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This paper describes an experimental investigation of a buoyant, m∗ < 1, tethered
cylinder which is free to move in an arc about its pivot points. The response of the
cylinder, in particular its layover angle and flow-induced motion, is considered for
a range of flow velocities and mass ratios. At pertinent parameters, the flow fields
were also measured using particle image velocimetry (PIV). At lower mass ratios,
0.54 � m∗ � 0.72, two distinct states are observed, the low-amplitude and upper states.
The transition from the low-amplitude state to the upper state is characterized by
abrupt jumps in the amplitude of oscillation, the mean tether angle and the drag
coefficient as well as distinct changes in the cylinder’s wake. At higher mass ratios,
the jump does not occur; however, as m∗ approaches unity at low flow velocities the
cylinder’s motion is more periodic than that observed at lower m∗. The flow fields
indicate that the low-amplitude state exhibits a 2S Kármán wake. The wake of the
upper state has long shear layers extending well across the wake centreline, is not
fully symmetric and is often consistent with either the 2P or P + S shedding modes.
There is a collapse of the response data, in particular an excellent collapse of the
mean layover angle, when the response parameters are plotted against the buoyancy
Froude number, Frbuoyancy = U/((1 − m∗)gD)0.5. When the data collapses, the two
states described above are clearly delineated.

1. Introduction
Instabilities generated by fluid flow over a body can result in large-scale motion of

the body. A number of previous investigations have considered the case of a cylinder
constrained to move transverse to the flow (e.g. Govardhan & Williamson 2000), or
a cylinder with two-dimensional motion in the transverse and in-line directions (e.g.
Jauvtis & Williamson 2004). A closely related problem is that of a rigid tethered
cylinder (figure 1), where the cylinder is free to move in an arc about its pivot points.
Despite the relevance of this case to the response of tethered bodies submerged
in a steady current, this problem received almost no attention until the numerical
investigations of Ryan, Thompson & Hourigan (2002, 2003). In this experimental
investigation, the response of a tethered buoyant cylinder to a range of flow velocities
is analysed. The effect of varying the mass ratio m∗, where m∗ is the mass of the body
normalized by the mass of fluid it displaces, was also investigated.

The fluid–structure interaction of a cylinder moving relative to a free stream results
in significant modification of both the forces on the cylinder and the structure of
the near wake. Typically, either the cylinder motion is ‘free’, and occurs in response
to flow-induced forces, or the motion of the cylinder is externally driven. Until
recently, the majority of investigations have focused on cylinder motions that are
either transverse or in-line with the free stream.
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Figure 1. Schematic of the tethered cylinder in the free stream.

An elastically mounted cylinder constrained to move transverse to the flow has been
found to exhibit two or three different response branches (Govardhan & Williamson
2000), where the number of branches depends on the mass-damping of the system.
Govardhan & Williamson (2002) also investigated a lightly damped non-elastically
mounted system by removing the springs that had previously provided the mechanical
restoring force (i.e. the case where k = 0). Without a mechanical restoring force, the
response of the system was found to depend primarily on the mass ratio m∗, and large
oscillations were observed only for m∗ less than a critical value, m∗

CRIT = 0.54. The
cylinder displayed two states: for m∗ > m∗

CRIT the cylinder oscillations were very small
or the cylinder was essentially stationary, whereas for m∗ < m∗

CRIT large-amplitude
oscillations occurred. The change in oscillation amplitude corresponded to a change
in vortex-shedding mode from 2S for the small oscillations, to 2P with long extended
shear layers for the large-amplitude oscillations. Similar changes in the mode of
vortex shedding were observed for the response branches of the elastically mounted
cylinder, with m∗

CRIT , also equal to 0.54, corresponding to an apparently infinite
extension of the upper response branch. Jauvtis & Williamson (2004) found similar
response branches for their two-dimensional cylinder motion with a corresponding
m∗

CRIT value of 0.52. The precise value of m∗
CRIT appears to be a function of the

geometry of the particular system and the Reynolds-number regime; for example
Govardhan & Williamson (2005) predict a critical mass ratio of 0.6 for a tethered
sphere, compared to m∗

CRIT =0.54 for the transverse cylinder motion at similar values
of Re. Results of numerical modelling at Reynolds numbers between 100 and 200
by Shiels, Leonard & Roshko (2001) and Ryan (2004) indicate that m∗

CRIT may be
significantly smaller at lower Re.

Ongoren & Rockwell (1988) found that a cylinder undergoing forced sinusoidal
oscillations at a range of inclination angles, and over a range of oscillation frequencies,
exhibits a number of different shedding modes. Transverse oscillations (90◦ inclination)
resulted in stable antisymmetric wakes; however, as the inclination angle decreased
towards 0◦, i.e. in-line oscillations, symmetric wake modes also occurred. The wakes
exhibited continual switching between symmetric and antisymmetric modes of vortex
shedding, with the antisymmetric modes becoming less dominant as the inclination
angle decreased. This high level of mode competition indicates that the forced inclined
oscillations did not produce a single stable wake state.

For very long or infinite tether lengths, the motion of a tethered cylinder can
approach that of the in-line or transverse cases; however, typically the direction of
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the cylinder’s motion is at an angle to the free stream. One of the interesting features
of a tethered body is that the geometry of the cylinder’s motion relative to the free
stream changes with the mean tether angle.

The majority of the previous work on tethered bodies has focused on spheres or
buoys, typically involving interaction with a free surface and surface waves. In the
absence of these additional factors, Govardhan & Williamson (2005) found that a
fully submerged sphere exhibits large-scale oscillations over a wide range of reduced
velocities. At higher reduced velocities, the response of the sphere is not locked-on to
the natural structural frequency and the oscillation frequency is significantly less then
the corresponding Strouhal frequency of a stationary sphere.

To date, the case of a tethered cylinder has received relatively little attention, with
the exception of the two-dimensional numerical investigations of Ryan et al. (2002,
2004a, b) and Ryan 2004. At a mass ratio of m∗ = 0.833 and a constant Reynolds
number of 200, Ryan et al. (2002, 2004a) observed that the mean tether angle
increased smoothly with increasing reduced free-stream velocity. As the mean tether
angle increased, the drag coefficient remained essentially constant and was similar to
that of a stationary cylinder, the exception being at high reduced velocities where there
was a slight decrease in the drag coefficient. At low reduced velocities, corresponding
to an essentially vertical tether, extremely small cylinder oscillations were observed.
As the reduced velocity increased, the oscillations grew in amplitude, but remained
less than 0.2 cylinder diameters in amplitude. Numerical experiments looking at the
effect of mass ratio (Ryan 2004) showed the existence of a critical mass ratio below
which the cylinder ‘jumps’ to large-amplitude oscillations at higher Froude numbers.
As described previously for other systems, this large-amplitude response appears to
extend to infinite flow velocities. Ryan (2004) showed that the value of m∗

CRIT is a
function of tether length, decreasing exponentially with increasing L∗. At L∗ = 4.6
and Re = 200, m∗

CRIT was predicted to be 0.41, which is much lower than the value
found in the current work.

Previous numerical investigations of the response of a tethered cylinder were
conducted at relatively low Reynolds numbers where it is reasonable to assume a
two-dimensional flow. The experimental investigation reported in this paper seeks
to address the following questions at higher Reynolds numbers, where the flow is
inherently three-dimensional:

How does the response of the tethered cylinder vary with free-stream velocity?

What is the effect of varying the mass ratio (or buoyancy force) of the cylinder?

Does the tethered cylinder system exhibit distinct wake states that are comparable to the wake states (or

response branches) observed in similar oscillatory systems?

The variation of the response with free-stream velocity is presented for a range of
mass ratios and then the effect of mass ratio is considered in more detail.

2. Experimental method
A cylinder, 16.2 mm in diameter and 594 mm long, was tethered at each end

with carbon fibre rods. The rods were 75.0 mm long and 3 mm in diameter, giving a
normalized tether length to cylinder diameter ratio, L∗ = L/D, of 4.6. Both the cylinder
and the tethers are rigid and there is no relative motion between them. The tether is
located at the pivot point with precision bearings and the cylinder is free to rotate
about the pivot point (figure 1). The pivot point is located approximately halfway
between the free surface and the bottom of the channel, thus neither the bottom
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of the channel nor the free surface is expected to affect the motion of the cylinder.
Experiments were performed for a range of different mass ratios, 0.54 � m∗ � 0.97,
where by definition in all cases the cylinder experiences a positive upwards buoyancy
force. During each set of experiments the flow velocity, U , increased from zero to
0.46 m s−1, corresponding to a maximum Reynolds number of 7390. The experiments
were conducted in the FLAIR free-surface water channel at Monash University, which
has a working section of 4000 mm × 600 mm × 535 mm (length × width × height) and
turbulence levels of less than 1 %.

The motion of the cylinder is one-dimensional and is described by the angle of
the tether from the vertical axis, θ(t). A 25 Hz PAL video camera was used to track
the position of the cylinder, and the system was calibrated to correct for optical
distortion. For all experiments, the frequencies of interest were less than 5 Hz and
were thus well resolved by the 25 Hz sampling frequency. At each free-stream velocity,
the sampling period was at least 328 s, resulting in a minimum of 8196 data points.
The mean tether angle θmean , the standard deviation of the cylinder position θstd and
the maximum variation in the cylinder cyclic motion θmax (half the peak to peak value)
were calculated from θ(t). The parameters describing the motion of the cylinder, θstd

and θmax are normalized using the angle subtended by the cylinder diameter, θD .
Spectral analysis of the data was performed using spectral averaging with a bin size
of 1024 data points.

Flow fields were measured using digital particle image velocimetry (PIV). The flow
field was illuminated using a pair of pulsed mini YAG New Wave R© lasers, and image
pairs, corresponding to consecutive laser pulses, were recorded on a 4 megapixel,
RedLake R© ES4.0 double exposure camera using an EPIX R© image acquisition card
and software. The timing of the laser and camera triggering was controlled by an
in-house timing unit, with an estimated accuracy of 1 µs. The flow was seeded with
silver-coated glass spheres, nominal diameter 12 µm from Potters Industries, and all
PIV images were taken in a plane corresponding to the centre of the cylinder. The
PIV images were processed using in-house software which incorporated adaptive grid
algorithms. The data were processed using and initial window size of 64 pixels and
a final window size of 16 pixels with 50 % overlap. The flow fields are presented
using both instantaneous and mean vorticity fields, where the mean vorticity fields
are calculated from the average of 230 instantaneous flow fields.

The framing rate of the PIV camera (5 Hz) was not adequate to resolve the
motion of the cylinder, therefore both the PIV camera and the video camera
measuring the displacement were used in the experiments to determine the flow
fields corresponding to different cylinder responses. Careful calibration of these two
cameras and subsequent post-processing allowed the time at which each flow field
was measured to be identified within the displacement time trace.

2.1. Force balance

Consideration of the force components acting on the cylinder allows the magnitude
of the fluid forces to be inferred directly from the position of the cylinder. Typically,
the wake behind a circular cylinder has symmetry about its centreline, for example
a Kármán wake, and there is an equal distribution of positive and negative vorticity
downstream of the cylinder, with a zero net lift force. By assuming a net zero lift
force, CL ≈ 0, for the tethered cylinder, both the mean tension in the tether, T , and
the mean drag force coefficient, CD , can be calculated from θmean and the buoyancy
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force, B = (1 − m∗) mdg, where md is the mass of fluid displaced by the cylinder:

T =
(1 − m∗) md g

cos(θmean )
, (1)

CD =
(1 − m∗) πDg tan(θmean)

2U 2
. (2)

The natural structural frequency of the system, fN , is analogous to that of a pendulum
and depends on the tension in the tether. Thus, fN varies with the mean tether angle:

fN = fN water =
1

2π

√
(1 − m∗)g

(m∗ + CA)L∗D cos(θmean )
. (3)

In (3), CA is the idealized added mass coefficient, where for a circular cylinder CA = 1.
The findings of a parallel numerical study on the tethered cylinder (Ryan et al.

2004b) indicate that the mean lift force is essentially zero except for cases where the
cylinder oscillation amplitude is large. For large cylinder oscillations, θ∗

std > 0.3, it is
anticipated that there is a mean negative lift force on the cylinder. In these cases,
our calculations that incorporate the assumption of CL ≈ 0 will overestimate both the
tension in the tether and the natural structural frequency of the system.

The reduced velocity is given by U ∗ = U/fND, where D is the diameter of the
cylinder, U is the free-stream velocity and fN is the natural structural frequency
of the tethered body in water. Previous investigations of flow-induced vibrations
have commonly used the reduced velocity as the non-dimensional variable against
which the response variables are plotted. However, in this investigation the natural
structural frequency varies with θmean and therefore U ∗ is not an independent variable.
Moreover, the calculation of fN incorporates the assumption that the mean lift force
is zero. Thus the initial plots are presented in figure 2 in terms of U ∗ so that the
current results can be related to the existing literature. We present and discuss our
results in figure 2 in terms of the dimensionless Froude number, Frgravity =U/(gD)0.5

rather than U ∗. The subscript ‘gravity’ has been added to this Froude number to
differentiate it from the buoyancy Froude number which will be discussed later in
the paper. In these experiments, both gravity and the cylinder diameter are constant
so Frgravity varies directly with the free-stream velocity. The tethered cylinder has no
mechanical restoring force, but it does have a ‘fluid/buoyancy’ restoring force owing
to the force balance between the mean fluid forces (drag and lift) and the buoyancy
force.

3. Results and discussion
These experiments consider the effect of varying two different experimental

parameters: the Frgravity (i.e. the free-stream velocity of the channel, U ) and the
mass ratio m∗. Varying Frgravity alters the ratio of the inertial force to the gravitational
or buoyancy forces whereas varying m∗ directly alters the buoyancy force of the
cylinder.

In figure 2, the response parameters, θmean , θstd/θD , θmax/θD and CD , are presented
as functions of Frgravity for ten different mass ratios, m∗ =0.54 → 0.97. As expected,
these figures show that the response is a function of mass ratio; at lower m∗ values,
m∗ � 0.72, there is an abrupt increase in these response parameters as the free-stream
velocity increases. Hereinafter, this increase will be described as a ‘jump’ and will be
discussed in detail later in this section. The jump in these parameters is consistent
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Figure 2. Parameters describing the response of the cylinder as a function of Frgravity for
m∗ = 0.54 to 0.97. (a) θmean , (b) θstd/θD , (c) θmax/θD and (d) CD .

with that observed in the two-dimensional numerical experiments of Ryan (2004)
within a lower-Reynolds-number regime.

3.1. Mean layover angle, oscillation amplitude and drag

The variation of the mean layover angle of the tether, θmean , as Frgravity increases is
shown in figure 2(a) for all values of m∗ considered in this study. These results clearly
show that θmean increases with both Frgravity and m∗. At lower values of m∗ (0.54–0.72)
there is an upward jump in θmean between Frgravity = 0.96 and 1.14. With the exception
of this jump, the mean layover angle increases smoothly with increasing Frgravity , or in
other words the cylinder is gradually ‘pushed over’ as the inertia of the fluid increases.
The smooth variation of θmean with Frgravity is consistent with the idealized variation
for a constant drag coefficient and is also consistent with the numerical results of
Ryan et al. (2002, 2004a, b) and Ryan (2004) at a lower Reynolds number, Re= 200.

At the highest values of m∗, as the cylinder approaches the neutrally buoyant
condition (m∗ = 1), θmean increases rapidly as Frgravity is increased from rest, and thus
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Figure 3. Cylinder position as a function of time at m∗ =0.54 and U = 0.38 m s−1.
Frgravity = 0.96. (a) A number of self-excited transitions corresponding to changes in both
θmean and oscillation amplitude are evident. (b) The transitions from large to small oscillations
and (b) small to large oscillations shown in more detail.

even at moderate Frgravity values the majority of the cylinder motion is transverse to
the free stream. Conversely, at lower m∗ values when the relative mass of the cylinder
is lighter, θmean is smaller. The jump in θmean at lower m∗ values occurs after θmean has
increased through 45◦, which is after the point at which the dominant component of
the cylinder’s motion switches from in-line to transverse.

The amplitude of the cylinder’s flow-induced motion is presented using two different
parameters: the statistical standard deviation of the cylinder about its mean position,
θstd , and the amplitude of the largest oscillation, θmax . Both θstd and θmax are normalized
by the angle subtended by the cylinder’s diameter, θD , and the variation of these two
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parameters with Frgravity and m∗ is shown in figures 2(b) and 2(c), respectively. θstd/θD

for the tethered system is directly equivalent to an oscillation amplitude A/D, where
A is the amplitude of the standard deviation tangent to the cylinder’s motion and
D is the diameter of the cylinder. At the lowest flow velocities, very small-amplitude
(<0.01 % of the cylinder’s diameter) low-frequency (<0.1 Hz) motion was detected,
an example of this motion is shown in figure 2(a); however, for practical purposes the
cylinder is essentially stationary. As Frgravity increases, the cylinder exhibits small-scale
motion and the amplitude of these oscillations grows with increasing Frgravity . As m∗

increases, the onset of small-scale motion occurs at lower values of Frgravity , but this
onset does not appear to be linked to a particular mean layover angle.

For m∗ � 0.72, an abrupt jump in the oscillation amplitude is observed, where the
jumps in θstd/θD and θmax/θD (figure 2b, c), correspond to the jump in θmean . The
abrupt changes in both the mean layover angle and the oscillation amplitude indicate
that the jump is a transition between two different wake states; the corresponding
vorticity fields will be discussed in § 3.3. Examination of the θ(t) traces, described in
detail later in this paper, shows that the transition between these two states can occur
as Frgravity varies during an experiment or the cylinder may also undergo self-excited
transitions at a constant value of Frgravity . When the self-excited transitions occur
at a constant Frgravity , the data presented in figure 2 are split into segments that
are representative of the states either side of the jump. The link between the abrupt
changes in the oscillation amplitude and the mean layover angle is also clearly evident
in the θ(t) traces and is characteristic of the jump.

For the majority of the data presented in figure 2(b, c), the magnitude of θmax/θD

is almost twice (i.e. significantly more than
√

2 times) that of θstd/θD , indicating
that there is significant temporal variation in the oscillation amplitude. The standard
deviation of the large oscillations after the jump (m∗ � 0.72) in figure 2(b) shows that
on average the amplitudes are only slightly larger for the lighter cylinders. However in
figure 2(c), the variation of θmax/θD after the jump shows a much stronger dependence
on m∗.

In figure 2(d), the drag coefficient, calculated from (2), is plotted as a function of
Frgravity for a range of m∗ values. When CD is calculated from small values of θmean ,
the error is magnified because the error in the measurement of θmean is a significant
percentage of the actual value causing wide scatter in the values of CD for Frgravity

<0.37. This region of significant measurement error is shaded in figure 2(d). The data
in figure 2(d) show that the jump in θmean and θstd/θD also corresponds to a jump
in CD . For values of Frgravity below the jump, or for m∗ where the jump does not
occur, the drag coefficient is almost constant, increasing gradually with increasing
Re. The value of CD before the jump is approximately 0.9, which is actually lower
than the corresponding value for a stationary cylinder at these Reynolds numbers
(CD(stationary) = 0.95 – 1.2, Zdravkovich 1997). After the jump, the drag coefficient
is in the range CD = 1.3 – 1.4, and appears to be relatively independent of Frgravity .
The values of CD before the jump increase slightly with increasing Frgravity . In this
region, the Reynolds number increases from ≈1000 to 7000 and the increase in CD

is consistent with the variation with Re for a stationary cylinder. However, at all Re,
the values of CD before the jump remain lower than the corresponding values for
the stationary cylinder. The cylinder cannot be fitted with end plates because of the
relatively massive moments of inertia generated by such plates. Thus, it is possible
that end effects may contribute to the relatively low values of CD . The fact that CD

remains essentially constant either side of the jump (taking into account Re effects)
is an interesting feature of this system.
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3.2. Variation with m∗: three different regimes

The results shown in figure 2, and examination of the associated time traces shown
in figures 3, 5 and 6, indicate that as the mass of the cylinder varies there are three
identifiable m∗ regimes:

1. At lower m∗(0.54 � m∗ � 0.72) there is a jump in the response parameters: both
θmean and the amplitude of the cylinder’s motion increase gradually as Frgravity increases
until there is an abrupt jump in θmean , θstd/θD and CD .

2. At intermediate values of m∗(0.76 � m∗ � 0.87) the jump does not occur: θmean

and θstd/θD increase smoothly with Frgravity and the drag coefficient remains close
to CD ≈ 0.9. The cylinder’s motion is periodic, but there is some variation in the
amplitude of oscillation (e.g. figure 5b, c).

3. As m∗ approaches unity (m∗ � 0.92) the motion of the cylinder is very periodic
(e.g. figure 6a) at lower Frgravity , but as Frgravity increases, the motion becomes more
disorganized. As for intermediate values of m∗, a jump is not observed.

The m∗ regimes are now discussed in more detail.

3.2.1. The jump: lower m∗ (0.54 � m∗ � 0.72)

The characteristic displacement trace shown in figure 3, at m∗ =0.54 and
Frgravity =0.96, illustrates the variation of the layover angle θ and the oscillation
amplitude either side of the transition. The vertical axis is inverted to represent the
physical orientation of the cylinder in the experiments, i.e. the lower θ values, where
the cylinder is more upright, are plotted above the higher θ values where the cylinder is
more sloping. The displacement trace in figure 3(a) shows three self-excited transitions
occurring within a 300 s time period. The transition from large oscillations to small
oscillations at t ≈ 101 s and the transition back to large oscillations at t ≈ 177 s are
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and (c) at higher flow velocities, U = 0.46 m s−1. Note the difference in the time scale between
the very small low-frequency motion at U = 0.15 m s−1 and the other time traces.

magnified in figures 3(a) and 3(b), respectively. These figures clearly demonstrate that
the abrupt increase in θmean corresponds to an increase in the oscillation amplitude
and vice versa.

The jump described above occurred at all mass ratios between m∗ =0.54 and 0.72,
where m∗ = 0.54 was the lightest mass ratio investigated. As m∗ increases, both the
point at which the jump occurs (θmean@jump) and the magnitude of the change in
the mean layover angle during the jump (�θmean@jump) changed. Figure 4 shows
the variation with m∗ of ‘θmean@jump’, taken as the lowest θ value from which the
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upward jump occurred, and ‘�θmean@jump’. In some cases there are a number of
‘�θmean@jump’ points for a single m∗ value as a self-excited transition occurred at
more than one free-stream velocity. As m∗ increases from 0.54 to 0.72, the mean
layover angle at which the jump occurs increases from 49.9◦ to 64.8◦ and, as shown
in figure 2(a), there is also a corresponding increase in the value of Frgravity at which
the jump occurs. In contrast, the magnitude of the change in the mean layover angle
at transition decreases as m∗ increases towards 0.72. The essentially linear decrease in
�θmean@jump indicates that as m∗ increases, the system is tending towards a point at
which there is no jump, corresponding to the shaded region in figure 4. At m∗ = 0.76,
there is not a clearly defined jump in θmean; however, there is significant modulation
of the amplitude at high flow velocities.

3.2.2. No jump: intermediate values of m∗ (0.76 � m∗ � 0.87)

The jump in θmean and oscillation amplitude does not occur at intermediate mass
ratios, 0.76 � m∗ � 0.87 and, as shown in figures 2(a) and 2(b), both the mean
layover angle and the oscillation amplitude increase smoothly with increasing free-
stream velocity. At higher flow velocities, the motion is oscillatory, but, as shown in
figure 5(c), is significantly less organized than the highly periodic oscillations after
the jump in figure 4. At lower velocities, the motion is essentially consistent with
that observed at lower m∗ before the jump: at very low velocities there are extremely
small slow oscillations (figure 5a), as the free-stream velocity is increased beyond
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(a) (c)

(b) (d)

Figure 7. Instantaneous vorticity fields at m∗ = 0.54 (a) at low Froude number, Frgravity = 0.78,
before the jump and (b) at higher Froude number Frgravity = 1.14, after the jump. At higher
m∗ there is no jump, illustrated in (c) m∗ = 0.87 at Frgravity = 1.14. The highest m∗ at which the
jump occurred was m∗ = 0.72, shown in (d) after the jump at Frgravity =1.14.

the onset of small-scale oscillations the motion is relatively disorganised (figure 6b).
The magnitudes of the corresponding spectral peaks confirm these trends and will be
discussed in more detail later in the paper.

3.2.3. As m∗ → unity: m∗ � 0.92

As m∗ approaches unity there is a change in the motion of the cylinder at lower
values of Frgravity . As Frgravity is increased from zero the cylinder quickly moves to
relatively high values of θmean and, as shown in figure 6(a), the motion is remarkably
periodic. These highly periodic low-frequency oscillations did not occur at mass ratios
below m∗ = 0.92, for example see figure 5 where m∗ = 0.87. The amplitudes of these
very periodic oscillations are higher than for lower mass ratios at these values of
Frgravity , but are similar in amplitude to the oscillations at the same θmean and lower
m∗ values. Thus, the early onset of highly periodic motion shown in figure 6(a) may
be linked to the relatively high layover angles as m∗ approaches unity. As Frgravity

increases further, θmean approaches 90◦ and, while θstd/θD and θmax/θD remain relatively
constant, the motion of the cylinder, shown in figure 6(b), is much less periodic and is
similar to that observed for intermediate mass ratios at high values of Frgravity . Despite
the difference in the cylinder’s motion at lower Frgravity as m∗ approaches unity, the
drag coefficient remains similar to that at much lower m∗ where the periodic motion
does not occur.
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(a) (c)

(b) (d)

Figure 8. Mean vorticity fields at m∗ = 0.54 (a) at low Froude number, Frgravity = 0.78, before
the jump and (b) at higher Froude number Frgravity = 1.14, after the jump. At higher m∗ there
is no jump, illustrated in (c) m∗ = 0.87 at Frgravity = 1.14. The highest m∗ at which the jump
occurred was m∗ = 0.72, shown in (d) after the jump at Frgravity = 1.14.

3.3. Wake states

Examination of the flow fields using PIV reveals that the jump in θmean and θstd

corresponds to a change in the mode of vortex shedding. The change in the wakes
is clearly evident in both the instantaneous vorticity fields (figure 7) and the mean
vorticity fields (figure 8).

At mass ratios where the jump occurs (m∗ � 0.72) the wake state at lower Frgravity

values before the jump (figures 7a and 8a), is the commonly observed Kármán or 2S
mode of shedding. Similarly, at higher mass ratios, where the jump is not observed,
the Kármán wake persists over the full range of Frgravity values studied. Thus, despite
the large difference in the values of Frgravity , m∗ and θmean for the cases illustrated in
figures 7(a) and 7(c), the modes of vortex shedding are similar both to each other and
to that of a stationary cylinder. The similarities are also evident in the corresponding
mean fields shown in figures 8(a) and 8(c).

At mass ratios where the jump is observed, the increase in the cylinder’s oscillation
amplitude corresponds to a distinctly different mode of vortex shedding. For values
of Frgravity above the jump, the larger oscillation amplitude generates longer shear
layers resulting in a wide vertical distribution of vorticity; the wakes after the jump
in figures 7(b) and 7(d) are much wider than the wakes in figures 7(a) and 7(c)
either before the jump or where the jump does not occur. The corresponding mean
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(a) (b)

Figure 9. Mean vorticity fields at m∗ = 0.97 (a) at lower Froude number, Frgravity = 0.37,
with very periodic cylinder motion and (b) at high Froude number, Frgravity =1.12, where the
cylinder’s motion is not very periodic.

vorticity fields in figures 8(b) and 8(d) show that the wake is not fully symmetric and
has a distinct upward angle. The angling of the mean wake upwards is consistent
with a net negative lift force on the cylinder. The instantaneous wakes show vorticity
generated on one side of the shear layer crossing well into the other side of the
wake; for example, large quantities of positive vorticity are present in the upper
portion of the wake. This type of vorticity distribution promotes the pairing of
counter-rotating vortices. In the symmetric wake of a transversely oscillating cylinder,
similarly formed wakes result in the 2P shedding mode, with two counter-rotating
vortex pairs formed per oscillation cycle. The 2P mode of shedding is observed for
both free and forced transverse oscillations at higher values of U ∗, lower m∗ and higher
oscillations amplitudes. The mean vorticity fields of the 2P shedding mode for both
the forced and free oscillation (described by Carberry, Sheridan & Rockwell 2005)
show characteristic small lobes of oppositely signed vorticity downstream of the main
shear layer and close to the wake centreline. These lobes of oppositely signed vorticity
are evident in the tethered cylinder wake at m∗ = 0.54 in figure 8(b); however, the
non-symmetry of the wake is more evident in figure 8(d) at m∗ = 0.72 and the upward
angling of the wake appears to have annihilated the lobes. It is not clear whether the
wakes after the jump have the 2P mode of shedding; however, these wakes are similar
to the wakes in the lower branch/low-frequency state for the transverse cylinder
oscillations.

The general features of the wakes before and after the jump persisted over the full
range of flow and oscillation parameters examined in this study. Thus the general
classification of the tethered cylinder system can be described in terms of two distinct
wake states either side of the jump which we will call the low-amplitude state,
occurring before the jump, and the upper state which occurs after the jump. Smaller
subsets within these two states were also present, and further studies may reveal
more; however, the jump appears to be the major feature of this system. The general
characteristics of the states are as follows.

Low-amplitude state (before the jump). The wake exhibits the classic Kármán mode
of vortex shedding, smaller layover angles, relatively small oscillation amplitudes with
a small and almost constant drag coefficient.
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Upper state (after the jump). The characteristic wake is non-symmetric with longer
shear layers extending well across the wake centreline, higher layover angles, large
oscillation amplitudes and higher drag coefficients.

The m∗ regimes discussed in the previous section describe regions where the
jump does and does not occur. At higher m∗ values the jump did not occur,
but as m∗ approached unity especially periodic oscillations were observed at lower
Frgravity values. As Frgravity increased, the motion was significantly less periodic, but
averaged over many cycles the mean oscillation amplitude was of similar magnitude.
Examination of mean vorticity fields in figure 9 at m∗ = 0.97 shows that the periodic
motion corresponds to an extremely short mean formation length whereas the less
organized motion at higher Frgravity values corresponds to a significantly longer mean
formation length. A degree of asymmetry is evident in the mean wakes at m∗ = 0.97,
but in both cases the wake is consistent with the Kármán shedding mode before the
jump.

Ongoren & Rockwell (1988) considered the forced oscillations of a cylindrical body
at a range of angles to the flow direction. Although this study would appear to
be relevant to the current study there is no overlap between the forced oscillation
parameters and the observed oscillations of the tethered cylinder. The symmetric
shedding mode observed by Ongoren & Rockwell was also not observed for the
tethered system, perhaps suggesting that this mode is not stable for a freely oscillating
system.

3.4. Relationships between properties – θmean , θstd/θD , CD

The results presented for lower mass ratios in the previous sections indicate that
the jump corresponds to simultaneous changes in θmean , θstd/θD and CD , with the
implication that these properties are interdependent. Equation (2) shows that the
mean layover angle and the drag force are linked, as an increase in θmean corresponds
to an increase in CD and vice versa. Additionally, for an oscillating cylinder, an
increase in the amplitude of oscillation is typically associated with an increase in CD

(e.g. see Sarpkaya 1978; Carberry et al. 2005). The current data set also shows a
strong correlation between CD and the oscillation amplitude. A simple explanation
for this is that typically an increase in the amplitude of oscillation results in a wider
wake, an increased momentum deficit and thus a corresponding increase in the mean
drag force.

The displacement trace in figure 3(c) indicates that the transition from small values
of θmean , θstd and CD to larger values of these parameters occurs after a short period
during which the was consistent periodic motion and the small oscillations increased
slightly in amplitude. Similarly, the transition in the opposite direction (figure 3b)
appears to coincide with a point where the larger periodic oscillations were disrupted.
These events are likely to correspond to changes in vortex shedding from the cylinder.

3.5. Collapse of data

In the preceding figures the response of the cylinder has been plotted against
the non-dimensional Froude number Frgravity , representing the ratio of inertial and
gravitational forces. Despite the fact that Frgravity incorporates important components
in the tethered body system, the data presented in figure 2 do not show a collapse of
any of the response parameters. At this point we define a new Froude number which
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Figure 10. Variation with the buoyancy Froude no, Fr = U/((1 − m∗)gD)1/2 for m∗ = 0.54 to
0.97 of (a) the mean layover angle, (b) [tan(θmean)]

0.5 and (c) (θstd/θD)/cos(θmean).

incorporates the buoyancy force into the vertical force component:

Frbouyancy ∝ (fluid inertial force/buoyancy force)0.5

Frbouyancy = U/((1 − m∗)gD)0.5

(for m∗ < 1).

⎫⎪⎬
⎪⎭ (4)
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Figure 11. Variation of displacement spectra with free-stream velocity for (a) m∗ = 0.59
representative of mass rations where the jump is observed; 0.54 � m∗ � 0.72, (b) m∗ = 0.72,
showing the change in the spectral energy at the end of the regime where the jump occurs, (c)
m∗ = 0.87 representative of mass rations where the jump does not occur; 0.76 � m∗ � 0.87 and
(d) m∗ =0.97 representative of high mass rations as m∗ → 1.

Frbuoyancy represents the square root of the ratio of the fluid inertial and buoyancy
forces and is hereinafter referred to as the Froude number, Fr.

When θmean is plotted against this new Froude number there is a very good collapse
of the data onto two lines. The lower of these two lines (figure 10a), represents the
data points before the jump at lower m∗ and all points for m∗ � 0.76 where the jump
does not occur. The upper line corresponds to the points after the jump. This plot is
consistent with the existence of two distinctly different states.

The collapse of the data shown in figure 10(a) is conceptually consistent with the
balance of the mean force components in the direction normal to the tether, where
this force balance forms the basis of (2). The simplest form of this force balance is,

Drag = Buoyancy × tan(θmean ).

If the drag force is directly related to the free-stream fluid inertial force then it follows
that

tan(θmean )
0.5 = (Fluid inertia force/Buoyancy force)0.5 ∝ Fr . (5)

Plotting tan(θmean )
0.5 against Fr gives an almost linear collapse of the two states

(figure 10b). This indicates that for the two different states, the low-amplitude state
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before the jump and the upper state after the jump, there is a nearly linear relationship
between the drag force on the cylinder and the free-stream fluid inertial force. The
gradient of the line through the data points after the jump in figure 10(a) is steeper
than the line through the points corresponding to the low-amplitude state. This
indicates that for the same inertial force (∝ UdU/dx) the upper state after the jump
generates a higher drag coefficient, which is consistent with the data presented in
figure 2(d).

The data presented in figure 10(b) does not incorporate the assumption that the
mean lift force on the cylinder is zero; however, the force balances from which (2)
and (5) are derived do incorporate this assumption. The data in figure 10(b), which
considers the force components normal to the motion, conform well to the linear
form predicted by (5), which indicates that the assumption of CL ≈ 0, while remaining
a source of error, provides good physical insight.

Thus far we have focused on the mean layover angle using a static force balance
approach. The other major response parameter is the amplitude of oscillation,
represented by θstd/θD . A wide range of parameters, including the mode and phase
of vortex shedding, θmean , Re, as well as the energy transfer from the fluid to the
cylinder may affect θstd/θD . Thus, the reasonably good collapse of the data for the
two states when (θstd/θD)/cos(θmean) is plotted against Fr (figure 10c) is somewhat
surprising and indicates that the properties of these states are robust. The collapse
is better for low m∗, both before and after the jump, but is not as good for larger
m∗ particularly at higher free-stream velocities. Dividing by cos(θmean ) resolves the
oscillation amplitude into the direction of the free stream (i.e. into the axis of the
force components in the Fr or into the drag direction). As discussed previously, there
is a good correlation between θstd/θD and CD , thus plotting CD/cos(θmean) against Fr
gives a similar collapse to that observed in figure 10(c).

3.6. Frequencies

In § 3.2, the response of the cylinder was described in terms of three different m∗

regimes. In figure 11, the variation of the spectral energy with U , where U varies
directly with Frgravity , is shown for these regimes. The variation of the spectral energy,
plotted for m∗ =0.59 in figure 11(a), is characteristic of the lower m∗ regime, where
the jump in θmean , θstd/θD and CD is observed; the change in the spectral energy as
U increases through 0.38 m s−1 corresponds to the jump. Before the jump, there is
a significant quantity of low-frequency energy which, in fact, dominates the energy
at the frequencies associated with the small-scale oscillations shown in figure 3. The
low-frequency peaks are consistent with the extensive modulation of the displacement
trace at lower θmean values shown in figure 3(a). As m∗ increases, there are systematic
changes in the nature of the jump, summarized by figure 5. At the end of this regime,
m∗ = 0.72, the jump still corresponds to a sharp increase in the spectral energy at the
oscillation frequency, but the peaks after the jump, shown in figure 11(b), become
significantly more broadbanded.

The energy of the spectral peaks at both intermediate and high m∗ values
(figure 11c, d) is significantly less than the energy after the jump (note the difference
in the vertical scale between figure 11a and figures 11c and 11d). At intermediate
mass ratios (0.76 � m∗ � 0.87) the energy at the oscillation frequency increases steadily
with increasing U . The reason for the large low-frequency peak in figure 11(c) has
not been fully determined; however, it may be due to resonance of the free surface
water channel. Figure 11(d) clearly shows the difference between the motion of the
cylinder as m∗ approaches unity and the behaviour at other mass ratios. At low U
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Figure 12. Variation of St(fcyl ) with the buoyancy Froude number for m∗ =0.54 to 0.97.

values, each spectrum has a sharp dominant peak at the oscillation frequency, where
this peak corresponds to the highly periodic motion shown in figure 6(a). As U

increases, the energy associated with this peak becomes more broadbanded and, as
shown in figure 6(b), the motion is less organized although the standard deviation of
θ(t) remains approximately constant.

In figure 12, the Strouhal numbers associated with the motion of the cylinder,
St(fcyl ) = fcylD/U , i.e. the most energetic peaks in figure 11, are plotted as a function
of Frbuoyancy and mass ratio. In all cases, the Strouhal number is significantly lower
than the value for a stationary cylinder (St(fKármán) ≈ 0.20–0.21). Additionally, for all
cases the frequency at which the cylinder is oscillating is significantly greater than
the natural structural frequency of the tethered cylinder, given by (3). Flow-induced
vibrations often occur when the natural shedding frequency, which for a cylinder is
typically taken as the Kármán frequency, is close to the natural structural frequency.
However, in this case, the point at which fKármán ≈ fN occurred before the onset
of periodic motion at relatively low values of Frbuoyancy , U and θmean . Moreover,
once the cylinder begins oscillating the motion is not at the Kármán frequency.
Thus, the motion of the cylinder does not appear to be linked to the resonance
condition: fN ≈ fKármán. The relative magnitude of the cylinder’s oscillation frequency
fN <fcyl < fKármán is consistent with the findings of Govardhan & Williamson (2000)
for transverse cylinder oscillations, corresponding to L∗ = ∞, at low m∗ and higher
reduced velocities well after the onset of motion.

After the jump, St(fcyl ) is essentially invariant with Frbuoyancy and increases with
decreasing m∗. This is consistent with the trends observed by Govardhan & Williamson
(2000) for the upper branch of their transverse cylinder oscillations. The Strouhal
number decreases with increasing Frbuoyancy before the jump and also at lower
Frbuoyancy for the low-amplitude state. At higher m∗ and Frbuoyancy values, the oscillation
frequency St(fcyl ) becomes less sensitive to changes in Frbuoyancy , where in this region
θmean is large and changes relatively little with increasing U .
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4. Conclusions
This paper describes states of a tethered cylinder in a uniform free stream. The cases

of an elastically mounted cylinder and a cylinder undergoing controlled oscillations
are well documented; however, this is the first experimental investigation of a tethered
cylinder. The direction of motion of a tethered cylinder relative to the free stream
varies with layover angle, as do both the vectorial relationship between the force
components on the cylinder and the natural structural frequency of the system.
Despite the complexity of this system, the tethered cylinder exhibited two distinct
states, the low-amplitude and upper states, which appear to be remarkably robust. In
particular, the mean layover angle shows an excellent collapse when plotted against
the Froude number, Frbuoyancy . Frbuoyancy represents the ratio of the inertial force
to the buoyancy force, as opposed to the traditional Froude number that uses the
gravitational force instead of the buoyancy force. For the case of a tethered cylinder,
and indeed any tethered body, when determining the form of the Froude number
it is important to consider all of the force components on the body. Thus for the
tethered cylinder, the Froude number, Fr = Frbuoyancy = U/((1 − m∗)gD)0.5, should be
used to interpret the physical implications of the data, as evidenced by the fact that
the data did not collapse when plotted against Frgravity . Frgravity , which varies linearly
with the free-stream velocity, is used to represent the parameter varied during each
set of experiments.

Significant oscillation amplitudes occur at all the mass ratios considered in this
study, 0.54 � m∗ � 0.97. The motion is typically periodic in nature but, as is intuitively
expected, the oscillations are less sinusoidal than those observed for purely transverse
oscillations of a cylinder at similar Reynolds numbers. As Frgravity increases, for
lower m∗ values, 0.54 � m∗ � 0.72, there is an abrupt jump in θmean , θstd/θD and CD .
Before the jump, the cylinder’s motion is small in amplitude with distinct long period
beating and the wake is consistent with the classic 2S Kármán mode of shedding.
These properties define the low-amplitude state.

After the jump, the upper state is characterized by significantly larger oscillation
amplitudes, reaching peak values of θmax/θD ≈ 0.6, which are more periodic in nature.
The upper state wake has long shear layers extending well across the wake centreline
and is distinctly different from the Kármán wake before the jump.

At higher mass ratios, m∗ � 0.76, the jump did not occur and the cylinder’s
oscillations, although increasing with increasing Frgravity , remain small and the wake
remains in the Kármán mode, thus the system remains in the low-amplitude state.
As m∗ approaches unity at low flow velocities, the cylinder’s motion is extremely
periodic and the mean formation length is extremely short. In summary, the tethered
cylinder has three different m∗ regions which are characterized by the nature of
the flow-induced motion, in particular whether or not the jump occurs as well as
whether there are changes in the motion as Frgravity and θmean increase. Defining
m∗

CRIT as the mass ratio at which the jump first occurs we find that for L∗ =0.46,
m∗

CRIT = 0.74 ± 0.02.
The excellent collapse of θmean (figure 10a) combined with the surprisingly good

collapse of the oscillation amplitude (figure 10c) provides further evidence supporting
the existence of the two distinctly different states described above. The low-amplitude
state is represented by the lower set of data points in these figures; while the upper
set of data points represent the upper state. The collapse of this large amount of
data into two states is consistent with the relatively constant drag coefficient for the
two states and is remarkable considering the variation in the mean layover angle,
oscillation amplitude and Reynolds number within each state.
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