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A numerical investigation was conducted into the different flow states, and
bifurcations leading to changes of state, found in open cylinders of medium to
moderate depth driven by a constant rotation of the vessel base. A combination
of linear stability analysis, for cylinders of numerous height-to-radius aspect
ratios (H/R), and nonlinear stability analysis and three-dimensional simulations
for a cylinder of aspect ratio 1.5, has been employed. Attention is focused on
the breaking of SO(2) symmetry. A comprehensive map of transition Reynolds
numbers as a function of aspect ratio is presented by combining a detailed
stability analysis with the limited existing data from the literature. For all aspect
ratios considered, the primary instabilities are identified as symmetry-breaking Hopf
bifurcations, occurring at Reynolds numbers well below those of the previously
reported axisymmetric Hopf transitions. It is revealed that instability modes with
azimuthal wavenumbers m =1, 3 and 4 are the most unstable in the range
1.0 <H/R < 4, and that numerous double Hopf bifurcation points exist. Critical
Reynolds numbers generally increase with cylinder aspect ratio, though a decrease
in stability occurs between aspect ratios 1.5 and 2.0, where a local minimum
in critical Reynolds number occurs. For H/R = 1.5, a detailed characterisation of
instability modes is given. It is hypothesized that the primary instability leading
to transition from steady axisymmetric flow to unsteady three-dimensional flow is
related to deformation of shear layers that are present in the flow, in particular
at the interfacial region between the vortex breakdown bubble and the primary
recirculation.
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1. Introduction
Flows in stationary cylindrical cavities driven by rotation of the vessel base, and

the process of vortex breakdown that occurs therein, have been investigated by
researchers for many years. These flows have applications in mixing and geophysical
flows (Gutman 1957; Vyazmina et al. 2009), as a platform for investigations into
the vortex breakdown phenomenon (Escudier 1984; Brown & Lopez 1990; Lopez
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1990; Lopez & Perry 1992; Spohn, Mory & Hopfinger 1993, 1998; Brøns, Voigt &
Sørensen 2001; Marques & Lopez 2001; Sotiropoulos & Ventikos 2001; Husain,
Shtern & Hussain 2003; Thompson & Hourigan 2003; Mununga et al. 2004; Iwatsu
2005; Serre & Bontoux 2007; Lo Jacono et al. 2008; Brøns, Thompson & Hourigan
2009; Lo Jacono, Nazarinia & Brøns 2009; Tan et al. 2009), in flow stability and
fundamental physics (Lopez 1995; Blackburn & Lopez 2000; Brøns et al. 2001;
Gelfgat, Bar-Yoseph & Solan 2001; Hirsa, Lopez & Miraghaie 2002; Lopez &
Marques 2004; Lopez et al. 2004; Lopez, Cui & Lim 2006) and, recently, for possible
implementation as a bioreactor for cell and tissue culture (Dusting, Sheridan &
Hourigan 2004, 2006).

The parameter space and boundary conditions describing the flow are well defined.
Furthermore, the flow is independent of both time and the azimuthal coordinate over a
large part of the parameter space, which is defined by the height-to-radius aspect ratio,
H/R, and the Reynolds number, Re. For relatively low Reynolds numbers, the flow
has many interesting features. These include the primary swirling flow, the secondary
meridional circulation, vortex breakdown leading to recirculation zones attached to
either the axis, free surface, or both, and the presence of shear layers of differing
strengths. Several of these features bear a physical relevance to the fields of stagnation
theory, topological bifurcations and vortex breakdown (see for example Brøns et al.
2001). Free surface dynamics also become important for H/R � 1.0 (Lopez & Marques
2004; Lopez et al. 2004) or if the Froude number Fr =Ω2R2/gH , where Ω is the
base rotational velocity and g is gravitational acceleration, is not small (that is, if
Fr ∼ 1 or higher) (Spohn et al. 1993; Lopez 1995; Brøns et al. 2001).

The meridional circulation develops at low Re for all H/R and vortex breakdown
can set in at Reynolds numbers as low as Re � 230 for H/R = 0.5, Re � 730 for
H/R =1.5 and Re = 1450 for H/R = 2.5 (Iwatsu 2005). This occurs well before
transitions affecting the dimensional dependence of the system set in. There are
also numerous topological bifurcations (in terms of the structure, location and
number of vortex breakdown bubbles) that do not alter the axisymmetry or time
dependence of the system but generally occur before the first transition to time
dependence or three-dimensionality. These topological changes of state have been
extensively studied experimentally, theoretically and numerically for many different
configurations of the basic system, including for the case of an enclosed flow with one
endwall rotating (Escudier 1984; Spohn et al. 1998; Stevens, Lopez & Cantwell 1999;
Sotiropoulos & Ventikos 2001; Thompson & Hourigan 2003), an enclosed flow with
both endwalls co-rotating and counter-rotating (Gelfgat, Bar-Yoseph & Solan 1996;
Brøns, Voigt & Sørensen 1999), and for an open flow case with base rotation (Spohn
et al. 1993; Lopez 1995; Brøns et al. 2001). The topology of these flows (both open
and enclosed) is now well documented and, for the enclosed case, the stability limits
of the system with regard to both time dependence and axisymmetry breaking have
been identified and verified by a number of researchers for the single rotating base
case at numerous discrete aspect ratios (Blackburn & Lopez 2000; Lopez, Marques &
Sanchez 2001; Marques & Lopez 2001; Blackburn 2002), and by Lopez et al. (2002)
for the case of an enclosed flow with rotating cylinder walls and differentially rotating
endwall. The work of Gelfgat et al. (2001) maps the spatio-temporal stability limits
for enclosed cylinders with a rotating base, across a wide and quasi-continuous
range of the (H/R, Re) parameter space and predicts the flow states reached after
successive bifurcations, for a given H/R. These predictions have, for the most part,
been supported by subsequent three-dimensional (3D) direct numerical simulations
(DNS) and/or experimental investigations (for example Blackburn & Lopez 2002;
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Marques, Lopez & Shen 2002; Lopez 2006; Lopez et al. 2006; Sørensen, Naumov &
Mikkelsen 2006).

In general, the open flow configuration (see figure 1a) has not been as thoroughly
investigated as has the fixed-lid configuration. In particular, the process of flow
transitions from the steady and axisymmetric state to time-dependent 3D states is
not known over much of the (H/R, Re) parameter space. While a reasonably well-
defined curve for these critical Reynolds numbers, Rec, as a function of H/R exists
for the transition from steady to unsteady flow in the SO(2) invariant (axisymmetric)
subspace (Brøns et al. 2001; Iwatsu 2005), transitions from axisymmetry for the open
cylinder are yet to be defined across much of the parameter space.

For all aspect ratios that have been investigated to date for the open cylinder flow
(H/R = 0.25 by Lopez et al. 2004; H/R � 1.0 by Lopez & Marques 2004; H/R = 2.0
by Hirsa et al. 2002 and Lopez et al. 2004; and H/R = 4.0 by Serre & Bontoux
2007), the breaking of symmetry occurs at Reynolds numbers much lower than the
corresponding axisymmetric Hopf bifurcation. Thus, it would appear that reliance
upon axisymmetric critical Reynolds numbers for predictions of the flow states
in these uninvestigated (in terms of breaking of axisymmetry) H/R cylinders would
probably lead to incorrect assumptions. As such, we have considered several additional
and hitherto neglected aspect ratios (in terms of axisymmetry breaking) in order
to define further the dynamics of the system over an expanded parameter range.
The aspect ratios focused on are H/R = 1.5, our main aspect ratio of interest, the
focus of the 3D study and, together with H/R =1.70 and 1.75, representative of the
range 1.0 <H/R < 2.0 (revealed to be a complex region of the parameter space);
and H/R = 2.5, 3.0 and 3.5, representative of the range 2.0 <H/R < 4.0. We also
perform linear stability analysis on the cylinder of aspect ratio H/R = 2.0, previously
investigated by Hirsa et al. (2002) and Lopez et al. (2004), for validation purposes.

In particular, as mentioned earlier, we are interested in the aspect ratio H/R = 1.5
configuration for possible implementation as a naturally aspirated bioreactor (see
Dusting et al. 2006). Thus, while conducting linear stability analysis at the
aforementioned aspect ratios to shed light on the breaking of symmetry for the
overall parameter space, we focus most of our attention on the H/R = 1.5 case and
perform 3D spectral element–Fourier (SE-F) simulations solely for this configuration.

We limit our investigation to those cylinders having H/R � 1.5, allowing us to
accurately model the free surface as a flat, stress-free boundary, using a commonly
implemented symmetry boundary condition. This has been shown to be satisfactory in
what some have labelled ‘deep’ cylinders, those having H/R > 1.0 (Lopez et al. 2004).
Here we do not investigate the validity of the flat stress-free boundary condition,
relying upon evidence that, for cylinders with H/R > 1.0, the primary SO(2) symmetry-
breaking instability modes do not break the reflection symmetry (Lopez & Marques
2004; Lopez et al. 2004), and that departures from a perfectly flat surface are
minimal (Spohn et al. 1993; Lopez et al. 2004; Bouffanais & Lo Jacono 2009), and
are thus unlikely to significantly affect either the base flow structures or the instability
dynamics. The Froude number (Fr) remained below 0.1 for all combinations of H/R

and Re considered. The SE-F simulations serve not only as an excellent tool to gain
further details about specific flow states and the underlying physics of the system, but
also as a validation of the results predicted by the stability analysis.

The stability analysis for all aspect ratios was conducted in the Reynolds number
range 1800 � Re � 3800. This was carried out in order to ascertain, over a wider
range of cylinder aspect ratios than has previously been considered, whether or not
the supercritical axisymmetric Hopf bifurcation is the primary transition from the
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Figure 1. (a) Schematic diagram of the system under investigation, showing physical
parameters and streamlines of the steady axisymmetric base flow at Re = 2000 for H/R =1.5;
(b) grid used for the computations in the meridional semi-plane for the cylinder with H/R =1.5;
points monitored for grid independence are indicated. The distribution of elements was similar
for all aspect ratios.

basic state, or if the flow undergoes symmetry-breaking bifurcations at lower Re;
and if so, what azimuthal wavenumbers are the most critical. Symmetry breaking has
been reported at lower Reynolds numbers (relative to any axisymmetric bifurcations)
for flows in open cylinders with aspect ratios of 0.25, ≈1.0, 2.0 and 4.0 by Lopez
et al. (2004), Lopez & Marques (2004), Lopez et al. (2004) and Serre & Bontoux
(2007), respectively. However, Gelfgat et al. (2001) have shown that for the enclosed
cylinder flow, the primary instability can switch back and forth between axisymmetric
and non-axisymmetric as H/R is varied in the range H/R ∈ [1.0, 4.0]. In that study,
an axisymmetric instability was in fact the primary instability of the basic state for
closed cylinders of aspect ratio 1.63 <H/R < 2.76, and this represents a large part of
our own parameter space. This is the first time that this analysis has been reported
for open cylinders at the intermediate aspect ratios 1.5 � H/R � 3.5, other than for
those with H/R = 2.0 (Lopez et al. 2004).

The remainder of the article is set out as follows. In § 2, the problem formulation
and numerical details are discussed. In § 3, the stability limits and bifurcation map
predicted by the linear stability analysis for numerous aspect ratios are presented.
Section 4 contains the details of the 3D analysis at H/R =1.5. Conclusions are
presented in § 5.

2. Methodology
The system comprises a cylinder of height H and radius R filled with an

incompressible Newtonian fluid of kinematic viscosity ν. The system is driven by
constant rotation of the bottom endwall of the cylinder at angular velocity Ω . The
top of the cylinder is open, leaving the fluid surface exposed. These parameters,
and the coordinate system employed, are shown schematically in figure 1, alongside
an example of the grids used in conjunction with the spectral-element flow solver.
Also shown in figure 1(a) are the base flow streamlines for the H/R =1.5 cylinder



Instabilities in torsionally driven open cylinder flows 525

At upper point At lower point

pn |uz| |ur | |uθ | |uz| |ur | |uθ | σ1 σ2 σ3 σ4

4 0.007688 0.01430 0.01990 0.03406 0.01596 0.03683 1.026 0.8952 0.7627 0.7813
6 0.007671 0.01434 0.01993 0.03411 0.01578 0.03707 1.020 0.8930 0.7620 0.7799
8 0.007672 0.01434 0.01992 0.03412 0.01578 0.03697 1.023 0.8933 0.7621 0.7801
9 0.007672 0.01435 0.01992 0.03412 0.01578 0.03696 1.023 0.8933 0.7621 0.7801

10 0.007672 0.01434 0.01992 0.03412 0.01577 0.03696 1.023 0.8933 0.7621 0.7802

Table 1. Convergence in the magnitude of local velocity fluctuations at the points shown in
figure 1(b), along with the growth rates of the leading linear instability modes for azimuthal
wavenumbers m= 1, 2, 3 and 4, with polynomial degree pn. Results shown are for H/R = 1.5
at Re = 3000.

at Re = 2000, just prior to the onset of instability. The characteristic length of the
system is the aspect ratio, H/R, which we vary in the range 1.5 � H/R � 3.5. The other
parameter required to fully define the system is the Reynolds number, defined as

Re =
R2Ω

ν
, (2.1)

which is varied in the range 1800 � Re � 3800.

2.1. Numerical treatment

In this study, lengths are normalised by the cylinder radius R, velocities by RΩ

and time by 1/Ω . Conservation of momentum and mass for our system yields the
unsteady incompressible Navier–Stokes equations, written here in the dimensionless
vector form as

∂u
∂t

+ (u · ∇)u = −∇P +
1

Re
∇2u, (2.2)

and the continuity equation

∇ · u = 0, (2.3)

where u = (uz,ur ,uθ )(z,r ,θ) is the velocity field, z, r and θ are respectively the axial,
radial and azimuthal coordinates, t is time and P = p/ρ is the kinematic pressure
field, where p is the pressure and ρ is the fluid density.

A spectral-element solver (Sheard & Ryan 2007; Sheard, Fitzgerald & Ryan 2009)
is used in all computations: axisymmetric base flows, linear stability analysis and
SE-F simulations. For cylindrical geometries, the package utilizes a nodal spectral-
element method for spatial discretisation of the flow field in the meridional (r, z)
plane. Within each spectral element, the flow variables (u, P ) are computed at Gauss–
Legendre–Lobatto quadrature points, using polynomial shape functions of degree
pn .

Grid independence was verified through a p-type resolution study. Numerous
quantities were monitored including local velocity and pressure at the two points
in the domain shown in figure 1(b) (for grid independence of base flows), and the
leading Floquet multiplier for each azimuthal wavenumber (for grid independence of
the linear stability results). Convergence to four significant digits was achieved for
polynomial basis functions of degree pn � 8, as shown in table 1. We employed basis
functions of degree pn = 9 together with meshes containing between 600 and 1120
elements, depending on aspect ratio, for all simulations reported herein. A Fourier
expansion is implemented to resolve the flow in the azimuthal direction, in a fashion
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similar to the formulation given by Blackburn & Sherwin (2004). Up to Np = 36
Fourier planes were used in the azimuthal direction for the highest-Reynolds-number
SE-F simulations.

Equations (2.2) and (2.3) are integrated forward in time using an operator-splitting
technique based on the third-order accurate backward differentiation (Karniadakis,
Israeli & Orszag 1991). These packages have been employed recently by Sheard &
Ryan (2007), Sheard (2009) and Sheard et al. (2009), and more information on the
solver may be found in those articles. The boundary conditions enforced are: no
slip at the vertical sidewalls, (uz, ur , uθ ) = 0; a steady single component velocity
(uz, ur , uθ ) = (0, 0, rΩ) at the rotating base; and a flat stress-free constraint on the
surface, achievable by implementing a symmetry condition uz = ∂ur/∂z = ∂uθ/∂z = 0
at the upper boundary of the domain. For the axisymmetric base flow simulations,
only one half of the meridional plane is modelled, with a symmetry condition at
the axis and all of the azimuthal derivatives in the cylindrical formulation of the
Navier–Stokes equations set to zero.

A linear stability analysis based on the Floquet theorem for second-order linear
differential equations is applied to the linearised Navier–Stokes equations in order
to ascertain the stability of the axisymmetric base flow solutions to perturbations in
the azimuthal direction, across a broad range of aspect ratios. The Navier–Stokes
equations are linearised by replacing the velocity field u with the sum of a mean
velocity field U and a small perturbation velocity u′, i.e. u = U + u′, and neglecting
terms that are quadratic in u′, as these are assumed to be exceedingly small. This
produces a set of equations for the perturbation field identical to the Navier–Stokes
equations except for the perturbation field advection operator which is no longer
nonlinear in u′ and takes the form −(U · ∇)u′ − (u′ · ∇)U . If the base flow is in a
converged (steady) state, it can be ‘frozen’ in time and need not be evolved with
the perturbation field; if the base flow is in a saturated (time-periodic) state, it must
be evolved in parallel with the perturbation field. The perturbation field is then
monitored for growth from a random initial state over a number of base flow periods
(arbitrary for steady base flows) until a selected number of the leading Floquet
multipliers (eigenvalues of the perturbation field) for a given azimuthal wavenumber
have converged. Calculations are performed using eigenvalue solvers based on either
the power method (Sheard & Ryan 2007) or an Arnoldi method (Barkley & Henderson
1996; Blackburn & Lopez 2003), capable of accurately resolving the magnitudes of
complex multipliers, as well as their real and imaginary components.

3. Linear stability analysis: bifurcations as a function of H/R

Linear stability analysis was performed on the axisymmetric flows inside cylinders
with H/R = 1.5, 1.7, 1.75, 2.0, 2.5, 3.0 and 3.5 in the Reynolds number range Re ∈
[1800, 3800]. Depending on the Reynolds number, the axisymmetric base flows were
either steady or time-periodic; flows at Reynolds numbers above the first Hopf
bifurcation in the axisymmetric subspace were in a saturated periodic state, while
those below were steady. The axisymmetric Hopf bifurcation for H/R = 1.5 was found
to occur at Re = 2659.

The results of the linear stability analysis for the cylinder with H/R = 1.5 are
presented in figure 2, for the Reynolds number range 2100 � Re � 2800. From the
figure, it can be seen that for H/R = 1.5, linear theory predicts that the flow loses
stability through a symmetry-breaking transition due to a mode with azimuthal
wavenumber m = 1. This bifurcation is a Hopf bifurcation and leads to a rotating
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Figure 2. Growth rates of the most critical individual modes for the H/R = 1.5 cylinder.
Different symbol shapes represent different azimuthal wavenumbers. �, m= 1; �, m= 2; �,
m= 3; �, m= 4. Filled symbols are used to denote a secondary mode at the same wavenumber.
The location of the axisymmetric Hopf bifurcation is indicated.

wave state. The transition is predicted to occur at Re = 2152, significantly earlier than
the axisymmetric transition (m =0) that has been identified previously and found to
occur at approximately Re = 2650 (Lopez 1995; Brøns et al. 2001; Iwatsu 2005), and
that was found to occur at Re = 2659 during our investigation.

As the Reynolds number is increased, two additional m =1 modes are predicted
to become active at Re = 2379 and Re =2524, before a mode with azimuthal
wavenumber m =3 is predicted to grow at Re =2525 (the tertiary m =1 mode is
not included in figure 2 as its growth rate was below the primary and secondary
m = 1 modes for all Re considered). The secondary m =1 mode gains ascendancy
briefly at Re = 2561 before the m =3 mode is predicted to become dominant at
Re =2589. At the Reynolds numbers immediately above the axisymmetric Hopf
bifurcation, the stability analysis predicts decreasing growth rates, leading to eventual
decay, of all the modes plotted in figure 2. Other modes (not plotted) had increasing
growth rates in this regime, but remained subcritical for all Re � 3800 at H/R =1.5.
Linear extrapolation using the two data points from either side of the axisymmetric
Hopf bifurcation (for each of the curves in figure 2), to predict the critical Reynolds
number for this transition, gives very good agreement with previous findings (Lopez
1995; Brøns et al. 2001; Iwatsu 2005).

The growth rates of the leading Floquet modes with m =2 and m =4 that
were previously found to lead to symmetry breaking in open cylinders with
H/R = 1.0 (Lopez & Marques 2004) and H/R = 2.0 (Lopez et al. 2004), respectively,
are also included (for the H/R = 1.5 cylinder) in figure 2. For the case of H/R =1.5,
these wavenumbers were not observed to support the growth of instability modes
within the parameter range considered (Re � 3800).
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Rec for each H/R

m 1.5 1.7 1.75 2.0 2.5 3.0 3.5

1 2152 2430 2440 2494 3772 – –
2 – 2887 2931 3590 2825 2661 2566
3 2525 2410 2292 2070 2072 2167 2355
4 – 2060 2019 1922 2020 2244 2536

Table 2. Neutral or critical Reynolds numbers (Rec) for azimuthal modes m= 1, 2, 3 and 4
at each aspect ratio in the Reynolds number range 1800 � Re � 3800.

Growth rates for all modes, at all cylinder aspect ratios, were found to be very
small across the entire Reynolds number range considered. In an experimental setting
or practical application, these transitions would require a long transient period to
manifest. In reality, however, small disturbances from the system exterior will affect
even the most carefully isolated and well-crafted system and lead to early onset of
these instabilities.

An analysis similar to that outlined above was also performed for cylinders with
aspect ratios H/R = 1.7, 1.75, 2.0, 2.5, 3.0 and 3.5. The results are summarised in
table 2 and presented graphically in the form of a bifurcation map in figure 3. In
the figure, the results of the present analysis are represented by filled symbols, while
a selection of results from previous studies is shown by hollow symbols in order to
provide a more complete map.

The present stability analysis confirms that both the critical Reynolds number
Rec and the first-occurring instability mode wavenumber mc are strongly dependent
on the parameter H/R. Significantly, in contrast to the fixed-lid case, these modes
are axisymmetry-breaking across the whole parameter space 0.25 � H/R � 4.0. It
can be seen that the predicted symmetry-breaking instability can have wavenumber
m =1, 2, 3 or 4 depending on the aspect ratio of the system; the critical Re for
m =0 lags significantly behind the first one, two or three m �= 0 critical Reynolds
numbers throughout the entire range of H/R. Higher wavenumber modes (m > 4) are
increasingly stable for the range of aspect ratios considered. The critical wavenumber
is very sensitive to aspect ratio, especially in the lower range of H/R with wavenumbers
1–4 all appearing as the most unstable mode before the aspect ratio has reached
H/R =2.0, the order of appearance being m =3, 2, 1, 4. The critical wavenumber
appears to stabilise somewhat at m =4 from H/R � 1.6 to H/R � 2.75, and then at
m =3 over the remainder of the range of H/R presented in figure 3. Modes with m = 3
appear particularly prevalent, being either the first or second most unstable mode
over much of the parameter space.

In contrast to enclosed cylinders of similar aspect ratios (Gelfgat et al. 2001),
there is a definite and fairly consistent trend of decreasing stability of the basic
state with decreasing aspect ratio. Only the small region 1.6 � H/R � 2 defies this
trend, with a local maximum in the critical Reynolds number (i.e. a local region of
increased stability) appearing at approximately H/R = 1.6. The axisymmetric time-
independent flow remains dominant until higher Reynolds numbers in this region of
the H/R parameter space than in regions immediately surrounding it. Overall, critical
Reynolds numbers were lower for the open cylinder than for the enclosed cylinders at
corresponding aspect ratios, indicating that the presence of the free surface inherently
detracts from the stability of the system as a whole. This is true up until approximately
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Figure 3. Bifurcation map in the H/R–Re parameter space. Symbol shapes represent the same
wavenumbers as in figure 2. Solid symbols represent our data points, hollow symbols are used
to show the previously published results of others. Hollow ∇ symbols show the location of the
axisymmetric Hopf bifurcation for H/R = 0.75 and 1.0 (Gelfgat et al. 1996; Brøns et al. 2001,
data averaged), and H/R = 4.0 (Brøns et al. 2001; Iwatsu 2005, data averaged). Other hollow
symbols: H/R = 0.25 and 2.0 from Lopez et al. (2004), H/R = 1.0 from Lopez & Marques
(2004) and H/R = 4.0 from Serre & Bontoux (2007). The approximate boundary between
axisymmetric and non-axisymmetric flow is also shown and guidance lines have been included
where appropriate to show possible trends. Different line styles are used to differentiate between
trend lines.

H/R = 3.3, at which point there is a dramatic drop in the critical Reynolds number
for the enclosed cylinder (Gelfgat et al. 2001), while for the open cylinder, critical
Reynolds numbers continue to increase with increasing aspect ratio up to at least
H/R = 4.0.

A feature of the bifurcation map for open cylinder flows that is similar to that of
the closed cylinder is the existence of a number of multi-bifurcation points, points in
the H/R–Re parameter space where it appears that two or more modes of different
wavenumber bifurcate from the basic state simultaneously. A number of these points
occur at values of H/R, which are strikingly similar between the open and closed
cases. These are at H/R � 1.6 and Re � 2300 in the open cylinder flow (a double
bifurcation point exists at H/R = 1.63 and Re � 2700 in the enclosed cylinder), and
at H/R � 2.75 and Re � 2110, where the open cylinder flow has a double bifurcation
point (H/R = 2.76 and Re � 2850 in the enclosed cylinder). However, in the cases
mentioned for the enclosed cylinder, the double bifurcation points both involve the
axisymmetric m =0 mode, along with the m =2 or m =4 mode respectively, whereas in
the open cylinder case, they both involve the m =4 mode, along with the m =1 or the
m = 3 mode, respectively. For the open cylinder, other double bifurcation points exist
at approximately [1.02, 1985] involving m = 1 and m =2 (located at approximately
[1.025, 1950] by Lopez & Marques 2004), and approximately [4.0, 3050] involving
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m =1 and m = 3. There is also a double bifurcation point located in the range
0.5 � H/R < 1.0 and 1500 < Re < 1500, involving two out of m =1, 2 and 3 (probably
2 and 3), although it is not possible to define this point further with the available data.
Lopez & Marques (2004) investigated the competition between modes in the region
of the double bifurcation point at [1.025, 1950], shown at [1.02, 1985] in figure 3.
They showed how wonderfully complex the flow dynamics can be at these points;
thus, these interactions are not investigated here nor are the exact locations of these
points pursued further; this however could be the subject of future study.

Figure 3 also reveals that the stability analysis for the case of H/R = 2.0 accurately
predicted the primary transition Rec =1922 (cf. the value of 1910 reported by Lopez
et al. 2004) as well as the mode (m = 4) leading to transition. However, subsequent
bifurcations can be incorrectly predicted due to the linear nature of the method
employed. In this case, the stability analysis on the H/R = 2.0 cylinder flow predicted
a secondary bifurcation due to a mode with m =3 at approximately Re = 2065
(filled circle), and that modes with m =2 remain inactive until approximately
Re = 3590 (filled diamond); whereas the 3D DNS of Lopez et al. (2004) revealed
that the bifurcated m =4 flow state actually becomes unstable to an m =2 mode
at approximately Re = 1990 (hollow diamond at H/R = 2 in figure 3). Therefore,
although we may rely confidently upon stability analysis predictions for primary
instabilities, we must regard predictions of subsequent bifurcations with caution and,
where possible, perform 3D nonlinear DNS when seeking to fully characterise flows
in these regions of the parameter space.

4. Non-axisymmetric flow and instability mechanisms at H/R = 1.5

Spectral element–Fourier direct numerical simulations were carried out at a number
of Reynolds numbers in the range 2000 � Re � 2800, for the cylinder with aspect
ratio 1.5, in order to confirm the findings of the linear stability analysis and
to gain information about the evolution of, and saturation to, 3D flow states.
These simulations also serve as a means of investigating the nature of the physical
mechanisms leading to transition, and the effects of nonlinear interactions between
instability modes, on the bifurcated flow states. The growth of instability modes and
subsequent saturation of non-axisymmetric states was monitored via recording of
time histories of a number of physical quantities. We monitored the velocity and
pressure (uz, ur , uθ , P ) at a number of discrete mesh points, as well as the energies
associated with each of the non-axisymmetric Fourier modes. The modal energies
were defined here as

Em = ρ

∫ θ=2π

θ=0

∫ r=1

r=0

∫ z=H

z=0

(
uz

2
m + ur

2
m + uθ

2
m

)
r dz dr dθ, (4.1)

where uzm, urm and uθ m represent the mth Fourier mode contribution to the axial,
radial and azimuthal components of velocity, respectively.

The growth to saturated 3D flow states from the converged (steady) axisymmetric
states, at Re =2200 and Re = 2650, are shown in figures 4(a) and 5(a), respectively.
Here, a time history of the axial component of velocity (uz) at a point in the vortex
breakdown bubble region is plotted. With reference to figure 3, the linear stability
analysis predicts the dominant disturbances to have azimuthal wavenumbers m = 1
for Re = 2200, and m =3 for Re = 2650. Figure 4(b), which shows the modal energies
(Em) associated with each wavenumber m of the first four Fourier modes during
the evolution, confirms that the m =1 mode is dominant. As predicted by the linear
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Figure 4. (a) Time history of the axial component of velocity at a point in the flow for
H/R = 1.5 showing the growth of the m= 1 instability on the axisymmetric base flow at
Re = 2200. (b) Time history of the energy Em associated with each of the first four Fourier
modes m for Re = 2200 showing a clearly m= 1 dominant flow.

stability analysis, this is the only instability mode whose activity is perceptible at this
Reynolds number, with E2 at least a factor of 100 lower than E1. However, for the
Re =2650 case, the time history indicates a slightly more complicated scenario, with
multiple frequencies (produced by multiple instability modes) present in the signal
over approximately the first 3500 time units, before the flow saturates to a single
periodic state. Figure 5(b) shows that a mode with m =3 (predicted by the stability
analysis to be dominant at this Re) initially grows with the fastest growth rate, and
briefly dominates. A predominantly m =3 flow state is briefly established, which is
then unstable to an m = 1 mode. This m =1 mode is probably the second m = 1 mode
shown in figure 2.

Lopez et al. (2004) found a similar transient mode with m =3 at Re = 2200 during
their experiments investigating the transitions of the flow in an open cylinder with
H/R = 2.0 and at Re = 2100 during their numerical analysis of that configuration.
The structure of the m =3 mode observed by Lopez et al. (2004) is similar but not
the same as that of the mode observed in this study (shown in figures 8a, b and 9a),
which is described later. Also, the previously reported m =3 mode was found to break
the reflectional (Z2) symmetry of the system considered by Lopez et al. (2004). They
considered (numerically) a cylinder of twice the length (compared to the experimental
apparatus with H/R = 2) both with and without Z2 symmetry, whereas our system
preserves the Z2 symmetry. Hence, the same m =3 mode identified by Lopez et al.
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Figure 5. (a) Time history of the axial component of velocity at a point in the flow
for H/R = 1.5 showing initial growth of a mixed-mode solution on the axisymmetric base
flow before saturation to a single frequency state, for Re = 2650. (b) Time history of the
energy Em associated with each of the first four Fourier modes m for Re =2650 showing
initial growth of the m= 3 instability mode before the flow settles to an m= 1 dominant
state.

(2004) cannot exist in a system such as ours, where Z2 symmetry is preserved, and
the current m =3 mode is a new instability, not previously observed at other aspect
ratios.

The results of simulations at Re = 2200 and 2650 confirm the initial existence of
dominant m =1 and m =3 modes, respectively. Figure 6 shows the growth of the
m =1 mode on the axial velocity for an initially axisymmetric flow at Re = 2200.
The isocontours highlight the major effect of the instability which is to set up a
travelling wave on two azimuthally unstable shear layers that exist in the flow: the
vortex breakdown bubble shear layer at the interface between the vortex breakdown
bubble and the outside flow (dark/negative contours), and the side-wall shear layer
(light/positive contours). This figure also alludes to the exceedingly small growth
rates predicted by the linear stability analysis. As evidenced in figure 4(a), the flow
appears steady (and axisymmetric) for a long time both before and after figure 6(a)
at t =1800; the first signs of asymmetry are observed as a tilting of the shear layer at
the vortex breakdown bubble boundary, and a smaller deformation of the (stronger)
wall shear layer, for t � 6800 in this simulation (figure 6b). In terms of real time, this
would correspond to approximately 1080 base revolutions in a physical experiment
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(a) (b) (c) (d)

Figure 6. Isocontours of the axial velocity, at approximately ±45% of the maximum value
for H/R = 1.5 and Re = 2200, at four instances in time showing the evolution of the asymmetry
on the axisymmetric base flow in the two regions corresponding to the boundary of the
vortex breakdown bubble and the sidewall jet structure. Plots (a), (b), (c) and (d ) coincide
approximately with times t = 1800, 6800, 11 600 and 14 400, in figure 4, respectively.

using, for example, the apparatus described in Lopez et al. (2004). From there the
growth is exponential with significant increases in the effect of the asymmetry over
approximately the following 5000 time units (figure 6c), and then the next 3000 time
units (figure 6d ), before saturation occurs at t � 16 000. By this time, both shear
layers are significantly deformed. The perturbation field axial vorticity (isolated by
subtracting the fundamental mode vorticity from the full 3D flow) for the saturated
m = 1 state from the 3D DNS, at Re =2300, is plotted in figure 7(b) alongside the
perturbation field predicted by the linear stability analysis. Excellent agreement in
mode structure was obtained, verifying the results of the linear stability analysis
for the primary bifurcation and subsequent flow state at H/R =1.5. Some nonlinear
effects are evident in the 3D DNS results, most noticeable at intermediate radii
(0.35 < r < 0.75), and towards the free surface, manifesting as slight deformations of
the contour levels predicted by the stability analysis. Most of the instability activity for
this m =1 mode appears to be concentrated about the axis of the cylinder, associated
with the swirling vortex core in lower regions and the vortex breakdown bubble in
the upper regions. Towards z � 1.0, significant instability structures at larger radii
may be associated with the sidewall shear layer, although it is difficult to ascertain
the origin of instability.

Contours of the perturbation axial vorticity for the 3D DNS at Re = 2650 are
shown in figures 8(b) (t � 800) and 8(c) (t � 4000), with the mode predicted by
stability analysis shown in figure 8(a). These slices correspond to the same axial
locations as those highlighted in figure 7. These plots show good agreement between
the structure of the m =3 mode predicted by stability analysis and that of the transient
m = 3 mode observed during DNS. They also confirm the initial dominance of the
m = 3 mode and subsequently the m =1 mode, and highlight a number of features
of the flow at this Reynolds number. At the cylinder base (bottom row, z = 0.1) the
transient m =3 instability appears quite active at all radii, while the saturated m =1
mode again appears concentrated near the axis; however, the fundamental mode is
almost completely dominant in the saturated flow.

In the lower mid-section of the cylinder (second row, z = 0.5), the maxima and
minima of the m =3 mode are reasonably localised at radii 0.25 � r � 0.6 and this
coincides with the radial locations of maximum contour deformations of the resultant
flow at this axial height (not shown). At this axial location, the base flow (prior to
transition) has streamlines in the meridional plane that, having ‘separated’ from the
vortex breakdown bubble wake, converge with those that did not separate but flowed
around the bubble, up the inner tube of the bubble torus and back down the cylinder
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(a)
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z = 0.5

z = 0.1

(b)

Figure 7. Contours of the perturbation axial vorticity for H/R = 1.5 generated from the
linear-stability analysis predictions at Re =2250 (a) and the 3D simulations at Re = 2300 (b),
at different axial stations. Rows show different axial locations: z = 0.1, 0.5, 1.0 and 1.4, from
bottom to top, respectively. Dark grey contours (dashed lines) are negative and light grey
contours (solid lines) are positive. The levels are arbitrary for comparison of the perturbation
vorticity field structure.
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(a)

z = 1.4

z = 1.0

z = 0.5

z = 0.1

(b) (c)

Figure 8. Slices through the r–θ plane for, H/R = 1.5, showing contours of the perturbation
axial vorticity at various axial locations for Re = 2650. (a) The m= 3 mode predicted by the
linear stability analysis; (b) the transient mixed m= 3/m= 1 mode state with dominant m= 3
component from DNS at t ≈ 800; (c) the final saturated m= 1 mode state from DNS at
t ≈ 4800. Rows show different axial locations: z =0.1, 0.5, 1.0 and 1.4, from bottom to top,
respectively. Dark grey contours (dashed lines) are negative and light grey contours (solid
lines) are positive. The levels are arbitrary for comparison of the perturbation vorticity field
structure.

axis (see streamlines in figure 11a for example). At this height, there is a slight m =1
component to the m = 3 dominant flow evident at large radii in the outer regions of
the cylinder (figure 8b).
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In the upper mid-section of the cylinder (third row, z = 1.0), numerous very intense
maxima and minima are present for the m =3 mode in the region 0.2 � r � 0.6, while
the saturated m =1 mode (figure 8c) is also quite active in the same region. Again,
in terms of features of the base flow, this slice corresponds to the axial location of
maximum radial width of the vortex breakdown bubble and hence maximum bending
of streamlines returning to the cylinder base, in the meridional plane.

Towards the free surface (top row, z = 1.4), there is a very distinct localisation of
perturbation vorticity maxima and minima in the region 0.13 � r � 0.37. The most
significant features of the base flow in this region are the stagnation points where
the vortex breakdown bubble meets the free surface, coinciding again with significant
bending of streamlines in the meridional plane. At this height, approaching the free
surface, the m =1 mode’s contribution during the transient phase (figure 8b) appears
to be of a strength similar to the m =3 component. The final saturated state at
Re = 2650 (m = 1, figure 8c) is similar to, but not the same as, the m =1 state at
Re = 2300 shown in figure 7(b). This is most noticeable both at the level of azimuthal
displacement of the mode structures between the slices in figure 7(b) as compared
with those in figure 8(c), and in the increase in coherent structures at intermediate
radii and decrease of structures at large radii for the higher-Re case compared with
the lower Re. This agrees with the predictions of the stability analysis, where figure 2
shows a secondary m = 1 mode existing at Re = 2650 and only a single m = 1 mode
at Re = 2300. Throughout the cylinder at Re = 2650, the majority of asymmetric
activity associated with the transiently unstable m =3 and the ultimately unstable
m =1 mode is concentrated around the axis and the vortex breakdown bubble, except
for at the base where the fundamental (m = 0) mode is more dominant. Figure 9
shows isocontours of each component of the perturbation velocity field (u′

r ,u
′
θ ,u

′
z) at

Re = 2650 for the transient m =3 mode (figure 9a) and the final saturated m = 1
perturbation field (figure 9b). Also shown on these plots are slices of the respective
velocity components at the same axial locations as in figures 7 and 8. These were
obtained by subtracting the zeroth Fourier mode from the full 3D solution at the
two instants in time. These plots reveal a complex spatial structure in all cases.
As expected, the axial component, uz, vanishes at the free surface for both modes
(a consequence of the non-deforming boundary condition), while the radial and
azimuthal components are free to take on finite values at that location. In fact, for
the m = 1 mode, both radial and azimuthal perturbation velocity components have
near-maximum values emanating from the free surface, at the location where the
flow returning from the perimeter of the vessel separates from the free surface to
flow around the vortex breakdown bubble, and following a line (or surface) along the
outer edge of the vortex breakdown bubble a short distance into the interior of the
cylinder. In all cases, there is significant activity in the vicinity of the vortex breakdown
bubble.

The m =1 mode (figure 9b) has noticeable rose-petal-shaped structures attached
to the vortex breakdown bubble boundary for all velocity components (identified as
structure number one in figure 10). These structures are where the perturbation to
the axial and azimuthal velocity fields is maximum (not explicitly shown). The radial
component also has this feature, and another region of equal maximum intensity,
located near where the rotating vortex core impinges on the rotating base (see
figure 9, top–right plot). Attempts to link this region of high perturbation intensity
to traditional rotating disk boundary layer instabilities proved unsuccessful and it
appears that there is no connection; indeed others have shown (Gregory, Stuart &
Walker 1955; Tatro & Mollo-Christensen 1967) that for the Reynolds numbers
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Figure 9. Isocontours and slices showing the three components of the perturbation velocity
field, for H/R = 1.5 at Re = 2650. The transient m= 3 (a) and the saturated m= 1 (b) modes
are shown. Isocontours are at approximately +33 % (light grey) and −33 % (dark grey) of
maximum. Slices have dark grey contours (dashed lines) negative and light grey contours (solid
lines) positive, with levels spaced linearly between ±30 % of maximum. Top, ur ; middle, uθ ;
bottom, uz (axial). Slices are at the same heights as in figures 7 and 8.

considered in this article, the rotating disk boundary layer is stable. Thus, another
mechanism is responsible for this instability.

The axial and azimuthal components of velocity also have notable structures,
associated with the m = 1 perturbation field, in the outer parts of the cylinder,
at approximately 3H/5 � z � 4H/5, and it is around this depth that most of the
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Figure 10. Isocontours of the perturbation axial velocity for H/R =1.5 at Re = 2300 showing
the structure of the saturated state of the m= 1 mode at (a) 30 %, (b) 40 % and (c) 50 % of
maxima. Dark (light) contours represent negative (positive) values.

instability activity is shown in the slices (for all m = 1 velocity components). This
region of the cylinder corresponds approximately with the location of maximum
radial width of the vortex breakdown bubble and the tip of the associated weak shear
layer, as well as with the tip of an intense wall-jet shear layer observed in the outer
part of the cylinder. All velocity perturbation components of the m =3 instability
appear to cling to the outer edge of the vortex breakdown bubble and shed off into
its wake.

These observations would appear to indicate that the physical mechanism leading
to the loss of axisymmetry, for both the initial and secondary m = 1 and the transient
m =3 modes, at this aspect ratio, H/R = 1.5, could be instability of the wall-jet shear
layer, as suggested by Lopez et al. (2004) for the open cylinder with H/R = 2.0; but
is more likely (for cylinders with H/R = 1.5) associated with the vortex breakdown
bubble and instability of the shear layer at the interface between the bubble and the
primary recirculation. It is also possible that both the wall-jet shear layer, and that
associated with the vortex breakdown region, become unstable here at approximately
the same Re with the primary m =1 mode growing on the vortex breakdown and
the secondary m =1 growing on the wall-jet shear layer. Lopez et al. (2004) noted
that a secondary instability in the system with H/R = 2.0 was closely associated with
the recirculation zone, and it may well be that reducing the aspect ratio increases
the stability of the wall jet whilst possibly simultaneously de-stabilising the vortex
breakdown shear layer.

With respect to the m =1 mode of the current work, the m = 3 mode appears to
have a far more orderly structure, consisting of overlapping regions of instability
precessing about the cylinder axis. There is very little activity in outer regions of the
cylinder. All three perturbation velocity components are most energetic within a small
localised region (not shown explicitly) that, once again, corresponds with the region
of vortex breakdown, and to the tip region of the moderate strength shear layer that
exists there. Quantitatively, this region is located in the vicinity of the three points
with r/R = 0.42 and z/R = 0.93, equidistantly spaced in the azimuthal direction (i.e.
separated by an angle of 2π/3 rad) and precessing about the cylinder axis.

Figure 10 reinforces the argument that the initial transition is due to an instability
involving the interface between the vortex breakdown bubble and the outside flow,
and that the weak shear layer at this location drives the growth of the primary
instability for cylinders with aspect ratio H/R = 1.5. The structures, as numbered in
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Figure 11. Contours of the perturbation axial velocity for H/R = 1.5 on one half of the
meridional plane, cutting through the (azimuthal) locations of instantaneous maximum
instability activity for (a) Re = 2300, primary structure; (b) Re = 2300, secondary structures;
(c) Re = 2650, transient m= 3 mode; and (d ) Re = 2650, saturated state m= 1 mode. Here
H/R =1.5, the steady-state axisymmetric streamlines from the base flow are projected over
the top of the contours in each case. Light (dark) contours are positive (negative) and the
right-hand boundary of each image is the cylinder axis.

the figure, can be associated with (i) the shear layer at the interface between the
vortex breakdown bubble and the outer flow, (ii) the wake of the vortex breakdown
bubble where swirling flow converges towards the axis, (iii) the location of severe
streamline bending after the radially inward flow collides with the vortex breakdown
bubble in the meridional plane and (iv) the tip of the wall-jet shear layer. These
structures are also shown in figures 11(a) and 11(b). In figure 10, increasing the
level of isocontour from 30 % of maximum to 40 %, we see a significant reduction
in the size of structures 2–4 while structure 1 remains strong. Further increase in
perturbation strength to 50 % of maximum results in the complete disappearance of
structures 2–4 with only structure 1, which is associated with the vortex breakdown
bubble, remaining coherent with little dissipation.

Figures 11(c) and 11(d ) show the spatial structures for the m =3 and m =1 modes,
respectively, at Re =2650. Here, it can be seen that the major structure associated
with the m = 3 mode is at its most intense near the tip of the vortex breakdown bubble
where fluid, spiralling outward on its return from the free surface, is forced to quickly
adjust to the rapid change in curvature of the vortex breakdown bubble and spiral
back in towards the axis. This structure can be seen to persist well into the vortex
breakdown bubble wake. The m =1 mode at Re = 2650 contains the same structures
(1 to 4) as the m =1 mode observed at lower Re, except now the relative (azimuthal)
positioning of the maxima have changed, such that they can all be observed in a
single meridional semi-plane. A similar analysis of the other velocity components (not
shown) revealed a similar pattern, albeit involving some different structures, but with
structures similar to structure 1 in figure 10 remaining strong; the most significant
difference being the existence of the aforementioned large perturbation to the radial
velocity at the axis near the rotating base.

The pertinent point is that once again, for this aspect ratio, instability of the free-
surface cylinder flow seems to be directly connected to the existence of the vortex
breakdown bubble, which has not been found to be the case at other aspect ratios.
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Figure 12. (a) Estimated growth rates from the 3D DNS plotted against Reynolds number.
Dashed line is a linear fit of the data; (b) saturated period of the flow against Reynolds
number from the 3D DNS.

Finally, figures 12(a) and 12(b) show measured growth rates and saturated periods,
respectively, for the H/R = 1.5 cylinder as functions of the Reynolds number. The
growth rates were obtained via a nonlinear stability analysis using a Landau model,
following the procedure described and used by Sheard, Thompson & Hourigan (2004).
Figure 12(a) leads to a predicted critical Reynolds number, for the transition from
axisymmetric to non-axisymmetric flow, of approximately Rec = 2142. Because of the
prohibitive cost of computing saturated 3D solutions at Reynolds numbers close to a
transition point (note again the very small growth rates), only three data points were
computed. Nevertheless, this predicted critical Reynolds number supports the linear
prediction from § 3 of Rec = 2152 to a high degree of accuracy.

Figure 12(b) presents a further indication that there is another significant shift in the
flow for Re � 2600, despite the saturated flow field maintaining azimuthal wavenumber
m =1 until at least Re =2800 (results not shown). From figure 12(b), the saturated 3D
flow for Re � 2600 has a period approximately 1/3 of that of the saturated flow for
Re � 2600. It is at about this Reynolds number where the transient m = 3 mode was
observed, and above this Reynolds number the secondary m = 1 mode also becomes
dominant (over the primary m =1). Inspection of the angular frequencies associated
with the computed linear stability modes revealed that the secondary m =1 mode
does indeed have a frequency f1,2 � 2.9f1,1. It is the switching between these modes
(predicted by linear stability) that causes the change in the saturated period of the
(fully 3D) flow for Re � 2600. Inspection of the time evolution of vorticity isosurfaces
and the velocity signal from the monitored points for Re = 2800 (not shown) revealed
a possible third transition occurring for Re � 2700, with the flow still maintaining an
m =1 spatial structure in the azimuth. With no further m =1 modes predicted by the
linear stability analysis, it is unlikely that this third transition is due to further activity
in non-axisymmetric modes. Instead, it is likely that the Hopf bifurcation that leads
to transition, from a steady to time-periodic state, in the axisymmetric subspace at
Re � 2660 (Lopez 1995; Brøns et al. 2001; Iwatsu 2005), manifests in the full 3D flow
for Re � 2700 as a secondary Hopf (Neimark–Sacker) bifurcation due to an instability
mode with m = 0. Note that the increasing Reynolds number here (relative to the
initial transition at Re = 2152) renders linear stability theory inaccurate, and due to
the prohibitive cost of nonlinear 3D DNS the characteristics and exact location of
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this third transition are not further pursued. However, the fact that the bifurcation
that manifests in the axisymmetric subspace seems to persist even when the full
nonlinearity and three-dimensionality of the dynamics are considered (albeit at a
slightly higher value of Re) indicates that the Hopf bifurcation in the axisymmetric
subspace is in fact inherent to these flows, and not an artefact of numerical models
restricted to axisymmetry.

5. Conclusions
The swirling flow in a circular cylinder of varying aspect ratio with an open

top surface, driven by rotation of the base endwall, has been closely investigated
using a combination of linear and nonlinear stability analysis and 3D spectral
element–Fourier flow simulations. Numerous aspect ratios, hitherto neglected from an
axisymmetry-breaking perspective, as well as one previously considered aspect ratio
were investigated, with a focus on the H/R = 1.5 case. For all aspect ratios, symmetry
breaking occurred at Reynolds numbers well below the previously defined stability
limits for flows with forced axisymmetry, and also below the symmetry-breaking
transitions at corresponding aspect ratios in enclosed cylinder flow, as reported
by Gelfgat et al. (2001) and others. At H/R = 1.5, the basic flow state loses stability
via a supercritical symmetry-breaking Hopf bifurcation to a rotating wave state
characterised by azimuthal wavenumber m =1 at Re ≈ 2150. The stability analysis
predicted a possible secondary bifurcation to an m = 3 wave state for approximately
Re � 2550, whereas the 3D DNS revealed that this m =3 is a transient state that
quickly loses stability to a secondary m =1 mode. The physical mechanisms leading
to loss of stability of the basic state were hypothesised to be instability of the
weak shear layer at the interface between the slowly recirculating fluid in the vortex
breakdown bubble and the relatively faster moving outer fluid. This conclusion is
in contrast to previous findings for other cylinder configurations where symmetry
breaking occurred as a result of instability in the tip of the wall-jet shear layer, or
due to collision of the radially inward flow of fluid in the meridional plane. Both of
these phenomena were given consideration in the current study; however, we conclude
that the aforementioned instability at the interface of the vortex breakdown bubble
boundary is the physical mechanism primarily responsible for symmetry breaking in
the open cylinder with H/R = 1.5.

For Re � 2600, a change in the saturated period for the 3D flows in cylinders
with H/R = 1.5 is associated with the switching of leading m =1 modes of different
frequencies. For Re � 2700, a third transition leading to a state with modulated time
signal, but still with m =1 spatial structure, is probably associated with an m =0 mode
that causes a change from steady to time-periodic flow states in the axisymmetric
subspace, reported to occur at approximately Re = 2660 numerous times previously.

There still remains a large portion of the parameter space (2.0 <H/R < 4.0) to
be investigated, from a 3D nonlinear standpoint, in order to verify the predictions
of the linear stability analysis reported here. Our 3D simulations verified the linear
stability predictions for the most unstable mode having m =1 and its critical Reynolds
number (Rec = 2152) for the H/R =1.5 open cylinder, as well as the existence of a
secondary m = 1 mode. It also verified, to some extent, the existence of an instability
with wavenumber m =3 at higher Reynolds numbers and a further transition related
to a mode with m = 0. However, they also served as a reminder of the limitations
of linear-stability analysis techniques insofar as predicting dominant states (resulting
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from secondary or tertiary bifurcations) once the primary bifurcation away from the
basic state has occurred.

This research was undertaken in part using the NCI National Facility in Canberra,
Australia, thanks to a Merit Allocation Scheme grant. NCI is supported by the
Australian Commonwealth Government. The authors thank the Monash University
Faculty of Engineering for financial support through its Engineering Small Grants
scheme. S.J.C. thanks the Department of Mechanical and Aerospace Engineering at
Monash University for ongoing postgraduate scholarship support, and the Monash
e-Research Centre for access to their High Performance Computing facility.

REFERENCES

Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake
of a circular cylinder. J. Fluid Mech. 322, 215–241.

Blackburn, H. M. 2002 Three-dimensional instability and state selection in an oscillatory
axisymmetric swirling flow. Phys. Fluids 14, 3983–3996.

Blackburn, H. M. & Lopez, J. M. 2000 Symmetry breaking of the flow in a cylinder driven by a
rotating end wall. Phys. Fluids 12, 2698–2701.

Blackburn, H. M. & Lopez, J. M. 2002 Modulated rotating waves in an enclosed swirling flow.
J. Fluid Mech. 465, 33–58.

Blackburn, H. M. & Lopez, J. M. 2003 On three-dimensional quasi-periodic Floquet instabilities
of two-dimensional bluff body wakes. Phys. Fluids 15, L57–L50.

Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element-Fourier
method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys.
197 (2), 759–778.

Bouffanais, R. & Lo Jacono, D. L. 2009 Unsteady transitional swirling flow in the presence of a
moving free surface. Phys. Fluids 21, 064107.

Brøns, M., Thompson, M. C. & Hourigan, K. 2009 Dye visualization near a three-dimensional
stagnation point: application to the vortex breakdown bubble. J. Fluid Mech. 622, 177–194.

Brøns, M., Voigt, L. K. & Sørensen, J. N. 1999 Streamline topology of steady axisymmetric
vortex breakdown in a cylinder with co-and counter-rotating end-covers. J. Fluid Mech. 401,
275–292.

Brøns, M., Voigt, L. K. & Sørensen, J. N. 2001 Topology of vortex breakdown bubbles in a
cylinder with a rotating bottom and a free surface. J. Fluid Mech. 428, 133–148.

Brown, G. L. & Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 2. Physical mechanisms.
J. Fluid Mech. 221, 553–576.

Dusting, J., Sheridan, J. & Hourigan, K. 2004 Flows within a cylindrical cell culture bioreactor
with a free-surface and a rotating base. In Proc. of the 15th Australasian Fluid Mechanics
Conference (ed. M. Behnia, W. Lin & G. D. McBain), pp. 501–504. University of Sydney.

Dusting, J., Sheridan, J. & Hourigan, K. 2006 A fluid dynamics approach to bioreactor design
for cell and tissue culture. Biotechnol. Bioengng 94 (6), 1196–1208.

Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating
endwall. Exp. Fluids 2 (4), 189–196.

Gelfgat, A. Y., Bar-Yoseph, P. Z. & Solan, A. 1996 Confined swirling flow simulation using
spectral Galerkin and finite volume methods. Proc. ASME Fluids Engng Div. Conf. 238,
105–111.

Gelfgat, A. Y., Bar-Yoseph, P. Z. & Solan, A. 2001 Three-dimensional instability of axisymmetric
flow in a rotating lid-cylinder enclosure. J. Fluid Mech. 438, 363–377.

Gregory, N., Stuart, J. T. & Walker, W. S. 1955 On the stability of three-dimensional boundary
layers with application to the flow due to a rotating disk. Phil. Trans. R. Soc. Lond. A
248 (943), 155–199.

Gutman, L. N. 1957 Theoretical model of a waterspout. In Bulletin of the Academy of Science
USSR, pp. 87–103.



Instabilities in torsionally driven open cylinder flows 543

Hirsa, A. H., Lopez, J. M. & Miraghaie, R. 2002 Symmetry breaking to a rotating wave in a
lid-driven cylinder with a free surface: experimental observation. Phys. Fluids 14, L29–L32.

Husain, H. S., Shtern, V. & Hussain, F. 2003 Control of vortex breakdown by addition of near-axis
swirl. Phys. Fluids 15, 271–279.

Iwatsu, R. 2005 Numerical study of flows in a cylindrical container with rotating bottom and top
flat free surface. J. Phys. Soc. Japan 74 (1), 333–344.

Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the
incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414–443.

Lo Jacono, D., Sørensen, J. N., Thompson, M. C. & Hourigan, K. 2008 Control of vortex
breakdown in a closed cylinder with a small rotating rod. J. Fluids Struct. 24 (8), 1278–1283.

Lo Jacono, D. L., Nazarinia, M. & Brøns, M. 2009 Experimental vortex breakdown topology in
a cylinder with a free surface. Phys. Fluids 21, 111704.

Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech.
221, 533–552.

Lopez, J. M. 1995 Unsteady swirling flow in an enclosed cylinder with reflectional symmetry. Phys.
Fluids 7, 2700–2714.

Lopez, J. M. 2006 Rotating and modulated rotating waves in transitions of an enclosed swirling
flow. J. Fluid Mech. 553, 323–346.

Lopez, J. M., Cui, Y. D. & Lim, T. T. 2006 Experimental and numerical investigation of the
competition between axisymmetric time-periodic modes in an enclosed swirling flow. Phys.
Fluids 18, 104106.

Lopez, J. M., Hart, J. E., Marques, F., Kittelman, S. & Shen, J. 2002 Instability and mode
interactions in a differentially driven rotating cylinder. J. Fluid Mech. 462, 383–409.

Lopez, J. M. & Marques, F. 2004 Mode competition between rotating waves in a swirling flow
with reflection symmetry. J. Fluid Mech. 507, 265–288.

Lopez, J. M., Marques, F., Hirsa, A. H. & Miraghaie, R. 2004 Symmetry breaking in free-surface
cylinder flows. J. Fluid Mech. 502, 99–126.

Lopez, J. M., Marques, F. & Sanchez, J. 2001 Oscillatory modes in an enclosed swirling flow.
J. Fluid Mech. 439, 109–129.

Lopez, J. M. & Perry, A. D. 1992 Axisymmetric vortex breakdown. Part 3. Onset of periodic flow
and chaotic advection. J. Fluid Mech. 234, 449–471.

Marques, F. & Lopez, J. M. 2001 Precessing vortex breakdown mode in an enclosed cylinder flow.
Phys. Fluids 13, 1679–1682.

Marques, F., Lopez, J. M. & Shen, J. 2002 Mode interactions in an enclosed swirling flow: a double
Hopf bifurcation between azimuthal wavenumbers 0 and 2. J. Fluid Mech. 455, 263–281.

Mununga, L., Hourigan, K., Thompson, M. C. & Leweke, T. 2004 Confined flow vortex breakdown
control using a small rotating disk. Phys. Fluids 16, 4750–4753.

Serre, E. & Bontoux, P. 2007 Vortex breakdown in a cylinder with a rotating bottom and a flat
stress-free surface. Intl J. Heat Fluid Flow 28 (2), 229–248.

Sheard, G. J. 2009 Flow dynamics and wall shear-stress variation in a fusiform aneurysm. J. Engng
Maths 64 (4), 379–390.

Sheard, G. J., Fitzgerald, M. J. & Ryan, K. 2009 Cylinders with square cross-section: wake
instabilities with incidence angle variation. J. Fluid Mech. 630, 43–69.

Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid
Mech. 592, 233–262.

Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 From spheres to circular cylinders:
non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 45–78.

Sørensen, J. N., Naumov, I. & Mikkelsen, R. 2006 Experimental investigation of three-dimensional
flow instabilities in a rotating lid-driven cavity. Exp. Fluids 41 (3), 425–440.

Sotiropoulos, F. & Ventikos, Y. 2001 The three-dimensional structure of confined swirling flows
with vortex breakdown. J. Fluid Mech. 426, 155–175.

Spohn, A., Mory, M. & Hopfinger, E. J. 1993 Observations of vortex breakdown in an open
cylindrical container with a rotating bottom. Exp. Fluids 14 (1), 70–77.

Spohn, A., Mory, M. & Hopfinger, E. J. 1998 Experiments on vortex breakdown in a confined
flow generated by a rotating disc. J. Fluid Mech. 370, 73–99.

Stevens, J. L., Lopez, J. M. & Cantwell, B. J. 1999 Oscillatory flow states in an enclosed cylinder
with a rotating endwall. J. Fluid Mech. 389, 101–118.



544 S. J. Cogan, K. Ryan and G. J. Sheard

Tan, B. T., Liow, K. Y. S., Mununga, L., Thompson, M. C. & Hourigan, K. 2009 Simulation of
the control of vortex breakdown in a closed cylinder using a small rotating disk. Phys. Fluids
21, 024104 (1–8).

Tatro, P. R. & Mollo-Christensen, E. L. 1967 Experiments on Ekman layer instability. J. Fluid
Mech. 28 (3), 531–543.

Thompson, M. C. & Hourigan, K. 2003 The sensitivity of steady vortex breakdown bubbles in
confined cylinder flows to rotating lid misalignment. J. Fluid Mech. 496, 129–138.

Vyazmina, E., Nichols, J. W., Chomaz, J. M. & Schmid, P. J. 2009 The bifurcation structure of
viscous steady axisymmetric vortex breakdown with open lateral boundaries. Phys. Fluids 21,
074107.


