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ABSTRACT

A trapped wave model for vortex breakdown, which
has previously been considered for flow in confined
pipes, is applied to breakdown of a torsionally driven
cavity flow. A critical-wave model is shown to be
applicable in this more physically complex situation.

INTRODUCTION

Vortex breakdown is said to occur when a concen-
trated vortex core changes suddenly in structure to
produce a stagnant region of flow, often called a
breakdown bubble. It has often been associated with
a change from laminar to turbulent flow.

Since first being observed by Peckham (1957), many
mechanisms have been put forward to explain vortex
breakdown. Notable explanations include

1. Analogy with boundary layer separation e.g.
Hall (1967)

2. A feedback mechanism generating vorticity e.g.
Brown & Lopez (1990).

3. A transition from super-critical to sub-critical
flow state e.g. Squire (1960), Benjamin (1962).
This has been extended to include the idea of
wave trapping e.g. Leibovich (1970), Darmo-
fal (1994).

Darmofal used numerical results for swirling pipe flow
to demonstrate that vortex breakdown can be seen as
a change in state from a super-critical to sub-critical
flow, and that trapping of small perturbations is re-
sponsible for the growth of vortex breakdown bubbles.
With the exception of Brown and Lopez (1990), the
previously mentioned papers have concentrated on
flow through pipes. The purpose of this paper is to
test the applicability of the ideas of the third mecha-
nism to a confined torsionally driven cylinder flow.

The torsionally driven cavity apparatus, studied in
detail by Escudier (1984), consists of a cylinder with
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fixed walls and roof, and a spinning base. The co-
ordinate system used is shown in Figure 1. This ap-
paratus has the advantage that there are only two
free parameters, the Reynolds number (based on the
velocity of the spinning base) and the aspect ratio
of the cylinder. Compare this with the pipe appara-
tus, where inflow profiles and pipe profiles can vary
greatly. The swirling cavity is also an appropriate
experiment to study mixing problems which are an
important application of vortex breakdown.

NUMERICAL TECHNIQUE

The Navier-Stokes equations are solved in cylindrical-
polar coordinates for non-dimensionalised velocity
components u,, Ug and u, for 0 <r< 1) and
(0 < z < H/R). The Reynolds number is defined
such that the axis velocity ug = latr =1,2 = 0.
The flow is assumed to be axisymmetric, which is is
consistent with experimental evidence for the aspect
ratios and Reynolds numbers considered in this work.
A finite element code is employed, using quadrilat-
eral velocity elements. A penalty formulation is used
used to eliminate the pressure p, with the penalty
parameter set to 107. Newton-Raphson iteration is
performed on the resulting non-linear equations; the
solution is considered converged when the maximum
change in velocity is smaller than 10~7. The problem
is initially solved at low Reynolds numbers, with these
solutions used as initial guesses for higher Reynolds
number problems. The Reynolds number is stepped
up in intervals of 100.

VORTEX BREAKDOWN

After solving the steady problem for a number of
H/R and Re values, Figure 2 shows the bubble exis-
tence domain, which corresponds well with both the
experimental results of Escudier (1984) and the pre-
vious numerical results of Lopez (1990). Note that
unlike these studies, two merged bubbles is indicated
as a single bubble in the existence graph.
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Figure 1:

Schematic diagram of experimental set-up.

Figure 3
Stream function for breakdown H/R = 2.5

(a) Re = 1740, (b) Re = 1840, (c) Re = 1900

300X X0 XX XXX XXX X XN XX
XXXXXXXAXKK XXX XXX HK
XXXXXXXXXXKXKKXXKK XX
33000 30 XX KX XK KX KX XXX
XXKKH XXX KKK KKK KN K XX
XXX XXX KK KKK XX X X ¥

f;

B

gnn

xxxxoooooooHAAAAA

xxxHoooooo| AAAAAQ

xxBooooao AAAAQ oo
aoog

guuuuuug AAAAa
oonoooBaaasgtnooon:
D

B XXX XXX XX XXX X XXX X X X

ooooac aAHoooon
Dooooc aboooooon

XX XXX KKK KKK KN XX ¥

Doooog abBooooooo

xxxxxxxxxxxxxxxxx§&

5
1unnnEHAAS@Bnannnunn

A

A

ooool Eﬁ
saBiooangoedix
ﬁ%g@ Ll o

FAECE ool

(IRl ool

[a]
uaagagxxxxxxxxxxxn
ES XXX XXX KKK KKK XX

300X XXX XXX X X X X
XXX XX KN XK XXX KKK KX

8

X HHXK XXX KX KX XX OO

¢y

hooc {alatalalalalela]

XKHXHXXHK AKX KKK KX X EDD[

otloboololotouiootoelole.|

XOOOOENXX KX XX
Koooond

XX XXX KKK KK X
xxxxxxxxxxxxgunnnnn
[s]alulunls}

xxxxxxxxxxxg
[aalalalala]

XXXXXXXKRXX
[a]s]alalals]s}

xxxxxxxxxg
¥ XXX xXxxx000000000A.

XXX XX X
xxxxx¥Hoonooooooool
xxxxxBoonoooooooooog
XXXXQDDDDDDDDDDDDDN
XXX DDDDUDDDDDDDEE
xx UDDDDDDDDDDEE
xx

Xx0Ba0000gagHE Dk

Doon!
[a]alala]u]

hoogaasfbooooaon
opaagBoooooonogazaas
oBaaBopooonoggaassas
8

DnnuuuﬂgﬂgAAAAA
Doooo| V.V.V.V.V.V.Y

1 Dooooog YY.V.VV.V.V.Y
EQAAAAAA
o

gafar

fifoco 841

DDDDDDDDUE [AAAAAAAA,
A
DDDDDEEg E
onEA
EE%AAAAAg%
XXXXXXXX
XX XXX XXX KX KX

0000000000 EQAAAAAA
DDDDDDDDE AAAAAA@
DODDODORAAAAAAAA,
AAAAAAA, gg
oooo
oa: gé
XXX XX
V.V.V.V.V.Y g
AAAA. @ AXXXXKXKX XXX
AA aé KKK KKK KKK X
24
XXXHHK XK XXX KKK XX
XXX XXX XXX XX XX XX
33333 3 X X X X X X XX XXX X X

330X XXX XXX XX XX X X X
XK KK HKKK XX KX XXX X
30X K XX X XK X X X X X
XXX XXX XXX X X XX XK X X
30X XKRX XXX XXX X XK
HXHXXKXXXKXHK XK KKK XX
HOXXXKKK KKK X X XK XXX X XK
XXXXXXXKKKXX XK XXX XX
XN KK XK XXX X

ooo V.V.V.Y gg§$xx

T.V.V.Y é XXX XX X
éégﬁ éé XXX XXX XXX

éa XXX X XXX
]DDBS XXX X XXX XX
h| 30X XXX MM XX XXX XX
| optoetouioetouiooiooioote
XXX KKK KX X XK XXX
X006 X XXX X XK X XX XXX

XXXXXXHXXXXKXXXXKXK K

XXX X XXX XXX XXX XXX X
XXX XXX XXX XXX XXX XXX X
XOCHO0KXXXX XXX XXX XXX
30300000000 XX XXX XXX
XXX KKK X XXX XX XXX
KKK KKK KKK KKK H XXX
KKK KX KK KX KX X XK X
KKK XK X X XXX X KX
KKK XK KKK KKK XXX HX XX

KKK KX X XK XX XX XXX X
HXRHKHOOK KKK K XK XXX X
XXX KKK XXX KX X
P e S P 3
KKK KX X XK XX KX KK XX
HXHXXXXX X XXX K KKK XXX
33X KX XXX X XX X X X X
3033 300000X KX XXX XXX X
3330000 XXX X XXX X

O L1 ololooo

303000 X XX KX X X XX X X X
XXX XXKK KKK KX XK KX
300OCCXR KKK KK XXX XXX
330X 00K XK XXX KX XXX X
3K XXXKR KX K K XK X HH XX
KX XXX KKK KKK XK XXX
30300303X XK NN XX XXX
03X X XN KX X KX K XXX XX

XXM X XK XK HH XXX XX
XX KK XX K KKK XX XXX
XHXHKXHHHHK KX XK KX KXY
XHXXXHXXXXXNXXKKKK KX
30X XXX XXX XX XX XXX
330 H00XK X KKK XXX XX
30X XXX XXX XX
XXXXKXXNXXXX XXX KKK KX

300X XXX XXX X

XXX KKK XXX XK XXX XX KX
303X XXX X XXX XXX XXX
333303 X XX X XX XXX X XX
XXKXHHKK KK XXX KKK KX
XXX XXX XXX XXX KKK XX
33X 30X X XXHNXX XX KX
xxxxxxxxxxxxxxxxxsg

xxxxxxxxxx*gggﬁaﬁun

XXXXXH KX KKK

$

XXX KK XXX KX X X X X XXX
XXHXXK XXX XK KX XXX XXX
X0HXKKK X X XXX X X X X X X X

oo g
e BB a0 ooy

EBEDDUDDDUDDDDDDDDD
D000000000000000000!

1

0.2 0.4 0.6 0.8

172

2

3

Figure 2:
Existence of breakdown bubbles
x 0 bubbles, O 1 bubble, /A 2 bubbles, & 3 bubbles
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Figure 4
Stream function for breakdown H/R = 4.0
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(a) Re = 2900, (b) Re = 3100, (c) Re = 3300




Two typical examples of the onset of breakdown in
the confined flow as the Reynolds number is increased
are shown in figures 3 and 4. These figures demon-
strate the onset of vortex breakdown for two different
aspect ratios. Contour levels of the stream-function v
are displayed with 20 positive and 20 negative values,
with intervals cubicly stretched towards zero.

WAVE MODEL

Considering a steady mean flow without breakdown
with a velocity field u = (U(r, 2), V (r, 2), W(r, 2)).
The flow is assumed to be quasi-cylindrical i.e. 7~ <
%. If we consider an axial length scale L and a
length scale for radial perturbations of A, such that
A/L < 1, we can use the assumption of Hall that

perturbations to the stream-function be defined as

P = f(r) exp(72) (1)

where 1 is an axial wavenumber. The governing equa-
tions for the perturbation field (Hall, 1967) is
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where I' = 7V (7, 2) is the mean flow circulation.
The minimum local eigenvalue 7 at each axial node
is calculated.
Darmofal used this model for the the pipe problem,
and showed that the eigenvalues ’y(z, of the system be-
come negative just before breakdown occurs. It is
argued that this represented a change in nature of
the flow, from a super-critical low with information
traveling downstream only, to a sub-critical flow in
which information (and in particular small perturba-
tions) could move back up stream and be trapped.
The point of this trapping is said to coincide with the
breakdown point.
To extend this idea to the confined cylinder it is nec-
essary to choose a region of the flow that is similar to
a pipe, and hence meets the necessary requirements
for the use of equation (3). Theregion 0 <7 < % and
.1 < 2z < H —.1is used to define the base flow. At
any given Reynolds number, a finite element approx-
imation to equation 3 is solved using the LAPACK
routine DGEEVX at each axial position z.

RESULTS

Figures 5 and 6 indicate the axial velocities and eigen-
values 72 of the flow for two different aspect ratios. It
can be seen that the flow becomes sub-critical before
the flow has broken down, but that the physical loca-
tion of the breakdown points correspond well with the
location of vortex breakdown bubbles, which appear
for —w(0, 2) < 0.

Figure 7 shows the minimum axial velocities and
eigenvalues as the Reynolds number is increased. It
is apparent that the flow becomes sub-critical at a
Reynolds lower than that required for flow reversal
to occur. This is consistent with the results of Dar-
mofal in the pipe apparatus. Note that when 73 =0,
upstream perturbations of infinite wavelength can be
trapped. The length of wave perturbation possible is
given by Hall as L = 2m/4/—73. Work is currently
underway to determinate a value for ’yg at breakdown,
and hence the shortest wavelength that is predicted
to be trapped.

If Figure 7 is compared with the stream-functions in
Figures 3 and 4, the three plots correspond to (a)
positive eigenvalues without breakdown, (b) negative
eigenvalues with breakdown and (c) negative eigen-
values with breakdown. In the second case, a large
amount of waviness is evident in the stream-functions,
without breakdown having occurred.

CONCLUSION

The wave trapping models originally put suggested by
Squire, and further enhanced by Hall, Leibovich and
Darmofal have successfully been applied to a torsion-
ally driven cavity. The success of this model in a very
different physical domain to that normally considered
suggests that the wave trapping model provides a ro-
bust explanation for vortex breakdown.
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Figure 5

(a) Axial velocities —w(0, z) and (b) Minimum eigenvalues v3(z) for H/R = 2.5
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Figure 6
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(a) Axial velocities —w(0, z) and (b) Minimum eigenvalues 7¢(z) for H/R = 4.0
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