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A detailed numerical study of the separating and reattaching flow over a square
leading-edge plate is presented, examining the instability modes governing transition
from two- to three-dimensional flow. Under the influence of background noise,
experiments show that the transition scenario typically is incompletely described
by either global stability analysis or the transient growth of dominant optimal
perturbation modes. Instead two-dimensional transition effectively can be triggered
by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be
possible that this could be described alternatively in terms of higher-order optimal
perturbation modes. At least in some experiments, observed transition occurs by
either: (i) KH vortices shedding downstream directly and then almost immediately
undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger
vortical structures are shed that are also three-dimensionally unstable. These two paths
lead to distinctly different three-dimensional arrangements of vortical flow structures.
This paper focuses on the mechanisms underlying these three-dimensional transitions.
Floquet analysis of weakly periodically forced flow, mimicking the observed two-
dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers
shed from the recirculation region become globally three-dimensionally unstable at
a Reynolds number of approximately 380. This transition Reynolds number and the
predicted wavelength and flow symmetries match well with those of the experiments.
The instability appears to be elliptical in nature with the perturbation field mainly
restricted to the cores of the shed rollers and showing the spatial vorticity distribution
expected for that instability type. Indeed an estimate of the theoretical predicted
wavelength is also a good match to the prediction from Floquet analysis and
theoretical estimates indicate the growth rate is positive. Fully three-dimensional
simulations are also undertaken to explore the nonlinear development of the three-
dimensional instability. These show the development of the characteristic upright
hairpins observed in the experimental dye visualisations. The three-dimensional
instability that manifests at lower Reynolds numbers is shown to be consistent with
an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise
wavelength.
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1. Introduction
The flow past a two-dimensional (2D) large aspect ratio rectangular plate (or

cylinder) represents a generic flow problem with applications to industrially relevant
flows such as heat exchanger plates and buildings. At Reynolds numbers above
approximately 100 (Re =U∞H/ν, where U∞ is the upstream velocity, H the plate
thickness and ν the kinematic viscosity), the flow separates at the leading edge and
reattaches further downstream forming a steady separation bubble. As the Reynolds
number is increased, Kelvin–Helmholtz (KH) waves may become visible depending
on background noise levels, and the recirculation bubble begins to shed releasing
large-scale vortex structures that advect downstream. This shedding is characteristic
of many wall-bounded separating/reattaching flows, such as flow past a backward-
facing step (Kaiktsis, Karniadakis & Orszag 1996; Barkley, Gomes & Henderson
2002; Blackburn, Barkley & Sherwin 2008a), flows over bumps (Marquet et al.
2008, 2009) and flows through stenotic geometries (Griffith et al. 2008; Blackburn,
Sherwin & Barkley 2008b; Griffith et al. 2010).

This particular flow has been examined by a number of researchers over many years.
Lane & Loehrke (1980); Ota, Asano & Okawa (1981); Sasaki & Kiya (1991) examined
the transition to unsteady flow experimentally, finding it occurred over a Reynolds
number range 260 < Re < 330. Prior to this, the flow is steady with a recirculation
bubble formed from the separating and reattaching shear layer. The flow is strongly
three-dimensional (3D) post-transition. Tafti & Vanka (1991) examined the 2D flow
numerically, determining the separation bubble length as a function of Reynolds
number in agreement with the experimental results. Lane & Loehrke (1980); Sasaki &
Kiya (1991) noted the role of KH instability waves in the transition process. Sigurdson
(1995); Sigurdson & Roshko (1984); Sasaki & Kiya (1991) reported on the staggered
arrangement of hairpin vortices observed as part of the transition process. These 3D
hairpins continue to be visible at much higher Reynolds numbers. Hwang, Sung &
Hyun (2001, 2000) examined the shear-layer flapping and shedding using high-speed
imaging both for the unforced and forced cases. A number of authors have examined
the locking of leading-edge shedding through a feedback loop involving the upstream
pressure pulse as released vortices pass the trailing edge of the plate (e.g. Nakamura,
Ohya & Tsurata 1991; Ohya et al. 1992; Hourigan, Thompson & Tan 2001; Mills,
Sheridan & Hourigan 2003; Tan, Thompson & Hourigan 2004).

Such flows used to be considered to be convectively unstable, meaning that
perturbations could grow in magnitude as they are convected downstream, but at
any fixed position the perturbation would die away. Over the last 10 years or so,
another interpretation has been put forward in terms of transient growth of optimal
initial perturbations, i.e. certain initial spatial perturbation distributions are massively
amplified as they advect downstream, possibly resulting in energy amplification factors
of many orders of magnitude. This can happen even if the flow is globally stable
because of the non-normality of the global modes, traced back to the convection term
in the Navier–Stokes equations being not self-adjoint. This helps explain effective
turbulent transition in Couette flow, which is globally stable, and early transition
for a number of other flows such as pipe flow (Butler & Farrell 1992; Trefethen
et al. 1993; Reddy & Henningson 1993). Thus it appears that transition can occur
through transient amplification of optimal perturbation modes followed by nonlinear
evolution but triggered by low-level background noise. For related flows, various
authors have shown through direct simulations that low-level background noise is
sufficient to trigger quasi-periodic flapping of the separating/reattaching shear layer,
similar to that observed in experiments (Kaiktsis et al. 1996; Blackburn et al. 2008a).
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Also of interest is that for some flows where the overall amplification of optimal
perturbation modes is not too large, highly resolved direct numerical simulations
(DNSs) have predicted that the irregular shedding transition is due to the almost
simultaneous emergence of a set of global temporal instability modes, with frequencies
differing by a fixed increment. Acting together this set of modes are subject to
beating, which manifests as quasi-periodic flapping of the shear layer (Ehrenstein &
Gallaire 2008; Cherubini, Robinet & Palma 2010), again similar to what is observed
experimentally. Intriguingly, the global temporal modes appear to be similar in spatial
structure to the evolved optimal perturbation modes.

A previous paper by Thompson (2010) examined the transient growth of optimal
perturbation modes for this flow geometry. That paper indicated that the energy
amplification of the optimal perturbation mode at Re = 350 was more than 4
orders of magnitude, and increases by 2.5 orders of magnitude for each Reynolds
number increment of 100. The most-amplified optimal mode was 3D with a spanwise
wavelength of 12H. This indicates that preventing transition to unsteady flow in
experiments becomes progressively more difficult since even very low-level noise is
likely to trigger transition. Also of relevance, that paper also examined the 2D and 3D
global instabilities. The steady flow becomes three-dimensionally unstable at Re � 390
to a steady instability mode with a wavelength of approximately 16H . The steady 2D
flow does not undergo time-dependent transition until Re � 500.

In terms of experiments, it is not at all likely that the background noise spectrum
will be flat. Typically there is likely to be some frequency dependence, and perhaps
preferred frequencies, such as the blade passing tone of the fan or pump. This
may mean periodic forcing of spatial perturbations, which may be considered to be
periodically projected onto the optimal perturbation modes, but not necessarily
the most-amplified one(s) over all time periods. For instance, optimal modes
corresponding to shorter amplification times tend to resemble shorter wavelength KH
waves during their subsequent advection along the shear layer. It seems reasonable
that if the background noise level is sufficiently high, the evolving perturbation fields
will become nonlinear as they travel downstream. The experimental results of Sasaki &
Kiya (1991) are a case in point. Over the Reynolds number range 320 < Re < 380, they
find that KH vortices are released from the separation zone into the downstream flow.
These vortex filaments rapidly become three-dimensionally unstable during transit.
They consist of lambda-shaped vortices and are in phase from one row to the next.
They call this type of 3D shedding Pattern A. At higher Reynolds numbers, Re > 380,
larger scale vortex structures are released from the recirculation zone and advect
downstream. These are also three-dimensionally unstable – although producing a
different 3D arrangement than for the first regime. The 3D structures then consist of
hairpin-shaped vortices with the leading loop much less pointy than for Pattern A.
The phasing is also different with the alignment of the hairpins offset by 180◦ from
one row to the next. They call this arrangement Pattern B. Pattern B has also been
observed by others independently in other studies including Kiya, Sasaki & Yasakawa
(1983); Sigurdson & Roshko (1984); Kiya & Sasaki (1985); Sigurdson (1995).

An aim of the present paper is to examine the global 3D stability of these 2D vortices
during formation and subsequent advection downstream. Experiments indicate that
these shed vortices are immediately unstable three-dimensionally on formation, and
hence this is an intrinsic part of the transition process. In order to do this, a low-
level cross-stream oscillatory forcing is used to enforce periodic shedding from the
recirculation zone, mimicking the underlying quasi-periodic shedding observed in the
experiments. Then given a periodic base flow, Floquet stability analysis is used to
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determine the 3D stability. Of interest is the physical mechanism underlying the
instability. Finally 3D simulations are used to explore the nonlinear evolution of the
advecting 3D structures.

2. Methodology
The flow over a bluff plate is modelled by the incompressible Navier–Stokes equations
in an accelerating reference frame combined with the continuity constraint,

∂u
∂t

+ u · ∇u = −∇p + ν∇2u − duf

dt
, (2.1)

and

∇ · u = 0. (2.2)

Here, p is the kinematic pressure, i.e. the pressure divided by the density, ν is the
kinematic viscosity, and u is the velocity vector in the reference frame of the plate. The
frame acceleration is given by duf /dt . In this case, it is used to apply a small vertical
sinusoidal oscillation to the plate to determine the effect on the shear-layer stability.
These equations are solved numerically using a high-order spectral-element method
of the kind first presented by Patera (1984). The method and developed software have
been applied previously to various related problems, such as the wakes of cylinders
(Thompson, Hourigan & Sheridan 1996; Thompson, Leweke & Williamson 2001b;
Leontini, Thompson & Hourigan 2007), spheres (Thompson, Leweke & Provansal
2001a) and tori (Sheard, Thompson & Hourigan 2003, 2004). These previous studies
provide confidence in the implementation and provide guidance for mesh requirements
to resolve flow features. In contrast to finite-difference methods, which solve for
flow variables only at discrete grid points, spectral-element methods compute the
flow variables in terms of high-order piecewise Lagrangian polynomial interpolation
functions which are continuous over all elements of the flow domain. The spectral-
element method has been shown to achieve spectral or exponential convergence as
the polynomial order within macro-elements is increased (e.g. Karniadakis & Sherwin
1999), but also allows the h refinement of h–p methods, allowing considerable
flexibility with mesh construction. Since descriptions of the approach can be found in
the series of papers mentioned above, only relevant specific details will be presented
in this paper.

An essential component of any numerical study of fluid flow is the design of an
efficient computational mesh. This problem is relatively expensive in computational
terms because of the sizeable regions with large velocity gradients requiring high
resolution. In particular, there are geometric singularities at the leading edges and
relatively fine boundary layers extending all the way to the outflow boundary. After
several attempts, a mesh was designed which had sufficient resolution in the regions
where complex flow features occur, particularly towards the leading edge and within 1–
2H of the plate surface, while limiting the concentration of macro-elements elsewhere.

The boundary conditions for the stationary plate case are u = 0 at the surface of
the plate, u = (U∞, 0) at the inflow and side boundaries and ∂u/∂x = ∂v/∂x = 0, i.e.
a zero normal gradient condition, at the outflow boundary. For the case when the
flow is perturbed by applying a vertical sinusoidal oscillation to the plate, the frame
of reference is attached to the plate. Then the velocity is still set to zero at the plate
surface, and the time-varying sinusoidal vertical perturbation velocity component is
subtracted from the free stream velocity at the inflow and side boundaries to account
for switching to the accelerating frame. Finally, for the Floquet analysis, described
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Figure 1. Problem setup: fluid flows past a bluff flat plate at upstream velocity U . Above a
certain Reynolds number, the separating and reattaching shear layer flaps releasing large-scale
vortex structures (rollers) that shed downstream.

below, zero perturbation velocity boundary conditions are used at all boundaries
except outflow, where the zero normal gradient condition is again used.

Figure 2 shows the mesh used for the bulk of the simulations. In terms of the
parameters shown in figure 1, this mesh has dimensions: inflow length Xi = 10H ;
plate length Xo = 30H ; and top and bottom boundaries at Xs = ±20H . Resolution
studies were performed to check grid independence by increasing the polynomial order
within each macro-element until convergence was achieved. This was determined by
monitoring the velocity at a point downstream of the mean reattachment length. It
was found that convergence was achieved using 8 × 8 internal nodes per element,
giving predictions of velocity maxima accurate to within 1 % of more highly resolved
simulations.

Given a 2D base flow, the global stability can be established using linear stability
analysis. A particular case of interest for this paper is when the base flow is periodic.
In this case, the particular type of linear stability analysis is called Floquet stability
analysis, which establishes whether or not a global perturbation will grow in time
(exponentially) from one period to the next. This determines whether the base flow is
globally or asymptotically stable or unstable. Typically, the control parameter is the
Reynolds number. As the Reynolds number increases, at some stage the 2D periodic
flow may become unstable as a 3D perturbation grows linearly until the flow saturates
nonlinearly, typically resulting in a periodic or possibly quasi-periodic 3D flow. This
analysis was applied to the circular cylinder wake by Barkley & Henderson (1996),
indicating that the initial instability mode, called Mode A, becomes unstable at a
Reynolds number of approximately 190. This fastest growing mode has a wavelength
of about four cylinder diameters, and the transition is subcritical, meaning it is
hysteretic. There is some supporting evidence that the instability is linked to the
generic elliptic instability mechanism that occurs in strained elliptical vortices, i.e. it is
primarily an instability of the vortex cores (Leweke & Williamson 1998b; Thompson
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Figure 2. Typical computational mesh employed for the time-dependent simulations. This
shows only the macro-elements, which were further subdivided into N × N nodes.

et al. 2001b; Julien, Ortiz & Chomaz 2004). A shorter wavelength (λ� 1D) secondary
instability occurs at a Reynolds number of approximately 260 on the unperturbed 2D
base flow. This mode is known as Mode B, and the remnants of this instability mode
appear to be observable in much higher Reynolds number wake flows (Wu et al. 1996),
while the existence of Mode A at higher Reynolds numbers is more difficult to detect.
(This may be because Mode A is unstable over an increasingly larger wavelength band
at higher Reynolds numbers, so its appearance may be masked as seemingly random
3D motions.) Evidence has been put forward that the Mode B is associated with an
instability of the braids between the Strouhal vortices (Williamson 1996) where the
amplitude is strong, and more recently centrifugal instability has been implicated in
its onset (Ryan, Thompson & Hourigan 2005). Blackburn & Lopez (2003b) have also
linked braid-type instabilities to centrifugal instability for periodically driven cavities.

As presented by Barkley & Henderson (1996), the technique as applied here is
based on evolving the 3D perturbation fields for the velocity and pressure forward
in time. This is done for a series of Reynolds numbers over a selection of spanwise
wavelengths (λ). Because the coefficients of the equations do not depend on the
spanwise coordinate (z), the variation in the spanwise direction of the perturbation
field can be represented as a Fourier expansion and the behaviour of each mode can be
examined separately. In practice, the first few fastest growing eigenmodes contributing
to the perturbation fields can be determined for each (λ, Re) by integrating in time
from random perturbation fields, and renormalising the fields after each period if
necessary to prevent unbounded growth. After sufficient time, typically 50–100 base
flow periods, only the fastest growing or slowest decaying eigenmodes contribute to
the perturbation field. Arnoldi decomposition (Barkley & Henderson 1996) can then
be used on a set of stored perturbation fields to give good representations of the first
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few dominant modes. The growth in amplitude of each eigenmode from one period
to the next can also be extracted using the mode orthogonalisation procedure. These
can be expressed as a (possibly complex) amplitude multiplier, commonly called a
Floquet multiplier, µ, or a growth rate, σ , such that µ = exp(σT ), where T is the
base flow period. If the dominant multiplier is real, this means that the perturbation
field has the same period as the base flow. If it is complex, then the eigenmodes
form a complex pair and the eigenmode pair has a period that is different from
the base flow period (Blackburn & Lopez 2003a). In any case, the values of µ as a
function of λ and Re fully describe the global stability of a 2D periodic flow to 3D
perturbations. If the magnitude of the dominant Floquet multiplier is less than unity,
the mode exponentially decays over time and will not be observed in a real flow. The
mathematical details of this procedure are not given here because they have been
reported extensively elsewhere, e.g. Barkley & Henderson (1996); Ryan et al. (2005);
Blackburn & Lopez (2003a).

3. Results
3.1. 2D base flow

As indicated in the discussion above, the separating shear layer is very sensitive to
external perturbations. For finite-length plates, at Reynolds numbers above a few
hundred, the passage of previously released vortices from the leading-edge shear
layer past the trailing edge is sufficient to maintain a feedback loop causing strong
quasi-regular leading-edge shedding (Nakamura et al. 1991; Ozono et al. 1992; Tan,
Thompson & Hourigan 1998; Hourigan et al. 2001). The mechanism is through a
pressure pulse as the vortex passes the trailing edge, which perturbs the upstream
shear layer completing the feedback loop. However, the case examined in this paper
is that of flow past a semi-infinite plate, so that there can be no sudden upstream
influence as vortices travel downstream along the plate. In practice this is difficult
to achieve using the numerical model because the domain needs to be truncated at
some point. The truncation has a similar effect to using a finite-length plate in that,
as the vortices exit the domain, this can perturb the upstream shear layer causing it
to roll up. So one requirement is to use a sufficiently long domain so that exiting of
vortices through the outflow boundary does not prevent the flow smoothly settling
down to a stable steady separating–reattaching flow when no cross-stream forcing is
applied. With the current setup using a plate length of (Xo =)30H , the flow evolves
to a steady state for Re � 450.

Figure 3 shows the behaviour of the reattachment length with Reynolds number
from the simulations. This figure also shows results from previous experimental
(Lane & Loehrke 1980; Ota et al. 1981; Sasaki & Kiya 1991) and numerical studies
(Tafti & Vanka 1991) for comparison. It indicates that for three different sets of
experiments, the separation bubble becomes unstable in the Reynolds number range
260 < Re < 330. Above this range, the data indicate the mean separation bubble
length, which asymptotes at higher Reynolds numbers to between 4 and 5H . As the
Reynolds number is increased, the numerically predicted separation bubble lengths
deviate somewhat from previous numerical predictions of Tafti & Vanka (1991).
This may be due to the relatively small width of their domain of only 4H causing
a significant blockage effect, even though they indicate that there was an explicit
attempt to reduce this effect. Notably the current numerical predictions fall between
the experimental results of Ota et al. (1981) and Sasaki & Kiya (1991); Lane &
Loehrke (1980). Numerical simulations with a plate length of 60H and higher and
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Figure 3. Reattachment length of the separation bubble as a function of Reynolds number.
Results from various previous experimental and numerical studies are also given with the
references supplied in the text. Where the experimental curves turn over, the flow undergoes
transition to unsteady shedding.

lower polynomial resolutions made no difference to the predictions of the separation
bubble lengths to graphical accuracy. Note that steady solutions could be obtained
at much higher Reynolds numbers using a steady spectral-element flow solver based
on a penalty formulation and Newton iteration. There was no difficulty in computing
steady solutions for Reynolds numbers up to at least 1000. Some of these results
are also shown in this figure. Note that in this case a bigger domain with a plate
length of 60H was used, given the reattachment length exceeds 30H for Re = 600.
For Re < 400, the variation of reattachment length with Reynolds number is above
linear, while at higher Reynolds numbers the variation appears close to linear.

3.2. Forced flow

Thompson (2010) showed that the 2D flow undergoes an initial global transition to a
steady 3D flow at Re � 393, and that the global transition to unsteady flow occurs at
Re � 500. Importantly, both of these transitions occur at higher Reynolds numbers
than effective transition is observed in experiments. In addition, Thompson (2010)
also examined the transient growth of optimal perturbation modes showing that at
Re = 350 energy growth is more than 4 orders of magnitude. This seems consistent
with the experimental findings where background noise levels are likely to be sufficient
to trigger early transition. Thus, while transient growth appears to provide a route to
unsteady transition, experiments clearly show that the flow becomes both unsteady
and 3D post-transition. It is also clear that experiments typically show (e.g. Sasaki &
Kiya 1991) that shorter wavelength KH instability waves play a part. While the
optimal 3D transient growth mode is amplified slightly more than the most amplified
2D mode, the corresponding preferred spanwise wavelength is approximately 12H .
This is much longer than the experimentally observed spanwise wavelength soon after
onset of about 2H (Sasaki & Kiya 1991).

An hypothesised transition scenario is that the background noise feeds energy
into KH waves or optimal initial perturbation modes which undergo rapid transient
growth resulting in predominantly 2D shedding from the separation zone. This will
be discussed further below. The released vortex rollers are then unstable to 3D
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(a) (c)
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Figure 4. Experimental dye visualisations from Sasaki & Kiya (1991). (a) 3D vortex
arrangement corresponding to Pattern A; (b) the shed vortices appear to be closely linked
with KH vortices. (c) 3D structure for Pattern B; (d ) the stronger shed vortices now arise from
shear-layer flapping and merging of smaller KH vortices.

perturbations leading to the experimentally observed strongly 3D flow (see figure 4).
Further, it can be speculated that the secondary (3D) instability is effectively a global
instability of the quasi-periodic 2D flapping flow. In order to test this hypothesis,
it seems reasonable to regularise the 2D quasi-periodic shedding by applying a very
low-level sinusoidal cross-stream forcing to force periodicity. Then a Floquet analysis
can be carried out on the strictly periodic flow to investigate the global stability.

A low amplitude sinusoidal forcing was applied perpendicular to the flow at the inlet
and side boundaries, in order to make the shear-layer flapping and release of vortices
strictly periodic. Initially this was done for a low-level forcing amplitude of 0.0005U

over a range of forcing frequencies to determine the maximal response. Figure 5
shows a snapshot of the perturbation velocity field after sinusoidal forcing had been
applied to the steady base flow for 1/4 of a period, i.e. after the perturbation reaches
the maximum amplitude. The effect is strongest near the leading-edge corners where
it perturbs the shear layers as they separate. The vertical velocity component was
recorded at a mesh point (8.23H, 0.625H ) well downstream of the leading edge
to quantify the response. Figure 6 shows the non-dimensional response amplitude
as a function of Strouhal number. The maximum response occurs close to
St = f H/U = 0.1, where f is the frequency; however, the response drops off rapidly
if the Strouhal number is reduced below this value, but it also shows some resonant
peaks. The second peak from the left corresponds to forcing at half the preferred
response frequency. The other peaks match frequency ratios of 1/3 and 2/3 times the
preferred frequency. Above the Strouhal number corresponding to the maximal re-
sponse, the response drops smoothly to zero as the forcing frequency is increased. From
this analysis, it was decided to use a forcing frequency slightly higher than the maximal
response frequency (i.e. St = 0.11) to ensure the excitation of the fundamental mode.

Subsequently, for a fixed forcing frequency of St = 0.11 and Re = 400, the
downstream response was determined as a function of the input forcing amplitude
between 0.0001 % and 1 % of the free stream velocity. The result is shown in figure 7.
Clearly even at an extremely low forcing level of 0.001 % of the free stream velocity,
the downstream flow is periodic reaching a non-negligible amplitude. The magnitude
of the response is clarified further through figure 8, which shows greyscale vorticity
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Figure 5. Perturbation velocity in the vicinity of the leading edge of the plate one quarter
of period after low-level sinusoidal forcing was applied to the steady separated flow. Here
Re = 400, St = 0.11, and the forcing amplitude is 0.05 %.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10−2 10−1 100

Strouhal number

N
on

-d
im

en
si

on
al

 r
es

po
ns

e 
am

pl
it

ud
e

Figure 6. Frequency response of bluff plate boundary layer flow to varying frequencies of
excitation. The forcing amplitude imposed on the flow is 0.0005U , and peak flow response is
observed close to St = 0.1.

plots for different input forcing amplitudes. It is also quite clear from these plots that
a forcing level of 0.001 % is sufficient to produce weak periodic shedding from the
separation zone. At higher forcing levels between 0.01 % and 0.1 %, the shed vortex
rollers become compact and discrete. The separation zone is also shortened as the
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Figure 7. (Colour online available at journals.cambridge.org/FLM) Horizontal velocity
component at a downstream point (8.23H, 0.625H ) caused by a low-level cross-stream
sinusoidal oscillation. The input forcing amplitude is shown as an inset for each response
curve. Here, Re = 400 and St = 0.11.

forcing amplitude is increased. At a forcing level of 1 %, very strong and compact
vortices are produced.

3.3. Floquet multipliers

Given a periodic base flow, it is possible to determine the linear stability using
Floquet analysis. This determines the stability of the 2D periodic flow to spanwise
perturbations. In practice, for a given Reynolds number the first few global instability
modes are determined corresponding to different spanwise wavelengths. The 2D flow
is then unstable if any of the modes have positive growth rates. Alternatively Floquet
multipliers can be used instead of growth rates. These are just the ratios of the mode
amplitudes to their values one period prior. Figure 9 shows the Floquet multiplier
curves as a function of spanwise wavelength for different Reynolds numbers. This is
for a forcing level of 0.05 %. The two different peaks correspond to different spatial
mode shapes. The curves indicate that the flow becomes three-dimensionally unstable
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Figure 8. Vortex shedding induced by low-level cross-stream oscillatory forcing. The forcing
levels from top to bottom are 1 %, 0.1%, 0.01 % and 0.001% of the upstream velocity. Here,
Re = 400 and St = 0.11. All plots are at the same phase of the forcing cycle.
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Figure 9. Floquet multiplier as a function of spanwise perturbation wavelength for different
Reynolds numbers. Two distinct instability modes are observed, at λ/H ≈ 1.2 and λ/H ≈ 4.2,
respectively. The forcing amplitude corresponds to 0.05 % of the free stream velocity.

between Re = 350 and 380 initially for a spanwise wavelength slightly greater than
4H . At a slightly higher Reynolds number another shorter wavelength mode also
becomes unstable. This has a wavelength of approximately 1.2H .

The spatial structure of these two instability modes is revealed in figure 10. The
top image is a greyscale plot of the spanwise vorticity field showing the vortices shed
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Figure 10. Spatial structure of the instability observed for a forcing level of 0.05 %. Top
image is a greyscale plot of the spanwise vorticity for the periodic base flow. This shows the
shear layer flapping and release of compact vortical structures. The next two images are the
spanwise and streamwise perturbation vorticity for the longer wavelength instability. Finally
the last two images show the spanwise and streamwise perturbation vorticity for the shorter
wavelength instability. All images correspond to Re = 400.

from the separation bubble. The next two images show the spanwise and streamwise
perturbation vorticity field for the longer wavelength mode. The perturbation field
is clearly maximal in the vortex cores, and the spatial spanwise vorticity distribution
is clearly indicative of elliptic instability, as discussed further below. The final two
images show the spanwise and streamwise perturbation vorticity for the shorter
wavelength mode. This appears to resemble a higher-order elliptic instability mode,
corresponding to the same azimuthal wavenumber (|m| =1) but a higher radial
wavenumber (n= 1), i.e. one radial node. Of note is that the longer wavelength mode
has a period of twice the forcing period. The instability reverses sign from one period
to the next. This is consistent with experimental results for Pattern B.

Figure 11 provides evidence of the dominant elliptic nature of the instability. The
top image shows the spanwise vorticity field, with the inset box showing the spatial
domain of the next five images. Image (b) shows a zoomed-in view of the spanwise
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(b)

(c)

(d)

(e)

( f )

(a)

Figure 11. Evidence for elliptical nature of the instability. The images show: (a) spanwise
vorticity of the forced flow, with the box indicating the region of focus for the other five
images; (b) vorticity contours of the base flow; (c) streamlines in the frame attached to the
convecting vortex; (d) perturbation spanwise vorticity from the numerical stability analysis; (e)
vectors showing the direction and magnitude of the strain in the neighbourhood of the vortex
core and (f) region of positive viscous growth from applying the idealised theory (contours
correspond to growth rates of 0, 0.25, 0.28).
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vorticity contours (−2 < ωzH/U∞ < 2), while (c) shows streamlines in the frame-of-
reference of the moving vortex structure, clearly showing elliptical streamlines as
required for an elliptic instability. The major and minor axes of the ellipses are
approximately aligned with the x (horizontal) and y (vertical) axes. The eccentricity
is substantial. Image (d) is a close-up of the spanwise perturbation vorticity, showing
the generic two-lobed structure characteristic of the |m| =1 , n= 0 mode. Here, n and
m correspond to the radial and azimuthal wavenumbers defining the instability mode.
Note that the centres of the lobes are aligned at approximately 45◦ to the axes of the
streamline ellipses, along the direction of the principal strain as shown in image (e).
This is the expected alignment for an idealised elliptic instability. Finally, the outer
contour of image (f) shows the local region where the flow is elliptic in nature. This
is governed by the parameter β = 2ε/|ω|, where ω is the vorticity and ε is the local
strain rate. The flow is elliptic for 0 <β < 1.

Various authors (Leweke & Williamson 1998a; Eloy & Le Dizes 1999) have shown
that the most unstable mode of a finite-sized vortex core resemble the localised
solutions for unbounded elliptical flow examined by Waleffe (1990). Hence there is a
reasonable justification to examine more complex elliptical flows in terms of idealised
theory. According to Landman & Saffman (1987), the growth rate in the idealised case
of a flow with streamlines of constant eccentricity is given by a non-dimensionalised
inviscid growth rate, σi , and a non-dimensionalised viscous damping rate, σν , i.e.

σ = σi − σν, (3.1)

where

σi �
(

ε
H

U

)
9

16
(1 − βm)n (3.2)

and

σν =
1

Re

(
2π

(λ/H )

)2
1 − β cos2 θ

(1 − β) cos2 θ
. (3.3)

The expression for the inviscid growth rate is a least-squares fit to the numerically
determined result of Landman & Saffman (1987) (see Leweke & Williamson 1998b),
with the best-fit parameters determined to be m = 2.811 and n= 0.3914. The viscous
damping term depends on θ , the angle of the wave vector of the most unstable
perturbation with the rotation axis. The results from Landman & Saffman (1987,
see figure 3) indicate that for β < 0.6, the most unstable wavenumber inclination is
not a function of the wave vector-magnitude, while for larger values there is some
variation with vorticity magnitude and amplitude. For the vortex depicted in figure 11,
the value of β at the centre of the vortex is approximately 0.7. This restricts θ to
lie approximately in the range of 43<θ < 50, which means the growth rate at the
centre of the vortices is predicted to lie between 0.30 and 0.32. Figure 11(f) shows
contours of growth rate for the θ =50◦ case. After the vortex has advected along
the plate for a single period, the theoretical growth rate at the centre has dropped
to approximately 0.25. Clearly, based on the idealised case, elliptic instability theory
predicts strong amplification of an elliptic perturbation field. These numbers can be
compared with the actual growth determined from the Floquet analysis. The difference
in the magnitude of the perturbation field from its position shown in figure 11 to the
magnitude of the next downstream vortex, i.e. the growth in one period measured
moving with the vortex, is very close to a factor of 3. This translates to a growth rate
of σ = loge µ/T = 0.12. While this is significantly lower than the theoretical maximum
growth rate measured at the centre of the vortex, it should not be surprising since,



426 H. K. Chaurasia and M. C. Thompson

0

1

2

3

4

F
lo

qu
et

 m
ul

ti
pl

ie
r

Real modes

Complex modes

Re = 300

Re = 500

Re = 400

1 2 3 4 5 6 7

λ/H

Figure 12. Floquet multiplier as a function of spanwise perturbation wavelength for
different Reynolds numbers at a forcing amplitude of 0.5 % of the free stream velocity.

as shown in figure 11(d), a considerable fraction of the perturbation structure lies
outside the region of maximum growth and even outside the elliptic region as shown
in figure 11(f). Note that this advective growth multiplier is not the same as the Floquet
multiplier, which just measures the growth multiplier over a period at a fixed point.
The maximum Floquet multiplier at Re = 400 is 1.32, which is equivalent to a local
growth rate of 0.032.

For a generic elliptic instability in the limit of vanishing strain the preferred
wavelength is twice the geometric diameter of the invariant streamtube, i.e. the closed
circuit where the perturbation velocity falls to zero. While this strictly does not
happen in the real case, nevertheless the size of the vortex core region should give an
appropriate estimate. For the just released vortex in the top image of figure 10, the
major and minor axis lengths can be estimated as 3H and 1.3H . This gives a geometric
mean of close to 2H and hence indicates that the spanwise wavelength should be
close to 4H if elliptic instability is the main cause of the complex 3D instability.
This is, of course, very close to the preferred wavelength determined directly from
Floquet stability analysis of 4.6H at Re = 400. Alternatively, for flows with elliptical
streamlines without a restriction on the eccentricity Landman & Saffman (1987) give
the preferred spanwise wavelength to be

λ = L

(
2

1 − β

)1/2

tan θ, (3.4)

where L is the core length-scale, which for newly released vortices appears to be
around 2H as discussed above. Given that β ∼ 0.7, this gives λ ∼ 5H , again close to
the result from Floquet analysis.

3.3.1. Effect of forcing amplitude

Figure 12 shows the Floquet multiplier curves for a higher forcing amplitude of
0.5 % of the free stream velocity. In this case the shedding is stronger and the shed
vortices are more compact and less elliptical, as can be seen from the trend shown
in figure 8. The more compact shed vortex size reduces the core length-scale which
in turn directly affects the preferred spanwise wavelength; thus at the higher forcing
amplitude or higher Reynolds number the most amplified wavelength is reduced.
This is consistent with the measured wavelength of Pattern B from the experiments
of Sasaki & Kiya (1991) of 3–4H . At this higher forcing amplitude, the shorter
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Figure 13. Floquet multiplier curves for the flow forced at St = 0.22 and Re = 350. The
different curves correspond to different forcing amplitudes.
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Figure 14. Greyscale plot of the spanwise perturbation vorticity corresponding to Re = 350,
λz = 1.8H at a forcing amplitude of 0.2 %. The solid lines show the base flow vorticity at
ωz = ±1.3.

wavelength mode shown in figure 9 is suppressed, presumably because it is pushed to
shorter wavelengths (as the core size is reduced) where viscous damping is stronger.

3.4. Floquet analysis at a higher forcing frequency

Figure 4 seems to indicate that Pattern A results when the KH shear-layer vortices
shed directly, although there may be some merging further downstream. To investigate
this further a base flow was generated using a forcing frequency of twice the previous
case, i.e. St = 0.22. Some justification for this choice comes from the side-view images
of figure 4, which appear consistent with the larger-scale vortices resulting from
merging of pairs of higher frequency shear-layer vortices.

Figure 13 shows a plot of the spanwise perturbation vorticity at Re = 350 for the
maximally amplified spanwise wavelength of 1.8H for a forcing amplitude of 0.2 %.
The solid lines show vorticity contours of ω = ±1.3 to highlight the positions of the
shear-layer vortices. Once again the instability appears to manifest strongly in the
vortex cores. Importantly the perturbation alignment is the same from one vortex
to the next, in agreement with the downstream alignment of vortex loops observed
experimentally.

Figure 14 shows the Floquet multiplier curves for various different forcing
amplitudes at Re = 350, which is at the middle of the range over which Pattern
A is observed. The results indicate that for forcing amplitudes of 0.1 % and 0.2 %,
the Floquet multiplier becomes positive for wavelengths centred around 2H . This is
close to the observed Pattern A wavelength. At higher forcing amplitudes, the Floquet
multiplier once again becomes less than one. This is presumably associated with the
vortex cores becoming more compact under stronger forcing leading to a shorter
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preferred spanwise wavelength; however, the viscous damping varies quadratically
with the inverse of the core length-scale leading to overall damping. Note that for
this Reynolds number even at these higher forcing amplitudes, the Floquet modes all
decay for a forcing Strouhal number of St = 0.11.

Further evidence that this instability mode is associated with Pattern A shedding
comes from 3D simulations examined below.

3.5. Three-dimensional DNS calculations

A series of fully 3D DNS were undertaken to explore the nonlinear evolution of
these instabilities. These simulations employ a hybrid spectral-element/spectral code
(Thompson et al. 1996). The extension to 3D is based on the same mesh and spectral-
element representation used for the 2D simulations, with a Fourier representation
in the spanwise direction. Details of the approach can be found in Karniadakis &
Trintafyllou (1992). Of course, this enforces periodicity in the spanwise direction but
also restricts the 3D variation to be expressed as a series of Fourier modes with
discrete wavelengths. For our 3D simulations, the spanwise domain was chosen to be
three times the wavelength of the observed dominant Pattern B instability, which is
approximately 4.6H at Re =400. Different simulations used up to 96 Fourier planes in
the spanwise direction and the predictions were compared to verify that the flow was
well resolved. Note that no dealiasing was used because of the low Reynolds number
involved. A periodic forcing of 0.001U was applied at the inflow and side boundaries
with St = 0.11, to duplicate the conditions of the 2D simulations. The flow was seeded
with low-level random noise to initiate the development of three-dimensionality.

Different visualisations of the 3D simulated flow at Re =400 are provided in
figure 15. The top image shows vortical structures visualised using the method
proposed by Jeong & Hussain (1995). This image shows the 3D structures post
saturation. The middle and lower images are tracer particle plots at different stages
in the evolution. The middle image shows a particle visualisation prior to saturation,
before the vortex loops have become upright. The lower image shows a 3D structure
post saturation. The vortex loops or hairpins are clearly visible and match up nicely
with the experimental flow visualisation shown in figure 4 for Pattern B, in wavelength,
phasing and overall structure. The numerical particle image at saturation bears a
striking similarity to the experimental dye visualisation.

A 3D simulation was also performed for the instability mode occurring at
higher frequencies but for lower Reynolds numbers, which shows characteristics of
Pattern A. The same set-up was used as for Pattern B above, with Re = 350, St = 0.22
and with low-level random noise added to the initial field to initiate the growth of
the instability. Figure 16 shows a particle tracer plot of the fully developed field, with
the aligned loops clearly visible. The spanwise domain corresponds to 6H and shows
three spanwise wavelengths of the fully developed mode.

4. Discussion and conclusions
For this flow, experiments seem to indicate that in practice transition to unsteady

flow is intrinsically linked to 3D transition. Indeed Sasaki & Kiya (1991) find that
transition is a two-stage process, with both stages marked by strongly 3D flow, both
with preferred spanwise wavelengths far from those predicted by either global stability
or transient growth analyses.

The analysis in this paper puts forward an interpretation of the experimentally
observed transition. It could be expected that the optimal perturbation analysis should
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(a)
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Figure 15. Visualisations of 3D structures from the direct simulations. (a) The vortical
structures using the approach of Jeong & Hussain (1995). (b,c) Tracer particle simulations
from the direct simulations that can be compared to figure 4(c) from experiments. The first
(middle) of these images is shown at a time when the 3D mode is still developing. (c) A
visualisation after the flow has saturated. The upright loops in the top and bottom images are
quite striking, seeming to match the experimental observations in figure 4. Here, Re = 400.

describe the initial transition, since transient amplification is significant and transition
occurs prior to the flow becoming globally unstable. However, the experiments of
Sasaki & Kiya (1991) indicate that KH waves are involved in the initial transition.
This probably indicates that the noise spectrum in the experimental rig is not flat but
is shifted to higher frequencies, so that shorter wavelength KH waves are excited and
grow preferentially, rather than the overall maximally amplified optimal perturbation
mode, which does not seem to lead to the transient development of equivalent KH
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Figure 16. Visualisations of 3D structures resulting from perturbing the flow at twice the
natural shedding frequency (St =0.22) for Re = 350. Forcing amplitude was 0.2 %.

waves during nonlinear evolution (Thompson 2010). These KH vortices are released
into the flow and appear to be three-dimensionally unstable resulting in the Pattern A
mode. While this is not the main focus of the paper since it is not the mode that
persists as the Reynolds number is increased, nevertheless an explanation for its
development is provided. By forcing the flow at a frequency which excites the KH
waves in the separating shear layer, the flow is shown to be unstable to 3D transition.
The predicted spanwise wavelength and the downstream symmetry are consistent with
Pattern A characteristics. The forcing amplitude range required for the instability to
develop is also consistent with probable noise levels in the experiments.

The main analysis, however, focuses on the second transition at Re > 380. In that
case the KH waves are still present, but their initial amplification is sufficient to cause
nonlinear merging, so that much larger vortex rollers are released. The net effect, in
terms of the release of large-scale vortex rollers, appears to be similar to the transient
growth, nonlinear saturation and release of the optimal initial perturbation mode
examined by Thompson (2010). Experiments show that semi-periodic shedding is
maintained in this regime, presumably due to the background noise and possibly
nonlinear feedback. This is similar to the quasi-periodic flapping and shedding
observed in DNS for the backward-facing step (Blackburn et al. 2008a). So, to
examine the 3D transition in this paper, a very low-level cross-stream oscillation is
used to lock the shedding. Floquet stability analysis then indicates that the flow is
three-dimensionally unstable for Re > 380. The predicted wavelength is approximately
4H at onset and so is consistent with experiments with measured wavelengths between
3 and 4H . The phasing between rows of hairpin vortices from the Floquet analysis
also matches the experimental arrangement. The stability analysis from this paper
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shows that the perturbation field is maximal in the cores of the advecting vortex
rollers and the perturbation field distribution is very reminiscent of elliptic instability.
Indeed an estimate of the preferred wavelength from analytic theory gives a value
of about 5H at onset, in line with the Floquet stability analysis and experiments.
Finally, DNSs of the periodic base flow match the upright vortex hairpins observed
in the experiments for Pattern B.
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