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Flow transitions are an important fluid-dynamic phenomena for many reasons, including
the direct effect on the aerodynamic forces acting on the body. In the present study,
two-dimensional (2-D) and three-dimensional (3-D) wake transitions of a NACA0012
airfoil are studied for angles of attack in the range 0◦ ≤ α ≤ 20◦ and Reynolds numbers
500 ≤ Re ≤ 5000. The study uses water-channel experiments and 2-D and 3-D numerical
simulations based on the nodal spectral-element method, level-set function-based
immersed-interface method and Floquet stability analysis. The different wake states are
categorised based on the time-instantaneous wake structure, non-dimensional frequency
and aerodynamic force coefficients. The wake states and transition boundaries are
summarised in a wake regime map. The critical angle of attack and Reynolds number
for the supercritical Hopf bifurcation (i.e. steady to periodic wake transition) varies
as α1∼Re−0.65, while the critical angle of attack for the onset of three dimensionality
varies as α3D∼Re−0.5. Over the entire Reynolds number range, the transition to 3-D flow
occurs through a mode C (subharmonic) transition. Beyond this initial transition, further
instabilities of the 2-D periodic base flow arise and are investigated. For instance, at Re =
2000 and α3D,2 = 11.0◦, mode C coexists together with modes related to modes A and QP
seen in a stationary circular cylinder wake. In contrast, at Re = 5000 and α3D,2 = 8.0◦,
the dominant mode C coexists with mode QP. Three-dimensional simulations well beyond
critical angles indicate that 2-D vortex-street transitions are approximately maintained in
the fully saturated 3-D wakes in a spanwise-averaged sense.
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1. Introduction

Recently there has been renewed interest in flows around hydrofoils/airfoils at low
Reynolds numbers (Re) due to their increasing scientific relevance to fluid dynamics
and their practical importance to emerging engineering applications. These include
applications such as micro air vehicles and unmanned aerial vehicles, and bio-inspired
studies such as the flight of smaller birds and insects like hummingbirds and fruit flies or
honeybees, with Reynolds numbers in the order of 102 − 104 (Kang & Shyy 2013). In this
low Re regime, the flow field over the airfoil and in the wake shows surprising complexity
as it undergoes a variety of transitions to distinctly different flow states with small changes
to the governing parameters. Studying these transitions is essential from both fundamental
and engineering points of view as they directly affect the fluid forces acting on the airfoil.

The non-dimensional governing parameters for the present problem of two-dimensional
(2-D) incompressible flow around a stationary airfoil can be categorised as two geometric
parameters: the relative thickness and camber of the airfoil profile; and two flow
parameters: the Reynolds number, Re = U∞C/ν, based on the free-stream velocity U∞,
chord length C and kinematic viscosity ν; and the angle of attack, α, to the oncoming flow.
This study focuses on the flow over a NACA0012 airfoil at Reynolds numbers Re ≤ 5000,
and angles of attack 0 ≤ α ≤ 20◦. We have chosen this range of α as it extends from below
to well beyond stall, and also note that the transition from 2-D to three-dimensional (3-D)
flow occurs within this range.

1.1. Transitions in the wake or near the surface of the airfoil
As indicated above, as the angle of attack or Reynolds number is increased from
small values, the flow around an airfoil or in its wake experiences different flow
phenomena/transitions that have been observed both qualitatively and quantitatively.
Transitions have been recorded previously through both experimental and numerical
investigations, and are discussed below. For consistency with the current study, this
reviewed literature focuses mainly on the range Re ≤ 5000.

Huang & Lin (1995) studied various wake flow transitions of a NACA0012 airfoil
at Re = 3195 as α was varied between 0◦ and 90◦ using smoke-wire visualisation.
Later extending this investigation, Huang et al. (2001) used particle image velocimetry
(PIV) to identify five different near-surface/near-wake flow regimes dependent on α

and Re, namely: (i) attached flow, (ii) trailing-edge vortex, (iii) separation vortex, (iv)
leading-edge vortex (LEV) and (v) bluff-body effect, for a NACA0012 airfoil covering
500 ≤ Re ≤ 2500 and 0◦ ≤ α ≤ 90◦. For a similar range of α, Alam et al. (2010) studied
the NACA0012 near-wake characteristics at Re = 5300 using laser-induced fluorescence
flow visualisation. Perhaps unsurprisingly, they observed that the suction-side boundary
layer initially separates at the trailing edge for lower angles of attack, and with increasing
α (α < 10◦) the point of separation moves gradually towards the leading edge.

A detailed 2-D numerical investigation was performed by Kurtulus (2016), identifying
a variety of wake transitions of NACA0002 and NACA0012 airfoils at Re = 1000.
The angle of attack was varied over the full range 0◦ ≤ α ≤ 180◦. Five different
modes were observed, namely: (i) a continuous vortex-sheet mode, (ii) alternating
vortex-shedding mode, (iii) alternating vortex-pair shedding mode, (iv) alternating single
vortex with vortex-pair shedding mode and (v) bluff-body vortex-shedding mode. These
were categorised according to the wake vorticity pattern, the amplitude spectrum of the
lift coefficient, aerodynamic force coefficients and the longitudinal and lateral vortex
spacings. In the present study we have also observed a similar categorisation of wake
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transitions and discuss them in detail in § 3. Rossi et al. (2018) also studied the flow
transitions of a NACA0010 airfoil using a vortex particle method. However, compared
with the study of Kurtulus (2016), their investigation was at a fixed α = 30◦ while Re
was varied between 100 and 3000. Recently, Deng, Sun & Shao (2019) performed 2-D
simulations to study unsteady flow separation around a NACA0015 airfoil at five different
angles of attack, α = 10◦, 12.5◦, 15◦, 17.5◦ and 20◦, with Re varying from 100 to 1300.
For α = 10◦ and 12.5◦, they observed a maximum of four different branches in the St−Re
relationship. In contrast, for higher angles (α = 15◦, 17.5◦, 20◦), they did not observe
any jumps in the relationship. To the knowledge of the authors, there are no further
experimental and numerical studies discussing wake transitions of NACA airfoils for
Reynolds numbers in the range 2000 ≤ Re ≤ 5000.

1.2. Prediction of the onset of three dimensionality in wakes
A landmark numerical investigation into predicting 3-D wake transition in a circular
cylinder wake was undertaken by Barkley & Henderson (1996). Using Floquet stability
analysis, they accurately predicted the critical Reynolds number for 3-D transition,
Re3D, along with the corresponding spanwise wavelength, λ. They also reproduced the
symmetries of different unstable wake modes. Their predictions matched well with the
experimental results of Williamson (1988b, 1996a). The first instability mode, mode A,
was predicted to first become unstable at Re3D ≈ 190 with a spanwise wavelength of
four cylinder diameters. The second unstable mode, mode B, was predicted to emerge
at Re3D,2 ≈ 260 with a spanwise wavelength of 0.8 times the cylinder diameter. However,
the predicted Re3D,2 for mode B was somewhat higher than Re3D,2 ≈ 230–240 obtained
from experimental observations (Williamson 1988b; Miller & Williamson 1994) and direct
numerical simulations (Thompson, Hourigan & Sheridan 1996). The difference in Re3D,2
is due to the prior onset and saturation of mode A, which substantially changes the 2-D
base flow for the Floquet stability analysis. Following on from the work of Barkley &
Henderson (1996), various stability analyses have been performed for different geometries
and flow conditions. These include studies on elliptical cylinders (Thompson et al. 2014),
toroids (Sheard, Thompson & Hourigan 2003), oscillating or rotating circular cylinders
(Leontini, Thompson & Hourigan 2007; Rao et al. 2013), normal, inclined or rounded
edge square cylinders (Robichaux, Balachandar & Vanka 1999; Sheard 2011; Park & Yang
2016) and normal, inclined or elliptical leading-edge flat plates (Julien, Ortiz & Chomaz
2004; Ryan, Thompson & Hourigan 2005; Yang et al. 2013).

Concerning stability analysis of an airfoil wake, fewer studies have been reported
discussing the role of the various governing parameters (discussed above) on the onset
of wake three-dimensionality. Meneghini et al. (2011) investigated the significance of
one of these flow parameters, Re, for a NACA0012 airfoil at fixed α = 20◦ for 400 ≤
Re ≤ 1000. They noticed that the flow becomes three-dimensionally unstable at a critical
Re3D = 456 through a subharmonic mode (mode C) of wavelength λ/C = 0.57. Further,
they observed an unstable quasi-periodic mode, (mode QP) of wavelength λ/C = 2.1
for Re > 580. Similarly, Deng, Sun & Shao (2017) studied the effect of varying the
Reynolds number on the wake of a NACA0015 airfoil fixed at four different angles of
attack: α = 12.5◦, 15◦, 17.5◦, 20◦, for Re in the range 460 ≤ Re ≤ 1800. They observed
the subharmonic mode C as the only unstable 3-D mode for α = 12.5◦ and 15◦. In contrast,
four different unstable modes: mode A, mode QP, and two subharmonic modes of different
wavelengths, were observed for α = 17.5◦ and 20◦. He et al. (2017) studied the effect
of both the geometric parameters by comparing the wakes of three airfoils NACA0009,
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NACA0015, and NACA4415, at a fixed α = 20◦ and Re in the range Re < 600. They
observed transition Reynolds numbers of Re3D = 442, 474, and 435 for NACA0009,
NACA0015, and NACA4415 profiles, respectively.

1.3. The focus of the present work
Considering this literature, there is ample motivation to revisit the problem of studying 2-D
and 3-D wake transitions of a NACA0012 airfoil as α is increased, covering the moderate
Reynolds number range: 500 ≤ Re ≤ 5000. The present study is divided into two sections.
First, in § 3, we study 2-D flow transitions as a function of α and Re. These transitions are
categorised based on qualitative and quantitative features, including time-instantaneous
vortex structure and non-dimensional frequency St (defined in § 3). Through this analysis,
we are able to regenerate similar 2-D wake patterns found in the lower Reynolds number
study of Kurtulus (2016), but noting the complexity increases as the Reynolds number is
increased. These results include categorising different wake structures as: a continuous
vortex-sheet mode; an alternating vortex-shedding mode; and an alternating vortex-pair
shedding mode. However, beyond the earlier analysis, and because of the increased
Re range, we further categorise the alternating vortex-pair shedding mode into three
sub-classes. In § 4, these 2-D transitions are correlated with changes to the time-averaged
lift and drag coefficients. In addition, the predicted 2-D lift and drag coefficients are
also compared with the direct measurements from water-channel experiments. Second,
in § 5, we determine 2-D to 3-D flow transitions through Floquet stability analysis. The
above literature indicates that the earlier studies were mainly focused on documenting
flow transitions for fixed angles of attack, and for Reynolds numbers considerably lower
than the current study. However, the focus here is on varying angle of attack, noting its
effect on flow transitions and physical phenomena such as the onset of stall. Thus, one of
the primary aims of this paper is to elucidate the effect of increasing the angle of attack
on the development of three-dimensionality in a NACA0012 airfoil wake and to map this
behaviour as a function of Reynolds number.

We seek to address the following questions. What are the different quantitative (in
terms of shedding frequency) and qualitative (in terms of wake structure) transitions
occurring in the wake of an airfoil with increasing α to beyond the stall angle? How
well do the time-averaged coefficients obtained from the 2-D simulations match those
of water-channel experiments? At a fixed Re, what is the minimum angle of attack at
which the flow becomes two-dimensionally unstable? With increasing α, what different
3-D instability modes appear, and how do they affect the saturated wake state. These
questions are addressed by performing 2-D and 3-D direct simulations, measuring forces
in the water-channel-based experiments, and undertaking Floquet stability analysis on
pre-transition base flows.

2. Methodology

2.1. Experimental apparatus
Experiments investigating the flow over a stationary airfoil were conducted in the
free-surface recirculating water-channel facility of the Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR) at Monash University, Australia. The facility has
a test section of 4000 × 600 × 800 mm3, with the free-stream turbulence intensity
measuring ∼1 %. Details of the water-channel test facility can be found in Zhao et al.
(2014).

954 A26-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.958


Airfoil wake transitions

Force

balance
Rotor

Support

structure

U

300 mm

Platform

Hydrofoil,

AR = 10

Figure 1. Side-view schematic of the present experimental set-up.

The schematic of the experimental set-up is shown in figure 1. A rigid NACA0012 airfoil
was manufactured from an aluminium plate with a span/immersed length of 300 mm and
a chord length of 30 mm, providing an aspect ratio AR = 10. The angle made by the
airfoil chord with the incoming fluid flow direction is known as the angle of attack, α.
In experiments, α was varied over 0◦–20◦ using a stepper motor (model LV172; Parker
Hannifin, USA) attached at the airfoil top. The stepper motor was controlled using a
micro-stepping drive (model E-DC) with a resolution of 25 000 steps per revolution and
a Parker 6K2 motion controller. Details of the motor mechanism can be found in the
studies of flow-induced vibration of rotating cylinders by Zhao et al. (2018) and Wong
et al. (2017, 2018). The airfoil coupled with the stepper motor was attached to a force
sensor that was mounted vertically. An end-conditioning platform technique was used
to minimise end effects and promote parallel vortex shedding. The platform had a top
plate of dimension 595 × 600 × 10 mm3 with a 1 : 4 semi-elliptical leading edge and
was 165 mm deep, providing a small gap of 1 mm between the airfoil and the top of the
platform plate. The streamwise (drag) and transverse (lift) force components acting on
the airfoil were measured using a high-precision six-axis force sensor (Mini40, ATI-IA,
USA) with an accuracy of 5 mN (see Sareen et al. 2018; Zhao, Thompson & Hourigan
2022).

2.2. Two-dimensional base flow
For the present problem of flow around a NACA0012 airfoil at different angles of
attack, the governing equations are the continuity and the incompressible Navier–Stokes
equations. In non-dimensionalised form, these are given by

Continuity : ∇ · U = 0, (2.1)

Momentum :
∂U
∂t

+ ∇ · (UU) = −∇P + 1
Re

∇2U, (2.2)

where U(≡ u/U∞, U∞ is the free-stream velocity) is the non-dimensional velocity vector
and P(≡ p/ρU2∞, ρ is the density of the surrounding fluid) is the non-dimensional
pressure.
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The above equations are discretised in space using a nodal spectral-element method.
The general method is described in detail by Karniadakis & Sherwin (2005) and the
current implementation has been successfully applied to related problems (e.g. Thompson
et al. 1996; Thompson, Leweke & Provansal 2001a; Thompson, Leweke & Williamson
2001b; Ryan et al. 2005; Leontini et al. 2007). The in-house spectral-element code, in
essence, is based on the Galerkin finite-element method in which the solution variables
are approximated using high-order interpolating Lagrangian-polynomial shape functions.
The node points coincide with the Gauss–Lobatto–Legendre quadrature points within each
element, which leads to efficient and accurate evaluation of the weighted-residual integrals
involved in setting up the discretised equations.

The resulting set of ordinary differential equations for the nodal values were
integrated in time using a second-order accurate three-step time-splitting method, which
allows different integration schemes for the different linear and nonlinear terms. The
nonlinear advection term is integrated explicitly by using a third-order Adams–Bashforth
method. The diffusion substep is treated implicitly using the θ modification of the
Crank–Nicholson scheme. Finally, the pressure field was evaluated implicitly by forming
a Poisson equation (formed by taking the divergence of the equation for the pressure
substep) and enforcing continuity at the end of the time step. More details on the three-step
time-splitting method are given in Karniadakis, Israeli & Orszag (1991) and Thompson
et al. (1996).

For the 3-D simulations, given the cylindrical geometry, the z (spanwise) dependence
of the solution variables is expressed as a complex Fourier series (Karniadakis &
Triantafyllou 1992). This allows decoupling of the equations for each Fourier mode. In
turn, this enables the implicit pressure and diffusion substeps to be treated as a sequence
of 2-D matrix problems, involving sparse-matrix-vector multiplies for each time step after
the initial inversion step.

Finally, 2-D steady flows were evaluated using a penalty-based version of a
spectral-element implementation that reduces the computational requirements by first
eliminating the pressure from the discretised system (see, e.g. Zienkiewicz 1977). This has
been previously applied successfully to a number of related studies (e.g. Jones, Hourigan
& Thompson 2015; Rao et al. 2017).

2.3. Floquet stability analysis
Two-dimensional base flows are used to determine the onset of three dimensionality in the
flows past inclined NACA0012 airfoils by using Floquet stability analysis. Basically, this
analysis determines a periodic base flow’s linear stability to 3-D disturbances as a function
of spanwise wavelength, λ, and governing parameters (α or Re). If any of the eigenmodes
corresponding to any spanwise wavelength have a positive growth rate, then the base flow
is unstable to 3-D disturbances; this indicates the onset of three dimensionality in the
wake. The basic explanation of the methodology used for the current study can be found
in Iooss & Joseph (2014). The successful implementation of the methodology has already
been verified for various geometries and flow conditions: Thompson et al. (2001b), Sheard
et al. (2003), Ryan et al. (2005), Leontini et al. (2007) and Rao et al. (2013).

In overview the methodology is as follows. The governing equations for the perturbation
fields are formed by assuming the velocity and pressure fields are the sum of their periodic
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base state and 3-D perturbations, given by

U(x, y, z, t) = ū(x, y, t) + u′(x, y, z, t),

V(x, y, z, t) = v̄(x, y, t) + v′(x, y, z, t),

W(x, y, z, t) = w′(x, y, z, t),

P(x, y, z, t) = p̄(x, y, t) + p′(x, y, z, t),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

where u, v and w are the components of the velocity field in the x, y and z directions,
respectively, and p is the kinematic pressure field. Variables with overbars correspond to
the 2-D base flow, whereas, the superscript (′) denotes the 3-D perturbation field of the
same base-flow field.

Substituting the above relations into (2.2), subtracting from the original equation
(describing the base flow) and then linearising leads to the equation governing the
evolution of the perturbation velocity and pressure fields, given by

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū = −∇p′ + ν∇2u′. (2.4)

Because the equation is linear with constant coefficients in z, the spanwise
dependence is sinusoidal and the solution is just the summation of these (spanwise)
Fourier modes. In particular, the solution can be constructed as (u′, v′, w′, p′) →
(cos(2πz/λ)u′, cos(2πz/λ)v′, sin(2πz/λ)w′, cos(2πz/λ)p′) (see Barkley & Henderson
1996), noting the dependence of the dashed variables is reduced to (x, y, t), and λ is the
spanwise wavelength of the Floquet mode.

According to Floquet theory, perturbations should grow or decay exponentially from
one period to another. Thus, the perturbation fields should satisfy the relationship

r′(x, y, t + T) = exp(σT)r′(x, y, t), (2.5)

where r′ represents any of the perturbation fields (u′, v′, w′ or p′), t is time and T is the
time period of the base flow. The exponential coefficient exp(σT) is known as the Floquet
multiplier μ and its magnitude determines the onset of three dimensionality in the flow
field. If |μ| > 1, the above equation shows that the perturbation field grows exponentially
from one period to another. Hence, the flow field is linearly unstable to 3-D instability
for the particular spanwise wavelength, indicating the onset of three dimensionality in the
flow. Also, note that the above equation is an eigenvalue problem. Thus, multiple solutions
or Floquet modes may exist for a particular streamwise wavelength. However, the fastest
growing mode is of most interest and corresponds to the one with the largest magnitude of
the Floquet multiplier.

For the numerical implementation of the above scheme, the following steps are
undertaken. Initially, a random perturbation field for a selected streamwise wavelength is
taken and integrated forward in time along with the base-flow field. Note that the temporal
integration and spatial discretisation used for the perturbation field are the same as those
used for the base flow. At the end of the base-flow period T , the resulting perturbation
field is normalized by its amplitude. Here, the amplitude is calculated by taking the
L2 norm of the same perturbation field. This newly formed perturbation field is then
reintegrated in time along with the base flow and again renormalised for the next step.
After many iterations, the perturbation field is left with only the fastest growing mode,
and we observe a constant or periodic Floquet multiplier of this dominant mode. The
trend of the resulting Floquet multiplier (constant or periodic) also indicates the kind
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of 3-D instability. For instance, for a circular cylinder, the constant Floquet multipliers
represent those instability modes with a period that is either the same as the base flow
(mode A and mode B) or a multiple of the base flow (i.e. mode C). In contrast, if the
Floquet multiplier is periodic, this corresponds to those instability modes whose period
is incommensurate with the base-flow period (i.e. quasi-periodic modes often identified
as mode QP). The Floquet multiplier for these modes is a complex variable in which the
imaginary component is responsible for the sinusoidal variation in the perturbation field,
and, thus, the L2 norm oscillates in time. Hence, the magnitude of the Floquet multiplier
for these modes can be calculated using a Krylov subspace (essentially a collection of
saved perturbation fields) and Arnoldi decomposition to determine the dominant modes
(Barkley & Henderson 1996; Blackburn & Lopez 2003). In that case, the perturbation
fields are not normalised each iteration. The magnitude of Floquet multiplier also indicates
the type of 3-D instability. As summarised by Sheard, Fitzgerald & Ryan (2009), positive
Floquet multipliers represent synchronous modes, i.e. mode A and mode B, negative
Floquet multipliers indicate subharmonic modes, and complex Floquet multipliers indicate
quasi-periodic modes as the fastest growing instabilities. However, in the present study
both the magnitude of the Floquet multiplier and the type of spatio-temporal symmetry of
the wake perturbation fields are considered for proper identification of the modes.

2.4. Computational details
The computational domain and the boundary conditions for simulating the flow past
an inclined airfoil are illustrated in figure 2. The computational domain lengths are
non-dimensionalised by the chord length of the airfoil. The leading edge of the airfoil is
placed at origin (0,0), with the front and side boundaries at 24C, while the rear boundary
is at 8C downstream. Thus, the maximum lateral blockage is maintained under 0.4 %,
ensuring that the flow field is largely unaffected by the proximity of the side boundaries.
For generating the base flow, the boundary conditions are as follows. The front and side
boundaries are assigned a constant velocity (U = 1) in the streamwise direction, and the
outlet boundary is set to have constant pressure and zero normal velocity component
derivatives. The airfoil is rigid with a no-slip condition applied at its surface and a
high-order pressure boundary condition is also applied there (Karniadakis et al. 1991).
For generating the 3-D perturbation fields, u

′
, v

′
, w

′
were set to zero at all boundaries

except the outlet where a zero normal velocity gradient condition is imposed.
The numerical method used for the present study has already been applied successfully

to various stability problems (Thompson et al. 2001b; Sheard et al. 2003; Ryan et al.
2005; Leontini et al. 2007; Rao et al. 2013). However, a further validation study was
conducted against a recent Floquet analysis of a NACA0015 airfoil by Deng et al. (2017)
and is presented in figure 3(a). The figure shows excellent agreement for the Floquet
multiplier variation with wavenumber (β = 2πC/λ) for the airfoil wake at Re = 500
and α = 20◦. Further validation was undertaken to examine the prediction of different
Floquet modes for particular α, λ and Re. For α = 20◦ and Re = 740, Deng et al. (2017)
found three instability modes: mode A, a quasi-periodic mode (QP) and a subharmonic
mode (C) at λ = 6.28C, 2.09C and 0.785C, respectively. The same modes are observed
from the present analysis and are shown in figures 3(b), 3(c) and 3(d), respectively, but
noting the colourmap is different from that of Deng et al. (2017). Figure 3(b) shows that
the period of mode A is equal to that of the base flow (period = τ = 1.0T with T the
base-flow period), figure 3(c) shows that the period of mode QP is approximately ten
times that of the base-flow period τ � 10.0T , and figure 3(d) shows that the period for the
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Figure 2. Non-dimensional computational set-up for the present problem.

subharmonic (mode C) is twice that of the base-flow period τ = 2.0T . Further discussion
on the characteristics of each of these modes is provided in § 6.

Along with the validation study, a grid independence or spatial resolution study was
also carried out by performing a p-type resolution study. In this study, the order (n − 1) of
the tensor-product Lagrangian-polynomial interpolants within each element was varied
by changing the number of internal nodes within each element: n × n = 3 × 3, 4 × 4
and 5 × 5. The study was performed at α = 8◦ and Re = 5000, which corresponds to
the highest α and Re at which the linear Floquet stability analysis was conducted in
subsequent computations. The time-varying drag force (Fx) and the modulus of the
largest Floquet multiplier |μ| were measured and are compared in figures 4(a) and
4(b), respectively, for different polynomial orders. The n × n = 3 × 3 Floquet multiplier
predictions were not close to the higher-order results and are not shown. The figures
show that the difference between measured values for n × n = 4 × 4 and 5 × 5 is not
significant – an approximately 2 % difference in the value of the Floquet multiplier
at the preferred spanwise wavelength. Thus, third-order (n × n = 4 × 4) interpolating
Lagrangian polynomials were used for all the simulations discussed below, noting that
the 5 × 5 grid simulations are very expensive to run given the finest of the mesh used and
the number of simulations required.

3. Various 2-D transitions in the wake of an airfoil

Prior to investigating 3-D wake transitions, it is necessary to determine the underlying
periodic base-flow states. For the flow over a circular cylinder, it is well known that with
increasing Reynolds number Re, the flow undergoes a supercritical Hopf bifurcation from
2-D steady to 2-D oscillatory (periodic) flow. The bifurcation occurs at a critical Re ≈ 46,
and for a range of Re above this bifurcation, the 2-D wake is laminar and time periodic with
a unique relation between Re and St – that wake is known as a Bénard–von Kármán (BvK)
vortex street. The relationship breaks with a discontinuity at Re ≈ 188, which indicates the
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Figure 3. Validation study comparing (a) the variation of the modulus of the Floquet multiplier, |μ|, with
wavenumber (β = 2πC/λ) at α = 20◦ and Re = 500; (b) instability mode A at α = 20◦, λ = 6.28C and Re =
740; (c) instability mode QP at α = 20◦, λ = 2.09C and Re = 740; and (d) instability mode C at α = 20◦,
λ = 0.785C and Re = 740 compared with images from Deng et al. (2017). Note that the perturbation fields
are illustrated through spanwise perturbation vorticity with the wake vortices highlighted by solid black lines.
Slight differences between similar images are likely due to different contour levels and phase in the shedding
cycle.
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Figure 4. Grid independence studies comparing the (a) time-varying drag force (Fx) and (b) modulus of the

largest Floquet multiplier (|μ|) for n × n = 4 × 4 and 5 × 5, at α = 8◦ and Re = 5000.

critical point for the emergence of three dimensionality in the flow (Williamson 1988b,a;
Barkley & Henderson 1996; Williamson 1996a).

In the present work, figure 5(a) shows a similar supercritical Hopf bifurcation from 2-D
steady to 2-D oscillatory (periodic) flow for a stationary hydrofoil with increasing α for
Re in the range 500–5000. This is achieved here by undertaking linear stability analysis on
the steady flow solution and results are verified by performing 2-D unsteady simulations
and water-channel PIV experiments. Note that the PIV experiments were performed only
for Re = 2000 and 5000, whereas 2-D unsteady simulations were performed for all the
α and Re considered in the study. The figure shows the variation of growth rate σ with
increasing α for a discrete set of Re. Here σ = 0 indicates a supercritical Hopf bifurcation
to 2-D periodic flow. The critical α at which this transition occurs is termed here as α1,
and the figure shows that α1 decreases with increasing Re. The corresponding variation of
α1 with Re is shown in figure 5(b) and the relationship is given by

α1∼Re−0.65. (3.1)

For the attack angles α > α1, figure 6 shows the variation of non-dimensional shedding
frequency (Strouhal number St) with increasing α for a range of Re. For a stationary
airfoil, the Strouhal number is defined as St = fC/U∞, where f is the fundamental wake
frequency of the flow, determined from the dominant spectral peak of the fast Fourier
transform of the lift trace. For all Re, the figure shows that St generally decreases with an
increasing α; however, there are some sudden drops and discontinuities in these curves.
Here, a discontinuity represents aperiodicity in the flow at corresponding α and Re, and
can be seen for Re ≥ 2000. For example, for Re = 2000, figure 6 shows a sudden drop at
α2 = 11◦ after which the flow becomes aperiodic for a narrow range of 11.5◦ ≤ α ≤ 13.0◦,
before it again returns to be periodic at α3 = 13.5◦, and remains so for higher angles. For
Re = 3000, the curve is discontinuous at both intermediate angles of attack (α = 11◦) and
higher angles of attack (α ≥ 15◦). Thus, two periodic zones are separated by an aperiodic
zone for Re = 2000 and 3000. In contrast, for Re = 4000 and 5000, the curve remains
continuous and breaks only at higher angles of attack (α ≥ 14◦), indicating the onset of
aperiodicity only at higher angles. However, two distinct drops in St can be seen at α2 = 8◦
and α3 = 10◦ for Re = 4000, which reduce to α2 = 7.5◦ and α3 = 9◦ for Re = 5000,
respectively. Thus, after the supercritical Hopf bifurcation, the present results show no
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Figure 5. (a) Onset of vortex shedding as a function of angle of attack and Reynolds number determined by
linear stability analysis of steady base flows. The figure plots growth rate, σ , against angle of attack, spanning
Reynolds numbers in the range [500, 5000]. (b) Variation of critical α1 (at which supercritical Hopf bifurcation
occurs) with Re. Also shown are selected transition values for other NACA airfoils of the same series, overlaid
with dashed lines denoting indicative variations.
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Figure 6. Compilation of results showing how non-dimensional shedding frequency, St, varies with angle of
attack, α, as the Reynolds number is varied. The discontinuity in the curves of Re ≥ 2000 represents aperiodic
flow at the corresponding range of α.

bifurcations for Re ≤ 1000, two additional bifurcations for Re ≤ 3000 and three additional
bifurcations for Re > 3000 with increasing α in the range 0◦–20◦. These bifurcations are
due to wake transitions and are discussed below. The present trend of decreasing St with
increasing α matches experimental results on a NACA0012 airfoil by Huang et al. (2001).
Furthermore, the Strouhal number for α = 10◦ at Re = 1000 and 5000 matches well with
the other numerical predictions for the same parameters given by Mittal & Tezduyar
(1994), as shown in figure 6.

The wake patterns of the above-discussed cases are identified and categorised according
to the results obtained by Kurtulus (2016) for a NACA0012 airfoil at Re = 1000, and later
by Rossi et al. (2018) for a NACA0010 airfoil at a fixed α = 30◦ and Re in the range
100 ≤ Re ≤ 3000. The wake modes are the continuous vortex-sheet mode, alternating
vortex-shedding mode and alternating vortex-pair shedding mode. However, in the present
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study we further subcategorised the alternating vortex-pair shedding mode into four types:
leftward alternating vortex-pair shedding mode, neutral alternating vortex-pair shedding
mode, rightward alternating vortex-pair shedding mode and chaotic alternating vortex-pair
shedding mode, based on both the qualitative (lateral deviation and arrangement of
vortices in the street) and quantitative (St−α relationship and time-averaged force
coefficients) results. These different wake structures are marked in figure 7(a) as a
regime wake map. The corresponding instantaneous and time-averaged vorticity plots,
providing examples of each of these regimes, are presented in figure 7(b–f ). Note that
the categorisation is based on the analysis within four chord lengths downstream of the
airfoil. However, in some cases at least, the wake evolves different characteristics further
downstream.

With increasing α from 0◦, the regime wake map of figure 7(a) shows that the wake
is initially in a continuous vortex-sheet mode for all the Reynolds numbers. Figure 7(b)
shows that the wake in this mode is characterized by two opposite-sign vortex sheets
attached to the airfoil and has similar time-instantaneous and time-averaged vorticity
contours. With an increase in α to the critical value of α1, the regime wake map shows
the first transition, where the wake transitions to an alternating vortex-shedding mode.
The alternating vortex-shedding wake is similar to the BvK vortex street, with the only
difference lying in the lateral leftward deviation of the vortices and the mean flow from
the airfoil centreline, as shown in figure 7(c). The reason for this deviation is associated
with the orientation of the airfoil’s leading edge to the incoming free-stream flow. The
time-instantaneous vorticity plot of figure 7(c) shows that the inclination of the leading
edge causes the clockwise (CW) LEV to roll up and evolve into a larger vortex. In contrast,
the counterclockwise (CCW) trailing-edge vortex is forced to wrap around towards the
suction side of the airfoil. Thus, the shed CW and CCW vortices stretch unevenly, resulting
in leftward asymmetry in the street.

With a further increase in α to the critical value of α2, the regime wake map shows the
next transition occurs to the alternating vortex-pair shedding mode. Unlike single vortices,
paired vortices possess the characteristic of generating a local induced velocity on each
other. These induced velocities result in the lateral deviation of the pair from its mean
path. The direction of lateral deviation depends on the orientation of vortices within the
dipole. In the present study we subcategorised the alternating vortex-pair shedding mode
into four different kinds based on the lateral deviation and arrangement of the vortex cores
in the wake. The first is termed the leftward alternating vortex-pair shedding street, which
occurs at critical α2 and Re = 2000, and is shown in figure 7(d). The figure shows that the
pairing occurs far downstream of the airfoil and the CCW vortex is the leading vortex of
the pair. Thus, the pair induces local velocities in the leftward lateral direction, resulting
in leftward deviation of the paired vortex cores and the mean flow. Note that the leftward
deviation of vortices is not very distinguishable for two reasons: (i) the deviation occurs in
the same direction of the natural path of the vortices; and (ii) the relative distance between
the vortices of the pair is large, which according to the Biot–Savart law results in smaller
induced velocities and, thus, a smaller deviation of the vortex cores.

The neutral alternating vortex-pair shedding street is the second kind of paired vortex
street observed in the wake beyond α2 for Re ≥ 3000 and α3 for Re = 2000. The
characteristics of this wake are depicted in figure 7(e). These include the pairing of vortices
in the far wake, similar to the leftward alternating vortex-pair shedding street. However,
the leading vortex of the pair is CW. Thus, the pair generates locally induced velocities
in the rightward direction, bringing the vortex cores and the mean flow almost in line
with the airfoil centreline. The third kind is termed the rightward alternating vortex-pair

954 A26-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.958


S. Gupta and Others

Re

α (deg.)

Continuous vortex sheet

Alternating vortex shedding

Leftward alt. vortex pair

Rightward alt. vortex pair

Neutral alt. vortex pair

Chaotic alt. vortex pair

3D−transition

500

1000

1500

2000

2500

3000

3500

4000

4500

5000(a)

(b)

(c)

(d)

(e)

( f )

(g)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Continuous vortex

sheet zone

Alternating vortex

shedding zone

Alternating vortex pair shedding zone

(b) (c) (d)

(e)

(e)

( f ) (g)α
1 ∼

Re −
0
.6

5

α
3
D ∼

Re −
0
.5

Time-instantaneous vorticity

Leading vortex

Leading vortex

Time-averaged vorticity

Figure 7. (a) Wake regime map in the α−Re parameter space, representing the three different wake regimes
associated with an inclined airfoil, (b–g) various time-instantaneous and time-averaged wake patterns observed
in the study. Red and blue colours shows negative (CW) and positive (CCW) streamwise vorticity, respectively.
(b) Continuous vortex-sheet mode, α = 5.0◦, Re = 2000. (c) Alternating vortex-shedding mode, α = 9.0◦,
Re = 2000. (d) Leftward alternating vortex-pair shedding mode, α = 11.0◦, Re = 2000. (e) Neutral alternating
vortex-pair shedding mode, α = 8.0◦, Re = 5000. ( f ) Rightward alternating vortex-pair shedding mode, α =
9.0◦, Re = 5000. (g) Chaotic alternating vortex-pair shedding mode, α = 15.0◦, Re = 5000.
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shedding street, which we observed for Re ≥ 3000 beyond α3. The wake structure has
its unique characteristics of possessing a constant shedding frequency with increasing α,
as discussed above and shown in figure 6. Further characteristic wakes are illustrated in
figure 7( f ). The figure shows that the vortex pair forms at the surface (suction side) of the
airfoil. The formation of the vortex pair closer to the surface is due to both the high Re and
α, generating a strong negative pressure on the airfoil suction side. This strong negative
pressure causes the CCW tip vortex to roll up and form a pair with the oncoming CW
LEV. In this newly formed vortex pair, the figure shows that the CW vortex is the leading
vortex, which results in the rightward deviation of the vortex cores.

Finally, the chaotic alternating vortex-pair shedding street is the fourth kind of paired
vortex street observed for those cases where the periodicity of the vortex shedding is lost,
as discussed above and shown in figure 6. In particular, the characteristics of this wake
structure are shown in figure 7(g). The figure shows that the strong suction pressure behind
the airfoil causes the CW LEV to break into more than two vortices before it sheds from the
airfoil surface, resulting in an unequal number of CW LEVs and CCW TEVs in the wake.
Thus, all of the vortices cannot form pairs and this results in the random arrangement of
paired and unpaired vortices.

The regime wake map of figure 7(a) also shows the flow state and 3-D transition
boundaries as a function of Re and α. The respective angle of attack at which transition
occurs, α3D, is calculated numerically using Floquet stability analysis and discussed below
in § 5. The regime wake map shows a decreasing α3D with an increasing Re, and the
corresponding relationship is given by

α3D ∼ 1√
Re

. (3.2)

It is interesting to observe from figure 7(a) that 3-D transition occurs prior to but very
close to the above discussed 2-D flow transition to the alternating vortex-pair shedding
mode.

4. Time-averaged lift and drag coefficients at Re = 2000 and 5000

The onset of the wake transitions should also induce changes in the time-averaged force
coefficients. Thus, in this section the variation and bifurcation of the time-averaged lift
C̄L and drag C̄D coefficients with increasing α are discussed, and their connection with
the wake transitions established. Furthermore, for both Reynolds numbers examined in
detail, the C̄L−α and C̄D−α relationships obtained from the 2-D simulations are compared
with results from water-channel-based experiments and literature. Note that while detailed
analysis is presented only for Re = 2000 and 5000, force coefficient variations obtained
from 2-D simulations for other Re are discussed in the Appendix.

For Re = 2000, the variations of C̄L and C̄D with increasing α are shown in
figures 8(a) and 8(b), respectively. Figure 8(a) shows that the lift coefficient obtained
from water-channel-based experiments increases almost linearly with α, with a sudden
change in trend at a critical angle, α2, where the wake transitions from the alternating
vortex-shedding mode to the alternating vortex-pair shedding mode, as discussed above
and shown in figures 6 and 7(a). Following α2, C̄L again increases with α, and a second
change in trend is observed at α∼15◦. A similar conclusion can be drawn by observing
the variation of C̄D with α in figure 8(b). However, for α < α2, the variation is close to
quadratic while, for α > 15◦, the variation is approximately linear.
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Figure 8. Time-averaged (a,c) lift coefficient C̄L, and (b,d) drag coefficient C̄D with increasing angle of attack
α for a NACA0012 airfoil at (a,b) Re = 2000 and (c,d) Re = 5000. In the plots α2 and α3 correspond to critical
angles where a bifurcation occurs.

Similar C̄L−α and C̄D−α variations can be seen for Re = 5000 in figures 8(c) and 8(d),
respectively, showing bifurcations at critical α = α2 and α3, where the wake transitions to
the neutral alternating vortex-pair shedding mode and the rightward alternating vortex-pair
shedding mode, respectively.

Figures 8(a)–8(d) also compare the results from the 2-D spectral-element method
with direct water-channel-based force measurements. The figures show that C̄D and C̄L
magnitudes match well at smaller angles of attack, but become significantly different at
larger angles. For instance, the 2-D results for C̄L fail to predict linear-to-quadratic change
at α2 and then the quadratic-to-asymptotic transition at α∼15◦ for C̄L at Re = 2000.
Similarly, for Re = 5000, the 2-D predictions do not show the enhancement in C̄L with
a slight increase in α at α2. Thus, for comparison, we performed another set of 2-D
simulations using the level-set function-based immersed-interface method (Thekkethil
& Sharma 2019) and also compared the results based on the spectral-element method
with the available 2-D literature in figures 8(a)–8(d). These show no difference in the
predicted magnitudes of C̄D and C̄L from the different independent 2-D techniques.
Therefore, this suggests that the flow transitions to 3-D flow, and thus, the assumption
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of flow two dimensionality becomes invalid. To investigate this, Floquet stability analysis
is undertaken and discussed in the next section.

5. Floquet stability analysis

As discussed in the methodology, Floquet stability analysis is a tool for investigating the
stability of a 2-D periodic flow to 3-D perturbations. In the present study the analysis
was carried out with two objectives. The prime objective was to accurately predict the
critical angle of attack, α3D, and the corresponding non-dimensional wavelength, λ/C,
at which the 2-D wake becomes linearly unstable to 3-D perturbations, indicating the
onset of three dimensionality. The secondary objective was to look for modes that become
unstable beyond the initial transition, as they may contribute to the fully saturated wake
state at higher angles of attack. Here, the second critical angle is denoted α3D,2. Both
the objectives have been approached by examining the modulus of the maximum Floquet
multiplier at various λ/C for the airfoil at attack angles past the 2-D Hopf bifurcation,
i.e. α > α1. The non-dimensional wavelength of the 3-D perturbation field is varied over
the range 0 < λ/C ≤ 4, since we expect any 3-D instability to occur within this range.
This was decided after initial testing over a wider wavelength range.

5.1. The critical angle of attack, α3D, for 3-D transition
In this section Floquet stability analysis is performed to find the critical α3D at which the
2-D base flow becomes three-dimensionally unstable.

For a set of Reynolds numbers in the range 500–5000, figure 9 shows the variation of
the modulus of the largest Floquet multiplier, |μ|, with increasing spanwise wavelength,
λ/C, for the airfoil at various angles of attack. For Re = 500, figure 9(a) shows that the
largest Floquet multiplier for α = 18◦ is less than 1, implying that the flow is stable for
all infinitesimal 3-D perturbations, i.e. the 2-D periodic solution is also the stable solution
to the 3-D Navier–Stokes equations. However, for α = 18.5◦, there is a wavelength in
which the largest Floquet multiplier is equal to 1, indicating the 2-D periodic solution
is unstable. Thus, α � 18.5◦ is the critical α3D for Re = 500. Similarly, for Re = 750,
1000, 2000, 3000, 4000 and 5000, figures 9(b), 9(c), 9(d), 9(e), 9( f ), 9(g) show α3D �
14.75◦, 13.1◦, 9.4◦, 7.9◦, 7◦ and 6.1◦, respectively. Thus, the present results show that α3D
decreases with an increasing Re and the corresponding relationship is given above by (3.2)
and plotted in figure 7(a).

Interestingly, figure 9(a–g) also shows the same dominant mode at α3D for all the Re,
however, manifesting at different non-dimensional wavelengths. As shown in the figures,
the mode corresponds to a subharmonic mode (mode C) and is discussed in detail in § 6.
Thus, mode C is the first unstable mode for all the Re in the range 500–5000, which
is reasonable to expect to arise from a base flow that does not possess Z2 symmetry
(i.e. reflectional symmetry about the centreline). We note that the present finding of the
first unstable mode agrees with that found by Meneghini et al. (2011), Deng et al. (2017)
and He et al. (2017), even though those studies were conducted at a fixed α = 20◦ and with
an objective of finding the critical Re3D at which the flow becomes three-dimensionally
unstable at a high post-stall angle of attack. Thus, by combining the present results with
those from the literature, we conclude that mode C is the first 3-D unstable mode that
emerges in the wake of an airfoil by altering either of the fluid’s governing parameters
(α, Re), which contrasts to mode A appearing first in a circular cylinder’s wake.
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Figure 9. Floquet multiplier magnitude versus spanwise wavelength for (a) Re = 500, (b) Re = 750,
(c) Re = 1000, (d) Re = 2000, (e) Re = 3000, ( f ) Re = 4000 and (g) Re = 5000. Solid lines show
subharmonic (mode C) multiplier branches, dashed lines show complex (mode QP) multipliers and dash-dotted
lines indicate synchronous (mode A) multiplier branches.
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Figure 10. Modulus of Floquet multiplier |μ| versus non-dimensional streamwise wavelength λ/C for angles
of attack α higher than α3D at Re = 2000. Solid lines show subharmonic (mode C) multiplier branches, dashed
lines show complex (mode QP) multipliers and dash-dotted lines indicate synchronous (mode A) multiplier
branches.

5.2. The emergence of other 3-D modes beyond the initial instability
For a stationary circular cylinder, a second instability mode (mode B) emerges after the
appearance of the first mode (mode A) (Miller & Williamson 1994; Barkley & Henderson
1996; Thompson et al. 1996) and features strongly in the saturated 3-D wake beyond
Re � 230–240. In this section the analysis is extended to find the critical α3D,2 at which
we observe the second mode of instability. This investigation is undertaken only for
Re = 2000 and 5000. The variations of the largest Floquet multiplier with increasing
non-dimensional spanwise wavelength are plotted in figures 10 and 11.

For Re = 2000, figure 10 shows a single dominant mode of instability, mode C, for
α = 9.5◦ and 10◦. However, the number of distinct dominant modes increases to three by
increasing α to α3D,2 = 11◦. At α3D,2, an apparent mode C exists together with two other
modes: mode A and mode QP. For λ/C ≤ 0.4, the fastest growing instability is mode
C. The fastest growing instability changes to mode A for 0.5 ≤ λ/C ≤ 0.8, and finally,
the fastest growing instability changes to the quasi-periodic mode QP for λ/C > 0.8.
Notice from the figure that the secondary instability is faster growing for short spanwise
wavelengths compared with long spanwise wavelengths. Furthermore, of the first three
unstable modes, the smallest wavelength mode is the first to become unstable. Thus, the
trend is in contrast to that for a circular cylinder (Barkley & Henderson 1996; Williamson
1996a) and normal flat plate (Thompson et al. 2006), where the long wavelength mode is
faster growing at Re > Re3D.

For Re = 5000, figure 11 shows the different modes of 3-D instability occurring for the
airfoil at α > α3D and Re = 5000. For α ≤ 7◦, mode C appears to be the only unstable
mode. However, at the critical α3D,2 = 8.0◦, mode C exists together with mode QP. For
λ/C < 0.2, mode QP is the fastest growing instability, while the fastest growing instability
mode changes to mode C at λ/C > 0.2. Furthermore, notice here that the 3-D secondary

954 A26-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.958


S. Gupta and Others

0

0.5

1.0

1.5

2.0

2.5

0.05 4.000.20 1.00

Mode C

Mode C

Mode QP

Mode C

α = 6.5°
α = 7.0°
α = 8.0°

|μ|

λ/C
Figure 11. As for figure 10 at Re = 5000.

instability is faster growing for long spanwise wavelengths compared with short spanwise
wavelengths, which is in contrast to the case for Re = 2000.

Figures 10 and 11 also show that QP is the second mode to become unstable. This is
consistent with predictions of Meneghini et al. (2011); they also observed mode QP as the
second emerging mode at a fixed α = 20◦. Thus, we conclude that mode QP is the second
3-D mode to emerge in an airfoil wake undergoing shedding. This contrasts with mode B
for a circular cylinder wake.

By observing figures 10 and 11, one can notice that the magnitude of maximum Floquet
multiplier increases, and the dominant mode (mode C) shifts to a higher wavelength with
increasing α. This same observation was made for different NACA00XX airfoils at fixed
α = 20◦ subject to varying Re by He et al. (2017); the flow physics is discussed in § 6.1.

6. Mode characteristics

In this section the characteristics of each mode are presented through the perturbation
streamwise and spanwise vorticity fields at different phases of the base-flow period. This
highlights various symmetries, and similarities and differences between the modes, with
some discussion on their physical cause and comparison with other bluff-body wakes.

6.1. Mode C
Mode C is a true subharmonic mode with its Floquet multiplier exiting the unit circle
through −1 on the real axis as Re is increased. Along with the spatial distribution of
the mode, this is apparent through inspection of figure 12. It shows the streamwise and
spanwise perturbation vorticity fields for α = 9.5◦, Re = 2000 and λ = 0.2C. In the near
wake the structure is similar to that of mode B of a circular cylinder, with a high amplitude
of the perturbation field in the base-flow braid region. In addition, the structure shows
similarities to mode A in the far wake with the perturbation field mostly concentrated
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(ii)(i)

(ii)(i)

(ii)

(d )
X

Z

Y

(i)

(a)

(b)

(c)

Figure 12. The near-wake topology for mode C at α = 9.5◦ for Re = 2000 and λ = 0.2C. (a–c) The colour
contour of the left column (a (i)–c (i)) represents the spanwise perturbation vorticity, and the right column
(a (ii)–c (ii)) represents the streamwise perturbation vorticity field. The 2-D base flow is outlined by solid
contour lines. (d) Isosurface of the streamwise perturbation vorticity contours (ω̃x = ±1) using Q = 1 for mode
C. Results are shown for (a (i)) t = 0.0T , (a (ii)) t = 0.0T , (b (i)) t = 1.0T , (b (ii)) t = 1.0T , (c (i)) t = 2.0T ,
(c (ii)) t = 2.0T .

in the base-flow core regions. Both the spanwise and streamwise fields show that the
perturbation vorticity structure repeats over two shedding cycles, with its sign alternating
over one shedding cycle (T). The isosurface of streamwise perturbation vorticity (shown in
figure 12d) further highlights the streamwise vorticity changing sign every period. Clearly,
the mode is indeed subharmonic and possesses the spatio-temporal symmetry, shown here
by using the streamwise perturbation vorticity (ω̃x), corresponding to

ω̃x(x, y, z, t) = ω̃x(x, y, z, t + 2T). (6.1)

The earlier experimental observation of mode C was revealed by Sheard et al.
(2003), who also used Floquet stability analysis to predict it to be the first occurring
non-axisymmetric instability for a torus of aspect ratio 4 ≤ AR ≤ 8. Here, AR is defined as
the ratio of the mean to the cross-section diameter. Later, Sheard et al. (2005) demonstrated
that this mode leads to period doubling in the wake. Although the base-flow topology in
the torus wake is distinctly different to that of an inclined airfoil, the characteristics of the
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Figure 13. Variation of fastest growing wavelength for mode C (a) with increasing angle of attack α at
Re = 2000, (b) with increasing Reynolds number Re at α = 9.5◦.

perturbation fields are found to be consistent. This is because in both cases, the symmetry
of the flow about the centreline is broken because the body geometry also breaks this
symmetry.

Increasing the angle of attack of the airfoil or the Reynolds number has a significant
effect on the value of the fastest growing wavelength λ∗. This is shown in figures 13(a)
and 13(b), which exhibit an increase in λ∗ with increasing α and a decrease in λ∗ with
increasing Re, respectively. A possible explanation for these trends is given here by
comparing them with those for a circular cylinder. In that case, Williamson (1996a,b)
suggested that the wavelength scales with the vortex core diameter for mode A and the
width of braids between the cores for mode B instability. As has been pointed out above,
the perturbation vorticity of mode C shows characteristics of both modes A and B. With
increasing α, figure 14 shows that the LEV roll up occurs further upstream, resulting
in generating vortices of larger diameter in the near wake. This is consistent with the
increased frontal area (height) seen by the flow as the angle is increased, which is related
to the size of the forming vortices. On the other hand, the right column of the figure shows
that increasing Re reduces the vortex core size because of reduced diffusion. In addition to
this effect, at higher Reynolds numbers transition occurs at lower angles, also resulting in
smaller wake vortex cores. Thus, one could expect a larger instability wavelength at higher
attack angles, and a lower wavelength at higher Reynolds numbers.

6.2. Mode A
Mode A is a synchronous 3-D instability, i.e. the critical Floquet multiplier exits the unit
circle through +1 along the positive real axis in the complex plane (Blackburn, Lopez &
Marques 2004). For a circular cylinder, it is known to be the first 3-D instability and, thus,
responsible for 3-D transition. The physical mechanism responsible for developing this
instability has been speculated to be associated with an elliptic instability in the near wake
(Leweke & Williamson 1998; Thompson et al. 2001b).

For the present case, the streamwise and spanwise perturbation vorticity fields for
mode A at α = 11.0◦, Re = 2000 and λ = 0.65C are shown in figure 15. The figure
shows that both the perturbation fields are stronger within the vortices of the base flow.
Actually, the instability only approximately preserves the spatio-temporal symmetry seen
with mode A because the airfoil is at an angle to the oncoming flow. This approximate
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(i) (ii)

(i) (ii)

(i)

(a)

(b)

(c) (ii)

Figure 14. Variation of base-flow topology (a (i)–c (i)) with increasing angle of attack α at Reynolds number
Re = 2000; (a (ii)–c (ii)) with increasing Re at α = 9.5◦. Results are shown for (a (i)) α = 9.5◦, Re = 2000,
(a (ii)) α = 9.5◦, Re = 2000, (b (i)) α = 10◦, Re = 2000, (b (ii)) α = 9.5◦, Re = 3000, (c (i)) α = 11◦, Re =
2000, (c (ii)) α = 9.5◦, Re = 5000.

(ii)(i)(a)

(b) (i) (ii)

Opposite

sign

Figure 15. (a (i), b (i)) Spanwise perturbation vorticity for mode A at α = 11◦ for Re = 2000 and λ = 0.65C;
(a (ii), b (ii)) streamwise perturbation vorticity field for the same condition. Results are shown for (a (i)) t =
0.0T , (a (ii)) t = 0.0T , (b (i)) t = 1.0T , (b (ii)) t = 1.0T .

spatio-temporal symmetry can be seen as the swapping of the sign of the perturbation
field on the outer side of two consecutive base-flow vortices. Thus, the perturbation field
is similar in characteristics to that of the wake of a stationary circular cylinder as discussed
by Thompson et al. (2001b), and the spatio-temporal symmetry is given by

ω̃x(x, y, z, t) � −ω̃x(x, −y, z, t + T/2). (6.2)

6.3. Mode QP
The spatial features of mode QP at least superficially appear similar to those of mode C;
however, the period of the perturbation field is not twice the base-flow period. This is
verified through a sequence of streamwise perturbation vorticity snapshots at α = 11.0◦,
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(e)

(b) (g)

(h)

(i)

(a)

(c)

(d )

( f )

Figure 16. The near-wake topology for mode QP at α = 11◦ for Re = 2000 and λ = 1.5C. The colour contours
represent (a–i) are set at one base-flow period apart and should be read top to bottom, left to right. The colour
contour represents the streamwise perturbation vorticity field, whereas solid contour lines outline the base
flow. Results are shown for (a) t = 0.0T , (b) t = 2.0T , (c) t = 4.0T , (d) t = 6.0T , (e) t = 8.0T , ( f ) t = 10.0T ,
(g) t = 12.0T , (h) t = 14.0T , (i) t = 15.0T .

Re = 2000 and λ = 1.5C shown in figure 16. This shows that the perturbation field
structure approximately repeats itself over fifteen base periods. As the field evolves, it
shows growth and decay from one base-flow period to the next. This can be seen, for
instance, by examining the positive regions of the perturbation field (shown in blue)
at the tail and the negative regions (shown in red) at the upper surface of the airfoil.
With increasing time from t = 0.0T , the figure shows that the magnitude of the positive
perturbation field near the tail gradually weakens, and eventually changes sign after
t = 4.0T . In contrast, the negative field near the upper surface grows from t = 0.0T to
t = 4.0T and then weakens from t = 4.0T and finally changes its sign at t = 8.0T . Hence,
we observe a similar structure of streamwise perturbation field after eight base cycles, but
with the opposite sign. A similar evolution for the negative and positive regions of the
perturbation field can be observed from t = 8.0T to t = 15.0T . Thus, the mode is truly
quasi-periodic with a period (approximately) fifteen times that of the base flow, noting
that the exact period changes with angle and Reynolds number.
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7. Three-dimensional simulations

While this study is focused in determining the stability of airfoil wakes and, in particular,
in determining the critical angles of attack and Reynolds numbers of transitions, it is of
interest to explore the post-critical wake evolution. Direct simulations were performed for
the highest-Reynolds-number case of Re = 5000 to examine the wake evolution beyond
the critical angle of attack of α � 6.1◦. The 3-D simulations were undertaken using
the spectral (spanwise)/spectral-element (cross-stream) method described previously. In
effect, the 2-D spectral-element method is extended to three dimensions using a Fourier
expansion in the spanwise direction to account for the spanwise variation (see Karniadakis
& Triantafyllou 1992; Thompson et al. 1996). These relatively expensive simulations
used 196 Fourier planes across a span of one chord length, noting the use of a Fourier
representation enforces spanwise periodicity. This spanwise domain length and resolution
should be sufficient to capture the wavelengths and harmonics of the main instability
modes detected through the Floquet analysis (0.1 � λ/C � 0.3), while also noting that
simulations using 384 planes showed no discernible differences.

Figure 17 shows saturated wakes visualised using the Q criterion (Hunt, Wray & Moin
1988) with Q = 0.1 for α = 6.5, 7.0, 7.5, 8.0 and 9.0◦. Note that the spanwise variation
has been duplicated across a span of 3C to better highlight the complexity of the wake
structures. In this figure the images below the 3-D isosurface visualisations show the
spanwise-averaged spanwise vorticity fields at the same times as the isosurface plots
together with their 2-D counterparts at similar times. For small increments past the
instability onset angle, e.g. at α = 6.5◦, the saturated wake is not strongly affected by the
initial instability mode; the wake almost appears to consist of a linear combination of the
instability mode and 2-D base flow; however, at saturation, the streamwise braid vortices
clearly form pairs rather than consisting of uniformly distributed positive and negative
vortices across the span. At α = 7.0, the saturated wake is much more complex. The initial
short instability wavelength, visible in the braid regions between the first shed spanwise
pair, appears to double as the wake evolves downstream and nonlinear interactions affect
wake development. In this case, the wake still maintains a regular spanwise structure as
the wake structure advects further downstream. By α = 8.0, the wake has become chaotic,
with smaller-scale features although coherent larger-scale braid vortices are still present.
The trend continues for α = 9.0. Here, shorter wavelength streamwise braid vortices can
be seen near the rollers close to the trailing edge in addition to the longer wavelength
structures further downstream.

The figure also shows the evolution of the spanwise-averaged spanwise vortices as the
angle of attack is increased with the wakes from 2-D simulations shown for comparison. At
α = 6.5, the averaged vortex street is little different from the 2-D base flow (see figure 17).
In fact, as the angle is increased up to α = 9.0, the same global wake structures predicted
by the 2-D simulations are maintained but with increasing irregularity/distortion of the
spanwise vortices. The transition from a downwards-directed wake (α = 6.5, 7.0) to an
upwards-directed wake (α = 8.0 and 9.0) is also maintained. Even the transition state
between these two at α = 7.5◦ is also seen in the 3-D spanwise-averaged fields. Thus,
perhaps surprisingly, even well beyond 3-D transition, the spanwise-averaged wakes show
the same characteristic vortex-street states predicted by the 2-D simulations.

8. Conclusions

The present study documents and contributes towards understanding the various flow
transitions occurring in a thin-airfoil wake over a parameter space covering α < 20◦ and
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(iii)
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Figure 17. (a) Saturated states of the airfoil wake at Re = 5000 for α = 6.5◦ (i, iv, vii), 7.0◦ (ii, v, viii) and 7.5◦
(iii, vi, ix) depicted using an isosurface of Q = 0.1. The images immediately below show spanwise-averaged
spanwise vorticity fields of these 3-D wakes and matching wakes from 2-D simulations. (b) Same as (a) except
for α = 8.0◦ and 9.0◦.

Re ≤ 5000. This can assist other researchers with understanding the validity of assuming
2-D or near 2-D flow for both fundamental and applied problems related to flows around
symmetric airfoils.

The 2-D wake was found to undergo a Hopf bifurcation – a steady to periodic transition
– according to the relationship α1 � 690Re−0.65. For enforced 2-D flow beyond this
initial transition, different wake states are identified and broadly categorised into three
different modes. The descriptions are similar to those presented by Kurtulus (2016), with
classification based on the instantaneous vortex structure, non-dimensional frequency and
aerodynamic force coefficients. These are the continuous vortex-sheet mode, alternating
vortex-shedding mode and alternating vortex-pair shedding mode. However, compared
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with the lower-Reynolds-number classification of Kurtulus (2016), we need to further
characterize the alternating vortex-pair shedding mode into three sub-modes: (i) a leftward
alternating vortex-pair shedding mode, (ii) a neutral alternating vortex-pair shedding
mode and (iii) a rightward alternating vortex-pair shedding mode. These different wake
structures and transitions are recorded on a regime wake map, and their characteristics are
discussed in detail.

To investigate the onset of three dimensionality in a NACA0012 airfoil wake, Floquet
stability analysis was performed for angles of attack past the 2-D Hopf bifurcation at
which shedding commences. It is found that 3-D transition occurs at a critical angle
of attack, α3D, whose variation with Re is approximately given by α3D∼1/

√
Re. By

checking the Floquet multiplier and wake symmetries, it is observed that the first unstable
mode for 500 ≤ Re ≤ 5000 is a subharmonic mode, mode C, i.e. its period is twice
that of the base flow. Thus, by drawing together the present results with previous
studies on hydrofoils/airfoils, we conclude that mode C is the first 2-D wake mode that
emerges on increasing either of the governing parameters (α, Re) of the flow. Higher-order
(i.e. non-dominant) modes were also investigated, noting that the remnants of mode B, the
second occurring mode, appears to be more apparent in much higher-Reynolds-number
circular cylinder wakes than the first occurring mode A. The critical angle for the second
3-D instability is denoted by α3D,2. For Re = 2000, α3D,2 ≈ 11.0◦. In that case the
dominant mode (Mode C) exists together with two other unstable modes: Modes A and
QP. In contrast, for Re = 5000, α3D,2 reduces to 8.0◦, where the dominant mode (mode
C) exists together with mode QP. Finally, the characteristics of all these observed 3-D
instability modes are discussed along with their physical cause and a comparison with
other bluff-body wake transitions.

Of interest, the transition from the alternating vortex-shedding mode to the alternating
vortex-pair shedding mode predicted from 2-D modelling occurs beyond the critical angle
for 3-D transition, posing the question of whether such post-critical 2-D predictions have
any relevance to real flows. On this point, full 3-D simulations indicate that the predicted
2-D vortex-street structures are reasonably maintained in the 3-D saturated wakes in a
spanwise-averaged sense. Beyond this, the 3-D simulations indicate a complex transition
scenario where the instability modes interact nonlinearly as the wake advects downstream,
although some underlying order is maintained with coherent streamwise vortices persisting
between the dominant distorted spanwise vortical structures.
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Figure 18. Time-averaged (a,c) drag coefficient C̄D, and (b,d) lift coefficient C̄L with increasing angle of
attack α for a NACA0012 airfoil at (a,b) 500 ≤ Re ≤ 1000 and (c,d) 2000 ≤ Re ≤ 5000.

Appendix. Time-averaged lift and drag coefficients

The discussion of the relationship between the wake transition, non-dimensional frequency
of shedding St, and the time-averaged lift C̄L and drag C̄D coefficients obtained from
the 2-D spectral-element method-based simulations is extended here in this section. The
variation of C̄D and C̄L with an increasing α is shown in figure 18(a,b) for Re ≤ 1000
and in figure 18(c,d) for Re ≥ 2000, respectively. This is done here to easily visualize
bifurcations/jumps in the curves of low Re, which may become indistinguishable if shown
together with high Re curves due to their high magnitudes.

Figure 18(a) shows an apparent increasing C̄D with an increasing α of an airfoil with
a sudden jump or change in slope at critical α1 for all Re. The jump is higher for higher
Re such that it changes the trend for the variation with Re – from a decreasing C̄D with
an increasing Re below α1 to an increasing C̄D with an increasing Re above α1. A similar
conclusion can be drawn by observing the variation of C̄L with α in figure 18(b). Thus, for
Re ≤ 1000, only one distinctive bifurcation is visible for the time-averaged engineering
parameters, which is at α1, similar to the St−α bifurcation (refer to figure 6) and wake
transition (refer to figure 7a) as discussed above in § 4. The present variation of the force
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Airfoil wake transitions

coefficients with α at Re = 1000 matches well with the result given by Kurtulus (2015), as
shown in figure 18(a,b).

For Re ≥ 2000, figure 18(c,d) shows a similar variation of increasing C̄D and C̄L and
sudden jumps at critical α with increasing angle of attack α. However, as expected, the
number of jumps/bifurcations is higher. These critical angles of attack are shown in
figure 18(d). The figure shows that the first jump occurs at critical α1, where the trend
changes from larger C̄L at lower Re to larger C̄L at larger Re. The second jump occurs
at critical α2. However, both of these jumps are not very significant compared with the
third jump occurring at α3 for Re ≥ 3000. Thus, the time-averaged curves show two
transitions for Re = 2000 and three transitions for Re > 2000, which is similar to the St−α

bifurcation (refer to figure 6) and wake transition (refer to figure 7a) as discussed above in
§ 4.
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