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A numerical simulation method for parachute Fluid-Structure Interaction (FSI) problem using Semi-Implicit Method for Pres-
sure-Linked Equations (SIMPLE) algorithm is proposed. This method could be used in both coupling computation of para-
chute FSI and flow field analysis. Both flat circular parachute and conical parachute are modeled and simulated by this new 
method. Flow field characteristics at various angles of attack are further simulated for the conical parachute model. Compari-
son with the space-time FSI technique shows that this method also provides similar and reasonable results. 
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Nomenclature 

:  angle of attack 

:  air density 
V:  velocity 
V∞: velocity at the inflow boundary 
: generalized diffusion coefficient 
S: generalized source term 
p:  static pressure 
p∞: pressure at the inflow boundary 
:  molecular viscosity coefficient 
e: equivalent viscosity coefficient 
Cp: pressure coefficient 
Cp: the pressure coefficient difference between the 

inner and outer canopy 
K:  turbulent fluctuation kinetic energy 
:  turbulent energy dissipation rate 

Re: Reynolds number 

:  an angle between the canopy axis and the normal  
line of meridian 

: apex angle of conical parachute 

: the half angle between two contiguous planes E 
, , :   angles (see Figure 5) 
*
fR : dimensionless length of apex point of the cord 

line to the point on itself in unstretched gore state 
* *,m u  :dimensionless stress in canopy fabric in the lon-

gitudinal and latitudinal direction 
k:  shrink factor of canopy material 

r*: dimensionless bulge radius of the canopy 

T
*: dimensionless force in cord line 
* *,f fx z : dimensionless x and z coordinates of cord line in 

cylindrical coordinates 
, :b fE E dimensionless elasticity modulus of canopy fabric and 

cord line 

 



3132 Cao Y H, et al.   Sci China Tech Sci   November (2012) Vol.55 No.11 

1  Introduction 

Parachute systems, in general, are deployed from a variety 
of air vehicles under many different conditions as decelera-
tion devices. The security of aviation can be effectively im-
proved by enhancing the capability of parachutes. In the last 
decades, Fluid-Structure Interaction (FSI) problem of para-
chute has been studied widely to meet both the public need 
for airliner security and military aviation. In most situations, 
the steadily descending phase of a parachute can be mod-
eled as a typical incompressible flow process. Considering 
the flexibility and permeability of the canopy fabric, para-
chute systems are extremely complex. Their dynamics arise 
from interactions between canopy, suspension lines, load 
and the air around. Therefore, it is difficult to model para-
chute systems precisely.  

Along with the progress of computing engineering, many 
models have been developed recently to solve the dynamics 
problem of parachute systems. One of the most-used models 
is the space-time FSI technique. It is based on the Deforming-    
Spatial-Domain/Stabilized Space-Time (DSD/SST) method 
(see refs. [1–3]), which is a moving-mesh technique. The 
earliest applications of these space-time FSI techniques in-
cluded 2D and 3D flow computations [4, 5]. These were 
followed by the first application of the space-time FSI tech-
niques to parachute modeling, reported in ref. [6] as ax-
isymmetric computation of the inflation of a parachute. Ap-
plication to parachute modeling with full 3D computations 
was first reported in ref. [7], in the context of a parafoil, 
together with a detailed description of the method and par-
allel implementation. The same technique was used in ref. 
[8] for a detailed 3D computation of a round parachute. 
These early parachute applications were computed with the 
block-iterative coupling technique (see refs. [9, 10] for the 
terminology and context). More robust versions of these 
early block-iterative techniques were introduced in ref. [9]. 
Also introduced in ref. [9] were the quasi-direct and direct 
coupling techniques, which yield more robust algorithms for 
the FSI computations where the structure is light and there-
fore more sensitive to the variations in the fluid dynamics 
forces (that is what we have in parachute modeling). The 
SST FSI technique was applied to a number of parachute 
simulations, including parachutes with fabric porosity [10] 
and the ringsail parachutes to be used with NASA’s new 
space vehicle Orion [11–13]. 

Besides the space-time FSI technique which is based on 
the DSD/SST method, there are some other FSI techniques, 
for example the methods used in refs. [14, 15]. In ref. [14], 
the immersed boundary method was used to solve the 3D 
parachute simulation problems. In ref. [15], the Large-Eddy 
Simulation method was coupled to a structural membrane to 
study the supersonic disk-gap-band parachutes. 

The most frequently research work has focused on the 
simulation and analyses of flat circular parachutes using the 
space-time FSI technique. More work is needed to simulate 

more complicated parachute models, such as the conical 
parachute, a typical parachute widely used in aviation utili-
zation. In this paper, a numerical method is proposed to 
simulate the conical parachute fluid-structure interaction 
(shape determination) for the first time. This new method is 
basically developed by following the Semi-Implicit Method 
for Pressure-Linked Equations (SIMPLE) algorithm pro-
posed by Patankar and Spalding in 1972 [16]. It is pro-
grammed easily and relatively more precise than the exist-
ing algorithms at that time. Therefore, the SIMPLE method 
has soon become a universal method to solve Navier-Stokes 
equation in incompressible flow ever since it was brought 
out. Based on the SIMPLE method, two 3D models of a flat 
circular parachute and a conical parachute using a stairstep 
mesh generation were built up. The simulation results pro-
vided in this study also reflect the efficiency and accuracy 
well. The topological structures at various angles of attack 
for a conical parachute model are further simulated. The 
performance of the method qualifies itself to be an efficient 
method to deal with more complicated parachute systems 
dynamics. 

This paper is organized as follows. Section 2 is devoted 
to the problem statement and the preparatory analysis for 
modeling the parachute systems. The geometric characteris-
tics of the parachute models to be simulated are presented. 
The basic principles of the SIMPLE method and the devel-
opment of the simulation program are introduced in Section 
3. In Section 4, a flat circular parachute model is simulated 
by the new method. A conical parachute model is simulated 
in Section 5. Situations where the angle of attack is in-
volved are further simulated. The conclusion and discussion 
are provided in Section 6. 

2  Modeling 

2.1  Geometric parameters 

Two types of parachutes (flat circular parachute and conical 
parachute) are involved in this paper. Parameters of these 
two parachute models are shown in Table 1. 

Since the structure of the conical parachute is relatively 
complicated, a top view of the parachute is provided in Fig-
ure 1. 

In Figure 1, section AA′ is the symmetrical section, and 
section P is chosen as characteristic section. The coordi-
nates concerned in programming are defined as in Figure 2.  

Table 1  Primary parameters of model 

Parachute 
type 

Nominal 
diameter (m) 

Vent 
diameter (m) 

Steady 
velocity 
(m s1) 

Gore 
number 

Flat circular 
parachute 

8.53 0.85 6.10 28 

Conical 
parachute 

6.80 0.35 6.00 24 



 Cao Y H, et al.   Sci China Tech Sci   November (2012) Vol.55 No.11 3133 

 

Figure 1  The top view of conical parachute model (half). AA′, Symmet-
rical; Section P, characteristic section. 

 

 

Figure 2  Coordinates definition (AA′ section). 

2.2  Flow field calculation 

The fluid is assumed to have constant density. The steady, 
incompressible, 3D turbulent Navier-Stokes equations in 
cylindrical coordinates are chosen as the governing equa-
tions. The turbulent Reynolds equations for conservation of 
mass, momentum (with , r, z, velocity component u, v, w), 
turbulent fluctuation kinetic energy K, and turbulence dis-
sipation rate  govern the turbulent flow of the control zone. 
All those equations can be expressed in the general form as 
eq. (1): 

 div( ) div( grad ) ,V S       (1) 

where  represents any of the generalized dependent varia-
bles, i.e., 1      ., u, v, w, K,   

The governing equations in cylindrical coordinates for 
parachute flow simulation are as follows: 

1) Continuity equation 
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3) r-Momentum 
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4) z-Momentum 
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5) Turbulent fluctuation kinetic energy equation K 
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6) Turbulent energy dissipation rate equation  
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Considering the added K two-equation turbulent model, 
three new coefficients 1 2,  ,( ) c c c  and two new constants 

( ),  K    are inducted. 

In this computational analysis, the SIMPLE algorithm is 
adopted to link the velocity vector V and static pressure p, 
which are initial variables of the flow field. The finite vol-
ume method is also used to discretize the governing differ-
ential equations. The convective terms are treated with 
power scheme, and the diffusive terms are treated with cen-
tral difference scheme. The discretized equations then can 
be solved by using Alternating Direction Implicit (ADI) 
iteration method [14]. Staggered mesh method has been 
used to store the velocity u, v, w, pressure p, turbulent fluc-
tuation kinetic energy K and turbulent energy dissipation 
rate  in four different grid systems. 

The computational area and boundary conditions are 
shown in Figure 3, and the lengths of AG, BE and BC are 
about five times nominal diameter of parachute. Body fitted 
grid of canopy is shown in Figure 4. In order to find the 
proper grid cell number, more than one spatial discretization 
was used for computing the flow field. The comparison 
showed that the results were convergent and almost did not 
change when the grids number exceeded 1000000. There-
fore the grid cell number of the whole computational do-
main is about 1000000 (for example, using a (39×190×192) 
grid over a domain of half conical parachute model). 

2.3  Structure simulation 

The structure simulation method is mainly based on the 
method used in ref. [17]. The basic assumptions in structure  
 

 
Figure 3  Computational area and boundary conditions. 

simulation are:  
1) The angle of attack is zero.  
2) There are no rigidities in both of the canopy cloth and 

cord line. 
3) There are the same strain and stress in all of the cano-

py gores and cord lines. 
4) The curve of the intersection boundary between the 

plane E and canopy gore is one part of a circle. 
5) The descending velocity is stable. 
For the symmetrical characteristic of the flat circular 

parachute, one gore of the canopy is used for the structure 
simulation. Figure 5 is one of the structure model pictures. 

According to the geometrical and physical conditions, 
the main equations were obtained. 

Equations for flat circular parachute: 
 
 

 

Figure 4  Body fitted grid of canopy. 

 

Figure 5  Structure model. 
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Equations for conical parachute: 
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Common equations: 
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The method to solve the differential equations is the 
fourth-order Runge-Kutta algorithm. From the structural 
solver, the new canopy shape could be computed out for the 
fluid solver, and the fluid solver would provide the new 
canopy pressure coefficient Cp (which is defined as 

21
2

p

p p
C

v






 ) for the structural solver. The criterion for 

assessing the convergence of the results is: to compare the 
meridian shapes, when the meridian shape is almost the 

same in two iteration steps, the results are deemed to be 
converged. 

More details of the basic structure simulation method can 
refer to ref. [17]. 

3  SIMPLE algorithm 

The SIMPLE algorithm is a pressure correction algorithm 
that adopts staggered mesh method. Main steps of the 
SIMPLE algorithm are as follows: 

1) Assume a velocity distribution, marked as u0, v0, w0. 
Then calculate the coefficients and constant terms of the 
discretized momentum equations.  

2) Assume a pressure field p*. 
3) Solve the two momentum equations in turn, obtain u*, 

v*, w*. 
4) Solve the pressure correction equation, obtain p′. 
5) Modify the value of velocity according to p′. 
6) Use the modified velocity to obtain the variable  that 

couples with velocity. If  brings no influence on flow field, 
it should be obtained after flow field converges. 

7) Use the modified velocity to recalculate the coeffi-
cients and constant terms of the discretized momentum 
equations. Use the modified pressure field as initial value of 
next step of iterative computation. 

The SIMPLE algorithm is an extensive algorithm in 
solving Navier-Stokes equation for incompressible flow. It 
is applicable to the flow field simulation of steady descent 
stage of a parachute (see ref. [16] for more details of the 
SIMPLE algorithm). 

4  Coupling process 

The two types of the inflated parachutes are similar. Since 
all the canopy gores are the same, the steady flow field at a 
zero angle of attack can be considered as axis-symmetric. 
The initial value of pressure coefficient difference between 
inner and outer surfaces is assumed to be 1.60, which would 
not influence the final results, because except the first step, 
all the other steps are obtained from the flow field simula-
tion. Then a process of fluid-structure iteration is used to 
obtain the actual configuration of the steady canopy. This 
process can be described as shown in Figure 6. 

The fluid-structure simulation method described in Fig-
ure 6 is a weak couple between the fluid and structure sim-
ulations. In the flow field simulation, the canopy shape is 
supposed to be not changed. In the structure simulation, the 
pressure distributions from the flow field simulation are 
assumed to be not changed. Actually, both the canopy shape 
and its surrounding flow have a tiny change during terminal 
descent. From this sense, there is a simplification for this 
simulation technique. 

(8)
 

(9)
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Figure 6  Flow chart of parachute simulation. 

The convergence of canopy is judged through the merid-
ian shapes in the nth and (n+1)th coupling iterations. When 
the tolerance of meridian shape location between the final 
two steps is less than 1%, the fluid-structure simulation is 
considered to be convergent. 

5  Test problem: Flat circular parachute 

After four iteration steps, Figures 7 and 8 (plotted by Rhino 
v3.0 software) can be plotted out. The trend of convergence 
can be found. The tolerance of meridian shape location in 
the 4th and 5th coupling iterations is less than 1%, but be-
cause using the color could not distinguish the two steps, 
the 5th iteration step was not plotted in Figures 7 and 8. 

The final simulation model is shown in Figure 9. 
Figure 10 reveals the streamlines pattern (in symmetrical 

axis section) for the flat circular parachute. Figure 11(a) 
from ref. [18] is a flow field pattern of a vented sphere. 
These two models have similar topological structures. The 
patterns of the two flow fields indicate a structural compa-
rability between the wakes of a flat circular parachute (with 
a vent) and a vented sphere. However, the wake of a vented 
sphere shown in Figure 11(a) is obtained in a condition of 
Re4×105, while the wake of a flat circular parachute shown 
in Figure 10 is obtained with Re=3.6×106. In the condition 
of Re=3.6×106, the vortices in the wake of a vented sphere 
would be pushed against the sphere surface instead of shed-
ding because a strong interaction between vent-flow and 
outer shear layer leads to large effects on base pressure 
(Figure 11(b)) [18]. 

The main topological structure of the flat circular para-
chute is shown in Figure 12. 

There are 4 half saddle points S′ and 2 center points Nc in 
the flow field. Also there are 2 saddle points S along the 
symmetry axis. Considering the symmetry of flow field,  

 

Figure 7  Change of meridian position during coupling process (flat cir-
cular parachute). 

 

Figure 8  Change of one gore of canopy during coupling process (flat 
circular parachute). According to priority, steps 1 to 4 are distinguished by 
colors green, red, blue, and gray. 

 

 

Figure 9  Flat circular parachute model. 

there are 8 half saddle points, 4 center points and 2 saddle 
points. It obeys the topological rule [19] of flow field sec-
tion: 

 
1 1

1 ,
2 2

N N S S n
              
   

 (12) 

where n=m+1. m is the quantity of the isolated finite section 
plane. In this situation, m=2, n=3. 
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Figure 10  The streamlines pattern of our model. 

 

Figure 11  Flow field pattern of a vented sphere. 

 

Figure 12  Topological structure of flat circular parachute flow field. 

The theory of topological structure of flow field also 
points out that it is unsteady when the two saddle points join 
together. In other words, if some slight disturbances are 
added to this kind of flow field, the configuration of flow 
field can change to a totally different one. As it is described 
in Section 5, when angle of attack changes, the topological 
structure balance of parachute leeward area is broken. It 
reflects a dramatic change of the pattern of flow field. The 
process after the balance is broken is beyond the scope of 
this paper. Further research may be conducted in this field. 
Figure 13 reveals the final pressure coefficient distribution 
on the canopy. The three curves represent the results from 
three turbulence models: S-A model, k-ε model and RNG k-ε 
model. Comparatively, the non-dimensional pressure coef-

ficient in the figure is similar to that obtained by using the 
parallel computing based on finite element method in ref. 
[20]. 

6  Test problem: Conical parachute 

The change of meridian position during coupling process is 
shown in Figure 14. In Figure 14, the tolerance of meridian 
shape location in the 4th and 5th coupling iterations is less 
than 1%. 

The final model of a conical parachute is shown in Fig-
ure 15. 

Figure 16 reveals the flow field for the conical parachute 
at zero angle of attack situation ( = 0°). We use section P 
in Figure 1 as feature section to monitor the main characters 
of the flow field. 

As shown in Figure 16, the flow field configuration for 
the conical parachute model is similar to that of flat circular 
parachute model. They both exhibit two main vortices (i.e., 
base vortex and secondary vortex (see Figure 17).  

 
 

 

Figure 13  Pressure distribution on canopy surface. 

 

Figure 14  The change of meridian position during coupling process 
(conical parachute). 
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Figure 15  Conical parachute model. 

 

Figure 16  Flow field of conical parachute model ( = 0°, section P). 

 
Figure 17  Topological structure of conical parachute flow field ( = 0°, 
section P). 

One significant difference between them is that the flow 
field of a conical parachute has a triangle area where turbu-
lent separation occurs. That is because the canopy shapes of 
these two parachutes are different. In the conical parachute 
model, the larger vortex, which is a result of separation of 
skirt edge, tends to be further from the canopy surface than 
the one in flat circular parachute model. On the other hand, 
because the canopy surface near the vent is not perpendicu-
lar to the symmetry axis, the smaller vortex, which is a re-
sult of separation of vent border, tends to extrude the larger 
one. So in the triangle area enclosed by the canopy surface 
and the two vortices, turbulent separation flow is very com-
plex and hard to describe (Figure 17). Further observations 
show that eddies in different scales are crushing and being 
created in this area. But these eddies are restricted in the 
separation zone, and barely influence the main flow out-
side. 

Figures 18(a)–18(d) reveal the simulation results of flow 
field for the conical parachute model at an angle of attack of  

 

Figure 18  Flow field of conical parachute model at various  ( section P). 
(a)  = 5°; (b)  = 10°; (c)  = 15°; (d)  = 20°. 

 
5°, 10°, 15°, 20°, respectively. We also use section P as 
feature section in these figures. Changes in the flow field 
configuration are clearly seen from Figures 18(a) to 18(d). 
With the increasing of , the eddies gradually depart from 
symmetry axis. And a new eddy is formed in the canopy at 
a greater angle of attack. Notice that the lines in these fig-
ures are not the actual streamlines. They just demonstrate 
the direction of velocity projections on the feature section. 

The topological structure of flow field of a conical para-
chute model (Figure 17) is more complicated than that of a 
flat circular parachute model (Figure 12). Because of the 
interaction between vent-flow and outer layer, the base vor-
tex is shedding away from the edge of canopy surface. The 
triangle area enclosed by two vortices and the canopy sur-
face is instable. This instable structure causes a drastic 
change of pressure contour with the changes of the angle of 
attack. 

The pressure contour in conical parachute model is 
shown in Figure 19. When angle of attack changes (Figure 
19(b)), the lower pressure zones caused by the base vortex 
and the secondary vortex definitely depart from their origi-
nal positions (Figure 19 (a)). 
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Figure 19  Pressure contours in conical parachute model (section P). (a)  
 = 0°; (b)  = 5°. 

7  Vortex development 

As a typical bluff body wake problem, parachute wake pat-
tern is closely related to the Re number. In the case of coni-
cal parachute, the Re number is Re = 2.8×106. Under this Re 
number, the separation of boundary layer in the wake of 
most bluff bodies is in the critical zone or supercritical zone. 
The most distinct characteristic of flow pattern under this 
Re number is the irregularity of the vortex shedding. How-
ever, in parachute wake, this irregularity is intentionally 
restrained by properly sized venting. As for Re = 2.8×106, 
the flow field in parachute wake indicates a regular vortex 
street pattern, which is a typical characteristic of subcritical 
zone. In parachute wake, there are two main vortices as well 
as a few secondary vortices which are induced by the main 
ones. The generation and development of those secondary 
structures are one of the key causes of main vortex shedding 
changes. 

7.1  Vortex equations 

The vortex field is assumed to be limited in a bounded area 
. The fluid is incompressible and there is no divergence in 
the whole flow field. Then, 

 div 0,v  rot v    in , (13) 

 div 0,v  rot 0v   outside . (14) 

Because div 0,v  there must be a vector potential B, 

making 

rot .v B  

Thus, in area ,  

2rot ( ) .       v B B B   

Because 0, B  so  

2  .  B   

This equation has a solution 

1 ( , , )
d ,

4 r


   
 B


 

where  

2 2 2
.( ) ( ) ( )r x y z         

Then, the velocity field can be expressed as following: 
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(15)

 

This is the universal form of the induced velocity equation 
in vorticity field. In the 3D flow field of parachute wake, 
the Biot-Savart equation is used to obtain the induced ve-
locity of vortex lines. 

 
3

d
.

4 l r

 


 
l r

v  (16) 

7.2  Secondary structure in parachute wake 

Secondary vortices and tertiary vortices are commonly ob-
served in blunt-body wakes. In parachute wake, the second-
ary structures are widely distributed in the whole flow pat-
tern. The vortex structure of conical parachute wake is 
shown in Figure 20. 

In Figure 20, V1 and V2 are two main vortices. V3 is 
generated because of the inducement of V2. V5 is generated 
because of the inducement of outer shear layer stream 
which is a result of the shedding of V1. V4 has vorticity 
with the same direction as V1. According to the fluid me-
chanics theory on vortex shedding (see refs. [21, 22]), V4 is 
the remnant part of V1 after V1’s shedding from canopy 
surface. 

With zooming in to the rectangle zone in Figure 20, the 
more detailed pattern is shown in Figure 21. 

Because of the entrainment function of V4, stream con-
tinuously flows from V5 to V4. At the same time all vorti- 
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Figure 20  The vortex structure of conical parachute wake ( = 0). 

 

Figure 21  Zoom in view of a part of Figure 20. 

ces have been formed, and the whole flow field has been in 
the quasi-steady stage. 

Zooming in to the rectangle zone in Figure 21, more 
lesser structures as V6 (e.g. tertiary vortices) can be ob-
served in Figure 22. 

8  Conclusions 

In this paper, the SIMPLE algorithm is applied to the para-
chute flow field simulation and has shown a fine synthesis 
capability in dealing with FSI problem of parachute models. 
We use this strategy to simulate a flat circular parachute 
model, and a conical parachute as well. Furthermore, we 
have obtained the patterns of conical parachute flow fields 
at various angles of attack for the first time. All the results 
have shown that the SIMPLE algorithm is a recommendable 
strategy in numerical simulation of parachute FSI problem. 

Apparently, the new method proposed in the paper for  

 

Figure 22  More lesser structures. 

parachute simulation is far from a mature one. It is neces-
sary to do a lot of work to improve it.  

1) The air permeability of fabric is not considered in this 
paper. But it definitely has some influences on the flow 
field. This may be a topic in further research. 

2) More studies should be carried out in future to reveal 
the detailed FSI process when angle of attack changes in the 
numerical simulation of parachute inflation.  
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