenomenon.202

In summary, through comparisons with the present experiments, the low-cost simplified203

ROM can qualitatively and to some extent quantitatively predict VIV and importantly204

the VIV forever phenomenon, despite its failure to capture the VIV upper–lower-branch205

transition.206

2.3. Linear stability analysis of the reduced-order model207

On the basis of a nonlinear ROM, de Langre (2006) developed a simplified linear stability208

analysis (LSA), which was successfully applied to predict the phenomenon of VIV forever209

for an undamped system (i.e. with zero damping). Inspired by this, we performed a210

similar LSA of the ROM (ROM-LSA) but including the structural damping to address211

the questions raised in § 1. In this ROM-LSA, eliminating all nonlinear terms in (2.5) and212

(2.6) gives213

ÿ +
(

2ζ + 4γ UrSt
πm∗ + πCM

)
ẏ + y = U2

r CL0

4π3(m∗ + CM)
· q, (2.7)214

q̈ − εUrStq̇ + (UrSt)2q = Aÿ. (2.8)215

Further, assuming exponential time dependence ( y, q) = ( y0 eλt, q0 eλt) yields the216

frequency equation for the roots λ217

D(λ; R) = λ4 + (R − εUrSt)λ3 + (U2
r St2 − AHUrSt − εUrStR + 1)λ2

218

+ (U2
r St2R − εUrSt)λ+ U2

r St2, (2.9)219

R = 2ζ + 4γ UrSt
πm∗ + πCM

, H = CL0

4π3St2(m∗ + CM)
. (2.10a,b)220

221
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Expanding the root λ about its undamped value to include the influence of damping222

represented by R, we can obtain λ = λ0 + RλR. Here, λ0 satisfies the frequency equation223

without the damping parameter R, i.e. D(λ0; 0) = 0. Similarly, expanding (2.9) gives224

D(λ0 + RλR; R) = D(λ0; 0) + RλR
∂D
∂λ

∣∣∣∣
(λ0;0)

+ R
∂D
∂R

∣∣∣∣
(λ0;0)

= 0. (2.11)225

After some elementary algebra, the effect of structural damping ratio ζ on the root λ can226

be obtained resulting in the following expression:227

λ = λ0 − R
∂D/∂R
∂D/∂λ

= λ0 −
(

2ζ + 4γ UrSt
πm∗ + πCM

)
λ4

0 − εUrStλ3
0 + (UrSt)2λ2

0

2λ4
0 − 3εUrStλ3

0 − 2(UrSt)2 − εUrStλ0

.

(2.12)

228

229

Solving the above equations gives the solution for λ, noting that its imaginary part,230

denoted by λi, is the angular frequency, while the ratio of its real part to its imaginary part231

yields the normalised growth rate, namely G = λr/λi. It should also be noted that there232

are two pairs of conjugate solutions, of which only the root with a positive imaginary part233

is of interest.234

Following Han & de Langre (2022), for a given root, the ratio of the structural vibration235

amplitude y0 to the magnitude of the wake variable q0 can be obtained from (2.7) and (2.8)236

y0

q0
= λ

2 − λεUrSt + U2
r St2

λ2A
= U2

r CL0

4π3(m∗ + CM)

(
λ2 + λ

[
2ζ + 4γ UrSt

π(m∗ + CM)

]
+ 1

) .

(2.13)

237

238

By setting the numerator equal to zero, i.e. q0 	 y0, we can derive the root for the case239

where the cylinder is fixed (y ≡ 0), corresponding to a pure wake mode (PW)240

λPW = ε ± √
ε2 − 4

2
· UrSt, GPW = ε√

4 − ε2
. (2.14a,b)241

The pure wake mode growth, GPW , will be used to identify the mode in the roots obtained242

from (2.9) and (2.12), where the dynamics is mainly in the wake variable q. Conversely,243

the pure structural mode is defined by setting the denominator in (2.13) equal to zero.244

More specifically, via (2.12), when the solved growth rate G is close to the GPW , it will245

be considered as a wake mode; on the other hand, if the mode shape is dominant in y,246

we label it as a solid mode (de Langre 2006; Violette, de Langre & Szydlowski 2010;247

Grouthier et al. 2013; Han & de Langre 2022). The ROM-LSA will give two modes – each248

can be stable or unstable with two degrees of freedom. For the wake mode, we define that249

it is unstable when the mode growth rate is higher than GPW , while for the solid mode it250

is unstable when the mode growth rate is positive, following Han & de Langre (2022).251

3. Results and discussion252

3.1. Effect of structural damping on VIV forever253

In the present study, the phenomenon of VIV forever indeed persists across a wide range254

of structural damping ratios. This can clearly be seen from the normalised amplitude255

y10 at m∗ = 0.41 in figure 3. As shown in figure 3(a), the damping ratio range tested256

covers a wide range from 3.7 × 10−3 to 2.3 × 10−1, with the highest value more than 62257
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Figure 3. (a) The normalised amplitude response (y10) as a function of reduced velocity (Ur) for various
damping ratios at m∗ = 0.41 in the present experiments. (b) The y10 response as a function of ζ∞ at an infinite
reduced velocity U∞

r of the present experiments in comparison with the present ROM and the experiments of
Govardhan & Williamson (2002).

times of the lowest. Even with the highest damping ratio ζ = 2.3 × 10−1, at which VIV258

suppression could result for a cylinder with a mass ratio above the critical value (e.g. Soti259

et al. (2018), m∗ = 3.0), the cylinder can still oscillate with large amplitudes of ∼ O(1D)260

at high reduced or even infinite reduced velocities. Here, we define the ‘ large-amplitude’261

region as the region where, for a given damping ratio, y10 is higher than the half of the262

maximum value observed in the present study. It should be noted that for a cylinder with263

m∗ above its critical value, e.g. m∗ = 3.0 in Soti et al. (2018), and m∗ = 21.8 in Blevins264

& Coughran (2009), VIV forever does not exist and the large-amplitude region tends to265

shrink with increasing ζ . It even leads to VIV suppression at a certain high damping ratio.266

Interestingly, the present result indicates that the effect of structural damping on VIV with267

a mass ratio under the critical value is distinctly different from the effect in those cases268

above the critical mass ratio.269

To further confirm the above finding, we experimentally and numerically tested the270

vibration response at an infinite reduced velocity, by removing the restoring springs but271

keeping the same structural damping factor (cs) settings as in figure 3(a). It should be272

noted that the structural damping ratio ζ is defined based on the natural frequency ωs in273

(2.4); however, ζ will become infinite, when ωs becomes zero in the absence of spring274

stiffness. To describe the damping effect in the absence of ωs, we refer to the parameter275
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ζ∞ = cs/(2mωf ), which is based on the angular vortex-shedding frequency (ωf ) of a276

stationary cylinder (see Govardhan & Williamson 2002). For the infinite reduced velocity277

tested at Re = 13 500 in the study, the resultant damping ratio range is ζ∞ = 1.2 ×278

10−3–8.0 × 10−2 corresponding to its finite counterpart ζ = 3.7 × 10−3–2.3 × 10−1. For279

a VIV system in the absence of a ‘natural’ frequency (i.e. without restoring springs),280

one may consider using another dimensionless form of damping ratio that is based on281

the advective time scale: c∗ = csD/(mU) (see Leontini et al. 2018). In figure 3(b), the282

corresponding range of c∗ is from 0.003 to 0.210.283

As shown in figure 3(b), the phenomenon of VIV forever is confirmed by both the284

experimental and ROM results for m∗ = 0.41, which are in excellent agreement, evidenced285

by the consistent amplitude responses of y10 � 0.8 through the ζ∞ range tested. The286

present results are also in excellent agreement with the experiments with m∗ = 0.45287

and ζ ≈ 0 by Govardhan & Williamson (2002). Additional cases are also included to288

compare with the experimental and ROM cases at m∗ = 6.07 and 25 well above m∗
c , where289

negligible vibration is observed. Nevertheless, these results clearly show that VIV forever290

persists for an underdamped cylinder (i.e. ζ < 1) despite high damping ratio values.291

To gain a better understanding of the damping effect on the VIV response of a cylinder292

at m∗ = 0.4 and 25, a full nonlinear ROM based on (2.5) and (2.6) is adopted to evaluate293

the y10 response for different damping ratios, while a ROM-LSA based on (2.9), (2.12)294

and (2.14a,b) is used to assess the normalised instability growth rate G. As shown in295

figure 4(a,c), the amplitude response for the case of m∗ = 25 is consistent with previous296

studies, confirming that increasing ζ reduces the VIV response. As expected, at Ur ≈297

1/St ≈ 5, where VIV resonance generally occurs, the G values of the wake mode clearly298

depart from the horizontal line of Gpw that represents the pure wake mode for a fixed299

cylinder (see (2.14a,b)). This means that the wake mode becomes much more unstable300

than the pure wake Gpw. Note that the departure range of the wake mode growth rate301

from GPW is found to be 4 � Ur � 9.5, which is consistent with the ROM in figure 4(a)302
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and experiments in figure 2, where significant vibration occurs. Moreover, the growth rate303

of the solid mode is always negative, indicating that the cylinder vibration is induced304

only by the wake mode (see Han & de Langre 2022). On the other hand, for the case of305

m∗ = 0.4, the growth rate is always much greater than that of the pure wake after Ur � 1,306

and tends to increase with increasing reduced velocity. This means that obvious structural307

vibration starts at a low Ur value and it will persist in the tested Ur range, due to the308

consistent unstable wake mode. Again, the above ROM-LSA results are consistent with309

the ROM results in figure 4(b) and the experiments at m∗ = 0.41 in figure 2. Thus, it can310

be concluded that the primary cause for VIV forever is the highly unstable wake mode.311

Note that G increases linearly with a positive slope KW for Ur > 1/St, and this slope is312

found to be almost independent of ζ . This is distinctly different from the case of m∗ = 25,313

where the unstable wake mode occurs over a limited resonance region around Ur ≈ 1/St.314

Since the ROM-LSA is a linear approximation, the slope KW may be used as a simple tool315

to assess the occurrence of VIV forever. However, it should be noted that the LSA itself316

cannot predict the limit cycle but, as has been shown, it can to some extent predict where317

and why limit cycles of oscillations occur.318

The effect of damping ratio on VIV forever can be further explained by deriving a319

relation of the vibration amplitude at U∞
r from the nonlinear ROM. We assume that the320

fluid–structure system is governed by (2.5) and (2.6) and that the cylinder vibration and321

the wake variable are y(t) = y0 cos(ωt) and q(t) = q0 cos(ωt + φ), respectively, where322

y0 is the cylinder vibration amplitude, q0 is the magnitude of the wake variable, ω is323

the dimensionless angular vibration frequency and φ is the relative phase angle between324

the driving fluid force and the body displacement. Substituting them into (2.5) (i.e. the325

structural oscillator) yields326

y0 − y0ω
2 − U2

r CL0

4π3(m∗ + CM)
· q0 cos φ = 0, (3.1)327

U2
r CL0

4π3(m∗ + CM)
· q0 sin φ − 2ωy0ζ − 4γωUrSt

π(m∗ + CM)
y0 = 0. (3.2)328

Hereby, we can obtain a relationship between y(t) and q(t)329

y0 = U2
r CL0/[4π3(m∗ + CM)](

(ω2 − 1)2 +
[

2ζ + 4γ UrSt
π(m∗ + CM)

]2

ω2

)0.5
· q0. (3.3)330

Similarly, by substituting y(t) = y0 cos(ωt) and q(t) = q0 cos(ωt + φ) into (2.6) (i.e. the331

wake oscillator), and considering only the main harmonic contribution in the nonlinear332

dynamics, we can obtain the following set of equations:333

U2
r St2q0 − ω2q0 + Aω2y0 cos φ = 0, (3.4)334

εUrStωq0(1 − 1
4 q2

0) + Aω2y0 sin φ = 0. (3.5)335

Now, the magnitude of the wake variable can be computed by336

q0 = 2

⎛
⎜⎜⎜⎜⎝1 + Aω2

U2
r CL0

4π3(m∗ + CM)

[
2ζ + 4γ UrSt

π(m∗ + CM)

]

εUrSt

(
(ω2 − 1)2 +

[
2ζ + 4γ UrSt

π(m∗ + CM)

]2

ω2

)
⎞
⎟⎟⎟⎟⎠

0.5

. (3.6)337
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In addition, the angular vibration frequency ω and reduced velocity Ur should satisfy338

U2
r St2 + Aω2

(1 − ω2)U2
r CL0

4π3(m∗ + CM)

(ω2 − 1)2 +
[

2ζ + 4γ UrSt
π(m∗ + CM)

]2

ω2

− ω2 = 0. (3.7)339

Combining equations (3.3) and (3.6), after some elementary algebra, we can finally340

describe the vibration amplitude y0 with the previously defined dimensionless parameters.341

From an order-of-magnitude analysis on (3.7), we can find that ω goes to infinity at U∞
r .342

Then, importantly, considering the structural damping ratio ζ is a finite value (particularly343

0 ≤ ζ < 1 for an underdamped system), the damping-related terms in (3.3) and (3.6) can344

therefore be simplified as follows:345 [
2ζ + 4γ U∞

r St
π(m∗ + CM)

]
≈ 4γ U∞

r St
π(m∗ + CM)

= CDU∞
r

π2(m∗ + CM)
. (3.8)346

The above expression indicates that the structural damping ratio (underdamped) has a347

negligible effect on the body vibration amplitude at an infinity reduced velocity. This is in348

agreement with the experimental results in figure 3, where the vibration amplitudes appear349

to be almost constant at an infinite reduced velocity for the damping ratio range tested. The350

damping effects can also be examined by solving (3.3) and (3.6). For instance, by using the351

same parameters as in figure 4(a,b) and setting the reduced velocity to infinity, we obtain352

y0 ≈ 0.66 and 0.01 for m∗ = 0.4 and 25, respectively, in the tested range of 0 ≤ ζ ≤ 0.5.353

These estimates of y0 at U∞
r are consistent with the findings from experiments and the354

nonlinear ROM in figure 3(b), where y10 values appear to be independent of damping355

(ζ∞) for m∗ cases below or above m∗
c . Note that the presence of significant vibration at356

U∞
r is the criterion for determining the occurrence of VIV forever. In other words, (3.3)357

and (3.6) clearly indicate that for an underdamped system, the structural damping will have358

a negligible effect on the vibration amplitude in VIV forever, which is consistent with the359

results from both the present ROM-LSA and experiments.360

By neglecting all damping terms in his ROM-LSA, de Langre (2006) derived the upper361

limit of lock-in for VIV of a circular cylinder362

Umax
r =

[
St −

√
ACL0

4π3(m∗ + CM)

]−1

. (3.9)363

By letting Umax
r go to infinity, de Langre (2006) further derived the critical mass ratio that364

allows infinite resonance365

m∗
c = ACL0/(4π3St2) − CM. (3.10)366

The above (3.10) indicates that the parameters CL0, St, and CM can affect m∗
c . Recently, in367

their numerical study of FIV of an elliptical section (of 1.5 in the cross-sectional aspect368

ratio) with m∗ = 1 at Re = 200, Leontini et al. (2018) have shown that the critical mass369

is the mass which results in an inertial force that can be balanced by the magnitude of370

the lift force – in other words, m∗
c is set by the magnitude of the lift force. They have also371

demonstrated that the bluffer geometry of an ellipse (compared with a circular section)372

could potentially generate a larger magnitude of lift force, and thus should have a higher373

m∗
c value than the circular counterpart – they observed that the ellipse at a 90◦ angle of374

attack exhibited an infinite resonance at m∗ = 1, a much higher value than the critical mass375
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ratio expected for the circular cylinder in that Re regime. The above results from Leontini376

et al. (2018) could potentially be extended to account for the damping resistance force in377

the sense that the effect of damping (ratio) would reduce the magnitude of lift force (as378

reflected by reduced body vibration), thus resulting in a lower m∗
c value; in other words,379

an increase in the structural damping would require a decrease in the cylinder mass (i.e. a380

lighter cylinder) to exhibit VIV forever. Thus, we hypothesise that the structural damping381

is another factor that can potentially affect the critical mass ratio. However, to test this382

hypothesis would require accurate measurements of the critical mass ratio values under383

various damping ratios (i.e. via a parametric study with fine increments in both mass and384

damping ratios), which is beyond the focus of the present study.385

3.2. Frequency analysis386

To provide insight into the dynamics of cylinder vibration in VIV forever, this subsection387

presents a frequency analysis of the cylinder vibration and fluid forcing in experiments.388

Figure 5 shows the normalised logarithmic-scale power spectrum density (PSD)389

contours of the cylinder vibration frequency response for m∗ = 0.41 with various390

damping ratios (ζ = 3.7 × 10−3–2.3 × 10−1) from the present experiments and ROM.391

The construction method for this figure can be found in the previous studies of Leontini,392

Lo Jacono & Thompson (2011, 2013) and Zhao et al. (2014, 2018). As can be seen, the393

dominant frequencies (denoted by open circles) are in good agreement with the results394

of Govardhan & Williamson (2002) (denoted by solid diamonds); however, considerable395

broadband frequency components appear in the upper branch region (i.e. Ur > 4), which396

are distinctly different from those of the conventional upper branch with m∗ well above397

critical value, where the cylinder vibration clearly displays a single frequency (e.g. Zhao398

et al. 2018). Overall, the body vibration frequency increases linearly with Ur after y10399

becomes relatively stable (e.g. Ur > 6). The slope of the linear frequency variation is400

observed to increase slightly from a = 0.148 to 0.154 across a damping ratio increase401

of the order of 2 from ζ = 3.7 × 10−3 to 2.3 × 10−1. It can also be seen that in the402

upper-branch region, in all cases the body vibration frequency departs significantly from403

the Strouhal number trend (i.e. St � 0.215 measured for the fixed cylinder), which is404

similar to the conventional upper-branch response with m∗ of the order of O(1) above m∗
c .405

On the other hand, the present ROM also quantitatively captures linear frequency-response406

variations with their slope values increasing from 0.114 to 0.128 across the damping407

ratios tested. Nevertheless, the above results imply that the large-amplitude vibration seen408

for sub-critical mass ratio (i.e. m∗ < m∗
c ) is strongly associated with a synchronisation409

between the cylinder vibration frequency and the vortex-shedding frequency, rather410

than the natural frequency (i.e. fnw) of the system. Due to the coupled fluid–structure411

interaction, the vortex-shedding frequency from a vibrating body in synchronisation412

appears to be significantly lower than that of the fixed body counterpart, and the413

vortex-shedding frequency tends to increase as the body vibration is reduced by the414

damping effect; however, the fluid–structure (frequency) synchronisation remains strong415

for a sub-critical mass ratio within the underdamped damping ratio range (i.e. ζ < 1).416

To provide a further insight into frequency synchronisation, figure 6 shows a417

time–frequency analysis based on continuous wavelet transform (CWT) for the cylinder418

vibration and fluid forcing. Details of the CWT used can be found in Zhao et al.419

(2022b). For the upper branch (Ur = 5.6) of m∗ = 25 shown in figure 6(a), the normalised420

vibration frequency ( f ∗
y ) clearly locks onto the natural frequency of the system ( fnw), and421

remains stationary (not varying) over time, while the fluid forcing frequency ( f ∗
CL

) also422
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Figure 5. Logarithmic-scale power spectrum density contours of normalised frequency response as a function
of reduced velocity for the present experiments of m∗ = 0.41 with various damping ratios in (b) – ( f ). Note that
(a) revisits their normalised amplitude responses. The cylinder vibration frequency is normalised by the natural
frequency, namely f ∗

y = fy/fnw. The open circles represent the local dominant frequency component in the
present experiments, while the solid diamonds in (b) represent the measurements with m∗ = 0.52 (ζ unknown)
by Govardhan & Williamson (2002). The dashed-dotted lines represent the Strouhal number frequency (St �
0.215), the dashed lines (green) represent the trend slope of the dominant frequency for Ur ≥ 6, where y10

appears to be relatively stable with increasing Ur, and the solid lines (blue) represent the normalised frequency
response obtained from the corresponding ROM. 0 A1-13
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Figure 6. Continuous-wavelet-transform-based time–frequency analysis for the cylinder vibration and

transverse lift force: the case of m∗ = 25 and ζ = 8.55 × 10−4 at Ur = 5.6 in (a); and the case of m∗ = 0.41
and ζ = 3.70 × 10−3 at Ur = 5.6 in (b), U∞

r and Re = 10 000 in (c) and U∞
r and Re = 13 500 in (d). Note that

the frequency PSD contours are logarithmic scaled; in (c) and (d) the frequency components in the absence of
springs are normalised by fvs.

locks onto fnw but exhibits noticeable discontinuities in power over time. On the other423

hand, for the case at Ur = 5.6 of m∗ = 0.41, f ∗
y is clearly synchronised with f ∗

CL
, and424

interestingly they become non-stationary, varying around a value slightly above fnw over425

time. Moreover, the non-stationary frequency synchronisation can also be seen in VIV426

forever at two different Reynolds numbers (Re = 10 000 and 13 500) in figure 6(c,d).427

However, it should be noted that, without restoring springs, the equilibrium position of428

the cylinder vibration in VIV forever appears to the unstable. Perhaps this is unsurprising,429

since the magnitude of lift force generated by the vortex shedding is naturally unstable.430

Nevertheless, the irregular non-stationary behaviour of both f ∗
y and f ∗

CL
for the m∗ = 0.41431

case may suggest a frequency synchronisation of chaos, where the cylinder vibration432

frequency is synchronised with the fluid forcing frequency but the dynamics appears to433

be chaotic.434

4. Conclusions435

Vortex-induced vibration of a circular cylinder with a low mass ratio below the critical436

value has been investigated over a wide range of structural damping in water-channel437

experiments and also using a reduced-order model in both nonlinear and linear forms.438

Both the experimental and ROM results confirmed that the phenomenon of VIV forever439

persists even with very high structural damping for an underdamped cylinder (i.e. ζ <440

1). Of interest, a simplified linear stability analysis of the ROM (or ROM-LSA) showed441

that the wake mode in VIV forever was unstable with a constant positive growth rate442

with increasing reduced velocity. This was distinctly different from the conventional VIV443
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response of a cylinder with a mass ratio well above the critical value, where the growth444

rate of the wake mode was negative, leading to vibration amplitude reduction beyond the445

upper branch.446

A further ROM-based analysis of the effect of damping ratio showed that, for an447

underdamped cylinder (i.e. ζ < 1), the damping ratio has a negligible effect on the448

vibration amplitude in VIV forever, which is consistent with the experimental results.449

On the other hand, both the experimental and ROM results showed that for a450

sub-critical mass ratio (i.e. m∗ < m∗
c ), the body vibration frequency in the fluid–structure451

synchronisation region (i.e. the upper branch for m∗ < m∗
c ) tends to increase with damping452

ratio. Of note, a wavelet-transform-based time–frequency analysis showed that for a453

cylinder under the critical mass ratio, the vibration frequency is synchronised with the454

fluid forcing frequency; however, both frequencies appear to be non-stationary over time,455

suggesting that the frequency synchronisation in VIV forever is associated with chaotic456

dynamics.457

The effect of structural damping on the precise value of the critical mass ratio is to458

be investigated in future work. It would be of further interest to investigate the nonlinear459

dynamics (i.e. irregular behaviour with non-stationary frequency components, and chaos)460

in VIV forever. As implied by the large-amplitude vibration at high structural damping461

at present, investigation into the energy-harvesting performance from large-amplitude462

vibration in VIV forever is also warranted.463
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