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This article is devoted to the study of an incompressible viscous flow of a fluid partly enclosed in a cylin-
drical container with an open top surface and driven by the constant rotation of the bottom wall. Such
type of flows belongs to a group of recirculating lid-driven cavity flows with geometrical axisymmetry
and of the prescribed boundary conditions of Dirichlet type—no-slip on the cavity walls. The top surface
of the cylindrical cavity is left open with an imposed stress-free boundary condition, while a no-slip con-
dition with a prescribed rotational velocity is imposed on the bottom wall. The Reynolds regime corre-
sponds to transitional flows with some incursions in the fully laminar regime. The approach taken
here revealed new flow states that were investigated based on a fully three-dimensional solution of
the Navier–Stokes equations for the free-surface cylindrical swirling flow, without resorting to any sym-
metry property unlike all other results available in the literature. Theses solutions are obtained through
direct numerical simulations based on a Legendre spectral element method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Besides the differences in terms of geometry, the lid-driven
cubical cavity flow [1] and the cylindrical swirling flow investi-
gated in this article, present similar features typical of shear-driven
recirculating flows such as intense wall-jets, shear layers in the
vicinity of the driven wall, and secondary recirculating flows, all
of which are very dependent on the flow parameters. Nevertheless,
the geometry—cubical on one hand and cylindrical on the other
hand—dramatically influences the nature and structure of these
secondary flows: corner eddies for the cubical cavity and recircula-
tion bubbles or vortex breakdown in the cylindrical case.

1.1. General considerations

Following the pioneering work of Bogatyrev and Gorin [2] and
Koseff and Street [3,4], it was shown that contrary to intuition,
the lid-driven cubical cavity flow is essentially three-dimensional,
even when considering large aspect ratio. It is only recently that
the three-dimensionality of the lid-driven cylindrical cavity flow
was confirmed numerically by Blackburn and Lopez [5,6] after it
was suggested but not fully proved experimentally by Sørensen
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[7], Spohn et al. [8], Sotiropoulos and Ventikos [9], and Pereira
and Sousa [10]. In 2001, Sotiropoulos and Ventikos [11] gave full
experimental evidence of the three-dimensional character of the
flow with the onset of non-axisymmetric modes. The three-
dimensional nature of these driven cavity flows therefore appears
as a general characteristic of internal recirculating shear-driven
flows.

In the sequel, we will only consider the cylindrical lid-driven
cavity flow also referred to as ‘‘swirling” flow without any addi-
tional precision. The first experiments by Vogel [12] and later Ron-
nenberg [13] showed that Ekman suction and pumping, induced by
the Ekman layers on the rotating and stationary disks, lead to the
formation of a concentrated vortex core along the axis in the closed
cavity case. The two dimensionless numbers characterizing this
flow are the height-to-radius aspect ratio K ¼ H=R and the Rey-
nolds number Re ¼ R2X=m, where H and R are the height and radius
of the cylinder respectively, X the constant angular velocity of the
bottom end-wall, and m the kinematic viscosity of the Newtonian
fluid. For specific values of the aspect ratio K, and above a critical
Reynolds number, the vortex core breaks down in the form of one
or more recirculation bubbles which are on-axis in the closed cav-
ity case and on- or off-axis in the open cavity case. Owing to the
enormous extent of work in the area of vortex breakdown (VB)
(see reviews by Hall [14], Leibovich [15], Shtern and Hussain
[16], Kerswell [17], and Arndt [18]), we will only briefly recall
the central features of VB. As defined by Leibovich in its review
on the structure of VB [15], the term ‘‘vortex breakdown” refers
to a disturbance characterized by the formation of an internal stag-
nation point on the vortex axis, followed by reversed flow in a re-
gion of limited axial extent. Two forms of VB predominate, one
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called ‘‘near-axisymmetric” (sometimes ‘‘axisymmetric” or ‘‘bub-
ble-like”), and the other called ‘‘spiral”.

The practical importance of VB lies mainly in the field of aero-
nautics, where they can be observed over wings—mainly delta
wings—with highly swept leading edges when the angle of inci-
dence exceeds a critical value. VB can be a limiting factor on the
operating altitude of slender-winged flying vehicles. Moreover,
the occurrence of VB in the wake of a large aircraft is relevant to
the safety of flight in dense air-traffic, which is becoming more
and more frequent with the constant increase in air-traffic over
the years. VB is also important in other fields for example it has
been observed in the swirling flows through nozzles and diffusers
[19], and in the field of reactive flows, in combustion chambers. Be-
sides the tremendous importance of VB in engineering applica-
tions, it is also a prototypical phenomenon allowing to elucidate
the fundamental aspects of the bubble mode.

1.2. The lid-driven cylindrical cavity flow

The first comprehensive experimental study of the closed cylin-
drical container case was undertaken by Escudier [20], and Escudier
and Keller [21], who extended the earlier results of Vogel [12] and
Ronnenberg [13] to obtain the first map of VB transitions with re-
spect to the aspect ratio K and the Reynolds number. Escudier
[20] revealed flow states with one, two or even three successive
breakdowns, as well as a transition from steadiness to unsteadiness.
Sørensen [7] extended to a broader range of Reynolds number in the
same experiment as Escudier [20] for the closed container, and in-
ferred that above a critical Reynolds number in the unsteady flow
regime, the meridional flow becomes highly asymmetric. The first
experimental study of the open cylindrical container case with a
free surface on the top, was undertaken by Spohn etal [22], who
highlighted the significant change in the structure, the occurrence
and the location of the breakdown bubbles. In the steady closed cyl-
inder case, Hourigan et al. [23] investigated the asymmetric spiral-
ing effects along the cylinder axis prior to the first VB. They argued
that the observed asymmetry was purely an experimental artifact
and not an evidence of the three-dimensional nature of the flow.
Spohn et al. [8] were the first to investigate experimentally the ori-
gin of possible asymmetric features of the instabilities at their onset.
The steady breakdown bubbles reported by Spohn et al. [8] show-
case asymmetric features comparable to earlier measurements,
and also to unsteady bubbles observed in circular diffusers by Faler
and Leibovich [19]. As a matter of fact, the work of Spohn et al. [8] is
really a pioneering work in the acceptance of the axisymmetry
breaking, amongst fluid experimentalists, see Brøns et al. [24]. It is
noteworthy at this point, that the complex physics associated with
these intricate phenomena occurring in closed/open rotating cylin-
drical container is still not clearly understood.

Like for the lid-driven cubical cavity flow, and in relation with
the simple geometry of the flow, the rotating cylindrical cavity flow
has been extensively studied using direct numerical simulations. It
is important to note that since the early seventies, the method of
choice has consisted in solving the streamfunction–vorticity formu-
lation of the axisymmetric incompressible Navier–Stokes equa-
tions. Without being exhaustive, the following list of references
gives an overview of the numerical simulation of the closed lid-dri-
ven cylindrical flow over three decades: Pao [25], Lugt and Haus-
sling [26,27], Dijkstra and van Heijst [28], Lugt and Abboud [29],
Neitzel [30], Daube and Sørensen [31], Lopez [32], Brown and Lopez
[33], Lopez and Perry [34], Sørensen and Christensen [35], Watson
and Neitzel [36], Gelfgat et al. [37,38], Tsitverblit and Kit [39], and
Brøns et al. [40]. All these works were able to reproduce with a rea-
sonable accuracy, the basic features observed experimentally and
reported earlier including the size, shape and number of recircula-
tion bubbles. The onset of vortex breakdown was to some extent
captured by several of these numerical simulations. Lopez [32],
and Brown and Lopez [33] suggested a physical mechanism for
the intricate phenomena observed. They prove the existence of a
standing centrifugal wave, whose amplitude increases with the
Reynolds number and which can create a stagnation point on the
cylinder axis, initiating the breakdown process. It is worth recalling
that the streamfunction–vorticity formulation is adequate and
appropriate only for the study of flow dynamics preserving the
property of axisymmetry. At the inception of any instability break-
ing the axisymmetry of the flow, a three-dimensional solution of
the Navier–Stokes equations is required, thereby increasing consid-
erably the complexity of the task. The last remark justifies the ob-
served changes in terms of numerical modeling of Lopez’ group
and Sørensen’s group, to allow them to investigate axisymmetry
breaking in the closed cylinder case [5,6,41–43]. Therefore, three-
dimensional flow structures have started being simulated more
recently, see Gelfgat et al. [44], Sotiropoulos and Ventikos [11],
Sotiropoulos et al. [45], Marques and Lopez [46], Blackburn and Lo-
pez [5,6], Serre and Bontoux [47], Blackburn [48], and Lopez [49].

Apart from the canonical case with a single driving lid in rotation
at a constant angular velocity, different variations of the problem
have been extensively studied in the past years: e.g. cylinder with
co- and counter-rotating end-covers by Brøns et al. [40], steady axi-
symmetric flow in an open cylindrical container with a partially
rotating bottom wall by Piva and Meiburg [50], vortex scenario
and bubble generation in a cylindrical cavity with rotating top and
bottom by Okulov et al [51]. Mullin etal [52] also included a rod at
the axis to control the breakdown, and Pereira and Sousa [10] signif-
icantly changed the configuration by replacing the flat rotating bot-
tom cover by a cone. As noted by Brøns et al. [53], all these studies
show a large set of flow structures which are quite sensitive to vari-
ations of external parameters. Mununga et al. [54] and Lo Jacono
et al. [55] investigated different strategies for the control of VB.

1.3. Open swirling flow

The focus in the present article is on the canonical problem of a
cylinder with a rotating bottom end-wall but replacing the station-
ary solid top end-wall by a free surface. The flow associated with
this problem was first studied experimentally by Spohn et al.
[8,22]. They observed the influence of the top free surface—assu-
redly clean of surfactants—on the onset, structure, nature and
number of recirculating bubbles. Their central observations are
that breakdown bubbles still appear, but are off-axis and may be
attached to the free surface, depending on the aspect ratio K and
the Reynolds number. Of course, such structures could not be ob-
served in the closed case because of the no-slip condition imposed
on the top wall. All the past simulations of free-surface swirling
flows rely on the central assumptions that the free surface is flat
and clean, which means that the Froude number is very small
and that surface tension effects are negligible. With these assump-
tions, the flow is identical to the flow in the lower half part of a cyl-
inder with two solid covers in co-rotation, i.e., rotating at the same
angular velocity. Brøns et al. reported a wide range of topologies of
VB bubbles in a bottom-driven cylinder with a free surface. Valen-
tine and Jahnke [56], observed in their simulations the existence of
one or two toroidal-like types of recirculation bubble having their
stagnation lines attached to the free surface, depending on the va-
lue of the Reynolds number. Their study was complemented by the
work of Lopez [57] for oscillating unsteady flows. Information rel-
evant to the present problem with a free surface all indicate consis-
tent flow behavior at small aspect ratio, i.e., 0:5 6 K 6 1:0 in that
stagnation occurs off-axis and associated secondary flow creates
a toroidal recirculation bubble. Steady free-surface flows have been
computed by Iwatsu [58,59] providing flow state classifications
with new flow patterns not revealed in the previous studies.



Fig. 1. Schematic of the geometry studied with the set of coordinates employed.
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1.4. Motivations and objectives

The present study is motivated by several factors. First, com-
pared to the closed cylinder case, only some limited aspects of
the open swirling flow have been investigated so far. The study
of this intricate problem is relatively new and consequently the
body of knowledge in some ðK;ReÞ-parameter regions appears
fairly limited. Second, most of the past studies involving numerical
simulations of this free-surface swirling flow, used axisymmetric
streamfunction–vorticity formulations: Brøns et al. [53], Iwatsu
[58,59], and Piva and Meiburg [50]. To our knowledge, the only
fully three-dimensional numerical simulations is due to Lopez
et al. [60], who investigated mainly symmetry breaking issues.

In the present article, new flow states are investigated based on
a fully three-dimensional solution of the Navier–Stokes equations
without the need to resort to symmetry properties by doubling
the computational domain and enforcing co-rotation of both end-
walls. To our knowledge, the present study provides the most gen-
eral available results for this flat-free-surface problem. Both,
steady and unsteady flows are considered for different sets of gov-
erning parameters ðK;ReÞ. A Legendre spectral element method is
used to provide an accurate solution of the governing equations,
while the stress-free boundary condition is naturally enforced into
the weak formulation of the problem.

The mathematical model and the problem formulation are de-
tailed in Section 2, while the original computational approach of
this study is presented in Section 3. Subsequently, Section 4 con-
tains all the numerical results corresponding to various physical
situations and flow states. Finally, the article ends with Section 5
providing summary and conclusions on the present work.

2. Mathematical model and problem formulation

2.1. Mathematical description of the problem

The fluid enclosed in the cylindrical cavity is assumed to be
incompressible, Newtonian with uniform density and temperature.
The flow is governed by the Navier–Stokes equations

@ui

@t
þ uj

@ui

@xj
¼
@r�ij
@xj
þ gi; ð1Þ

@uj

@xj
¼ 0; ð2Þ

where r�ij ¼ �pdij þ 2mDij is the reduced Cauchy stress tensor of the
fluid, p the static or reduced pressure, Dij the rate-of-deformation
tensor, m the assuredly constant and uniform kinematic viscosity,
and gi the components of the acceleration of gravity (g1 ¼ g2 ¼ 0
and g3 ¼ �g). Inside the fluid domain denoted by V, no-slip bound-
ary conditions are imposed on all cavity walls: the tubular
side-wall, the bottom end-wall in steady rotation, see Fig. 1. The
mathematical expression of the no-slip condition on the tubular
side-wall simply reads

uðr ¼ R; h; z; tÞ ¼ vðr ¼ R; h; z; tÞ ¼ wðr ¼ R; h; z; tÞ ¼ 0;
0 6 h 6 2p; 0 6 z 6 H: ð3Þ

The flow is driven by imposing a prescribed angular velocity distri-
bution of the bottom end-wall, which transfers its kinetic energy to
the fluid above. The details regarding the imposition of this Dirich-
let boundary condition for the velocity field at the lid are discussed
in the next Section 2.2. The top surface is left open and is modeled
as a flat, fixed and clean free surface. The details regarding the
imposition of this stress-free condition on the free surface are dis-
cussed in Section 2.3. As mentioned in the Introduction, Section
1.1, two parameters that determine completely the flow state are
the height-to-radius aspect ratio K ¼ H=R and the Reynolds number
Re ¼ R2X0=m, based on the maximal prescribed angular velocity X0

of the bottom end-wall.
In the sequel, the length, time, velocity, vorticity, helicity,

streamfunction, (reduced) pressure and kinetic energy, and enstro-
phy are non-dimensionalized with respect to the reference scales
R; X�1

0 ; RX0; X0; RX2
0; R3X0; R2X2

0; X2
0, respectively.

2.2. Angular velocity distribution

As already mentioned in Bouffanais et al. [61] for the study of
the lid-driven cubical cavity flow, imposing a given angular veloc-
ity distribution on the bottom end-wall of a cavity is not an easy
task numerically. Indeed, imposing a constant angular velocity pro-
file leads to a singularity (discontinuous behavior in the velocity
boundary conditions) at the circular edge between the bottom
end-wall and the tubular side-wall, see Fig. 1. Without adequate
treatment, this discontinuous behavior will undermine the conver-
gence and the accuracy of any numerical method in the vicinity of
the lid. The same remedy as in the lid-driven cubical cavity prob-
lem in [61] is used here for the same reasons and with analogous
justifications. A regularized angular velocity profile is employed
by prescribing the following high-order polynomial expansion
which vanishes along its first derivatives on the circular edge

Xðr; h; z ¼ 0; tÞ ¼ X0 1� r
R

� �16
� �2

ez; ð4Þ

which leads to the following expressions in Cartesian coordinates of
the components of the prescribed velocity field on the bottom end-
wall

uðx;y;z¼0;tÞ¼uxðx;y;z¼0;tÞ¼�yX0 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
=R

� �16
� �2

; ð5Þ

vðx;y;z¼0;tÞ¼uyðx;y;z¼0;tÞ¼þxX0 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
=R

� �16
� �2

; ð6Þ

wðx;y;z¼0;tÞ¼uzðx;y;z¼0;tÞ¼0; ð7Þ

where x ¼ ðr; h ¼ 0Þ and y ¼ ðr; h ¼ p=2Þ. This profile flattens very
quickly near the circular edge ðr=R ¼ 1; h; z=H ¼ 0Þ while away from
it, it grows rapidly to a constant value X0 of the angular velocity
over a short distance. The highest polynomial degree of this distri-
bution is 32. Such high-order polynomial expansions lead to steep
velocity gradients in the vicinity of the circular edge of the bottom
end-wall. The grid refinement, in terms of spectral element distri-
bution near the disk will be presented in greater details in Section
3. One of the constraint in the grid design is to ensure the proper
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resolution of the lid velocity distribution by the spectral element
decomposition.

2.3. Free-surface modeling

The analysis of a two-phase flow is based on the coupled hydro-
dynamics interactions between adjacent layers over a broad range
of space and time scales. This analysis can be significantly simpli-
fied if the dynamics of the interface is almost entirely dependent—
from the hydrodynamics and physico-chemistry viewpoints—on
one phase, e.g. a liquid phase, and almost independent of the
dynamics of the second phase, e.g. a gas phase. Based on this
hypothesis, the surface is said to be free. Consequently, the two
fluid phases can only exert constant normal stresses. Sarpkaya in
his review entitled ‘‘Vorticity, free surface and surfactants” [62]
gives a clear characterization and definition of a free surface:
‘‘Although, the exterior of a free surface is free from externally im-
posed shear, the interior is not necessarily free from the shear gen-
erated internally. In fact, surface deformations and contaminants
give rise to surface-gradients and tangential stresses in the internal
side of the bounding interface. From a mathematical viewpoint, a
free surface means that the density and the viscosity of the upper
fluid are zero and that the existence of a continuum above the
interface is inconsequential. From a practical point of view, the free
surface means that the dynamics of the continuum above the inter-
face has negligible influence on the lower phase, i.e., a free surface
is a simplifying approximation for an almost free surface”.

In the present study, the modeling of the interface between the
fluids in the cylindrical cavity as a free surface is supplemented by
an additional simplifying approximation: the free surface is sup-
posed to remain flat and fixed all along the dynamic range of inves-
tigation. In general, the dynamics of the free surface depends on
the non-dimensional Froude number defined here as

Fr ¼ R2X2
0

gH
; ð8Þ

which measures the relative importance of the inertial effects com-
pared to the stabilizing gravitational effects. Therefore, assuming a
flat free surface corresponds mathematically to a Froude number
identically zero. As a consequence and in consistency with the latter
assumption, the axial component of the velocity w ¼ uz needs to
vanish at the free surface z=H ¼ 1

wðx; y; z ¼ H; tÞ ¼ 0; x2 þ y2
6 R2; ð9Þ

thereby expressing the kinematic boundary condition at the free
surface. This latter condition on the axial velocity w is to be supple-
mented with the stress-free condition at the free surface
r
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Fig. 2. Typical meshes view used throughout this study. (left) Half-meridional grid. (ce
dimensional grid comprising 10 cylindrical layers of non-uniform heights made of 44 sp
r�ijn̂j ¼ �pdijn̂j þ 2mDijn̂j ¼ 0; ð10Þ

where n̂ is the local outward unit vector normal at the free sur-
face, which in the present particular situation is the unit normal
vector ez in the z-direction. Consequently, the stress-free condition
(10) reduces to r�i3 ¼ r�iz ¼ 0, i ¼ 1;2;3 at z ¼ H, and is explicitly
stated as

r�13 ¼ 2mD13 ¼ 0; ð11Þ
r�23 ¼ 2mD23 ¼ 0; ð12Þ
r�33 ¼ �pþ 2mD33 ¼ 0; ð13Þ

which under the zero-deformation condition (9), simplifies to

@u
@z
þ @w
@x

� �
¼ @u
@z
¼ 0; ð14Þ

@v
@z
þ @w
@y

� �
¼ @v
@z
¼ 0; ð15Þ

� pþ 2m
@w
@z
¼ 0: ð16Þ
3. Computational approach

3.1. Space discretization

The Navier–Stokes equations (1) and (2), supplemented with
the boundary conditions (3), (5)–(7), (9), (14)–(16), constitute the
set of governing equations for this free-surface swirling flow to
be discretized and ultimately solved. The numerical method treats
Eqs. (1) and (2) within the weak Galerkin formulation framework.
The spatial discretization uses Lagrange–Legendre polynomial
interpolants. The reader is referred to the monograph by Deville
et al. [63] for full details. The velocity and pressure are expressed
in the PN � PN�2 functional spaces where PN is the set of polynomi-
als of degree lower than N in each space direction. This spectral
element method avoids the presence of spurious pressure modes
as it was proved by Maday and Patera [64] and Maday and Patera
[65]. The quadrature rules are based on a Gauss–Lobatto–Legendre
(GLL) grid for the velocity nodes and a Gauss–Legendre grid (GL)
for the pressure nodes. The spectral element grid used for all sim-
ulations is presented in Fig. 2, in the particular case K ¼ 1. This
mesh comprises 440 spectral elements distributed into 10 cylindri-
cal layers of different heights, but all made of the same distribution
of 44 spectral elements, see Fig. 2 (right). In order to resolve the
boundary layer along the tubular side-wall, the Ekman shear layer
above the rotating bottom end-wall and the surface shear layer be-
low the free surface, the spectral elements are unevenly distrib-
.2 0.4 0.6 0.8 1.0

nter) Spectral-element grid in any plane normal to the z-direction. (right) Three-
ectral elements each. Case K ¼ 1.



Table 1
Spatial convergence analysis for the case ðRe ¼ 6000; K ¼ 1Þ with Dt ¼ 0:0025X�1

0 . Q
in R3ðRX0Þ2 units, E in R3X2

0 units, H in R4X2
0 units, and w in RX0 units. Instant

t ¼ 50X�1
0 .

N Q E H wðP0Þ

6 2.02745e � 02 2.11900e + 01 1.29876e � 01 3.28923e � 03
7 2.08244e � 02 2.18923e + 01 1.33612e � 01 3.40034e � 03
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uted as can be seen in Fig. 2. The choice of polynomial degree in the
three space directions, defining the inner GLL and GL grid into each
spectral element is deferred to Section 3.3. The essential Dirichlet
boundary conditions—homogeneous for u on the tubular side-wall
as expressed by Eq. (3), homogeneous for w ¼ uz on the free surface
as expressed by Eq. (9), and non-homogeneous for u on the rotat-
ing bottom end-wall as expressed by Eqs. (5) to (7)— are embodied
into the choice of test and trial functions chosen for the velocity
field.

The stress-free condition (10) at the free surface, further ex-
pressed by Eqs. (14)–(16), appears as a homogeneous natural
boundary condition in the weak Galerkin framework. This central
point is discussed in detail and in a more general framework, in
Bodard et al. [66], where a non-homogenous natural boundary
condition is accounted for in the weak formulation of the problem.
Based on this previous analysis, the treatment of the present
stress-free condition at the free surface appears straightforward
and is automatically incorporated into the weak formulation of
the problem.

Borrowing the notation from Deville et al. [63], the semi-dis-
crete Navier–Stokes equations resulting from space discretization
are

M
du
dt
þ Cuþ mAu� DT p ¼ 0; ð17Þ

� Du ¼ 0: ð18Þ

The diagonal mass matrix M is composed of three blocks,
namely the mass matrices M. The global vector u contains all
the nodal velocity components while p is made of all nodal pres-
sures. The matrices A; DT , D are the discrete Laplacian, gradient
and divergence operators, respectively. The matrix operator C
represents the action of the nonlinear term written in convective
form u � $, on the velocity field and depends on u itself. The
semi-discrete equations constitute a set of nonlinear ordinary
differential equations (17) subject to the incompressibility condi-
tion (18).

3.2. Time integration

The time discretization of the semi-discrete set of governing
equations (17) and (18) is the same as the one previously used
in Bouffanais et al. [61] and Habisreutinger et al. [67]. We only
briefly recall here the fundamentals of the method. The set of
semi-discrete equations (17) and (18) is discretized in time
using finite-difference schemes in a decoupled approach. The
computation of the linear Helmholtz problem—corresponding
to the stiffness matrix A—is integrated based on an implicit
backward differentiation formula of order 2, the nonlinear con-
vective term—corresponding to the operator C—is integrated
based on a relatively simple extrapolation method of order 2,
introduced by Karniadakis et al. [68], see Bouffanais [69] for full
details.
8 2.19036e � 02 2.37953e + 01 1.66448e � 01 3.81373e � 03
9 2.19034e � 02 2.37957e + 01 1.66450e � 01 3.81376e � 03

10 2.19035e � 02 2.37955e + 01 1.66447e � 01 3.81375e � 03

Table 2
Temporal convergence analysis for the case ðRe ¼ 6000; K ¼ 1Þ with N ¼ 8. Dt in X�1

0

units, Q in R3ðRX0Þ2 units, E in R3X2
0 units, H in R4X2

0 units, and w in RX0 units. Instant
t ¼ 50X�1

0 .

Dt Q E H wðP0Þ

0.0050 2.08574e � 02 2.14302e + 01 1.36342e � 01 3.49221e � 03
0.0035 2.11896e � 02 2.25311e + 01 1.48303e � 01 3.61923e � 03
0.0025 2.19036e � 02 2.37953e + 01 1.66448e � 01 3.81373e � 03
0.0010 2.19034e � 02 2.37960e + 01 1.66446e � 01 3.81379e � 03
3.3. Convergence tests

In order to demonstrate the spatial and temporal convergence
of the simulation method, time series data have been analyzed,
while varying separately the time-step Dt and the polynomial de-
gree N of the GLL basis in each space direction, at the upper bound
in Reynolds number Re ¼ 6000, and with K ¼ H=R ¼ 1. As no
experimental, nor numerical reference results are available for
the present problem, three integral and one local quantities have
been computed and compared. These three integral quantities
are the total kinetic energy Q, enstrophy E and helicity H of the
flow, which definitions are recalled
Q ¼ 1
2

Z
V

u � udV; ð19Þ

E ¼ 1
2

Z
V

x � xdV; ð20Þ

H ¼
Z
V

u � xdV: ð21Þ

The local quantity monitored is the axial velocity component
w ¼ uz at the point P0 of coordinates ðr=R ¼ 0; z=H ¼ 0:75Þ, located
along the cylinder axis. The location choice of this monitoring point
is motivated by the study of Piva and Meiburg [50] for a very similar
configuration but at smaller Reynolds numbers. They show that in
the vicinity of this point, the axial velocity component reaches a local
maximum. Given the relatively high Reynolds number of our bench-
mark simulation, a quite long transient—approximately 500 time
units in X�1

0 units—is observed. Performing convergence tests
involving a simulation time of the order of this transient time would
simply be prohibitive. Consequently, it was chosen to assess the con-
vergence after only 50 time units of simulations, which corresponds
to the appearance of the first vortex-breakdown recirculation bub-
ble in the fluid domain. First, the spatial convergence is assessed
by varying the polynomial degree in the range 6 6 N 6 10, while
keeping the time-step values constant Dt ¼ 0:0025. Results are re-
ported in Table 1, and suggest that the spatial convergence is
achieved using a polynomial degree N ¼ 8 in all three space direc-
tions. This value is used for all the direct numerical simulations pre-
sented in the sequel, except for one single case corresponding to the
steady laminar case ðK ¼ 1; Re ¼ 900Þ, for which N ¼ 7 is chosen.

Finally, the temporal convergence is assessed by varying the
time-step, while keeping the polynomial degree constant at the va-
lue N ¼ 8, in agreement with the earlier spatial convergence analy-
sis. Results are reported in Table 2 below, and suggest that the
temporal convergence is achieved using a time-step Dt ¼ 0:0025.
At a reduced Reynolds number compared to the one employed for
this convergence analysis Re ¼ 6000, greater values of the time-step
have been chosen in relation with the more laminar nature of the
flow without affecting the convergence of the simulations.

4. Numerical simulations and results

4.1. General physical characteristics of the flow

The central characteristics of the flow in a closed cylindrical
container with a bottom rotating end-wall is a large recirculation



Table 3
Parameters and characteristics of the cases considered. The time-step Dt is expressed
in X�1

0 units.

Case Re K ¼ H=R Time-step
Dt

Time
evolution

Vortex breakdown

(a) 900 1.0 0.0050 Steady One attached bubble
(b) 1500 1.0 0.0050 Steady One attached toroidal

bubble
(c) 6000 1.0 0.0025 Unsteady Complex dynamics
(d) 2000 1/3 0.0040 Steady Two long attached bubbles
(e) 2000 3.0 0.0040 Steady One short detached bubble
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of the fluid. The features of the intense shear layer induced by the
rotation of the bottom wall can be obtained from the analogy with
the analysis by von Kármán for the flow generated by a spinning
plate in an unbounded fluid domain, see the review by Zandbergen
and Dijkstra [70] for full details. The rotation of the bottom wall
has a suction effect on the fluid in the near-axis region and a
pumping effect, while accelerating the fluid radially outwards in
an Ekman shear layer of thickness OðRe�1=2Þ. In the framework of
our problem, this Ekman layer is bounded by the tubular cylinder
side-wall, which forces the recirculation of the fluid in the upward
direction along the side-wall, and towards the top wall. As the fluid
approaches the curved corner, the radial velocity contribution to
the kinetic energy is progressively transformed into an axial veloc-
ity contribution to the kinetic energy. It has been observed that the
fluid turns and subsequently spirals upward along the tubular
side-wall.

As mentioned in Section 1.3, replacing the fixed top solid wall
with a free surface changes significantly the physics of the flow
and the recirculation mechanisms. In absence of tangential stresses
at the free surface, the boundary layer is replaced by a surface layer
in the sense of Shen et al. [71,72]. In addition, the inward spiraling
fluid elements conserve their angular momentum at the free sur-
face. When the related centrifugal force is large enough to balance
the radial pressure gradient, the flow separates from the free sur-
face and leads to the generation of a VB bubble. The most striking
difference between the flow patterns observed in the present open
cylinder case and compared to the close cylinder one are the pos-
sible appearances of recirculation bubbles, which are generally at-
tached to the free surface. Such flow patterns are simply
impossible in presence of the no-slip condition imposed on the
top wall in the closed cylinder case. More precisely, Iwatsu [58]
determined 24 different flow states in the steady regime according
to the meridional streamline patterns observed. Spohn et al. [8]
summarized those flow states in a simplified bifurcation diagram
in the ðK;ReÞ space. Based on his extensive and comprehensive
study, Iwatsu [58] came out with a more detailed and complex
bifurcation diagram.

In subsequent studies, the stability of those steady axisymmet-
ric flows were investigated. Young et al. [73], Miraghaie et al. [74],
Lopez et al. [60], and Lopez and Marques [75] observed unstable
azimuthal modes which are triggered at different values of the
Reynolds number depending on the nature ‘‘shallow” ðK < 1Þ or
‘‘deep” ðK > 1Þ of the system. Valentine and Jahnke [56], Lopez
[57], and Brøns et al. [53] associated the axisymmetry breakage
to instability modes. These modes appear following a Hopf bifurca-
tion which generally occurs at relatively high Reynolds number.

4.2. Cases studied

As mentioned in the previous sections, the physics of these free-
surface swirling flows depends critically on the Reynolds number.
Nevertheless, the height-to-radius aspect ratio K also has consider-
able impact on the observed nature of the flow. Very often, situa-
tions corresponding to extreme values of K have been studied, as
they generally lead to simplified flow mechanisms. For instance,
shallow systems (K < 1) are often referred to as ‘‘rotor–stator”
configurations, in which the fluid is almost in a state of solid-body
rotation. On the other hand, deep systems associated with large
values of K, generate recirculation bubbles away from the free sur-
face and generally on the cylinder axis. Consequently, systems cor-
responding to values of K close to the unity are intermediate in the
sense that the physics of the flow observed is a complex combina-
tion of the general features reported for the shallow and deep
systems.

The details related to the five cases considered in this article are
summarized in Table 3. The primary focus is on the flow defined
by Re ¼ 6000 and K ¼ 1, and corresponding to case (c). The value
of the Reynolds number is intentionally set to a high value compared
to previous studies—the highest to our knowledge, in order to obtain
fields of a relative intensity at the free surface. The choice of the value
of K follows the earlier comment on systems being intermediate be-
tween shallow and deep. This central case ðK ¼ 1; Re ¼ 6000Þ is
supplemented with four secondary cases described in Table 3. The
study of those secondary flows is of prime importance for the under-
standing of the complex dynamics of the primary case
ðK ¼ 1; Re ¼ 6000Þ.

In terms of initial conditions, the steady rotation is impulsively
started from a quiescent fluid state for all cases presented in the se-
quel. At this point, it is worth noting the timescales of the evolu-
tion of these flows. Fig. 3 displays the time history of the volume
integral of the kinetic energy of the flow Q. For all cases except case
(c), the flow reaches a steady state after a given time scale, which
is, as expected, shorter for shallow systems. Case (c) leads to an un-
steady flow which does not display any oscillatory evolution. The
value of the Reynolds number for this case is large enough to pro-
duce a non-trivial evolution of the recirculation zones as will be
seen in the sequel.

The time histories of the volume integral of the kinetic energy Q
for the five cases (a)–(e) can be compared to the ones, reported in
Bouffanais [69] for the closed swirling flow problem with K ¼ 2:5,
see Fig B.4. It should be noted that for a fixed value of K, the total
kinetic energy Q of the flow decreases with the Reynolds number
for the closed cylinder case, while it increases in the open cylinder
case. This decreasing trend for Q in the closed cylinder case can
easily be resolved by transposing the analysis given by Leriche
and Gavrilakis [76] in their study of the closed lid-driven cubical
cavity flow. Leriche and Gavrilakis argue that the most significant
part of the kinetic energy of the flow is contained in the viscous
layer developing on the driving wall. Consequently, the total en-
ergy varies like the energy contained in this viscous layer which
can approximately be expressed as U2

0VRe�1=2, where U0 is the
characteristic velocity of the driving wall and V the volume of
the cavity. Such argument and estimate can easily be transposed
for the closed swirling flows, and explains the decreasing trend
for Q with respect to Re. Furthermore this argument is confirmed
by the measurements of the kinetic energy QðL1Þ of the cylindrical
layer of fluid L1 located right above the spinning disk and of height
0:015H, reported in Table 4. This thin layer of fluid which only rep-
resents 1:5% of the total volume of fluid, contributes for approxi-
mately 10% to the total kinetic energy of the flow. Concurrently,
its contribution to the total kinetic energy of the flow decreases
with the Reynolds number.

On the contrary, a reverse trend is observed for the variations of
Q with respect to Re in the open swirling flow. It therefore requires
another physical justification. Nevertheless, the previous energetic
argument associated with the viscous layer still holds for the vis-
cous layer above the spinning disk and near the tubular side-wall
in the open cylinder swirling flow. Below the surface at z ¼ H,
the viscous layer in the closed cylinder case is replaced by an in-



Table 4
Measurements of the kinetic energy Q, enstrophy E, and enstrophy associated solely
with the axial vorticity component Ez for the cylindrical layer L1 comprised between
z ¼ 0 and z ¼ 0:015H, and for the cylindrical layer L10 comprised between z ¼ 0:98H
and z ¼ H. Q in R3ðRX0Þ2 units, E and Ez in R3X2

0 units. Instant t ¼ 600X�1
0 .

Re QðL1Þ EðL1Þ EzðL1Þ

900 7.42243e � 03 3.04128e + 00 3.99817e � 01
1500 7.05011e � 03 4.46885e + 00 4.03147e � 01
6000 5.71943e � 03 1.18305e + 01 4.25622e � 01

Re QðL10Þ EðL10Þ EzðL10Þ

900 3.88037e � 04 6.14708e � 03 5.99848e � 03
1500 5.47285e � 04 9.04519e � 03 8.25633e � 03
6000 1.21966e � 03 6.43344e � 02 2.00737e � 02

Fig. 3. Time history of the volume integral of the kinetic energy Q of the flow, in R5X2
0 units for cases (a)–(e).
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tense shear layer. As mentioned in Section 2.3, in the present flat-
free-surface problem, the axial vorticity xz is the only component
of the vorticity field which is not vanishing at the free surface and
it provides a measure of the internal shear at the free surface. The
part Ez of the enstrophy associated with the axial vorticity compo-
nent is measured in the cylindrical layer of fluid L10, of height
0:02H and located below the free surface. Results are reported in
Table 4 and clearly show a significant increase of Ez with respect
to Re in the layer L10, while it is almost constant in L1. These results
allow us to infer that the shear layer below the free surface be-
comes more and more intense and energetic—see QðL10Þ—when
increasing the Reynolds number. But this observed energetic trend
of the free-surface shear layer is not the only factor responsible for
counterbalancing the decreasing trend of the viscous layers. The
internal structure of the free-surface layer is itself physically differ-
ent as reported by Shen et al. [71,72]. The so-called surface layer
corresponds to a thin region adjacent to the free surface character-
ized by fast variations of the tangential vorticity components. This
surface layer is caused by the dynamic zero-stress boundary condi-
tions (10) at the free surface and lies inside a thicker blockage (or
‘‘source”) layer, which is due to the kinematic boundary condition
(9) at the free surface. The importance of the outer blockage layer
is manifested mainly in the redistribution of the kinetic energy, i.e.,
in the increase of the kinetic energy of the tangential velocity com-
ponents at the expense of the kinetic energy of the axial velocity
component. This point is to be further discussed in Section 4.3.2,
where a comprehensive comparison of the flow below the surface
z ¼ H for the case (c) with a free surface and the equivalent closed
case is given.
4.3. Physical description of flow states

4.3.1. Steady flows
As a first step, we present the two steady flows for K ¼ 1 at

Re ¼ 900 and 1500 corresponding to cases (a) and (b), respectively.
Fig. 4 displays the streamlines of these flows into any meridional
plane. Both of these flows present a large axisymmetric VB bubble
attached to the free surface in agreement with the experimental
results from Spohn et al. [8] summarized in their bifurcation dia-
gram. These recirculation zones are characteristic of these swirling
flows due to the conjugate effects of the centrifugal force and the
overturning flow induced by the presence of the tubular side-wall.
The central difference between the low-Reynolds-number cases (a)
and (b) is the shape of the recirculation, which becomes toroidal
after leaving the axis when the Reynolds number is increased from
900 up to 1500. These results can be further validated by compar-
ing them to the experimental results (dye visualizations) obtained
by Piva for Re ¼ 1120. Finally, case ðaÞ ¼ ðK ¼ 1; Re ¼ 900Þ has
also been computed by Piva and Meiburg [50].

As a second step, the contours of the radial, azimuthal and axial
velocity components in any meridional plane are given in Fig. 14.
These data are supplemented with the contours of the axial com-
ponent of the angular momentum C ¼ ruh still in Fig. 14, extreme
right column. The interest for C lies in the fact that it plays the role
of a streamfunction for the part of the velocity field comprised in
any meridional plane, see Bragg and Hawthorne [77] and Keller
[78] for full details. Therefore, the contours of C deliver the inter-
section of vortex surfaces with the corresponding meridional plane
where they are drawn, and as such provide us with the local direc-
tion of the meridional vorticity field. One can notice from the
velocity components and axial angular momentum component
that the meridional structure of these flows is far from being triv-
ial. It consists of an intense boundary layer above the spinning bot-
tom end-wall that is turned into the interior by the presence of the
tubular side-wall, forming a shear layer having a jet-like velocity
profile in the azimuthal direction. The contour lines of the axial
component of the angular momentum shown in Fig. 14 (extreme
right column) simply represent the vortex lines, which all emanate
from the rotating disk; the structure of the shear layer is apparent.
It is worth noting here that the vortex lines distribution at their
origin varies like r2. As a consequence of the regularized profile
of angular velocity of the rotating disk—see Section 2.2, this distri-
bution in r2 is slightly affected in the vicinity of r ¼ R. This regular-
ization of this profile has the advantage of preventing the
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Fig. 4. Contours of streamlines in a meridional plane, case K ¼ 1. (left) Case Re ¼ 900; (right) case Re ¼ 1500. The 30 contours are non-uniformly spaced for visualization
purposes, 20 equally-spaced negative contours and 10 equally-spaced positive contours for Re ¼ 900 and Re ¼ 1500.
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appearance of vortex lines terminating at the circular corner
ðr ¼ R; z ¼ 0Þ. The overturning nature of these flows is also appar-
ent in the vicinity of the tubular side-wall, which is the vortex sur-
face corresponding to C ¼ 0, together with the cylinder axis. As
non-zero azimuthal velocities are possible at the free surface, vor-
tex lines emanating from the rotating end-wall have the option of
terminating orthogonally to the free surface. This observation is
one of the major difference with the closed cylinder swirling flow
where all vortex lines have to terminate in the corner. Further-
more, the termination of vortex lines at the free surface is respon-
sible for the possibility of having VB bubbles being attached to the
free surface as observed in Fig. 4. A careful analysis of Fig. 14 (ex-
treme right column) reveals that one vortex line marks the limit
between an inner region comprising only vortex lines terminating
at the free surface, and an outer region, where they terminate near
the circular corner, like in the closed cylinder case. In summary, it
appears that the main effect of this overturning flow is to bring
high-angular-momentum fluid towards the cylinder axis.

The results for case ðaÞ ¼ ðK ¼ 1; Re ¼ 900Þ presented in Fig. 4
(left) and Fig. 14 (top row) show a qualitative good agreement with
the numerical results of Piva and Meiburg [50]. The differences re-
lated to the features of the recirculation bubbles for cases (a) and
(b) have been discussed earlier. One can notice in Fig. 14 (two first
left columns), that the thicknesses of the intense radial velocity
layer as well as the axial wall-jet are reduced when the Reynolds
number is increased from 900 to 1500, as expected. The contours
of the axial velocity component reveal that the downward-directed
flow induced by the suction effect of the Ekman layer, is more in-
tense at higher Reynolds number. In addition, the region of the
flow where w ¼ uz has a negative extremum tends to move closer
to the free surface when increasing Re. Regarding the vortex lines
shown in the extreme right column, their bending towards the cyl-
inder axis is more pronounced at the higher Reynolds number of
1500. In relation with the previous analysis, this latter observation
highlights the fact that more high-angular-momentum fluid is
brought towards the axis when increasing Re.

As mentioned in Section 4.2, our primary interest lies in case
ðcÞ ¼ ðK ¼ 1; Re ¼ 6000Þ, thereby justifying the study of cases (a)
and (b), having the same aspect ratio K but corresponding to lam-
inar cases. Nevertheless, the study of cases (d) and (e), which both
correspond to ‘‘extreme” cases in terms of height-to-radius aspect
ratio, illustrate some essential features of the open swirling flow. In
case (c), some of these features may prevail only in specific regions
of the flow as it corresponds to an intermediate case between a
shallow system characterized by case (d) and a deep system char-
acterized by case (e). These features are as follows:

– solid-body rotation of the inner core region, predominantly for
small K;

– radial jet of angular momentum at the free surface;
– lateral jet-like shear layer along the tubular side-wall;

The very different flow patterns developed by both cases (d) and
(e) are highlighted by the very distinctive streamlines shown in
Fig. 5. The shallow case (d) yields two VB bubbles, which are off
the cylinder axis while remaining attached to the free surface.
The recirculation is more intense in the largest bubble, which is
elongated enough to produce a recirculation of the fluid from the
free surface all the way down to the rotating disk, and so forth.
Consequently, this elongated bubble completely separate the outer
region of the flow (r=R P 0:5) from the inner core, where the sec-
ond less intense, VB occurs. Comparatively, the recirculation in
case (e) is fairly limited. A VB still occurs in this case, leading to
the formation of a small on-axis bubble, which is detached from
the free surface. One can notice from the bending of the stream-
lines near the axis at the height z=H ¼ 0:8 that another VBs is in
preparation—compare this effect to the similar effect on the
streamlines prior the vortex breakdown in the closed swirling flow
at Re ¼ 1900, see [69].

The shallow system ðdÞ ¼ ðK ¼ 1=3; Re ¼ 2000Þ possesses
some very distinctive features as can be seen in Fig. 15 (top row).
The vortex lines for r=R < 0:4 being aligned with the rotation axis,
one can easily conclude that the flow is essentially in solid-body
rotation in this inner core region of the cavity. The meridional flow
in this inner part of the cavity has a very weak intensity as attested
by the values close to zero of the contours of the axial and radial
velocity components—solid contour lines are positive and negative
contour lines being dashed. In contrast, for r > 0:4 the primary
recirculation of the flow is intense and predominates. The vortex
lines bending is limited to this region and again is at the origin
of the VB appearing near r=R ¼ 0:4. The boundary layer on the
rotating disk is limited to the region r=R > 0:5 and the internal
jet-like shear layer close the tubular side-wall has a structure quite
different from the cases with K ¼ 1. Indeed in this shear layer, the
axial velocity is relatively intense all along the tubular side-wall,
unlike cases (a), (b) and (e), where the axial velocity uz decreases
rapidly with z=H. This observation is easily explained by the short-
er height in the case studied, but has several considerable conse-
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Fig. 5. Contours of streamlines in a meridional plane. (left) Case (d): ðK ¼ 1=3; Re ¼ 2000Þ; (right) case (e): K ¼ 3; Re ¼ 2000Þ. The 30 contours are non-uniformly spaced for
visualization purposes, 20 equally-spaced negative contours and 10 equally-spaced positive contours for (d) and (e).
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quences on the flow itself. A more intense wall-jet implies a more
intense angular momentum jet at the free surface, which facilitates
the VB phenomena. The intense angular momentum free-surface
jet produces an elongated recirculation bubble located as seen ear-
lier, around r=R ¼ 0:4. In this elongated bubble, the axial velocity
field is globally positive, thereby producing an effect similar to
the jet-like shear layer near the tubular side-wall. In turn, it gener-
ates a secondary angular momentum free-surface wall-jet respon-
sible for the second VB.

Increasing the height-to-radius aspect ratio to K ¼ 3, modifies
considerably the flow dynamics as can be seen in Fig. 15 (bottom
row). It seems clear from the previous analysis for the shallow case
(d), that the influence of the free surface on the flow is more impor-
tant when K is small. The proximity between the driving disk,
which generates the primary flow and the free surface with its spe-
cific boundary conditions, leads to the complex flow dynamics ear-
lier explained. Conversely, for large values of K the important
distance between the spinning disk and the free surface is so
important that it significantly reduces the effect of the presence
of the free surface. The flow pattern presents in fine a structure very
similar to the flow pattern observed in the closed cylinder swirling
flow, except very close to the free surface. As mentioned earlier the
recirculation bubble itself is fairly small and located on the cylin-
der axis likewise in the closed cylinder case. Finally, it is worth
adding that the region of solid-body rotation is almost completely
eliminated. Even the closest-to-the-axis vortex lines present some
bending.

As a brief conclusion of the previous study of the steady and
laminar free surface swirling flows, it appears that the choice
K ¼ 1 for the height-to-radius aspect ratio of the cavity in presence
of a free surface, ensures us to deal with a complex flow dynamics.
Different mechanisms are in competition in different regions of the
cavity, and in the end make the cases with K ¼ 1 physically more
challenging and more interesting. This conclusion—valid in pres-
ence of a free surface—stops being valid for the closed cylinder
swirling flow, and thereby explains the focus in the literature on
cases with K P 2.

4.3.2. Unsteady flow
For sufficiently small Reynolds number and irrespective of K,

the basic flow state is stable. As noted by Lopez et al. [60], when
Re is increased, the basic flow state loses stability via a variety of
Hopf bifurcations. It is worth noting that when Re tends to infinity,
the stream surfaces and vortex surfaces—giving the streamlines
and vortex lines by intersection with a meridional plane—must
coincide. At this point, the presence of a flat free surface poses
problem because of the constraint of having orthogonal stream-
lines and vortex lines on it. This apparent paradox is unraveled
by simply letting the free surface move. Nevertheless, we know
from the experiments carried out by Spohn et al. [8,22], that even
at a Re ¼ 6000 the tangential flow is extremely intense compared
to the normal one, leading to small free-surface deformations. It
is very likely that these small amplitude deformations are not suf-
ficient to solve our apparent paradox. At low Reynolds number, like
those of cases (a), (b), (d), and (e), the viscosity acts on the velocity
field to allow the latter condition of orthogonality to be fulfilled.
But when the Reynolds number is increased, the action of viscosity
and the limited deformation of the free surface are not sufficient to
bring back the orthogonality of the two sets of lines. Therefore, the
flow must either lose its axisymmetry or become unsteady in order
to allow to drop the orthogonality condition. The experiments by
Spohn etal [8] suggest that the open swirling flow first go through
the unsteady path.

In this section, the study is focused on the unsteady swirling
flow corresponding to case ðcÞ ¼ ðK ¼ 1; Re ¼ 6000Þ. To our
knowledge, such transitional regime at this relatively high Re has
never been investigated nor reported in the literature. At this Rey-
nolds number the loss of axisymmetry in this flat-free-surface case
is evident from the observation of the contours of streamlines in
Fig. 6 (top row). As the flow is unsteady, these recirculation bub-
bles are instantaneous and correspond to a flow sample taken in
the statistically-steady regime for t > 600 in X�1

0 units, see Fig. 3.
The streamlines of this flow sample are represented in two orthog-
onal meridian planes corresponding to y=R ¼ 0 and x=R ¼ 0, in
Fig. 6 (top row). Once again, the loss of axisymmetry appears
clearly from the complex and non-axisymmetric structure of the
recirculation bubbles. Compared to the laminar and steady cases
(a) and (b), the recirculation bubbles have their own dynamics
and evolution. In a common approach to such unsteady problems,
this complex dynamics is analyzed by the means of an averaging
process, which is supplemented with an analysis of instantaneous
flow samples equally-spaced in time. The mean flow is obtained by
averaging 500 flow samples corresponding to successive flow
states extracted every 0.25 times units (or equivalently every 100
iterations). Subsequently, the root-mean-square (rms) fluctuations
of flow fields are calculated using the same extracted flow samples
and the mean flow field obtained earlier.

The streamlines associated with the mean flow are shown in
Fig. 6 (bottom row). The streamlines of the mean flow reveal the
existence of a toroidal recirculation bubble, located off the cylinder
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Fig. 6. Contours of streamlines in two orthogonal meridional planes, case K ¼ 1 and Re ¼ 6000. (top row) Instantaneous flow; (bottom row) mean flow. (left column)
Meridional plane y=R ¼ 0; (right column) meridional plane x=R ¼ 0. The 30 contours are non-uniformly spaced for visualization purposes, 20 equally-spaced negative
contours and 10 equally-spaced positive contours.
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axis and more surprisingly detached from the free surface. The
toroidal shape and off-axis location of the mean recirculation bub-
ble is in agreement with the increased-Re trend observed with
cases (a) and (b) in Section 4.3.1. Regarding the detachment from
the free surface of the mean bubble, it is more relevant here to no-
tice that the instantaneous bubbles are still attached to the free
surface. More precisely, one may notice two points:

– in the meridional plane y=R ¼ 0, a small recirculation zone
appears attached to the rotating disk for r=R ’ 0:2;

– in the meridional plane x=R ¼ 0, the recirculation bubble is
stretched from the free surface z=H ¼ 1 down to z=H ¼ 0:15, in
a radial position r=R ’ 0:4.

These two observations remind the streamline patterns described in
the case ðdÞ ¼ ðK ¼ 1=3; Re ¼ 2000Þ, with a long bubble stretching
from the free surface down to the driving disk. The previous analysis
is further confirmed by the contours of the three velocity
components and of the axial angular momentum for both an instan-
taneous flow sample and the mean flow, presented in Fig. 16, in the
meridional plane x=R ¼ 0. A careful analysis of the vortex lines for
the instantaneous flow sample shows a bending in the whole merid-
ian plane. This bending is very significant in the region
0:3 6 r=R 6 0:8 and 0:4 6 z=H 6 1, which corresponds to the limit
between the primary recirculation of the flow and the secondary
recirculation bubble. On the contrary, the vortex lines structure of
the mean flow is as expected much more regular. The inner core
region of the flow r=R 6 0:4 displays a state of solid-body rotation.
For both the instantaneous and mean flow, the jet-like shear layer
along the tubular side-wall is turned into the interior of the flow
by the free surface. Compared to the previous cases (a), (b), (d), (e),
and also the closed swirling flow ðK ¼ 1; Re ¼ 6000Þ in Bouffanais
[69], the structure of this shear layer at Re ¼ 6000 reveals the
presence of an intense radial jet of angular momentum at the free
surface.

The fluctuations of the flow with respect to its mean state have
been calculated with the same flow samples as before. It should be
noted that the fluctuation level corresponds to less than 5% of the
maximal intensity of the respective mean flow fields. Despite the
relatively low level of fluctuation encountered, these fluctuations
are very localized in space as can be seen in Fig. 17. Similarly to
the mean flow fields, the rms fluctuations of the velocity field
and of C appear to be slightly non-axisymmetric. All the three
velocity components present a noticeable level of fluctuation near
the free surface for radii close to 0.4. In this region, the free-surface
radial jet of angular momentum reaches the inner flow, which is
solid-body rotation. These fluctuations are therefore located in
the vicinity of the stagnation point where the VB is initiated. The
rms-fluctuations of the vortex lines, i.e., C, are the highest in the
corner region between the free surface and the tubular side-wall.
It is in this corner, where the shear layer is turned into the interior
by the presence of the free surface.



Table 5
Name definitions of different terms appearing in the momentum budget equations
(22)–(24).
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4.4. One-dimensional momentum budgets

This section is devoted to the careful analysis of the momentum
balance for the radial, azimuthal and axial components. This study
is performed along different radial and axial lines within the cavity.
It is of interest to determine the predominant physical terms,
which are responsible for the complex flow dynamics depicted in
the previous sections. As noticed in these previous sections, the
structure of the flow in the inner core region is far different from
the one close to the tubular side-wall. Similarly, the flow above
the rotating driving disk has properties, which are not comparable
to the ones below the flat free surface. For the sake of conciseness,
this momentum balance analysis is limited to cases (a)–(c) for
which K ¼ 1.

4.4.1. General considerations
The numerical integration of the Navier–Stokes equations using

the spectral element method as described in Section 3, is per-
formed in Cartesian coordinates ðx; y; zÞ for the velocity compo-
nents ðu;v ;wÞ. Nevertheless, the axisymmetric nature of the
container and of the boundary conditions imposed to the flow sug-
Fig. 7. Momentum balance in radial direction plotted along horizontal radial lines at four
z=H ¼ 0:64; (fourth row) z=H ¼ 0:03. (left column) Case Re ¼ 900; (right column) case R
gests the use of cylindrical coordinates. Indeed, the different phys-
ical terms involved in the momentum equation represented here
by the Navier–Stokes equations—nonlinear advective term, viscous
strain, pressure gradient, etc.—are better apprehended when ex-
pressed in cylindrical coordinates. Accordingly, all vectors and
physical terms are recast as functions of ðr; h; zÞ, and for instance
the velocity components are ður ;uh;uzÞ.

The complete expression of the momentum equations in cylin-
drical coordinates reads
different vertical positions. (first row) z=H ¼ 1; (second row) z=H ¼ 0:95; (third row)
e ¼ 1500. Case K ¼ 1. The terminology refers to Table 5.
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where successively appears, the velocity time derivative, the non-
linear advective term, the pressure gradient and the viscous strain.
The central objective of this study is to compare the relative impor-
tance of some of these terms along different lines. Eq. (22) (resp.
(23)) represents the momentum balance in the radial (resp. azi-
muthal) direction, and is analyzed along four radial lines at four dif-
ferent heights z=H ¼ 0:03; 0:64; 0:95; 1, ranging from right above
Fig. 8. Momentum balance in azimuthal direction plotted along horizontal radial lines at
row) z=H ¼ 0:64; (fourth row) z=H ¼ 0:03. (left column) Case Re ¼ 900; (right column) c
the rotating disk up to the free surface. Eq. (24) represents the
momentum balance in the axial direction, and is analyzed along
three different axial vertical lines at three radial positions
r=R ¼ 0:08; 0:48; 0:98, ranging from near the cylinder axis to near
the tubular side-wall.

For the sake of simplicity, some of the terms appearing in (22)–
(24) are identified and denoted specifically in Table 5. In the se-
quel, the various graphs reporting the variations of these terms will
use this nomenclature.

4.4.2. Steady flows
As discussed in Section 4.3.1, the steady swirling flows are also

fully axisymmetric. The first-order time derivative of the velocity
fields is identically zero in Eqs. (22)–(24). The axisymmetric prop-
erty makes the velocity field independent of the azimuthal angle h,
and consequently all partial derivatives with respect to this vari-
able vanish. Therefore, the balance in the momentum equation so-
lely involves the terms described in Table 5.

As a first step, the momentum balance in the radial direction is
presented in Fig. 7 for case (a) (left column) and case (b) (right col-
umn). At the free surface z=H ¼ 1 (top row), the viscous terms are
insignificant, and the flow is driven by the radial pressure deceler-
four different vertical positions. (first row) z=H ¼ 1; (second row) z=H ¼ 0:95; (third
ase Re ¼ 1500. Case K ¼ 1. The terminology refers to Table 5.
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ation, which is mainly counterbalanced by the centrifugal acceler-
ation NLr2 ¼ u2

h=r and to a certain extent by NLr1. This analysis at
the free surface still holds below the free surface at z=H ¼ 0:94 and
at z=H ¼ 0:64. At this latter height, both the radial pressure decel-
eration and the centrifugal acceleration NLr2 have a lower magni-
tude than at the free surface but their magnitude is less localized
than at the free surface. As expected, above the disk, at
z=H ¼ 0:03, all the terms have a higher magnitude and the momen-
tum balance is more complex as only one single term NLr3 does
not really contribute to the balance. The centrifugal acceleration
NLr2 keeps its predominant position, but its maximum is now
shifted towards the outer radial region, which corresponds to the
region of highest angular momentum 0:8 6 r=R 6 1. The other
acceleration term NLr1 becomes relatively important. Both of these
acceleration terms are counterbalanced by the radial pressure gra-
dient and now also by the viscous strain. The importance of the vis-
cous strain at this height z=H ¼ 0:03 can easily be understood, as
we are located in the viscous layer generated by the motion of
the disk. One may add that in the inner core region of the flow,
say r=R < 0:15, the linear trend observed for both the centrifugal
acceleration and the pressure deceleration are well-know features
of a flow in solid-body rotation, as observed with the vertical vor-
tex lines in Fig. 14 (extreme right column).

The evolution of those momentum balances along radial lines at
different heights does not really change when increasing Re from
900 up to 1500. But some noticeable trends are observable. For in-
stance, even if the viscous strain does not play a central role at the
free surface, it is worth noting that its effect is increased with Re,
while conversely it is decreased when getting closer to the rotating
bottom end-wall.

As a second step, we aim at analyzing the momentum balance
in the azimuthal direction along radial lines at the same different
Fig. 9. Momentum balance in axial direction plotted along vertical lines at three diffe
r=R ¼ 0:08. (left column) Case Re ¼ 900; (right column) case Re ¼ 1500. Case K ¼ 1. The
heights as before. The results are presented in Fig. 8 for case (a)
(left column) and case (b) (right column). It is important to note
at this point that the two terms NLt1 and VSt1 involve partial
derivatives with respect to the radial variable r. Given the fact that
our solution is continuous and first-order differentiable within a
spectral element and only continuous at the element edges, one
expects some slight unphysical deformations of the plots associ-
ated with these two terms. Along the radial lines of interest, the
spectral element edges are located at r=R¼0:2; 0:4; 0:6; 0:8; 0:97.
As a consequence, some rapid variations of the terms VSt1 and
NLt1 are going to be simply disregarded in the coming discussions.

A rapid glance at all the plots in Fig. 8 allows to conclude that
the importance of the azimuthal momentum transfers resides in
the near bottom end-wall region. The magnitude of all terms is
over ten times smaller at z=H ¼ 0:64; 0:95; 1, compared to
z=H ¼ 0:03. Given the solid-body rotation in the inner core region
of the flow r=R < 0:15, most of the terms are vanishing small—
excluding the unphysical values of VSt1.

At z=H ¼ 0:03, one can notice the vigorous action of the viscous
strain term VSt2 which literally drives the fluid in the viscous Ek-
man layer. This driving viscous term is being compensated by the
convective terms NLt1 and NLt3, and by the Coriolis term NLt2. As
one gets closer to the corner between the rotating disk and the
tubular side-wall, say r=R P 0:8, the interplay between the various
terms is being reversed. The term VSt2, which is driving the fluid in
the inner region of the cavity is now a dissipative term in the jet-
like shear layer. Conversely, the convective term NLt1 becomes
large and is driving the fluid in the shear layer. Very close to the
tubular side-wall, this term starts being counterbalanced by the
second viscous term VSt1.

The viscous driving effect of the term VSt2 becomes insignifi-
cant at z=H ¼ 0:64, but when z=H is increased, VSt2 starts growing
rent radial positions. (first row) r=R ¼ 0:98; (second row) r=R ¼ 0:48; (third row)
terminology refers to Table 5.
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again to reach a local maximum value at the free surface, but with
a magnitude slightly smaller than the two other nonlinear convec-
tive terms NLt1 and NLt2. Close to the free surface and at the free
surface, the flow is primarily driven by the Coriolis term NLt2 to-
gether with the viscous term VSt2. Their global action is counter-
balanced by the nonlinear convective term NLt1. This momentum
balance at the free surface in the outer region r=R P 0:4 reflects
the central effect of the free-surface jet of angular momentum.
Again the viscous effects are more intense at the free surface when
Re is increased from 900 to 1500, despite the presence of the kine-
matic viscosity term 1=Re in their definitions.

As a last step for these two steady flows (a) and (b), we investi-
gate the momentum transfer in the axial direction, but now along
three different vertical lines corresponding to three different radii
r=R ¼ 0:08; 0:48; 0:98. The graphs for the five different terms in-
volved are reported in Fig. 9. We start from the top row, which is
associated with the results for r=R ¼ 0:98 in the jet-like shear layer
and which present the highest magnitudes of all radii considered.
The lack of axial momentum transfers is clearly visible in the re-
gion z=H P 0:4 and even inexistent at the free surface. Conversely,
in the corner between the rotating bottom end-wall and the tubu-
lar side-wall the flow is driven by the axial pressure gradient, and
to some extent by the two nonlinear terms NLa1 and NLa2 inde-
Fig. 10. Momentum balance in radial direction plotted along horizontal radial lines at f
row) z=H ¼ 0:64; (fourth row) z=H ¼ 0:03. (left column) Instantaneous flow; (right colu
pendently. The viscous term VSa1 is primarily responsible for
counterbalancing the driving pressure effects. The second viscous
term VSa2 has a less important effect in terms of magnitude but
is driving very close to the disk (viscous Ekman layer), when z=H
is increased it becomes dissipative as we are out of the Ekman
layer but within the wall-jet shear layer.

Near the medium radial position r=R ¼ 0:48, the axial momen-
tum transfers near the free surface show the relative importance
of the two nonlinear terms NLa1 and NLa2, which are driving the
fluid against the axial pressure gradient, which is negative as a con-
sequence of the kinematic boundary condition imposing a vanish-
ing axial velocity component at the free surface.

Near the cylinder axis, for r=R ¼ 0:08, the axial momentum
transfers are limited and relatively simples. Nonlinear convective
effects seem almost insignificant and the axial component of the
flow is obtained from the balance between the axial pressure gra-
dient and the two viscous terms: VSa2 in the bottom of the cavity
and VSa1 in the top of the cavity.

4.4.3. Unsteady flow
The momentum balance analysis developed in the previous sec-

tion for the two steady flows (a) and (b) cannot be directly trans-
posed to the unsteady case (c). The two reasons for that are first
our different vertical positions. (first row) z=H ¼ 1; (second row) z=H ¼ 0:95; (third
mn) mean flow. Case K ¼ 1 and Re ¼ 6000. The terminology refers to Table 5.
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the unsteady character requiring to account for the first-order time
derivative @u=@t. The second reason is the loss of axisymmetry of
case (c) imposing to account for all the terms involving a partial
derivative with respect to h in Eqs. (22)–(24). One can overcome
the issue associated with @u=@t by performing the analysis on
the mean flow, which is obtained from the statistically steady re-
gime. On the other hand, the momentum equations for the mean
flow involve the Reynolds stress terms, expressing the influence
of the fluctuating velocity field onto the dynamics of the mean
field. Despite all these considerations and issues, we have deliber-
ately omitted the terms involving derivatives with respect to the
time and to the azimuthal coordinate, and we have calculated
the values of the terms in Table 5 on the same lines as in Section
4.4.2. By doing so, the objective is not to reproduce a similar anal-
ysis as with the steady cases, but more to investigate the evolution
of the different terms for the instantaneous flow and the mean flow
as compared to the laminar cases (a) and (b).

We compare the radial terms for the instantaneous and mean
flows presented in Fig. 10, to their laminar and steady counterparts
in Fig. 7. In terms of magnitude, the leading terms have a slightly
higher magnitude at Re ¼ 6000. The general observations given
in Section 4.4.2 remain valid here for z=H ¼ 0:64; 0:95; 1. How-
Fig. 11. Momentum balance in azimuthal direction plotted along horizontal radial line
(third row) z=H ¼ 0:64; (fourth row) z=H ¼ 0:03. (left column) Instantaneous flow; (righ
ever, the influence of the intense recirculation bubble modifies lo-
cally and significantly the terms in the region 0:2 6 r=R 6 0:4, for
the instantaneous flow. Indeed, in this interval around the radial
position r=R ¼ 0:3 and close to the free surface, the centrifugal
acceleration NLr2 presents a local minimum, while the decelerat-
ing radial pressure gradient presents a local maximum. These
localized effects are directly related to the presence of the recircu-
lation bubble as can be seen in Fig. 6. A similar observation can be
done for the mean flow but the effect is much less visible.

Close to the rotating disk, at z=H ¼ 0:03, the variations of the
five axial terms are notably different from their laminar counter-
parts, but extremely similar for the instantaneous and mean flows.
More precisely, the viscous term VSr has mainly a dissipative ac-
tion in the laminar regime, while it is slightly driving the flow at
Re ¼ 6000, except very close to the tubular side-wall where it gets
back its dissipative action in the jet-like shear layer. Moreover, the
two leading terms, namely the centrifugal acceleration NLr2 and
the radial pressure gradient, both presents a local maximum in
the region 0:2 6 r=R 6 0:3, for the case (c), while it keeps growing
in the laminar regime. This particular observation is again related
to the presence of the recirculation bubbles in this region, which
locally strongly modifies the momentum transfers. Finally, the
s at four different vertical positions. (first row) z=H ¼ 1; (second row) z=H ¼ 0:95;
t column) mean flow. Case K ¼ 1 and Re ¼ 6000. The terminology refers to Table 5.
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third radial convective term NLr3, which is very small in the lam-
inar regime, acquires a magnitude as important as the two other
convective terms for r=R P 0:9.

Let us consider now the radial variations of the five azimuthal
terms as shown in Fig. 11. A rapid overlook of all variations for
the instantaneous flow sample (left column) allows to conclude
to a general agreement with the results obtained in the laminar
cases (a) and (b). The variations of the different terms are similar
for the instantaneous and mean flows in the outer radial region,
which implies again a relative steadiness of those terms for
r=R P 0:7. On the other hand, the mean flow yields vanishingly
small terms in the inner core region r=R 6 0:4, where the instanta-
neous flow have the three nonlinear convective terms NLt1–NLt3
with a relatively high magnitude. The unsteady activity of those
three nonlinear terms and the intense fluctuating activity gener-
ated by them is further discussed in Section 4.5.

As a last step, we compare the axial terms for the instanta-
neous and mean flows presented in Fig. 12 to their laminar
and steady counterparts in Fig. 9. We start from the outer radial
line r=R ¼ 0:98, where the results for the instantaneous flow and
the mean flow are extremely close, revealing an almost steady
behavior of the jet-like wall shear layer surrounding the tubular
side-wall. The comparison of these results with those of cases (a)
and (b) leads to several comments. First, the variations of all the
terms are limited to a smaller zone above the disk at Re ¼ 6000.
The magnitude of the axial pressure gradient is increased with
Re. More surprisingly the axial pressure gradient is no longer
counterbalanced by the convective term NLa1, but is now coun-
terbalanced by NLa2. By extension, one can infer that the jet-like
shear layer is dominated by axial effects at high Reynolds
number.

For the two other radii r=R ¼ 0:08; 0:48, the instantaneous flow
terms are far different from their mean counterparts. As conse-
Fig. 12. Momentum balance in axial direction plotted along vertical lines at three diff
r=R ¼ 0:08. (left column) Instantaneous flow; (right column) mean flow. Case K ¼ 1 and
quence, the flow in the inner core region appears much more un-
steady than the flow in the outer region of the cavity. In
addition, given the high level of fluctuation in the inner core region
of the flow—see Fig. 17—it appears irrelevant to further analyze the
results for the mean flow. On the other hand, variations of the dif-
ferent axial terms for the instantaneous flow reveals that the axial
momentum transfers are more important at high Re and are pre-
dominant in the top half of the cavity, including below the free sur-
face. Also, not shown here, the viscous terms are still insignificant
and the two axial convective terms NLa1 and NLa2, and the axial
pressure gradient dominate the transfers with other unsteady
and non-axisymmetric terms.

4.5. Nonaxisymmetric modes in the unsteady transitional flow

All the previous results dealing with the transitional case (c) re-
veals a complex flow dynamics due to instabilities developing from
a steady stable flow similar to the steady laminar cases (a) and (b).
The objective of this section is to discuss the physical origin of this
instability based on the results presented earlier and also to char-
acterize, at least qualitatively, its effect on the flow field.

As mentioned on several occasions in Section 4.3 and 4.4, the
inner core region of the flow r=R 6 0:2 is globally governed by a
quasi-solid-body rotation and in the outer radial region, a wall-
jet along the tubular side-wall drives the flow. As already
discussed, this latter axial wall-jet is turned into a radial surface
jet by the presence of the free surface. It seems therefore legitimate
to consider the interfacial zone—denoted � in the sequel—between
the inner core region and the radially-inward coming jet as prone
to developing instabilities. Given the stress-free condition imposed
on the free surface, the effect of the instabilities should persist all
the way to the free surface itself. Consequently, we consider the
variations at the free surface z=H ¼ 1 of the radial and azimuthal
erent radial positions. (first row) r=R ¼ 0:98; (second row) r=R ¼ 0:48; (third row)
Re ¼ 6000. The terminology refers to Table 5.



Fig. 13. Momentum terms in azimuthal direction plotted along the horizontal
radial line at z=H ¼ 0:95. (from top to bottom) Case (a); case (b); case (c)
instantaneous; case (c) mean flow. The terminology refers to Table 5.
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velocity components—the axial component vanishes at the free
surface because of the kinematic boundary condition on it—and
of the axial angular momentum C ¼ ruh. These variations for the
instantaneous flow are shown in Fig. 18 (top row), while the corre-
sponding rms fluctuations are presented in the row below.

The most significative feature highlighted in these graphs is the
presence of an annular region with 0:3 6 r=R 6 0:4, where the fluc-
tuations of ur; uh and C are intense. Such intense fluctuating activ-
ity brings the interfacial zone � to light. Focusing now on the rms
fluctuations of the axial angular momentum, one may notice the
presence of a second outer annular region comprised in the inter-
val 0:6 6 r=R 6 0:9, which is non-axisymmetric and relatively in-
tense. This outer region of intense rms fluctuations for C
correspond to the zone where the jet-like shear layer is turned into
the interior by the free surface. This outer wall-jet injects high-
angular-momentum fluid towards the cylinder axis. This radial
jet impinges on the cylindrical core of the fluid that is in solid-body
rotation. When increasing the Reynolds number, the radius of the
cylindrical core in solid-body rotation is reduced, while the inten-
sity of the radial jet is increased. Above a given value of the Rey-
nolds number, the action of the impingement of the radial jet on
the inner core region starts developing unstable modes.

The origin of these unstable modes is to be found in the analysis
of the momentum transfers performed in the previous section.
Returning on the radial variations of the five azimuthal terms be-
low the free surface at z=H ¼ 0:95, Fig. 13 reproduces these varia-
tions for Re ¼ 900; 1500; 6000 (instantaneous flow), 6000 (mean
flow) from top to bottom. All these results have been shown sepa-
rately before and are now shown together to facilitate the discus-
sion. The flow in the outer region r=R > 0:5 has a strong steady
character given the fact that the variations for the mean flow are
fairly close to those of the instantaneous flow. The Coriolis term
NLt2 ¼ �uruh=r keeps the same radially-outward decreasing trend.
On the other hand, the two other nonlinear terms NLt1 and NLt3
develop opposed and equally-intense peaks around r=R ¼ 0:9.
These opposite peaks have an increasing intensity with the Rey-
nolds number. In the interfacial zone � , all the terms involved
present brutal variations and changes of behavior, which give an-
other characterization of this interfacial zone � . In the inner core
region r=R 6 0:4, the flow possesses a strong unsteady character
brought to light by the vanishingly small values of the various
terms for the mean flow. Consequently, the unstable azimuthal
modes are to be found into this inner cylindrical region. Indeed,
one may notice that the convective term NLt1 ¼ �ur@uh=@r and
the Coriolis term NLt2 ¼ �uruh=r are negative and have a low mag-
nitude in the laminar cases (a) and (b), but acquires large positive
values at Re ¼ 6000. Moreover, all the three other terms NLt3, VSt1
and VSt2 have very low magnitudes, and thus cannot counterbal-
ance the azimuthal momentum injected by NLt1 and the Coriolis
term NLt2. Only an unsteady and non-axisymmetric flow can sup-
port such azimuthal momentum effects. The effect of these two
destabilizing terms on the flow apparently leads to the formation
of azimuthal rotating waves superimposed to the stable base flow.
The variations at the free surface z=H ¼ 1, of the radial and azi-
muthal velocity components, and of the axial angular momentum
shown in Fig. 18 (top row), suggest the conjugate effect of several
rotating waves. These rotating waves correspond to even azi-
muthal Fourier modes, mainly n ¼ 2 and n ¼ 4 (see Figs. 14–18).

5. Conclusions

The incompressible flow of a viscous fluid enclosed in a cylin-
drical container with an open top flat surface and driven by the
constant rotation of the bottom wall has been thoroughly investi-
gated. The top surface of the cylindrical cavity is left open with a
stress-free boundary condition imposed on it. No-slip condition
is imposed on the side-wall and also on the rotating bottom end-
wall by means of a regularized angular velocity profile. More spe-
cifically, the stress-free top surface is maintained fixed and flat.

New flow states have been investigated based on a fully three-
dimensional solution of the Navier–Stokes equations for the free-
surface cylindrical swirling flow, without resorting to any
symmetry property unlike all other results available in the
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Fig. 14. Contours in a meridional plane for the case K ¼ 1. (top row) Case Re ¼ 900; (bottom row) case Re ¼ 1500. (from left column to right column) Radial velocity
component ur; axial velocity component w ¼ uz; azimuthal velocity component uh; axial angular momentum component C ¼ ruh . The 35 contours are uniformly spaced,
between �0.1 and 0.145 for ur; and between �0:08 and 0.115 for uz; the 50 contours are uniformly spaced, between 0 and 1 for uh and C.
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literature. To our knowledge, the present study delivers the most
general available results for this flat-free-surface problem due to
its original mathematical treatment.
Five different cases corresponding to different pairs of govern-
ing parameters ðK;ReÞ have been considered. The Reynolds regime
corresponds to transitional flows with some incursions in the fully
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Fig. 15. Contours in a meridional plane for the case (d): ðK ¼ 1=3; Re ¼ 2000Þ (top row) and case (e): ðK ¼ 3; Re ¼ 2000Þ (bottom row). (from left column to right column)
Radial velocity component ur; axial velocity component w ¼ uz; azimuthal velocity component uh; axial angular momentum component C ¼ ruh . All contours are uniformly
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Fig. 16. Contours in a meridional plane for the case K ¼ 1 and Re ¼ 6000. (top row) Instantaneous flow; (bottom row) mean flow. (from left column to right column) Radial
velocity component ur; axial velocity component uz; azimuthal velocity component uh; axial angular momentum C ¼ ruh . The 50 contours are uniformly spaced, between
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Fig. 17. Contours in a meridional plane for the case K ¼ 1 and Re ¼ 6000. (top row) In the meridian plane y=R ¼ 0; (bottom row) in the meridian plane x=R ¼ 0. (from left
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laminar regime. Both steady and unsteady non-oscillatory swirling
flows are considered with a particular emphasis on the case
ðK ¼ 1; Re ¼ 6000Þ. Of great concern to this study is the question
of space resolution. This is particularly important for the bifurcated
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case at Re ¼ 6000. Convergence tests in space and time have been
carried out on this upmost problematic case, and optimal values of
the polynomial degree and time-step have been deduced.

The evolution of the total kinetic energy of this open flow has
been carefully studied for increasing Reynolds numbers and has
been compared to the results for the closed swirling flow. The pres-
ence of the free surface on the top of the cylinder is found to
strongly modify the observed trend: the total kinetic energy is
increased with Re in the open cylinder case, while the converse is
observed in the closed cylinder case. A physical analysis of the ener-
getic action of the surface layer below the free surface allows to jus-
tify the above results. A comprehensive physical description of all
flow states has been given with particular emphasis on the VB bub-
bles and on the structure of the vortex lines. The unsteady case at
Re ¼ 6000 has retained more attention, given its unsteady transi-
tional character. The mean flow and the corresponding rms fluctu-
ations have been calculated and the results analyzed accordingly.
The momentum transfers in the radial, azimuthal and axial direc-
tions have been studied along various one-dimensional lines. For
the transitional case at Re ¼ 6000, the flow in an inner cylindrical
core is in solid-body rotation, while the outer radial layer is domi-
nated by the jet-like shear layer along the tubular side-wall. This ax-
ial wall-jet is turned into a radial jet of angular momentum, which
prevails all the way up to the free surface. The impingement of this
radial jet onto the inner cylindrical core in solid-body rotation leads
to the development of unstable azimuthal modes. The nonlinear
terms, which includes a Coriolis effect, responsible for the develop-
ment of these unstable modes have been found using the azimuthal
momentum imbalance below the free surface. These unstable
modes take the form of even-order azimuthal rotating waves.
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