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We present a decomposition of the streamwise fluid force for in-line vortex-induced vibration8
(VIV) to provide insight into how the wake drag acts as a driving force in fluid-structure9
interaction. This force decomposition is an extension of that proposed in the recent work of10
Konstantinidis et al. (2021), and is applied to and validated by our experiments examining11
a circular cylinder freely vibrating in-line with the free-steam. It is revealed from the12
decomposition and linear analysis that two regimes of significant vibration are in phase13
synchronisation, while they are separated by a desynchronised regimemarked by competition14
between non-stationary frequency responses of the cylinder vibration and the vortex shedding.15
Of interest, such a near-resonance desynchronisation regime is not seen in the transverse16
vibration case.17
Key words: fluid-structure interaction, vortex-induced vibration, force decomposition18

1. Introduction19

Decomposition of the driving fluid force has been widely performed to gain insight into20
the mechanisms governing fluid-structure interaction in flow-induced vibration (FIV). For21
a bluff body with a single degree of freedom to vibrate in the cross-flow or streamwise22
direction, the fluid force is often decomposed into potential (inviscid) and vortical (viscous)23
components. The potential component is related to the “addedmass” arising fromacceleration24
of surrounding fluid during the acceleration of a body in an inviscid irrotational fluid, and25
thus it is often referred to as the potential force or the added-mass force (see Limacher26
et al. 2018). The vortical component is related to forcing associated with the surrounding27
time-varying vorticity field, noting that in general a flow field can be constructed from28
irrotational (potential) and rotational components (Lighthill 1986; Govardhan &Williamson29
2000; Limacher et al. 2018; Limacher 2021). This simple force decomposition approach30
has been useful in characterising FIV response regimes and transitions, and vortex shedding31
modes, of bluff bodies vibrating transversely to a free-stream (e.g. Govardhan &Williamson32
2000; Zhao et al. 2014, 2018a; Soti et al. 2018; Zhao et al. 2019). However, for a body33
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Figure 1: Problem setup for in-line vortex-induced vibration of a circular cylinder showing
key parameters.

vibrating in-line, the make-up of the vortex force is more complex and it is useful to split34
the vortex force into different components to aid in developing a model representative of the35
flow physics. As demonstrated by Konstantinidis & Bouris (2017), a decomposition of the36
vortex force based on Morison’s equation (Morison et al. 1950) was only partially able to37
reconstruct the fluid force acting on a cylinder in non-zero-mean displacement oscillatory38
flows. Thus, building on previous studies, a key interest of the present study is to extend this39
force decomposition model for a cylinder freely vibrating in-line with the free-stream.40
Figure 1 shows a schematic for the problem of interest: an elastically mounted cylinder is41

free to oscillate only in the streamwise direction, and the fluid-structure system is modelled42
as a single-degree-of-freedom mass-spring-damper oscillator subjected to a fluid flow. Key43
problem parameters are also defined in this figure. The body dynamics is governed by the44
linear second-order equation for a mass-spring-damper system:45

< ¥G(C) + 2 ¤G(C) + :G(C) = �G (C) , (1.1)46

where < is the total oscillating mass of the system, 2 is the structural damping of the47
system, : is the spring constant, G(C) is the body displacement, and �G (C) represents the48
time-dependent (streamwise) fluid force acting on the cylinder. Note that the streamwise and49
transverse fluid force coefficients used in this study are defined by �G = �G/( 1

2 d*
2�!)50

and �H = �H/( 1
2 d*

2�!), respectively, where d is the fluid density and ! is the cylinder51
immersed span. Often, the structural dynamics is characterised as a function of flow reduced52
velocity,*∗ = */( 5nw�), where 5nw is the natural frequency of the system in quiescent fluid53
(i.e. water in the present study).54
Previous studies have focused on characterising the in-line VIV amplitude and frequency55

responses (e.g. Aguirre 1977; Okajima et al. 2004), and wakemodes (e.g. Cagney&Balabani56
2013a,b; Konstantinidis 2014). It has been shown widely in experimental studies that there57
generally exist two amplitude response branches in moderate- or high-Reynolds-number58
flows, while no branching behaviour has been observed in low-Reynolds-number numerical59
simulations (e.g. Bourguet & Lo Jacono 2015; Konstantinidis et al. 2021). Note that the60
Reynolds number here is defined by Re = *�/a, with a the kinematic viscosity of the fluid.61
Gurian et al. (2019) conducted experimental measurements of the streamwise fluid force, but62
without further decomposition analysis. Very recently, Konstantinidis et al. (2021) presented63
a force decomposition to shed light on the wake drag as the underlying driving component;64
however, when applied to our experimental data, their equations require modification.65
Therefore, there is still a need to develop an improved fluid forcing decomposition model66
that is consistent with the underlying force components in in-line VIV. This is particularly67
the case at moderate Reynolds numbers where the amplitude response is distinctly different68
from previous low-Re low-amplitude numerical studies. Thus, the primary contribution of69
the present work is to present this force decomposition extension, based on the model of70
Konstantinidis et al. (2021), to provide further insight into the dynamics in in-line VIV.71
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2. Experimental methodology72

In the present study, the hydro-elastic system was modelled using a low-friction air-bearing73
rig in conjunction with a recirculating free-surface water channel of the Fluids Laboratory74
for Aeronautical and Industrial Research (FLAIR) at Monash University. Details of the75
air-bearing system and water-channel facilities have been described in the previous related76
studies of Zhao et al. (2018a,b) and Wong et al. (2018).77
The test cylinder model, precision-made from aluminium tubing, had an outer diameter78

of � = 40 ± 0.01 mm. The immersed length of cylinder was ! = 614 mm, yielding a79
span-to-diameter aspect ratio of �' = !/� = 15.4. To reduce end effects of the cylinder80
and to promote parallel vortex shedding, an end conditioning platform was used (for more81
details, see Zhao et al. 2018a,b). The total oscillating mass of the system was < = 1140.1 g,82
and the displaced mass of water was <d = dc�2!/4 = 770.7 g, giving a mass ratio83
<∗ = </<d = 1.48. The natural frequency of themass-spring-damper system, determined via84
free decay tests, was found to be 5na = 0.951 Hz in air and 5nw = 0.723 Hz in quiescent water.85
Note that the structural damping ratio with consideration of the added mass was given by86

Z = 2/2
√
: (< + <A) = 1.98×10−3, where the addedmass, given by<A = (( 5na/ 5nw)2−1)<,87

was found to be 829.8 g. This equates to an experimentally defined added-mass coefficient,88
defined by �A = <A/<d, of 1.08, noting this is close to the theoretical potential added-mass89
coefficient of �A = 1.90
Measurement techniques for the cylinder vibration and fluid forces acting on the vibrating91

cylinder have been described and validated by Zhao et al. (2014, 2018a,b). The current VIV92
experiments were conducted over the reduced velocity range of 1.40 6 *∗ 6 5.00 with fine93
increments of 0.05, while the corresponding Reynolds number range was 1530 6 Re 6 5450.94
In addition, drag forcemeasurements for a stationary cylinder over the sameReynolds number95
range were also conducted using a high-precision six-axis force sensor (Mini40, ATI-IA, US)96
with an accuracy of 5 mN (see Sareen et al. 2018).97
The near wake of the cylinder was measured using the particle image velocimetry (PIV)98

technique. Details of the PIV system used can be found in Zhao et al. (2018a,b). In the99
present experiments, in order to provide a thorough examination of changes of the near-wake100
flow structure, a more than 100 000 images were obtained for 13 reduced velocities (9 are101
presented in the text of this paper, while the others are provided together as supplementary102
movies) across the VIV response regimes. The imaging was conducted at a sampling rate of103
100 Hz for 6200 images each dataset. To clearly visualise the evolution of the wake, images104
of each case were divided into 48 phases per vortex shedding cycle, giving each phase at105
least 100 snapshots for averaging.106

3. Results and discussion107

3.1. Amplitude response and quasi-steady drag force108

Figure 2 shows the normalised amplitude response (�∗), the normalised time-averaged109
displacement (Ḡ∗) of the cylinder from its neutral position at zero flow velocity, and the110
time-averaged streamwise fluid force coefficient (�G) as a function of reduced velocity. Note111
that in the present study the amplitude is represented by themean of the top 10% of amplitudes112
(�∗10, based on half of peak-to-peak values) at each *∗. As can be seen in figure 2(0), the113
present amplitude response can be characterised distinctly by two VIV regimes (namely114
regime I and regime II) and a competing regime (CR). In general, the two response regimes115
of the present work agree with those found in previous studies (for instance, see Aguirre116
(1977) with a similar mass ratio of 1.46). However, discrepancies in some details may be117
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Figure 2: The variation of (0) the normalised amplitude response, (1) time-averaged
displacement, and (2) time-averaged streamwise fluid force coefficient as a function of

reduced velocity. In (0), the vibration response regimes in the present study are shaded in
different colours: VIV regime I in light yellow, competing regime (CR) in grey, and VIV
regime II in light blue. Aguirre (1977): <∗ = 1.46 (Z unknown), Re = 1 × 103 – 3 × 105;

Okajima et al. (2004): <∗Z = 0.49 (<∗ and Z individually unknown),
Re = 8 × 103 – 4 × 104; Cagney & Balabani (2013b): <∗ = 1.17 and Z ≈ 5.3 × 10−3,

Re = 450 – 3700; and Gurian et al. (2019): <∗ = 1.61 and Z = 6 × 10−3, Re = 970 – 3370.
In (1), the dotted line in red and the solid line in black represent the evaluations of Ḡ∗ (�3)
and Ḡ∗ (�G0 ) by substituting �3 and �G0 for (3.1), respectively. In (2), the dotted line in
red represents the measurements of �3 , while the horizontal line in black represents �G0 .

Note that the circles filled in blue represent spot PIV measurements.

attributable to differences in mass ratio, damping ratio and Reynolds number, but these118
aspects are beyond the focus of the present study.119
In regime I (covering the range 1.55 6 *∗ 6 2.40), the vibration amplitude increases120

gradually to reach its peak value of �∗10 = 0.144 as *∗ is increased to 2.40. In this regime,121
the body vibration frequency ( 5 ∗G ) is synchronised with the fluid forcing frequency ( 5 ∗�G

), as122
shown in figure 3(1, 2). Note that the frequency components are normalised by the natural123
frequency of the system in quiescent water, namely 5 ∗ = 5 / 5nw. It is interesting to note124
that both 5 ∗G and 5 ∗

�G
tend to increase slightly with *∗ beyond *∗ ' 2.1. When both 5 ∗G125

and 5 ∗
�G

approach the slope of 2(C (Strouhal number = (C = � 5 /* = 0.215 measured over126
the Reynolds number range tested), the amplitude response experiences an abrupt drop at127
*∗ = 2.45 (≈ 1/(2(C)), due to the competition between non-stationary (i.e. changing with128
time) frequency responses of the body vibration and the vortex shedding, noting that the129
streamwise fluid force generally exhibits a dominant frequency twice that of the cross-flow130
fluid force ( 5 ∗

�H
) for a fixed body. As shown in figure 2, the sudden drop of amplitude131

response in this regime has also been observed occurring over different *∗ ranges in the132
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Figure 3: Normalised amplitude and logarithmic-scale power spectrum density contours
of normalised frequency responses as a function of reduced velocity.

previous studies with different structural properties; however, no detailed investigations into133
this regime have yet been reported. More features of the competition regime will be further134
discussed later. As*∗ is increased slightly further to 2.60, frequency synchronisation between135
the body vibration and driving fluid force is resumed in regime II for *∗ up to 4.20, where136
the vibration amplitude is found to be almost constant at �∗10 = 0.094 throughout. Still, both137
5 ∗G and 5 ∗

�G
tend to increase slightly with *∗, until desynchronisation is encountered when138

they approach the natural frequency of the system in air (i.e., 5 ∗ ≈ 5na/ 5nw).139
To take the analyse further, we examine the time-averaged cylinder position and the time-140

averaged streamwise fluid force coefficient. Following the analytical approach used by Zhao141
et al. (2018b), by taking temporal averages of both sides of equation (1.1), the time-averaged142
cylinder displacement in dimensionless form (normalised by the cylinder diameter �) can143
be expressed as144

Ḡ∗ =
*∗2�G

2c3(<∗ + �A)
. (3.1)145

Interestingly, as shown in figure 2(1), Ḡ∗ deviates from the values of Ḡ∗(�3) and Ḡ∗(�G0),146
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which are evaluated by substituting�3 and�G0 , respectively, for�G in equation (3.1), noting147

that �3 is the quasi-steady drag coefficient measured for the fixed cylinder case, while �G0148

is the average of �G taken for the desynchronised locations of insignificant vibration (i.e.149
*∗ > 4.2). Similar deviations have been observed for in-line FIV of a rotating cylinder by150
Zhao et al. (2018b), when the cylinder experienced large-amplitude oscillations. It is also151
interesting to note in the present study that �G0 deviates from �3 for high reduced velocities152

(i.e.*∗ > 4.1), which in turn leads to the differences between Ḡ∗(�3) and Ḡ∗(�G0). However,153
these significant deviations could not be explained by the previous force decomposition of154
Konstantinidis et al. (2021), as theywere neglected in low-Reynolds-number flows ('4 = 100155
– 250). To better understand the underlying physics of the resonant response, we perform a156
decomposition analysis for the driving fluid force in the following subsection §3.2.157

3.2. Decomposition of the driving fluid force158

Assuming that the cylinder vibration in fluid-structure sychronisation can be represented by159
a single-frequency harmonic function of time, the cylinder displacement and the streamwise160
fluid force can be expressed by (3.2) and (3.3), respectively:161

G(C) = Ḡ + � cos(lC) . (3.2)162
163

�G (C) = �G + �̃G cos(lC + qG), (3.3)164

where �G and �̃G are the time-averaged component and the magnitude of the fluctuating165
component of �G , respectively, while qG is the phase between �G and G (also referred to as166
the total phase); l = 2c 5 is the angular frequency.167
Following the force decomposition method proposed by Konstantinidis et al. (2021), who168

extended the equation of Morison et al. (1950) to include a wake drag term, the streamwise169
fluid force is given as follows:170

�G (C) =
1
2
d�!�3 |* − ¤G | (* − ¤G) − <A ¥G + �dw(C), (3.4)171

where the first term represents the quasi-steady drag experienced by a fixed cylinder that is172
subjected to a relative flow speed (* − ¤G), the second term represents the potential force173
(the inviscid added-mass force) associated with the body acceleration, and the third term174
represents the wake drag. In particular, different from Konstantinidis et al. (2021), we here175
further decompose the wake drag into a steady component and an unsteady component due176
to periodic vortex formation in the cylinder wake, given by177

�dw(C) = �dw + �̃dw cos(lC + qdw), (3.5)178

where �dw is the (time-averaged) steady component, while �̃dw is the magnitude of the179
unsteady component with a phase, qdw, with respect to the body displacement G. By180
neglecting the terms involving second or higher orders of sin(lC) and cos(lC), the streamwise181
fluid force can be approximated as182

�G (C) =
1
2
d*2�!

[
�3+

2l�
*

sin(lC)+�dw+�̃dw cos(lC + qdw)
]
+1

4
cd�2!�Al

2� cos(lC) .
(3.6)183

The above equation indicates that the steady part of the streamwise fluid force consists of184
contributions from the quasi-steady drag (�3) and the steady component of the wake drag185
(�dw):186

�G =
1
2
d*2�!

(
�3 + �dw

)
, (3.7)187
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or in dimensionless form188

�G = �3 + �dw . (3.8)189

Importantly, this expression reflects that the mean wake drag in addition to the quasi-steady190
drag, can contribute to the steady component of the driving fluid force when the cylinder191
is given the degree of freedom to oscillate streamwise. This approach presents a significant192
modification of the original model of Konstantinidis et al. (2021) that gives�G = �3 . Indeed193
in that model �dw was not considered, and thus the deviations in both Ḡ∗ and �G curves194
during VIV could not to be explained, noting the significant departures shown in figure 2.195
To comment further, for the cases considered by Konstantinidis et al. (2021) of Re = 100196
and 180, the peak oscillation amplitudes are so small that the movement of the cylinder197
during oscillation (∼ 1%� or less) hardly causes any modification of the wake from that of198
a stationary cylinder. Hence in that case, there is hardly any change to the mean drag force199
whether the cylinder oscillates or not. On the other hand, for the higher Reynolds numbers200
considered here, the oscillation amplitude is larger, although still relatively small (∼ 10%�).201
However, this is enough to cause the motion of the cylinder to modify the wake and mean202
drag force to be noticeably different from those of a stationary cylinder.203
The unsteady part of �G can also be written in a dimensionless form below:204

�̃G cos(lC + qG) =
2l�
*

�3 sin(lC) + �̃dw cos(lC + qdw) +
c�l2�

2*2 �A cos(lC) . (3.9)205

By equating the cosine and sine terms expanded through the double-angle formulae for the206
above equation, we can find the following relationships:207

�̃dw sin qdw = �̃G sin qG +
2l�
*

�3 = �̃G sin qG +
4c 5 ∗�∗

*∗
�3 , (3.10)208

�̃dw cos qdw = �̃G cos qG −
c�l2�

2*2 �A = �̃G cos qG − 2c3 ( 5 ∗
*∗

)2
�∗�A . (3.11)209

210

Substituting (3.2) and (3.3) for the governing equation of motion (1.1), we can obtain the211
following relationships:212

�̃G sin qG =
4c3 5 ∗�∗

*∗2
<∗Z

( 5n
5nw

)2
=

4c3 5 ∗�∗

*∗2
(<∗ + �A)Z, (3.12)213

�̃G cos qG =
2c3<∗�∗

*∗2
( 5n2 − 5 2)

5nw
2 =

2c3�∗

*∗2
[
<∗(1 − 5 ∗) + �A

]
. (3.13)214

215

It should be noted that in addition to our new decomposition leading to (3.8), we have also216
obtained the modified expressions in (3.10) – (3.13) to those given by Konstantinidis et al.217
(2021). Furthermore, by substituting (3.12) for (3.10), the dimensionless vibration amplitude218
in steady state can be evaluated by219

�∗ =
*∗2�̃dw sin qdw

4c 5 ∗
[
c2(<∗ + �A)Z +*∗�3

] . (3.14)220

This expression indicates that the vibration amplitude depends on the unsteady component of221
the wake drag and its phase. Note that this is significantly different from that of Konstantinidis222
et al. (2021) (their Eq. (4.7)), which is much simplified and with the wake drag phase term223
missing, an important parameter to evaluate �∗ in steady state. A direct comparison between224
the amplitude response predicted using (3.14) and experimental data is presented in §3.4.225
Through the decomposition of �G , we can determine the wake drag to gain a better226

understanding of the dynamics of the fluid-structure system. Figure 4 shows the root-mean-227
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Figure 4: Variations of the streamwise fluid force and wake drag coefficients, together with
the mean phases (in degrees) and their variants, as a function of reduced velocity.

square coefficients of the streamwise fluid force and wake drag (�A<BG and �A<Bdw ), together228
with their mean phases and phase variants (with respect to G), as a function of reduced229
velocity. The mean phase is obtained by projecting the phase differences between two signals230
onto the unit circle in a complex plane and calculating the mean resultant vector of the231
angular phase distribution, as given by232

�̄ =
1
#

#∑
9=1
48q 9 , (3.15)233

where q 9 is the relative phase between the two signals at an instance, and # is the total234
number of samples of a signal (McQueen et al. 2021). Thus, the mean phase angle can be235
determined by236

q̄ = Arg(�̄) , (3.16)237

and the mean phase coherence based on the circular variance of the phase distribution can238
be indicated by239

f = 1 − |�̄| , (3.17)240

where 0 6 f 6 1 is used as the index of phase synchronisation. The minimum possible241
value, 0, indicates that all phase angles are equal (i.e. perfect phase synchronisation), whereas242
the maximum, 1, indicates that the phase angles are spread uniformly over the circular space243
(i.e. no phase synchronisation or uncorrelated phase differences).244
As can be seen in figure 4, the coefficients of fluid forces, and the mean phases and245

their synchronisation indices experience changes corresponding to changes in the frequency246
responses in figure 3. Notably, both �A<BH and �A<Bdw display an abrupt jump at the onset of247
regime I, and then another deflection change at*∗ ≈ 2.05. Interestingly, the notable V-shape248
drop in �A<BH at *∗ ≈ 2.05 corresponds to a sharp change in the dominant component of249
5 ∗
�H

shifting from 5 ∗
�H

= 5 ∗G to 5 ∗
�H

= 0.5 5 ∗G (figure 3(4)). After the abrupt drop in the250
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competing region, �A<BG and �A<Bdw increase rapidly at the beginning of regime II. However,251
as it is expected from equation (3.13), �A<BG tends to decrease to minimal or zero, as the252
vibration frequency increases gradually towards 5na at the end of regime II. Through the *∗253
range tested, �G remains in phase with G, i.e. qG ' 0◦. On the other hand, the variation of254
�A<Bdw resembles that of �∗, which would be expected from equation (3.14). Interestingly, the255

wake drag phase q̄dw undergoes a sudden jump to 91◦ at the beginning of regime I and then256
increases to 130◦ at the end of the regime. The change of the dominant frequency of 5 ∗

�H
and257

the variation of q̄dw imply the existence of different wake patterns in this regime, as expected258
from previous studies. In regime II, q̄dw is found to be stable at approximately 138◦. Further259
discussion on wake modes is presented in § 3.3.260
Moreover, the variants of the phases (fG and fdw) in figure 4(2) show that the driving261

force components are in phase synchronisation with cylinder vibration in both regimes I and262
II. Interestingly, time traces of the wake drag force shown in figure 5(1) revealed that qdw263
sweeps through from 0◦ to 360◦, indicating a phase desynchronisation in the CR regime,264
which is distinctly different from regimes I and II (see*∗ = 2.40 and 3.00 in figure 5(0) and265
(2), respectively), where qG and qdw fluctuate slightly about their stable mean value; that is,266
the phase desynchronisation leads to a chaotic dynamical response in this regime.267

3.3. Time-frequency analysis and wake modes268

To provide an insight into the dynamics of the cylinder vibration and the wake structure, this269
subsection presents a time-frequency analysis and PIV measurements undertaken at various270
reduced velocities across the VIV response regimes.271
The time-frequency analysis is based on continuous wavelet transform (CWT), and the272

“mother” wavelet used is a complex Morlet wavelet. In the present analysis, the centre273
frequency of the mother wavelet is set equal to 5nw, while the bandwidth is set at 10/ 5nw274
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Figure 6: Continuous-wavelet-transform-based time-frequency analysis for the body
vibration and the transverse lift coefficient at different reduced velocities selected from the
VIV response regimes. For convenience of comparison, the left column plots two cases

*∗ = 1.8 and 2.35 from regime I and one case*∗ = 2.55 from CR in (0) – (2),
respectively, while the right column presents two cases*∗ = 2.8 and 3.5 from regime II
and one case*∗ = 4.8 from desynchronisation regime are in (4) – ( 5 ), respectively. Note

that g is the normalised time given by g = 5nwC to indicate body vibration cycles.

(about 10 cylinder vibration cycles) for cases in regimes I and II, where the cylinder vibration275
is highly periodic, and 3/ 5nw for cases in the CR and desynchronisation regime to better276
capture intermittent changes in the dynamic signals. This CWT method has been used by277
Nemes et al. (2012) and Zhao et al. (2018c) to reveal intermittent behaviour and branch278
competition of FIV responses for square cylinders.279
Figure 6 shows the time-frequency variations of the cylinder vibration and the280

transverse lift (coefficient), which reflects the vortex shedding frequency, at *∗ =281
[1.80, 2.35, 2.55, 2.80, 3.50, 4.80]. Note that the measurements for each case in this282
figure were taken over 1200 s (more than 900 vibration cycles) in order to reveal non-283
stationary frequencies and intermittent behaviour. Based on the transverse lift frequency284
response in figure 3(4), regime I can be further divided into two parts: 1.55 6 *∗ . 2.1,285
where the dominant component of 5 ∗

�H
matches that of 5 ∗G , and 2.1 < *∗ 6 2.4, where the286

dominant component of 5 ∗
�H

appears at 0.5 5 ∗G , accompanied by a harmonic at 1.5 5 ∗G . This287

change in the dominant frequency of 5 ∗
�H

implies a corresponding change in wake mode.288

Rapids articles must not exceed this page length
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Figure 7: Phase-averaged vorticity contours (of selected phases) showing the evolution of
the wake patterns for various reduced velocities across regime I:

*∗ ∈ [1.60, 2.00, 2.15, 2.40] in (0) – (3), respectively. The normalised vorticity range
shown here is l∗I = [−5, 5]. The horizontal bar in red placed at the cylinder centre

represents the peak-to-peak vibration amplitude. The red dots on the sine waves in the top
row denote the cylinder position during its vibration. For the full oscillation cycles, see

supplementary movies 1–7 for all test cases in regime I, available at (URL to be provided).

As shown in figure 6(0), at *∗ = 1.80 selected from the middle of first part of regime289
I, the cylinder vibration is highly periodic with its dominant frequency as stationary (i.e.290
not changing with time) slightly above 5nw, while 5 ∗�H

also displays its stationary dominant291

component matching 5 ∗G , but accompanied by a non-stationary subharmoic (∼ 0.5 5 ∗G ) with292
relatively strong power varying with time. As expected, the phase-averaged PIV results293
of *∗ = 1.60 and 2.00 in figures 7(0) and (1), respectively, show a symmetric vortex294
shedding mode, where a pair of opposite-sign vortices are shed simultaneously from both295
sides of the cylinder. This symmetric wake pattern agrees with the symmetric “S-I” mode296
reported in the previous studies of Cagney & Balabani (2013a,b); Okajima et al. (2004);297
Gurian et al. (2019). Unsurprisingly, in the present experiments, the symmetry of this298
wake mode is associated with very low lift coefficient magnitudes (figure 6(0)), due to the299
simultaneously symmetric wake structure and, thus so, the pressure distribution around the300
cylinder. However, it is worth noting that the vortices of this symmetric mode tend to break301
up towards the cylinder’s equilibrium position as *∗ is increased in this sub-regime; e.g.,302
the breakdown of vortices occurs at G̃∗ ≈ 2.5 for *∗ = 1.60, and at G̃∗ ≈ 1.5 for *∗ = 2.00.303
Further increasing *∗ will cause the breakdown of vortices to occur close to the cylinder304
body, thus leading to a change of the wake mode in the second sub-regime.305
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Figure 8: Phase-averaged vorticity contours (of selected phases) showing the evolution of
the wake patterns at*∗ = 2.55 in the competing regime and*∗ = 4.80 in the

desynchronisation regime. Note that (0) presents the PIV measurements taken for
large-amplitude oscillation cycles (i.e. �∗ ≈ 0.1) at*∗ = 2.55, and (1) for low-amplitude
oscillation cycles (i.e. �∗ . 0.03) . For more details, refer to the caption of figure 7. For the
full oscillation cycles, see supplementary movies 8–10, available at (URL to be provided).

Indeed, the second part of regime I sees a different wake mode comprising two single306
opposite-sign vortices shed simultaneously but alternating in size from both sides of the307
cylinder per shedding cycle (or per two cylinder vibration cycles). This wake mode is termed308
“AS” (alternating-symmetric) mode by Gurian et al. (2019). Correspondingly, as previously309
mentioned, 5 ∗

�H
exhibits a different composition with its dominant component at 0.5 5 ∗G and310

a harmonic at 1.5 5 ∗G (figure 3(4)), while the CWT result in figure 6(1) indicates that these311
frequency components remain almost constant in power over time. On the other hand, the312
phase-averaged vorticity fields in figure 7(2) show that vortices tend to become stronger as313
*∗ is increased; that is, at *∗ = 2.15 (and 2.25 and 2.30 in supplementary movies 5 and 6)314
the vortices seem to dissipate significantly as they travel downstream, while at the high-end315
reduced velocity *∗ = 2.40, the vortices remain clearly in a strong AS pattern travelling316
through the measurement field of view. As expected, this mode causes significant fluctuating317
lateral fluid forces acting on the cylinder. Notably, these strong vortices induce an amplitude318
peak significantly greater than those reported in previous studies (as compared in figure 2).319
Interestingly, as *∗ is further increased in the competing regime, both 5 ∗G and 5 ∗

�H
exhibit320

intermittent behaviour. This is demonstrated by the case of *∗ = 2.55 in figure 6(2),321
where significant cylinder oscillations (i.e., with �∗ ≈ 0.1) accompanied with well-defined322
harmonics of 5 ∗

�H
are encountered intermittently in an unpredictable way. Such a chaotic323

response is similar to the branch competing behaviour in FIV of inclined square cylinders324
reported by Nemes et al. (2012) and Zhao et al. (2018c). On the other hand, however,325
as shown in figure 8 (0, 1), the wake measurements taken separately for large- and low-326
amplitude oscillation cycles show similar patterns, while the vortices associated with large-327
amplitude cycles seem to be slightly stronger. When compared with the desynchronisation328
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Figure 9: Phase-averaged vorticity contours (of selected phases) showing the evolution of
the wake patterns at*∗ = 3.00 and 4.20 in regime II. For more details, refer to the caption
of figure 7. For the full oscillation cycles, see supplementary movies 11–13 for all test

cases in regime II, available at (URL to be provided).

case of *∗ = 4.80 in figure 8 (2), despite similar (Kármán-like) patterns observed further329
downstream (G̃∗ > 2), the CR cases see strong shear-layer wrapping across the centreline of330
the cylinder wake. Nevertheless, the vortices in the CR regime do not seem to have well-331
defined regular shapes as in regimes I and II, thus seem less able to maintain consistent332
forcing responsible for the cylinder vibration.333
When*∗ is further increased into regime II, highly periodic vibration resumes.As shown in334

figure 6(3) and (4) for two cases*∗ = 3.00 and 4.20, 5 ∗G remains stationary over time, while335
5 ∗
�H

also remains stationary but its harmonic component at 1.5 5 ∗G tend to become weaker as336

*∗ is increased. On the other hand, thewake patterns in figure 9 show similarmajor structures,337
which are in agreement with previous studies (i.e. the A-IV mode reported by Cagney &338
Balabani (2013b)). The present study, for the first time, extends wake measurement beyond339
*∗ = 4.0 for regime II. It is interesting to note that the elongated shear layers tend to become340
stronger with increasing *∗ in this regime, and at high reduced velocities they can form a341
secondary weak vortex each time a major vortex sheds, making the wake pattern appear as342
a Po mode (namely, a pair of vortices consisting of a strong vortex and a relatively much343
weaker one in each pair shed per cycle) – see supplementary movies 11-13 for animations344
of full vortex shedding cycles. With multiple vortices shed per cycle, this Po mode should345
explain why the harmonic component of the drag force frequency 5 ∗

�G
appears and tends to346

become stronger with increasing*∗ in regime II (figure 3(2)).347

3.4. Evaluation of amplitude response based on wake drag348

In order to validate our force decomposition analysis, we evaluate the vibration amplitude349
based on equation (3.14) and compare it with the experimentally measured response in350
figure 10. As shown, the evaluated amplitude response closely matches the actual values of351
�∗10 and

√
2�∗A<B (or

√
2G∗A<B) for most of the*∗ range tested. Subtle differences observed for352

3.5 . *∗ 6 4.2 in regime II could be attributable to the fact that the power of the harmonic353
components in 5 ∗

�G
(figure 3(2)) tends to increase in this*∗ range (still of two orders weaker354

than the dominant frequency), affecting the evaluation based on harmonic approximations.355
(In the present experiment, we did not extend the evaluation to the desynchronisation regime356
beyond*∗ = 4.2, where the harmonic assumption is not applicable). Nevertheless, the above357
results have validated the force decomposition and the harmonic approximations.358
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Figure 10: Evaluation of amplitude response as a function of reduced velocity.

4. Conclusions359

Decomposition has been performed for the driving fluid force on an elastically mounted360
circular cylinder undergoing in-line vortex-induced vibration in a free-stream flow. Based361
on the carefully conducted experiments, we have updated the wake drag model proposed362
previously by Konstantinidis et al. (2021) to include a steady and an unsteady part. This363
approach reflects that, when the cylinder is allowed to oscillate streamwise, the oscillation364
alters the time-dependent wake in turn altering the time-averaged displacement of the cylinder365
as well as the time-averaged streamwise fluid force from those experienced without cylinder366
oscillation. A harmonic approximation analysis was adopted to derive the relationship367
between the total streamwise fluid force and the wake drag. This analysis has been validated368
by predicting the amplitude response to directly compare with experimental measurements,369
meaning that prediction of amplitude response based on the updated wake drag model would370
be possible for various conditions of flow velocity and structural properties.371
The in-line VIV response was characterised by two regimes (i.e., regimes I and II) of372

significant vibration and a competing regime (CR) in between. The peak values of the373
vibration amplitude and the coefficients of the driving fluid force in regime I were found374
to be greater than those in regime II. A continuous-wavelet-transform-based time-frequency375
analysis showed that intermittent and competing behaviour occurred in the cylinder vibration376
frequency and the vortex shedding frequency, when the normalised cylinder vibration377
frequency approached the slope of 2(C at*∗ ≈ 1/(2(C), leading to a phase desynchronisation378
and thus an abrupt drop in the amplitude response. As can be explained by equation (3.13),379
the streamwise fluid force coefficient tends to decrease to minimal or zero as the vibration380
frequency approaches 5na with increasing*∗, leading to vibration suppression.381
Thewakemodemeasurements provided an insight into the evolution of wakemodes across382

the in-line VIV response regimes. It was found that regime I is initially associated with a383
symmetric (“S-I”) wake mode over 1.55 6 *∗ . 2.10, and then it undergoes a transition to384
an alternating symmetric (“AS”) mode that tends to become stronger with increasing*∗ for385
the rest of this regime; on the other hand, regime II initially displays an “A-IV” mode, which386
gradually becomes a Po mode with its secondary vortex forming from the strengthened shear387
layers at high reduced velocities, contributing to the harmonics of the drag force frequency.388
The updated wake drag model and harmonic approximation analysis have been applied389

successfully to the present experiments. Thus, it would be of further interest to examine390
whether it provides an improved model for lower amplitude low-Reynolds-number numerical391
simulations and, of course, other VIV systems.392
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