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Abstract: The growth of short-wave elliptical instabilities in a Lamb-Oseen vortex pair subject 
to non-uniform strain fields at close vortex spacing is considered using direct numerical 
simulation at a Reynolds number Re = 20000. A linear stability analysis demonstrates that with 
reduced vortex spacing the growth rate of all axial wave-numbers is enhanced relative to that of 
the fastest-growing mode. A coupling of vortices is observed at close vortex spacing, which may 
lead to improved non-linear instability growth, and the development of fluid cross-over regions. 
These fluid cross-over regions are shown to be products of a linear growth regime. 
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1 Introduction 

The study of vortex dynamics is pivotal to the aviation 
industry in which the generation of large-scale, coherent 
vortices at the wingtips of large aircraft can present  
a significant hazard to aircraft downstream, where air flows 
are not uniform (Spalart, 1998). In order to maintain safety, 
a minimum distance between aircraft utilising a single 
runway must be maintained (Olwi and Ghazi, 1992).  
This minimum distance requirement imposes an upper limit 

on the number of aircraft which may safely use airport 
facilities over a given period of time (Spalart, 1998). 

The past 40 years has witnessed considerable research 
effort to understand the fundamental nature of aircraft 
wakes with an aim to enhance the dissipation of the strong, 
coherent vortical structures within them (Spalart, 1998). 
Crow (1970) identified a long-wavelength perturbation 
mechanism which led to the enhanced dissipation of 
coherent aircraft wakes. Despite the Crow instability 
mechanism’s ability to induce vortex annihilation 20 times 
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faster than viscous dissipation alone, the long-wavelength 
instability still requires significant time to develop. 

In the wakes of aircraft, elliptic instabilities are expected 
to influence the dynamics of the multiple vortices generated 
by aircraft wings. Each vortex is in the strain field generated 
by the surrounding vortices and, therefore, subjected to an 
elliptic instability. Leweke and Williamson (1998) showed 
the addition of a shortwave instability increased the 
instability growth rate by 20%. 

The elliptic instability has been identified and studied  
in various contexts, ranging from three dimensional 
transition in shear flows (Bayly et al., 1988) to vortex 
interactions (Leweke and Williamson, 1998) and flows  
in elliptic containers (Eloy et al., 2003). Pierrehumbert 
(1986) and Bayly (1986), who considered the local  
stability properties of an elliptic flow, were the first to 
identify the generic aspects of the elliptical instability. 
Before these local analyses, Moore and Saffman (1975),  
and Tsai and Widnall (1976) had identified an instability 
which develops in strained vortices. They performed  
the first global stability analysis of elliptic instability  
and provided an instability mechanism in terms of normal 
mode resonance.  

In vortex pairs without an axial flow component,  
the elliptic instability has been observed experimentally in 
both co-rotating vortices (Meunier and Leweke, 2005) and 
counter-rotating vortices (Leweke and Williamson, 1998).  
It has been modelled using Moore and Saffman’s approach 
in Le Dizes and Laporte (2002), who describe the capacity 
of paired vortices to exert reciprocal strain fields that 
elliptically deform each vortex core. Le Dizes and Verga 
(2002) identified three key parameters contributing to the 
elliptical deformation process: vortex steepness n, Reynolds 
number and separation ratio (a/b). The vorticity profile is 
described by  

2
0 ( ) exp( ),nr rω = −  (1) 

where n is the vortex steepness and n = 1 gives a Gaussian 
vortex, and ω0 is the vorticity. Here, the Reynolds number is 
defined as 

Re ,ν= Γ  (2) 

where Γ is the circulation and ν is the kinematic viscosity. 
In addition, elliptical deformations are driven by the 
mutually induced strain field of the vortex core. At large 
separations the strain field near the partner vortex core may 
be assumed to be uniform; however, at closer separations 
the strain field is curved. 

Sipp et al. (2000) also showed that the elliptical 
deformation proceeds regardless of the initial vorticity 
profile, relaxing the vortices to a unique Gaussian state 
which is independent of the Reynolds number.  
This validates the use of a Lamb-Oseen pair in examining 
elliptical instabilities. 
 
 
 

2 Instability mode interaction and development 

Leweke and Williamson (1998) concluded the elliptical 
instability of the two vortices evolves in a distinct phase 
relationship, breaking the initial symmetry of the pair.  
This they attribute to the coupling of instabilities, which 
produces an asymmetric mode to satisfy kinematic matching 
conditions. Leweke and Williamson’s study also described 
the long-term evolution of the instability, demonstrating  
that the growing deformation of the short-wave instabilities 
gives rise to periodic cross-over of fluid between vortices. 
This creates an array of secondary vortices perpendicular to 
the primary pairs. The secondary vortices quickly lead to  
the breakdown of primary vortex circulation, as observed by 
Ryan and Sheard (2007). Leweke and Williamson proposed 
that the classical Crow instability is, in fact, the result of a 
long and short-wave instability interaction. They suggested 
that the long-wave instability causes vortex cores to exist 
closer in certain regions, leading to an increased growth rate 
of short-wave instabilities and, hence, secondary vortex 
formation in these regions. 

The array of secondary vortices identified by Leweke 
and Williamson (1998) evolve in the non-linear growth 
phase of the [–1, 1] Kelvin mode. Ryan and Sheard (2007) 
demonstrated that the [–1, 1] Kelvin mode has the greatest 
dissipation rate for flows of this type as a result of 
production of secondary vortices. This is due to a non-linear 
growth zone of short-wave instabilities. A large growth rate 
during the linear phase proved insufficient to produce 
enhanced vortex dissipation in a Kelvin type mode  
(Kelvin modes are a classification scheme of instability 
modes). The numerical study employed may not have 
accounted for viscous diffusion, which moves the vortices 
closer together over time. This, in turn, may assist in the 
production of secondary vortices. 

Previous analytical investigations that have established 
these instability relationships are only consistent when 
vortices are sufficiently separated so as to feel only a 
uniform strain field. Little is known about the propagation 
of short-wave instability modes at small vortex spacing  
(Le Dizes and Laporte, 2002). As such this investigation 
aims to: 

• analyse the effects of short-wave elliptical instability 
modes on overall vortex pair evolution at small vortex 
spacing 

• determine the effect of vortex spacing on the growth 
rate of the [–1, 1] instability mode 

• identify any flow structures such as fluid crossover 
regions which may lead to the enhanced dissipation  
of the vortex pairs. 

The current work will address these aims by performing  
a linear stability analysis on a Lamb-Oseen vortex pair.  
Previous work has been limited to a maximum vortex  
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separation ratio a/b = 0.25. This will be the lower limit  
of the determining parameter on the elliptical core 
deformation.  

3 Flow field description 

A pair of counter-rotating vortex pairs is created at the wing 
tips of aircraft as a product of the lift produced on the wings 
(Phillips, 2004). This investigation considers vortices of  
a Lamb-Oseen type (Fig. 1), which is a counter-rotating  
pair with Gaussian vorticity profile. The vorticity profile  
of the Lamb-Oseen vortex pair may be expressed 
mathematically by 

2 2
0

2
0

e ,r a
z a

ω
π

Γ=  (3) 

where ωz is the axial vorticity component, a is the 
characteristic core radius of the vortex (a0 is the core radius 
at time t = 0), Γ is the circulation and r is the radial position. 

Figure 1 Schematic representation of flow in a counter-rotating 
Lamb-Oseen pair with a Gaussian profile. a is the 
characteristic core radius, b is the separation distance 

 

In this study, two counter-rotating Lamb-Oseen vortices, 
each of characteristic radius a, are placed a distance b apart. 
Each vortex imposes a weak external strain field on the 
other, e0 (for example see Le Dizes and Verga, 2002). This 
paper restricts its attention to the study of counter rotating 
vortices of equal circulation magnitude. The Lamb-Oseen 
vortex pair is characterised by a Gaussian vorticity profile 
which is a known global attractor of any two dimensional 
axisymmetric vortex (see for example Le Dizes and Verga, 
2002). The Gaussian profile has the advantage over other 
possible profiles, because it is unaffected by viscous 
diffusion. Viscosity only acts to modify the radius of  
the vortex, which evolves linearly in time.  

The amount the vortex core will diffuse is described by 

2
0 14 ,a a tν= +  (4) 

where a0 is the initial vortex characteristic radius, t1 is the 
time taken to evolve this solution and ν is the viscosity. And 

1
2
0

* ,
2
tt

aπ
Γ=  (5) 

where t* is the normalised time defined by Le Dizes and 
Verga (2002), and Γ is the circulation. Le Dizes and Verga 

(2002) showed that a settling time of t* = 40 is sufficient for 
the vortices to adjust to the induced strain fields and  
form stable elliptical deformations.  

The initial vortices were placed at the centre of a 
computational domain with vortex core radii of a = 0.97577 
and at a vortex spacing of b = 4a separation. At the 
conclusion of the settling time (t* = 40) the initial vortex 
spacing case of a/b = 0.25 was formed. A Reynolds number 
Re = 20000 will be used throughout the investigation.  
This is sufficient to ensure the effects of viscous diffusion 
are negligible throughout the analysis and, therefore,  
the vortex spacing remains constant. 

4 Methodology 

A spectral element technique is used to solve the 
incompressible Navier-Stokes equations 

2( ) ,u u u P u
t

ν∂ + ⋅∇ = −∇ + ∇
∂

 (6a) 

0,u∇ ⋅ =  (6b) 

where u is the velocity vector, ∇ is the gradient operator,  
P is a scalar pressure and t is time. 

The package uses an operator splitting technique 
(Karniadakis et al., 1991), which allows the advection and 
diffusion terms to be solved independently for each  
time step. A spectral element method is used to discretise 
spatial terms. The domain is discretised into a series of 
macro elements, within which high-order tensor-product 
Lagrangian polynomials are employed as shape functions to 
solve the partial differential equations. A 3rd order accurate, 
backward multi-step method using a three-step splitting 
scheme evolves the solution in time to solve the linearised 
time dependent Navier-Stokes equations.  

During the perturbation study, a disturbance of a single 
frequency is propagated in the vortex perpendicular to the 
2D plane, acting along the axial direction of a vortex  
stream tube, allowing investigation of the susceptibility of 
the vortices to instabilities in the third dimension. To this 
end a global stability analysis is conducted in which the 
velocity and pressure fields (u ⋅ p) are broken up into a two 
dimensional base flow ( , )U p  and a three dimensional 
disturbance (u′, p′) 

, .u U u p p p′ ′= + = +  (7a, b) 

Substituting these into the Navier-Stokes equations, 
cancelling the base flow terms and neglecting products of 
the (small) perturbation field yields 

2( ) ( ) .u U u u U P u
t

ν
′∂ ′ ′ ′ ′+ ⋅∇ + ⋅∇ = −∇ + ∇

∂
 (8) 

The stability analysis is then carried out simply by 
integrating the perturbation field forward in time  
and monitoring the growth or decay of the field.  
The perturbation field evolves over one period subject to  
an operator A as 
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1 ( ).n nu u+′ ′= A  (9) 

The eigenvalues of A correspond to linear growth 
multipliers of the system, µ, 

e ,Tσµ =  (10) 

for which σ is the instability growth rate.  
For further descriptions and validations of the two 

dimensional solver the reader is referred to Sheard et al. 
(2007). The linear stability analysis algorithm used in this 
study was extensively validated in Sheard et al. (2009) and 
was found to produce identical results to an independent 
implementation of the same algorithm in Blackburn and 
Sheard (2010). 

5 Simulation optimisation 

The mesh (Fig. 2) used in the vortex analysis consists of an 
internal fine region and a coarser outer region in which 
elements expand to the edge of the domain where the 
boundary conditions are applied. When created, the vortices 
exist in the centre of the refined region. This is where  
the vorticity is most concentrated and accuracy is most 
important.  

Figure 2 Mesh used in numerical investigation. The mesh 
consists of a central refined region and an outer coarse 
region. Elements shown include Gauss-Legendre-
Lobatto points used in numerical quadrature 

 

The two counter rotating vortices are created with  
a characteristic radius less than 1% of the computational 
domain width in all directions. Time-dependent Dirichlet 
boundary conditions are added at the boundaries of  
the domain, which apply a corrective velocity to keep the 
vortices positioned in the refined region of the mesh.  
The boundary is over 100 vortex radii from the vortex pair, 
which ensures the imposed boundary conditions do not 
adversely influence the underlying physics of the vortex 
interaction. 

In order to optimise the accuracy of the grid a P-type 
grid resolution study was conducted. In this an L2-norm and 
the vortex circulation were measured to assess the accuracy 
of the solution in a global context. The strain rate magnitude 
was assessed to determine the prevalence of noise in the 
solution in the core vortex region. 

To measure the global accuracy of the flow field, two 
parameters were measured. Integration of the velocity field 

over the domain provided an estimate of the vortex 
circulation, which may be compared to the input value.  
The second parameter was the L2-norm, defined as 

2 | | d ,L u= Ω∫  (11) 

where |u| is the magnitude of the velocity vector and Ω is 
the computational domain. Figure 3 shows that, in terms  
of the global accuracy of the solution, after the order of  
the polynomial used in the spectral solver exceeded 10 the 
solution converged to a consistent level of accuracy. 

Figure 3 Results from grid independence investigation:  
(a) L2-norm and (b) estimation of the circulation 
through integral of velocity over half the computational 
domain, as a function of GLL polynomial degree n 

 
 (a) 

 
 (b) 

The strain rate magnitude, which is particularly sensitive to 
resolution, was measured at the vortex core. An element 
polynomial degree of 14 was found to resolve this quantity 
to high accuracy.  

From the grid resolution study it was determined that  
a 14th degree polynomial was sufficient to provide a 
resolution independent result. 

6 Base flow evolution 

Le Dizes and Verga (2002) showed that vortices will grow 
larger in size over time, as a natural result of viscous 
diffusion (see Eq. 4).  

Base flows of varying separation ratios were created 
using the viscous diffusion method employed by Le Dizes 
and Verga (2002). Lowering the Reynolds number to 
Re = 15π enhanced the effect of the viscous term in the 
Navier-Stokes equations. Given sufficient time the vortices 
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are allowed to diffuse, increasing the characteristic radius  
a and, thus, increasing the separation ratio. The flow 
structures created at different separations are shown in 
Figure 4. At small vortex separations there is significant 
elliptical deformation of the core. Figure 5 shows the strain 
fields of the largest separation case considered, a/b = 0.481. 
It can be clearly seen that the strain field is now curved 
within the vicinity of each vortex core. A fundamental 
assumption in analytical formulations such as those of  
Le Dizes and Laporte (2002) is that vortices were 
sufficiently separated such that a uniform strain field could 
be assumed at the core of each vortex. 

Figure 4 Vorticity profiles of vortex pairs: (a) a/b = 0.25 and  
(b) a/b = 0.481. Solid lines represent positive vorticity, 
dashed line are negative vorticity 

       
 (a) (b) 

Figure 5 Stain field at vortex separation 0.481. Note the curved 
nature of the strain field in the vicinity of the cores. 
The dashed circles indicate the locations of the vortex 
cores 

 

7 Vortex spacing limit 

During the evolution of the vortex base flows an upper limit 
for the separation ratio was discovered. The vortex spacing 
was accurately determined using a Simpson’s 1/3rd 
quadrature method interpolating over the vortex region to 
find locations of maximum vorticity. The characteristic 
radius was determined using the axial vorticity ω0  
described by  

2

0 2 exp .r
aa

ω
π

 Γ  = −     
 (12) 

It was found that as the vortices grew closer, the strain field 
developed by each vortex pushed on the neighbouring 
vortex, forcing the pair apart. Figure 6 shows that an  
upper limit of a/b = 0.5 for the vortex separation ratio.  
This implies that two vortices will never exist in the same 
space as defined by their characteristic core radii, i.e., their 
cores may never overlap. This also indicates that the strain 
field, while curved, will not permit periodic crossing of  
a shared vortex boundary. Given the majority of the 

vorticity is contained within the characteristic core radius; 
we would not physically expect counter-rotating vortices to 
be able to violate this boundary without destruction of the 
vortex structure. 

Figure 6 Vortex separation ratio varying as a function of core 
radius a 

 

8 Perturbation study 

A stability analysis was conducted on the vortex pair in 
which small disturbances were introduced of a specified 
axial wave-number. In this analysis the disturbance was 
evolved in a perturbation field, the effects of which  
may be observed by overlaying disturbance mode shape 
over the frozen base flow. Vortices of separation ratios 
a/b = 0.251, 0.3625, 0.4063, 0.4257, 0.4385, and 0.447 
were investigated. Each was subject to a series  
of disturbances in the normalised wavelength range of 
λ/a = 0.2 to 5.0. Le Dizes and Laporte (2002) showed that 
this range is sufficient to describe the development of  
short-wavelength instabilities growing on a counter-rotating 
Lamb-Oseen vortex pair for small a/b. The following 
sections describe the instability growth in the vortex pair as 
the separation distance is changed.  

9 Instability growth rate 

The growth rate of the leading instability mode was 
monitored. For each case a disturbance was introduced 
characterised by its wave-number 

2 ,k π λ=  (13) 

where λ is the axial wavelength of the disturbance.  
The wave-number k was changed such that results were 
taken at consistent values of normalised wavelength λ/a. 

Figure 7 shows a comparison of the linear growth rate of 
elliptical instabilities as a function of the normalised  
axial wavelength, over different separation ratios a/b.  
The number of principal modes evident in each separation 
case varies as the non-uniform strain field acts to enhance  
or suppress instability modes. At a separation of a/b = 0.251 
three principal modes are evident. The first has a peak 
growth rate at λ/a = 1.15, this peak was not reported by  
Le Dizes and Laporte (2002). The remaining peaks occur at 
λ/a = 1.6 and at λ/a = 2.8. The positions of this peak growth 
rate correlate with Le Dizes and Laporte’s (2002) results for 
a/b = 0.18 at Re = ∞, also shown in Figure 5.  
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Figure 7 Growth rate of the elliptical instability as a  
function of the normalised axial wave-number;  

 from Le Dizes and Laporte (2002), results for 
a/b = 0.18 and Re = ∞. Legend describes a/b ratio 

 

The significant finding shown in Figure 7 is that at closer 
vortex spacing the growth rate at all wavelengths is 
enhanced, relative to the peak growth rate. In addition we 
note the damping out of the λ/a = 1.15 peak found in 
a/b = 0.251. It is observed that in distantly separated cases 
the peak growth rates are sharp and well defined. As the 
vortices are bought closer together however, each peak 
broadens.  

Critical wave-lengths, where a local peak in growth rate 
is observed, decrease as the distance between vortices 
decreases. The strongest mode is at λ/a = 2.8 at a separation 
distance of a/b = 0.251 but decreases to λ/a = 1.8 at 
a/b = 0.447, this is observed as a lateral shifting of the peak 
structures in Figure 7. Furthermore, the growth rates of the 
instabilities vary with vortex separation. Figure 8 shows  
the normalised growth rate of the peak instability mode in 
each separation case. It can be seen that after an initial 
increase in growth rate, the growth rate of the peak 
instability mode decreases as the vortices are bought closer 
together. This is in contrast to the findings of Leweke and 
Williamson (1998) who postulate that bringing vortices 
closer together enhanced the growth rate of the [–1, 1] 
Kelvin mode. By contrast our results find an optimum 
separation distance. 

Figure 8 Normalised growth rate of peak instability mode  
as a function of vortex separation distance 

 
 
 

10 Coupling of vortices 

Figure 9 shows the perturbation fields of the dominant 
instability modes for a range of a/b. The images are created 
by subtracting two slices of the vorticity field half a period 
out of phase. The positive and negative vorticity in Figure 9 
are the same structure at different points in the stream tube. 

Figure 9 Contours of the vorticity field mode-shapes taken at  
the peak growth rate: (a) a/b = 0.251; (b) a/b = 0.3625 
and (c) a/b = 0.4385. Dashed contours represent 
negative vorticity 

 
(a) 

 
(b) 

 
(c) 

At large separation distances, (Fig. 9(a)), the perturbation 
vorticity field in each vortex stream tube comprises two 
distinct regions. An inner region exists of high perturbation 
vorticity that sits within the characteristic core radii, and  
a less intense outer region that curls around in a crescent 
shape offset from the vortex core. These may be analysed  
as a pair of co-rotating perturbation vortices formed in each 
stream tube of the perturbation field. Figure 10 shows  
a three dimensional representation of the perturbation  
field for a/b = 0.251. This mode shape is typical of the  
first branch of the Kelvin mode [–1, 1] (for example  
see Waleffe, 1990). 

As the two base vortices are brought closer together,  
the outer perturbation vortex structures from each stream 
tube undergo vortex merging, coupling the perturbation 
vortices. This region, referred to herein as the central 
coupled region, spikes up sharply along the centreline 
between the stream tubes. This occurs because the stream 
tubes are close enough for each of the outer co-rotating 
vortices to merge, forming a single perturbation vortex core  
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(Fig. 11). The correlation between the periodic nature of the 
convergence and the phase of the disturbance indicates  
a direct relationship between the procession rate of the  
co-rotating vortices and the disturbance frequency.  

Figure 10 Three dimensional extrapolation of the perturbation 
vorticity field at relatively distant vortex spacing 
a/b = 0.251. Vorticity of each iso-surface is ωz = 4.0 
Note the sinusoidal nature of the perturbation fields 
with the pairs of vortices seen in Figure 9(a) 

 

Figure 11 Three dimensional extrapolation of the perturbation 
vorticity field at vortex spacing a/b = 0.447.  
Each iso-surface is ωz = 0.28 Note the merged vortex 
structure in 3D which corresponds to the structure  
of Figure 10(b)–(c) 

 

As the base vortex pair is brought still closer together  
(Fig. 9(c)), we see an increase in the relative strength of the 
central coupled region compared to the maximum 
perturbation vorticity in the vortex plane. This is shown in 
the progression of contours in Figure 9(a)–(c). The relative 
increase in the strength of the central coupled region with 
respect to the vortex core region amplifies the coupling 
effect. 

11 The complete three dimensional field 

Figure 12 shows a three dimensional reconstruction of the 
complete flow field, defined as the addition of the base field 
to the perturbation field multiplied by an arbitrary value.  
It shows a periodic crossover of fluid between the each 
vortex in the pair. This is observed as small bulges 
emanating from the vortex stream tubes. These features are 
better developed in Figure 12(a) where the vortices are 
closely spaced. These structures are evident at both close 
and distant separations, however at the distant separation  
a resolution 31 times greater is required for them to be seen. 

Leweke and Williamson (1998) and Ryan and Sheard 
(2007) showed that growing deformations of the short-wave 
instabilities give rise to periodic cross-over of fluid between 
vortices. This creates an array of secondary vortices 
perpendicular to the primary pairs, which quickly lead to  
the breakdown of primary vortex circulation. In Figure 12 
we see the growth of the periodic fluid cross-over regions. 
These form as the central coupled region of the perturbation 

field acts to draw the fluid from each base vortex stream 
tube across to the other vortex. Experimentally this has only 
been observed during the non-linear growth period and has 
not been described numerically or analytically. However 
this analysis shows that it is in fact due to the principal 
linear growth mode. We postulate that the growth of the 
fluid crossovers and eventual secondary vortex production 
are accelerated by the non-linear growth regime as well as 
by close proximity of the vortices. In either case this  
allows coupling of the perturbation vorticity field (shown  
in Fig. 9). 

Figure 12 Three dimensional reconstructions of axial vorticity 
iso-surfaces with fluid crossover regions shown:  
(a) a/b = 0.447 and (b) a/b = 0.251 

          
 (a) (b) 

12 Conclusions 
This investigation has considered the growth of short-wave 
elliptical instabilities in a Lamb-Oseen vortex pair subject to 
non-uniform strain fields at close vortex spacing, using 
DNS. Previous research has been conducted at relatively 
large vortex spacing, where the mutually induced strain 
field that causes the elliptical deformation of vortex cores is 
typically uniform. This study investigated the instability 
growth over a range of wave-numbers as the vortex spacing 
is reduced. 

A limit of minimum vortex spacing was found via  
a viscous diffusion method previously employed by  
Le Dizes and Verga (2002). A counter-rotating vortex pair 
with equal circulation magnitude may not exist closer than  
a separation ratio of a/b = 0.5. This indicates that the vortex 
pair exerts a mutual force on each vortex such that invariant 
streamlines may not overlap. 

The perturbation analysis of the vortices was conducted 
by developing linear modes over a frozen base flow. It was 
found that as vortex spacing is reduced, the growth rate  
of non-principal wave-numbers is enhanced relative to  
the principal wave-numbers. The peak growth rate of the 
principal instability mode reduced as the vortices were 
bought closer together. At other wave-numbers, the growth 
rate increased relative to the peak, resulting in a broadening 
of the growth rate profile.  

The perturbation field was shown to be composed of  
a pair of co-rotating vortices in each stream tube, which 
could merge at close vortex spacing to cause coupling of  
the vortex stream tubes in the fluid cross over region. These 
fluid cross over regions, which were shown to be products 
of a linear growth regime, were shown to exist at large 
separations but were greatly enhanced at close separations. 
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The dissipation of vortex pairs is an important field of  
study for the aviation industry, in which enhanced  
vortex dissipation may lead to increased efficiency of air 
infrastructure. It should, therefore, be considered in future 
wing design. 
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