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The two-dimensional flow through a constricted channel is studied. A semi-circular
bump is located on one side of the channel and the extent of blockage is varied by
adjusting the radius of the bump. The blockage is varied between 0.05 and 0.9 of the
channel width and the upstream Reynolds number between 25 and 3000. The geometry
presents a simplified blockage specified by a single parameter, serving as a starting
point for investigations of other more complex blockage geometries. For blockage
ratios in excess of 0.4, the variation of reattachment length with Reynolds number
collapses to within approximately 15 %, while at lower ratios the behaviour differs.
For the constrained two-dimensional flow, various phenomena are identified, such as
multiple mini-recirculations contained within the main recirculation bubble and vortex
shedding at higher Reynolds numbers. The stability of the flow to three-dimensional
perturbations is analysed, revealing a transition to a three-dimensional state at a
critical Reynolds number which decreases with higher blockage ratios. Separation
lengths and the onset and structure of three-dimensional instability observed from
the geometry of blockage ratio 0.5 resemble results taken from backward-facing step
investigations. The question of the underlying mechanism behind the instability being
either centrifugal or elliptic in nature and operating within the initial recirculation
zone is analytically tested.

1. Introduction
Interest in blockage effects on flows has increased recently, particularly due to

the growing number of fluid mechanics researchers dealing with problems of bio-
mechanics, such as the flow of blood through an obstructed arterial passage. In
order to provide a useful base case, for the research reported here the flow past a
multi-parameter geometrically complex blockage associated with an arterial stenosis
is reduced to the much-simplified flow in a two-dimensional channel containing a
bump defined by a single parameter. The wake of this flow has some similarities to
the well-known problem of the flow past a backward-facing step, which has served
as an idealized geometry to investigate flow separation (Adams & Johnston 1988;
Armaly et al. 1983) and as a benchmark for computational fluid dynamics (Ghia,
Osswald & Ghia 1989). Because of this, but bearing in mind that the movitation
for this study is different, we provide a brief review of relevant literature on the flow
past a backward-facing step.
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Armaly et al. (1983) contains a detailed review of the subject, including an
experimental investigation with a fixed expansion ratio (outlet to inlet section) of
1.94, and Reynolds numbers ranging through the laminar, turbulent and transitional
regimes. The aspect ratio of the experimental test section was 1:36, in order to yield
a nominally two-dimensional flow. With increasing Reynolds number in the laminar
regime, the length of the first recirculation zone increased and was accompanied by
the appearance downstream of more recirculation zones on alternating sides of the
channel. The transition to turbulence was observed to begin at a Reynolds numbers
of 1200 (Reynolds numbers presented in this paper are rescaled to our definition
(2.1), which uses the hydraulic diameter and mean velocity in the expanded part of
the channel). Prior to this, the flow was observed to become three-dimensional above
Re = 400. The authors argued that the flow was inherently three-dimensional at this
point, believing there to be an instability mechanism associated with the appearance
of the secondary recirculation zone.

Numerical studies of the problem began to give more insight into the nature of the
instability. Kaiktsis, Karniadakis & Orszag (1996) found the flow to be convectively
unstable for Reynolds numbers in the range 700 � Re � 2500, giving a higher Reynolds
number for the appearance of three-dimensionality in the flow than that observed
experimentally by Armaly et al. (1983). Further numerical simulations by Williams &
Baker (1997) shed light on the onset of three-dimensionality. Comparing their three-
dimensional simulations with two-dimensional experiments and numerical solutions,
they showed that the cause of this instability was not the appearance of the secondary
recirculation, but rather an interaction between a wall jet, formed at the junction of
the step and endwall, and the main fluid flow.

Subsequently, Barkley, Gomes & Henderson (2002) sought to identify the intrinsic
three-dimensional stability of backward-facing step flow. Through numerical stability
analysis they found that the primary instability was a steady bifurcation, occurring
at a critical Reynolds number of 997. This instability was located in the initial
recirculation zone, possessing a “flat-roll structure”, with a spanwise wavelength of
6.9 step heights. It was also shown that this instability became critical at a much lower
Reynolds number than any two-dimensional bifurcation of the flow. The authors, in
locating the instability within the first recirculation zone, argued that the principal
mechanism could not be an interaction with the second recirculation zone, proposing
instead that the mechanism was centrifugal in nature.

Other works of relevance to the subject include those of Marquillie & Ehrenstein
(2003) and Gallaire, Marquillie & Ehrenstein (2006), which treat the separating
boundary-layer flow over a bump. This flow bears many similarities to backward-
facing step flow, with an important difference being the absence of an upper bounding
wall. They found that at critical Reynolds numbers a downstream oscillation of the
recirculation zone, occurring near the reattachment point, plays an important role
in the absolute stability of the flow. Gallaire et al. (2006), continuing in a similar
vein to Barkley et al. (2002), investigated further the possibility of the presence of a
centrifugal instability acting within the recirculation zone.

Another study worthy of mention is that of Thangam & Knight (1989), which
seems to be the only work available that investigates the effect of a large number of
expansion ratios on backward-facing step flow. They found a strong dependence of
recirculation length on step height, with a Reynolds number based on the width of the
small inlet before the expansion. Nie & Armaly (2002) looked at the effect of step
height on backward-facing step flow, but focused only on a narrow range of expansion
ratios (1.67–2.5). They found that an increase in step height caused an increase in
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Figure 1. Sketch of the geometry under investigation.

reattachment length and in the general three-dimensional features of the flow. How-
ever, to maintain a constant Reynolds number across different step heights, the inlet
velocity profile was varied. This kept the Reynolds number constant, but not the mass
flow rate over the step. This is an issue in both the studies mentioned in this paragraph,
in that the inlet conditions of the experiments and simulations are not constant over
different expansion ratios. These studies, although investigating the effects of step
height, do not attempt to explore with any great depth a full range of blockage effects.

The geometry studied in this paper is sketched in figure 1. It has the advantage of
reducing the description of the blockage to a single parameter, and also isolating it
from the calculation of the Reynolds number. While the wake flow has features in
common with that of a backward-facing step, there exist several important differences.
For example, the separation point is not fixed by the geometry. Also, the proposed
semi-circular blockage causes a contraction of the flow upstream of the bump, in
addition to the expansion and deceleration seen downstream of a backward-facing
step. Furthermore, the fully developed Poiseuille profile immediately upstream of the
blockage will not be present. Instead, owing to the constriction, the velocity profile at
the midpoint of the blockage will be markedly skewed to one side.

The following section of this paper gives a definition of the problem and a
description of the numerical methods used. In § 3 the results of the two-dimensional
simulations, as well as an investigation of the stability of the system to three-
dimensional disturbances, are given. Conclusions are drawn in § 4.

2. Problem definition and method
The basic geometry of the problem under examination is depicted in figure 1. The

two non-dimensional parameters governing the flow behaviour are the Reynolds
number Re, and the blockage ratio, defined as b = r/D, where r is the radius of the
blockage and D the distance between the unblocked walls. The blockage ratios con-
sidered for this study lie in the range 0.05 to 0.9. The Reynolds number Re is defined as

Re =
2DU

ν
, (2.1)

where ν is the kinematic viscosity and 2D corresponds to the hydraulic diameter of
the channel. U is the mean flow speed in the channel. The Reynolds number used here
differs from that used in many studies of the backward-facing step, which usually take
the inlet channel width or the step height as the length scale. The velocity scale used
in the present work is the mean velocity in the unblocked part of the channel, which
would correspond to the region downstream of a backward-facing step. For this
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paper, results from other studies are expressed using the Reynolds number definition
(2.1); all distances and times expressed are non-dimensionalized by D and D/U ,
respectively. The study examines laminar flows for Reynolds numbers ranging from
25 up to 3000, wherever possible. The highest Reynolds number for each blockage
ratio was limited by the greater mesh resolution and computational time required to
resolve the increased fluid velocity through the constriction. Hence, as the blockage
ratio approached 0.9, the highest achievable Reynolds number fell accordingly.
Furthermore, it is generally considered that the unblocked flow between two flat
plates (plane Poiseuille flow) becomes turbulent at Re ≈ 2000. Also germane to the
issue of transition to turbulence is the potential for the blockage to act as a tripp-
ing mechanism, lowering the critical upstream Reynolds number for the appearance
of turbulence. These issues of transition and three-dimensionality will be important
in our considerations of instabilities in the two-dimensional base flow.

2.1. Modelling the two-dimensional flow

The two-dimensional flow fields were obtained from a numerical solution of the
time-dependent Navier–Stokes equations, given here along with the incompressibility
constraint,

∂u
∂t

+ u · ∇u = −∇p + ν∇2u, (2.2)

∇ · u = 0, (2.3)

where u = (u(t, x, y), v(t, x, y)) is the two-dimensional velocity vector and p and ν are
the kinematic pressure and viscosity. The simulations were initialized with the fluid
at rest and run until the flow had achieved a converged and generally steady state.
Some simulations run at high Reynolds number achieved an unsteady state, with
some evidence of hysteresis – these higher cases are discussed further in § 3.2. The
spectral-element method used to discretize and solve the equations has been used
and validated in the prediction of wake flows past rings (Sheard, Thompson &
Hourigan 2003), spheres (Thompson, Leweke & Provansal 2001a) and circular
cylinders (Thompson, Hourigan & Sheridan 1996). The method uses a three-step time-
splitting procedure and has been verified to give second-order time accuracy.

2.2. Boundary conditions

On the blockage surface and the channel walls, no-slip conditions were imposed. At
the inlet boundary, an equilibrium parabolic profile was prescribed. The functional
form is given by

u = 6Uy(1 − y), (2.4)

where the bottom and top walls are placed at y = 0 and y = 1, respectively. For the
case of flow between flat plates, U is equal to 2/3 of the peak velocity at the centre
of the channel. At the outflow boundary, the standard zero normal velocity gradient
condition was imposed.

2.3. Stability analysis

The stability of the two-dimensional base flow is determined by solving the linearized
Navier–Stokes equations. The main aim is to determine the stability as a function
of Reynolds number and spanwise wavelength, λ, or equivalently the wavenumber,
k = 2π/λ, allowing for the possibility of both steady and time-dependent bifurcations.
The same or similar techniques have been used successfully in many previous studies,
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for example Barkley & Henderson (1996) and Thompson, Leweke & Williamson
(2001b).

Starting with the two-dimensional base flow, with z and w in the spanwise direction,
the velocity components and the kinematic pressure can be written as the base flow
plus a perturbation:

u(x, y, z, t) = u(x, y, t) + u′(x, y, z, t), (2.5)

p(x, y, z, t) = p(x, y, t) + p′(x, y, z, t), (2.6)

where u = (u, v) and p describe the two-dimensional base flow, and u′ = (u′, v′, w′) and
p′ are perturbations. Substituting these definitions into the Navier–Stokes equations,
subtracting the base flow and removing nonlinear terms yields equations which
describe the evolution of small disturbances:

∂u′

∂t
+ u · ∇u′ + u′ · ∇u = −∇p′ + ν∇2u′, (2.7)

∇ · u′ = 0. (2.8)

Because these equations are linear and the coefficients are not a function of z, the
variation in z can be constructed as a sum of complex exponentials. The coupling
is such that representative modes from the series expansion, characterized by their
spanwise wavelength λ, can be written in the form

u′(x, y, z, t) = û(x, y, t) sin(2πz/λ), (2.9)

v′(x, y, z, t) = v̂(x, y, t) sin(2πz/λ), (2.10)

w′(x, y, z, t) = ŵ(x, y, t) cos(2πz/λ), (2.11)

p′(x, y, z, t) = p̂(x, y, t) sin(2πz/λ). (2.12)

Alternatively, sine and cosine terms can be interchanged to give an equivalent solution
set (see for example Barkley & Henderson 1996).

These variables can then be substituted into the perturbation equations. The
resultant equations describing û, v̂, ŵ and p̂ can be solved using the same numerical
method used to solve for the base flow. Regarding the boundary conditions, the
velocity and pressure perturbations are set to zero on all boundaries of the computa-
tional domain, except the outflow section, where the normal derivatives of the velocity
perturbations vanish.

In this way the evolution of spanwise perturbations to the two-dimensional flow at
a given wavelength λ can be determined. In general, the perturbations will either grow
or decay exponentially. The time-dependence of each component of the perturbation
field can be expressed as

φ̂s(x, y, t) = exp(σst)φ̂s(x, y, 0), (2.13)

where σs is the growth rate, and φ̂s denotes one of the eigenfunctions in the transverse
(x, y)-plane that can be used to reconstruct the two-dimensional perturbation field.
The perturbation mode will either grow or decay depending on whether its growth
rate, σs , is positive or negative.

The growth rate is a function of the eigenmode, the spanwise wavelength and the
Reynolds number. For each Reynolds number, the aim is to determine the fastest-
growing or slowest-decaying mode for each wavelength. At the critical Reynolds
number marking the transition to three-dimensional flow, the growth rate passes
from negative to positive for a particular wavelength. In practice, the maximum
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Figure 2. Sections of the computational meshes, from 2D upstream to 10D downstream of
the blockage, showing macro-elements, used for blockage ratios (a) 0.5, (b) 0.6, (c) 0.7. The
complete mesh extends from 6D upstream to 50D downstream in most simulations.

growth rate for each wavelength and Reynolds number pair is determined by the
power method; that is, a white-noise perturbation field is integrated in time until the
fastest-growing mode dominates, at which point the growth rate can be extracted.

2.4. Mesh layout and resolution

Ten meshes were constructed, with blockage ratios varying between 0.05 and 0.9.
The same macro-element resolution was maintained across the blockage range, as
far as possible. Figure 2 depicts the macro-element distribution close to the blockage
sections of the grids corresponding to b = 0.5, 0.6, 0.7.

Each grid was constructed using the same basic layout, but adjusted for the chosen
blockage ratio. In order to sufficiently resolve higher velocity gradients, the macro-
element distribution was more highly concentrated near the walls of the channel and
through and immediately downstream of the blockage. The resolution was decreased
downstream to the outlet boundary. Each macro-element is further subdivided into
n × n internal nodes, distributed according to the integration points. Functions are
represented internally by (n − 1) × (n − 1) tensor-product Lagrangian polynomials.
An advantage of the approach is the ability to set the polynomial order at run-time,
allowing resolution studies to be performed more easily.

The final internal grid resolution used for most simulations was n= 6, or 36
nodes per element, with no marked differences observed between predictions from
simulations at this resolution and those for n= 5. For higher blockages and Reynolds
numbers, elements of order n= 7, comprising 49 nodes per element, were employed
to properly resolve the more strongly varying regions of the flow field. For the
highest Reynolds number tested at each blockage ratio, a grid resolution analysis
was conducted, whereby the simulation was rerun at the next three higher values of
n. Comparisons were then made based on both the length of the initial recirculation
zone and on vorticity profiles at points downstream of the blockage. Over the
blockage range chosen, this increase in nodal concentration produced differences
of considerably less than 1 % in the recirculation length, and in the maximum
difference in the vorticity profiles over the width of the channel. Small divergences
from the converged vorticity profiles for these high-Reynolds-number flows only
became apparent at polynomial order of n= 5, which generally resulted, as stated
before, from inadequate resolution in areas of high flow gradients.

Further to this grid resolution check for the flow field, the convergence of the
growth rate with increasing interpolant order was tested from the stability analysis
for b = 0.3 and Re = 2400, b = 0.5 and Re = 1200 and b = 0.7 and Re = 600. Table 1
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Re= 2400, b = 0.3 Re= 1200, b = 0.5 Re= 600, b = 0.7

n LR/r σ LR/r σ LR/r σ

3 – – 14.18 0.01615 8.942 0.1672
4 17.06 −0.001286 12.37 0.02850 8.980 0.2008
5 17.64 0.009418 12.32 0.02840 8.965 0.1928
6 17.53 0.008815 12.27 0.02834 8.960 0.1931
7 17.51 0.008554 12.28 0.02837 8.967 0.1931
8 17.52 0.008580 12.27 0.02838 8.967 0.1931
9 17.51 0.008569 12.28 0.02838 8.967 0.1931

Table 1. Convergence of the normalized initial recirculation length, LR/r , and maximum
growth rate, σ , across three blockage values with increasing polynomial order.

Figure 3. Streamlines for b = 0.5 and Re= 1000.

shows the convergence of both the growth rate for the critical wavelength from the
linear stability analysis, and the length of the initial recirculation zone, LR .

The independence of the flow predictions of the domain inlet and outlet lengths
(i.e. the computational channel length upstream and downstream of the blockage)
was also established. The minimum required inlet and outlet lengths were expected
to increase with Reynolds number. As the flow begins to undergo its constriction
upstream of the blockage, unlike the situation for the backward-facing step, care had
to be taken to provide a sufficiently long inlet length; for at least a small portion of
the solved flow field immediately after the computational inlet, the velocity profile
should retain its symmetrical parabolic shape, before deforming to pass through
the blockage. For the mesh constructed for b =0.5, simulations were performed for
Re =2000 with inlet lengths varying between 2D and 10D. The velocity profile only
began to visibly skew at a little over one channel width upstream of the blockage.
No differences were observed in any of the flow fields employing an inlet length of
greater than 3D. For the remainder of the study, a conservative inlet length of 6D was
used for all blockages. The same technique was employed to determine the standard
outlet length of 50D. Hence, with the midpoint of the constriction located at x =0
and the walls at y =0 and y =1, the inlet was located at x = −6 and the outlet
at x =50, which is also consistent with the values used in other recent numerical
studies on a similar geometry featuring a constriction (Sherwin & Blackburn 2005).
For blockages of b > 0.6, at the very highest Reynolds number, something resembling
a convective instability was observed near the outflow boundary; this apparent
non-physical instability disappeared if the outlet length was increased. However,
importantly, no differences were observed in the flow field immediately downstream
of the blockage between the flow fields obtained from grids of longer outlet length.

3. Results
The simulation geometry corresponding to b = 0.5 bears the most similarity to

the geometry of previous work on the backward-facing step. Figure 3, showing the
streamlines of the flow field for b =0.5 and Re = 1000, gives the generic form of the
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Figure 4. Distribution of (normalized) shear stress along the channel walls for b = 0.5 and
Re = 1000. Points where the curves change sign are marked, showing the beginning and end
of recirculation zones.

flow. The initial flow recirculation zone (FRZ) is formed by the sudden expansion of
the flow after the constriction and the resultant adverse pressure gradient over the back
half of the blockage. A further expansion near the end of the first recirculation zone
causes a second separation on the opposite wall. Flows of sufficiently high Reynolds
numbers can also exhibit a third separation, with each subsequent downstream
recirculation attached to alternate channel walls.

3.1. Flow recirculation length

One parameter characterizing the flow state is the length of the first of these flow
separation zones, LR . The precise point of reattachment is best found by utilizing
the wall shear stress, τwall = −µ∂u/∂y (where µ is the dynamic viscosity), and finding
the position on the wall where it is zero. Hence, LR can be accurately determined
by detecting where ∂u/∂y changes sign along the bottom wall. Figure 4 shows
a representative example of the distribution of wall shear stress, normalized by
the dynamic pressure according to τ = τwall/

1
2
ρU

2
= −(2ν/U

2
)(∂u/∂y)ny , where ny

describes the direction of the outward normal to the fluid. For the upper wall ny =1,
and for the lower wall ny = −1. Hence, in figure 4, the areas of negative τ correspond
to recirculation zones, where fluid is flowing upstream in the immediate vicinity of
the wall. The end of the first recirculation zone can be seen where the curve for
the lower wall crosses zero, while in a similar manner the beginning and end of the
recirculation zone on the upper wall are evident.

Figure 5(a) plots the recirculation length normalized by channel width, or LR/D,
as a function of Reynolds number. Across the blockage range, the length of the
recirculation zone seems to increase approximately linearly at lower Reynolds number.
It is possible that the nonlinear increase may be related to the appearance of the
secondary recirculation bubble on the upper wall of the channel. The boundary for
this phenomenon is depicted as the dotted line on figure 5(a). Below this boundary,
behaviour can only be described as approximately linear, but above it, the increase
in recirculation length with Reynolds number does fall away.
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Figure 5. Plots of recirculation lengths against Reynolds number, Re, with LR normalized
by (a) channel width, D, and (b) blockage radius, r (point styles between the two graphs
correspond). The dotted line in (a) shows the approximate boundary where, as Reynolds
number is increased, a second recirculation zone forms on the upper wall of the channel. Also
shown, on (b), are separation lengths for flow over a backward-facing step obtained from
spectral-element simulations (open circles) and experimental measurements from Armaly et al.
(1983) (filled triangles).

After various attempts to collapse the data, non-dimensionalization of the recircula-
tion length by the blockage height, r , was found to yield the most useful result, as
depicted in figure 5(b). For blockage ratios in the range 0.4 � b � 0.9, the normalized
recirculation lengths show a very similar Reynolds number dependence, with only a
mild dependence on blockage ratio. For this blockage range, there is a fairly good
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collapse, with the reattachment lengths at any Reynolds number matching values for
other blockage ratios to within 15 % or better. Significantly reduced recirculation
lengths are observed for b < 0.3, and in addition, the general shape of the curves is
different. In particular, the variation of reattachment length with Reynolds number
is much closer to linear over the Reynolds number range considered. The difference
in the behaviour shown in the two regimes is probably caused by the shape of the
incoming velocity profile. For small blockage ratios, the incoming velocity at the top
of the blockage is much lower than the mean velocity through the channel; indeed, for
b =0.05 this velocity is only 28 % of the mean velocity. Hence, at low blockage ratios,
the effective Reynolds number is much lower than the bulk flow Reynolds number,
so that only a proportionally smaller recirculation zone is formed, as the greater part
of the fluid continues on relatively unperturbed by the blockage. At higher blockage
ratios, the channelling of flow through the small gap between the top of the blockage
and the upper wall means that the local properties of the incoming flow profile no
longer control the flow behaviour.

Predictions of the reattachment length variation for the flow over a backward-
facing step are included for comparison in figure 5(b). These are obtained from
spectral-element simulations performed by the authors, and are in agreement with
accepted literature predictions using different methods (e.g. Thompson & Ferziger
1989). In addition, experimental results of Armaly et al. (1983) are included. Both
sets of results match well with the predictions of the reattachment length for b = 0.5,
up to Re ≈ 400. At higher Reynolds numbers, the predicted recirculation lengths for
the current geometry increase less rapidly with Reynolds number. Apart from this,
there is also a divergence of the experimental and numerical results for the backward-
facing step alone. As mentioned in § 1, the divergence between experimental results
and purely two-dimensional simulations has been argued to be due to a three-
dimensionality formed extrinsically in the experimental flows by the presence of a jet
emanating from the junctions of the sidewalls with the step (Williams & Baker 1997).
In view of the current focus, the more pertinent question of when the two-dimensional
flow becomes intrinsically unstable to three-dimensional perturbations is addressed
in § 3.3.1.

3.2. Wake behaviour

In addition to the initial recirculation zone, other wake parameters were recorded
and other flow states identified. Figure 6 presents a parameter space map showing
the boundaries for the occurrence of various phenomena in terms of blockage ratio
and Reynolds number.

A second flow recirculation zone on the wall opposite the blockage was observed
for b � 0.3 at sufficiently high Reynolds number. Similarly, a third recirculation zone
appears on the bottom wall for b � 0.6. At Re � 1800, for b =0.5 and 0.6, the flow
begins to shed vortices directly from the blockage, indicated on figure 6 by ‘shedding’.
Large vortices develop directly behind the blockage, with smaller alternating ones
developing on the upper wall. Initializing these simulations from a converged steady
flow solution at a lower Reynolds number, instead of from a quiescent state, shows
that the onset of shedding is subcritical. In particular, by incrementing the Reynolds
number in this fashion, it was found that the flow can be held steady up to Re ≈ 2600
for b = 0.5. However, it is worth noting that this is well into the transitional (turbulent)
Reynolds number regime for unconstricted flow between flat plates, and well past
the critical Reynolds number at which the flow is unstable to three-dimensional
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Figure 6. Parameter map showing the wake state as a function of Reynolds number and
blockage ratio for stationary flow. The specific data points tested are plotted, while solid
lines indicate the approximate boundaries between different flow states. The straight dotted
line at Re = 2000 represents where turbulence would begin to be seen in the unconstricted
flow between two flat plates. The dashed curve indicates the critical boundary for linear
three-dimensional instability, derived from the stability analysis presented in § 3.3.1. The terms
1, 2 and 3 FRZ denote the number of recirculation zones present.
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Figure 7. Contours of positive and negative spanwise vorticity, depicting the variation with
Reynolds number of the amplitude and location of dimpling of the initial recirculation zone,
at b = 0.7, and Re = 400, 800, 1200 and 1600 (top to bottom).

disturbances for flow past a backward-facing step. Hence, we have not focused
further attention on this particular phenomenon.

At higher Reynolds numbers, for b � 0.6, the structure of the first recirculation zone
begins to take on a different form. Occurrences of this steady structure are denoted
by ‘mini-FRZ’ in figure 6, while examples are depicted in figure 7.
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Figure 8. Close-up of the end of the initial FRZ for b = 0.8 and Re = 1000, showing the
spanwise vorticity field overlaid with velocity vectors.

The development of these dimples in the initial recirculation zone can be seen
in the vorticity fields of figure 7, with the first field being below the boundary for
the occurrence of the phenomenon and the rest being above it. At Re =400 the
structure is not apparent, but with increasing Reynolds number, instances of these
small recirculation zones grow in strength and number and occur slightly further
upstream. Figure 8 is a close-up of the vorticity field of the structure, at Re = 1000
and b =0.8, with velocity vectors overlaid. In this instance, a series of three mini-
recirculations and the beginnings of a fourth are apparent. A close inspection reveals
even smaller partial recirculations between those obvious in figure 8, nestled between
the primary clockwise mini-vortices but attached to the bottom wall of the channel.
This is somewhat reminiscent of the sequence of mini-recirculations that appear at the
front of the horseshoe vortex associated with a cylinder–wall junction as the Reynolds
number is increased (e.g. Thwaites 1960; Visbal 1991; Baker 1979). It should be noted
that the boundary for the phenomenon shown in figure 6 denotes where the structure
first becomes apparent, from observations of plots of the vorticity field.

Interestingly, we have not found any reference to such vortical structures in any
of the literature on the flow past a backward-facing step. In that case, it may not
occur until the Reynolds number is very much higher than is typically investigated.
Considering that the critical Reynolds number for linear three-dimensional instability
for a backward-facing step was found to be Re =997 by Barkley et al. (2002), it
is likely that these structures would occur for purely two-dimensional flow only
above the critical Reynolds number of three-dimensional instability. This question is
addressed in the following section dealing with the stability of the two-dimensional
base flow.

3.3. Three-dimensional behaviour

3.3.1. Instability growth rates

Figure 9 shows converged non-dimensional growth rates corresponding to the
dominant linear instability mode for b = 0.4, 0.5 and 0.6 as a function of Reynolds
number. We initially look at the results obtained for the geometry of b = 0.5, which
bears the most similarity to the backward-facing step, serving here as a point of
reference. From figure 9(b) we see that for b = 0.5, the primary linear spanwise
instability occurs at Re ≈ 800, for a spanwise wavelength of ∼ 5.7 blockage heights.
After determining the curves for several Reynolds numbers, the critical Reynolds
number Rec, and the critical wavelength λc, were found by polynomial interpolation.
The flow was then simulated at this Reynolds number/wavelength combination to
verify the predictions. For b =0.5, the critical Reynolds number is found to be
Rec = 794, at a wavelength of λc = 5.7r .

This critical Reynolds number for the transition to three-dimensionality for the
geometry of b = 0.5 is considerably higher than the one found by Armaly et al.
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Figure 9. Non-dimensional growth rate as a function of wavelength, for blockage ratios of
(a) 0.4, (b) 0.5 and (c) 0.6, at various Reynolds numbers.
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(1983), and lower than that found by Barkley et al. (2002). As demonstrated by
Williams & Baker (1997) and discussed in § 3.1, the reasons for the discrepancy
with the experimental work of Armaly et al. (1983) probably lie in the inadequate
channel width used in the experimental rig. Williams & Baker (1997) demonstrated
that even in rigs of high spanwise dimension, wall jets emanating from where the step
meets the sidewall penetrate into the mainstream flow, creating three-dimensional
flow structures. This is similar to, but worse than, the difficulty in trying to produce
a two-dimensional wake from a circular cylinder. In that case, aspect ratios need to
be several hundred unless special end conditions are used. See for example Miller &
Williamson (1994) or Norberg (1994).

The relatively small differences in critical Reynolds number and wavelength between
the present case and the infinitely wide backward-facing step (Barkley et al. 2002) are
not due to similar extrinsic effects, but are caused by differences in the flow geometry.
The critical Reynolds number and wavelength are both approximately 20 % lower
than the corresponding values for the step (Rec = 997 and λc =6.9r). Assuming that
the nature of, and mechanism for, the instabilities in each case are analogous (see
discussion below), the discrepancy in Rec and λc with the backward-facing step may
be related to two differences in the flow structure and topology resulting from the
altered geometry. The first is the change in the velocity profile at the separation point.
Over the semi-circular blockage, the velocity profile is skewed owing to the rapid
constriction of the flow, with the highest velocity being closer to the bump than to the
top wall. This is in contrast to the fully developed Poiseuille profile found in studies
of the backward-facing step. We have not attempted to quantify this influence here.
The other difference lies in the fixed point of separation present at the very edge of
the backward-facing step and the mobile one in the present study. Without the sharp
edge forcing the detachment of the flow, the point of separation becomes dependent
on the adverse pressure gradient on the downstream half of the blockage, moving
upstream with increasing Reynolds number.

The same process of determining the critical Reynolds number and wavelength
was carried out for the other blockage ratios in the range 0.3 � b � 0.7. The critical
boundary is plotted on figure 6. The transition to three-dimensional flow is found to
occur prior to the first appearance of the mini-recirculation zones, described in § 3.2,
and well before the subcritical transition to two-dimensional vortex shedding. This is
discussed further in § 3.3.3.

3.3.2. Structure of the instability

The structure of the dominant mode at Re =800 and b = 0.5, for which λ/r = 5.7, is
shown in figure 10. It is visualized by plotting isosurfaces of the streamwise vorticity.
The repeating structure of the mode consists of two layers of opposite-signed vorticity,
one almost entirely located within the recirculation zone and the other extending into
the mainstream flow. The mode appears to grow around the first recirculation zone.
Figure 11 shows the spanwise vorticity field of the mode, consisting of two elongated
regions of opposite-signed vorticity, whose extrema are offset at a small angle. This
point will prove relevant in our discussion of instability mechanisms.

The same generic mode structure is found across the blockage range tested. The
structure is qualitatively similar to that of the backward-facing step found by Barkley
et al. (2002). Figures 10 and 11 indicate that the downstream extent of the instability
mode possibly scales with the length of the first recirculation zone; if this is the
case, then much of the difference between the predicted critical spanwise wavelengths
in the two cases can be explained by the difference in reattachment lengths at the
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Figure 10. Two positive and negative iso-surfaces of the streamwise vorticity of the dominant
mode, λ/r = 5.7, at Re = 800 and b = 0.5, depicted over two spanwise wavelengths. Transparent
representations of the recirculation zones of the base flow are included.

Figure 11. Positive and negative contours of the spanwise vorticity (colouring linear) of the
critical perturbation mode, λ/r = 5.7, at Re = 800 and b =0.5, overlaid with streamlines of the
base flow.
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Figure 12. Plot of recirculation length at critical Reynolds number against critical wavelength.
Both axes have been normalized by the blockage height. The square is the corresponding point
for the backward-facing step taken from Barkley et al. (2002).

critical Reynolds number, rather than any absolute difference between the two flows.
Figure 12 shows the relationship between reattachment length and critical wavelength.
At the recirculation length corresponding to the critical Reynolds number for the
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Figure 13. Streamlines and positive and negative contours of the spanwise vorticity of the
base flow, with b = 0.5 and Re = 800.

backward-facing step, LR = 13.2 (Barkley et al. 2002), the predicted critical wavelength
is λ/r ≈ 6.5, only slightly smaller than the λ/r = 6.9 obtained for the backward-facing
step.

3.3.3. Instability mechanism – centrifugal

The strong similarity between the structure of the principal three-dimensional
instability found behind the blockage and of that reported in the literature for the
backward-facing step suggests taking a closer look at the previous theories on the
subject of mechanisms for this instability. These have suggested that the appearance
of the second recirculation zone on the upper wall, by introducing a curvature to
the mainstream flow, induces a Taylor–Görtler-like instability (Ghia et al. 1989).
In recent work using adjoint stability analysis, the instability core in similar flows
has been determined to be located within the recirculation zone (Marquet et al.
2006). Barkley et al. (2002) have attributed the origins of the instability, again to a
centrifugal mechanism, but this time located within the closed streamlines of the first
recirculation zone.

Centrifugal instability theory, as first developed by Rayleigh (1917) for axisymmetric
inviscid flows with circular streamlines, holds that a potentially unstable condition
results from the existence of a decrease in angular momentum of fluid particles, as
the radial distance from the centre of rotation of the flow increases, since this implies
an imbalance between the radial pressure gradient and the centrifugal force acting
on the fluid particles. Triggering of the instability will cause three-dimensional flow
structures to form, which redistribute angular momentum between the inner and outer
regions of such a vortex. The corresponding perturbations typically consist of a series
of counter-rotating azimuthal vortices located in the region of decreasing circulation,
and whose axial wavelength scales on the radial extent of this region. Applying this
theory to irregularly curved streamlines, as in the instance found here within the
initial recirculation zone, is problematic, as the flow is only locally circular with the
radius of curvature varying along any one streamline. Despite this, Bayly (1988) has
successfully generalized the centrifugal instability theory, making it possible to obtain
predictions for any two-dimensional flow consisting of closed streamlines.

The object of this section of the paper is to give a comparison between the results
of the linear stability analysis presented in § 3.3.1, which are not restricted to any
specific instability type, and the stability of the flow to centrifugal instability calculated
analytically through the method proposed by Bayly (1988). We focus initially on the
case of Re = 800 and b = 0.5, the base flow of which is shown in figure 13.

Figure 14(a) plots the circulation within the recirculation zone, as a function of
streamfunction, ψ . The centre of recirculation corresponds to ψ = 0. Centrifugal
instability is predicted wherever there exists a decrease in circulation on moving away
from the centre of rotation. As can be seen from figure 14(a), in the flow in question
such a decrease exists near the edge of the recirculation zone, but the range across
which it appears is extremely narrow. More quantitative predictions can be obtained
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Figure 14. (a) Plot of the circulation, Γ (ψ), within the initial recirculation zone and (b) plot
of the real Floquet exponent, σf (ψ), for b = 0.5 and Re =800. Dotted lines show the boundary
of the recirculation zone. Exponents calculated in the range 0.0384 <ψ < 0.0525 are complex.

by first calculating the local (i.e. as a function of ψ) Floquet exponents σf , expressing
the growth of perturbations (in the limit of short wavelengths) of fluid elements
as they make one revolution on a closed streamline. Details on how to calculate
these exponents from the base flow are found in Bayly (1988); the result is plotted in
figure 14(b). The behaviour of σf (ψ) in this graph matches closely that seen in Gallaire
et al. (2006), who performed a similar analysis within the recirculation zone behind
a bump on a plane wall in unbounded flow. An approximately quadratic maximum
of σf is found at ψ0 ≈ 0.055, which allows the construction of centrifugal instability
modes near the corresponding streamline and the calculation of their growth rates
as functions of spanwise wavelength. A second peak in σf (ψ) exists closer to the
centre of the recirculation zone; it occurs, however, in a region of increasing outward
circulation and we would therefore not expect it to play a role in any centrifugal
instability. Including a viscous damping term proportional to −ν(2π/λ)2, the total
viscous growth rate s can be expressed as

s(λ) = σf (ψ0) − λ

2πD
[−σ ′′

f (ψ0)C(ψ0)]
1/2 − 2A

Re

(
2πD

λ

)2

, (3.1)

where A is a constant of O(1), and C(ψ) a complex function of the two-dimensional
base flow (for details see Bayly 1988). In equation (3.1), all quantities depending
on ψ (i.e. σf , its second derivative σ ′′

f , and C) are evaluated for the most unstable
streamline ψ0.

Figure 15 plots the total growth rate as a function of wavelength, for Re = 800,
1000 and 1200, Re =800 being near the critical Reynolds number determined from
our earlier stability analysis. From the graph we can see that the theory predicts
the flow to be stable to such an instability even up to at least Re = 1200. The value
of the unknown coefficient A was chosen here to be 1. Other values also of O(1)
would obviously modify the predicted growth rate curves. Nevertheless, an important
observation can be made concerning the least stable wavelength predicted, which
has only a small dependence on the viscous correction. We see that any instability
triggered in the recirculation zone by a centrifugal mechanism will be of wavelength
λ/r ≈ 1, significantly below the critical wavelength of λ/r = 5.7 determined from our
numerical stability analysis, and shown in figure 9(b). Considering the narrow range
of streamlines which exhibit a radially outward decrease in circulation, it is not
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Figure 15. Total predicted growth rate of centrifugal instability, as a function of normalized
wavelength, for Re = 800, 1000, 1200, according to the theory as presented in Bayly (1988).

surprising that the wavelength predicted by the centrifugal instability theory should
be of a similarly small scale. Indeed, it is evident from (3.1) that the growth rate
has a high dependence on σ ′′

f , which results in a strong damping of wavelengths
significantly larger than the width of the narrow ‘unstable’ range of streamlines near
the edge of the recirculation zone.

The analysis of this section seems to discount the possibility of the mechanism
of the instability shown in figure 10 being centrifugal in nature. While the growth
rates returned by the theory are well below critical, the large difference between the
wavelength predicted by the theory and that determined from our numerical stability
analysis lends the most weight to this argument.

3.3.4. Instability mechanism – elliptic

Given the strongly elongated shape of the recirculation zone in the flow under
consideration, the flow’s tendency to elliptic instability also merits investigation. This
instability can occur in flows with elliptic streamlines, such as those found in a
vortex exposed to an external strain field. The interaction of strain with normally
neutral perturbation modes of the vortex can lead to a resonant amplification of
these modes and thus to instability. The associated perturbations represent three-
dimensional deformations of the vortex core, whose axial wavelengths scale on the
transverse core size. A review of this mechanism is given by Kerswell (2002).

A first qualitative indication of elliptic instability is given by the structure of the
instability mode, as seen in the plot of spanwise perturbation vorticity in figure 11. Two
regions of opposite-signed vorticity are found inside the recirculation zone, indicating
a shift of its centre of rotation in a spanwise-periodic way, which is characteristic of
elliptic instability.

The analysis can be made more quantitative by following the same procedure
as applied by Leweke & Williamson (1998) to the three-dimensional instability of
circular cylinder wakes, which was based on the theoretical work on viscous elliptic
instability by Landman & Saffman (1987). For elliptic flow extending to infinity, with
constant streamline eccentricity β in the range 0 <β < 1, the inviscid growth rate
σi for elliptic instability, which is independent of axial/spanwise wavelength, can be
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Figure 16. Contours of positive inviscid growth rate, σi , calculated locally from (3.2), along
with representative streamlines of the base flow. The presence of regions of positive growth
rate located within the closed streamlines suggest the possibility of elliptic stability.

approximated by

σi ≈ 9ε

16
(1 − βm)n, (3.2)

where ε denotes the (constant and non-dimensional) strain rate of the flow, and where
m = 2.811 and n= 0.3914 (Leweke & Williamson 1998). Despite the assumption of
infinite elliptic flow with constant β made for (3.2), it is instructive to plot a local
distribution of σi , using the relation (also derived from infinite flow) β =2ε/|ω|, where
ω is the vorticity, as function of position. The result is shown in figure 16 for the critical
case with Re = 800 and b =0.5, the base flow of which is shown in figure 13. The
regions of strong inviscid growth rate within the mainstream flow are of no interest, as
they occur upon unclosed streamlines, but a region of positive growth rate does extend
into and past the centre of the recirculation zone. There is also a significant overlap
between this region and the zone where the instability amplitude is strong, as observed
in figure 11, which includes the recirculation zone and the adjacent shear layer.

To determine the total growth rate σ at the relatively low Reynolds numbers
considered here, a viscous correction must be included. This effect was treated by
Landman & Saffman (1987), and the result can be written as

σ = σi − 2

Re

(
2πD

λ

)2
1 − β cos2 θ

(1 − β) cos2 θ
. (3.3)

In the present case, we evaluate all involved quantities at the centre of recirculation,
for simplicity (this choice is partly motivated by the observations made by Eloy &
Le Dizes (1999) concerning elliptic instability of a vortex with non-uniform vorticity).
Here θ is the angle between the wave vector of the most unstable perturbation and the
axis of rotation of the recirculation zone. It depends on the streamline eccentricity and
the Reynolds number, and can in principle be obtained from figure 3 of Landman &
Saffman (1987). However, in the present case, the eccentricity is always close to 1 at the
centre of rotation, and without knowing beforehand the wavelength of the instability,
θ cannot be determined with great accuracy. This means that unlike the case of
nearly circular base-flow streamlines (i.e. low β) for which θ is always close to 60◦,
we are not able to predict theoretically a growth rate curve as a function of spanwise
wavelength, solely based on the properties of the two-dimensional flow. We can
nevertheless still perform a consistency check between the observed characteristics
and the theory on elliptic instability, using additional information concerning the
most unstable wavelengths obtained in the stability analysis of § 3.3.1. Indeed, if the
spanwise wavelength is known, the angle θ can be calculated from the following
relation between spanwise and cross-sectional length scales, which can be deduced
from Landman & Saffman (1987):

λ = L

(
2

1 − β

)1/2

tan θ, (3.4)
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Figure 17. Comparison between the analytically calculated growth rates for elliptic instability,
(symbols and dashed lines) and the maximum growth rates from the numerical stability analysis
results of § 3.3.1 (lines), as a function of Reynolds number.

where L is a characteristic length scale of the base flow. For the present case, we
choose it to be proportional to the minor axis of the recirculation zone. For elliptic
instability, we would expect this length to be the constraining dimension on the
development of the mode, at least more so than the other possible candidate, the
major axis of the vortex. Once θ is known, the total growth rate of elliptic instability
can be calculated using (3.3).

This procedure was carried out for different blockage ratios and a range of Reynolds
numbers around the respective instability thresholds. Each time, the values of ε and
σi were calculated at the centre of the recirculation zone of the base flow, the minor
axis of the latter was measured, and the most unstable wavelength obtained from
stability analysis. The total growth rates resulting from these parameters and the
equations above derived from elliptic instability theory are plotted in figure 17, where
they are compared with the ones obtained from the numerical stability analysis. A
proportionality factor of 1.1 between L and the minor axis of the recirculation zone
was found to give the best match, and was used for all cases.

The overall agreement between the two sets of results is quite good, given the
approximations and hypotheses that had to be made in order to apply elliptic
instability theory to the present high-eccentricity flow. It shows that not only the
observed combinations of wavelengths and growth rates of the three-dimensional
instability, but also the trends and variations with Reynolds number and blockage
ratio are compatible with an elliptic instability mechanism acting in this flow.

4. Conclusions
An investigation of the flow through a partially blocked two-dimensional channel

across a range of Reynolds numbers and blockage ratios has been presented.
For blockage ratios b � 0.4, the functional dependence of the length of the initial
recirculation zone on the upstream Reynolds number is insensitive to blockage ratio,
if the length is normalized by blockage height. This collapse breaks down at smaller
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blockage ratios. For b < 0.3, much shorter recirculation lengths are observed, presum-
ably because of the lower fluid velocity in the vicinity of the blockage due to the para-
bolic velocity profile. In addition to the standard single recirculation region at the rear
of the blockage, at higher Reynolds numbers other flow behaviours were observed,
including multiple downstream recirculations attached to alternating walls, vortex
shedding which appeared to be convective in nature, and sets of small positive and
negative vortices at the end of the main recirculation bubble reminiscent of those that
occur upstream of wall–body junctions. Most of these features occur at Reynolds num-
ber in excess of the critical Reynolds number for transition to three-dimensional flow.

The stability of the flow to three-dimensional perturbations was analysed, with the
identification of a transition to three-dimensionality involving a stationary instability
mode. This mode takes the form of counter-rotating cells centred around the initial
recirculation zone, with the same generic structure being found between b = 0.3
and b = 0.7. The mode structure, onset Reynolds number and critical wavelength
for b = 0.5 match well with the results taken from the literature for the flow over
a backward-facing step. This is despite distinct differences in the flow profile at
separation associated with the flow convergence and divergence, and the different
geometry near separation. The previously proposed argument for the mechanism
of the instability being centrifugal in nature was tested by means of a theoretical
analysis of the flow field at the critical Reynolds number. The theory on centrifugal
instabilities predicts the flow to be stable to such a mechanism and further predicts
the critical wavelength, also at any other Reynolds number within our domain, to be
much lower than that determined from our numerical stability analysis. Centrifugal
instability therefore appears not to be the mechanism at the origin of the observed
three-dimensional instability. Further analysis was carried out exploring the possibility
of an elliptic instability acting in this flow. Although a straightforward theoretical
prediction was not achieved, owing to the high eccentricity of the recirculation zone
considered here, the observed characteristics were found to be consistent with an
elliptic instability mechanism.
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