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a b s t r a c t

Time-dependent forced convection heat transfer from a single circular cylinder embedded in a horizontal
packed bed of spherical particles under local thermal non-equilibrium condition is investigated numerically
using the spectral-element method. The non-Darcian effects, i.e. inclusion of the effect of solid boundaries
and inertia forces, and the effect of thermal dispersion, are taken into account. The influences of the
presence of the porous material and its thermal properties: solid-to-fluid thermal conductivity ratio
kr˛½0:01;1000� and Biot number Bi˛½0:01;100�, on the rates of heat transfer and the hydrodynamic and
thermal responses, are examined for the Reynolds number range ReD˛½1;250�. These effects are quantified.
Perhaps not surprisingly, the results show that the presence of the porous particles suppresses significantly
the wakes behind the cylinder and enhances considerably the heat transfer. A comparison that is made
between the one- and two-equation energy model predictions shows that the former model predicts
a continuous increase in Nuf against kr; however, the trend of Nufwith kr, for kr> 10, is governed entirely by
Biwhen the latter model is used. Also, the increase in Bi decreasesNuf and increasesNus, and high values of
kr or Bi lead to establishing a thermal equilibrium status in the porous bed.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

There has been broad and considerable published research in the
field of convection heat transfer in porous media. Excellent review
articles andmonographs have been provided by, for example, Ingham
and Pop [5], Vafai [24], Pop and Ingham [17] and Nield and Bejan [15].
These indicate the level of understanding of momentum and heat
transport in porous media. However, much of the preceding work on
this topic has been directed to either convection near planewalls or in
channels filled with porous media. To date there has been relatively
limitedpublishedworkonconvectiveheat transfer fromheatedbodies
of higher complexity, such as circular cylinders, embedded in porous
media. Heat transfer from cylinders immersed in a fluid-saturated
porous media has practical importance in many engineering applica-
tions such as compact heat exchangers, nuclear reactors and solar
power collectors. In addition, most of the published studies on this
specific subject has been devoted to either natural or mixed convec-
tion. Examples are the investigations carried out by Merkin [12],
Cheng [2], Ingham and Pop [6], Badr and Pop [1], Pop and Cheng [16],
Zhou and Lai [30], and Saeid [20]. Whereas, forced convection,
although encountered frequently in applications, appears less studied.
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The majority of studies conducted in the forced convection
regime have used the simple Darcymodel to relate the flow velocity
to the applied pressure gradient. Sano [21] and Pop and Yan [18]
used this model and presented analytical solutions for the energy
equation in the boundary-layer region. In particular Sano presented
an asymptotic solution of the unsteady energy equation for large
and small values of Péclet number, while Pop and Yan obtained heat
transfer rates for a cylinder and sphere as a function of the angular
coordinate. Kimura [9] analytically and numerically examined
transient forced convection from a cylinder placed in a porous layer
with cross flow. The Nusselt number variation for the transient
stage and at the steady state was obtained analytically. It was found
that the length of the transient period to reach the convective
steady state was inversely proportional to Péclet number. Layeghi
and Nouri-Borujerdi [11] numerically analyzed the steady-state
of the problem in the range of Péclet number �40 with constant
Prandtl number equal to 1. In their analysis, the thermal field
around the cylinder was found to be affected by the porosity of the
porous medium and not by the permeability.

Other authors have used various types of extended Darcy
models. Thevenin and Sadaoui [22] used the DarcyeBrinkmanmodel
to investigate forced convective flow over a cylinder immersed in
a fibrous porous medium for a range of Reynolds number [1e100] to
avoid the influence of thermal dispersion. It was revealed that the
permeability of the porous medium does not have any effect on the
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Fig. 1. Schematic diagram of the physical domain.
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temperature field; however, the variation in the velocity field was
found to be strongly dependent on it. Furthermore, heat transfer
analysis for a single cylinder and an array of cylinders was performed
by Layeghi and Nouri-Borujerdi [10] by using the Darcy and the
DarcyeBrinkman models. The analysis was carried out with and
without the presence of porousmedia at lowPéclet number (�40) for
a single cylinder, and at intermediate Péclet number (�300) for arrays
of cylinders. It was concluded that the porous-medium models
predict different results at lowDarcynumbers. In addition, they found
that more than 80% heat transfer enhancement can be obtained from
the single cylinder by immersing it in a porousmedium at high Darcy
number. Moreover, by using the DarcyeBrinkmaneForchheimer
(DBF) model, Murty et al. [13] investigated the effect of Reynolds,
Darcy, and Forchheimer numbers on forced convective heat released
from a circular cylinder embedded in a porous medium. They
concluded that the effect of inertial forces on the Nusselt number
depends on the permeability of the porous medium used.

A local thermal equilibrium (LTE) energy model, which is also
called the one-equation energy model, was assumed in all the
investigations mentioned, i.e., the temperature of the solid and the
fluid phases are the same within the representative elementary
volume. The porous medium is treated as a continuum by volume-
averaging the properties of the two phases. However, various
authors, for example by Vafai and Sozen [25] and Kaviany [8],
have found the LTE assumption invalid for a number of applications
involving convection in porous media. It is expected that when
there is a significant difference between advection and conduction
mechanisms in transferring heat, the deviation between the
solid and fluid phase temperatures increases, and therefore the LTE
model becomes progressively less valid. It was also noted by
Pop and Cheng [16] that this approach may be questionable when
the particle size in the solid porous matrix is comparable to or
exceeds the thermal boundary layer thickness. Therefore, a local
thermal non-equilibrium (LTNE) model, which is also called the
two-equation energy model, should be incorporated. This model
assigns individual local temperatures to the fluid and the solid, thus
allowing heat transfer between the two phases.

It appears that the LTNEmodel has only been utilized by Rees et al.
[19] andWong et al. [28] to demonstrate how the thermalfields of the
solid and fluid phases, and the rate of heat transfer around and from
a horizontal circular cylinder, are affected by the absence of the LTE
condition. Rees et al. examined the problem in the limit of high values
of Péclet number. Their study was an analysis of forced convection
in the boundary layer regime by reducing the governing equations
to a parabolic partial differential system. Later, this study was sup-
plemented by Wong et al. who investigated the same problem but at
finite Péclet number by numerically solving the fully elliptic Darcy
and two-equation energymodels. In these studies the heat transfer in
both phaseswas found to be increased by increasing thefluid-to-solid
thermal conductivity ratio for all the values of the dimensionless
interfacial heat transfer coefficient tested. This occurredwith no effect
of this coefficient on the trend of convective heat transfer from the
heated cylinderwith the conductivity ratio. However, it is expected to
see an influence from the interfacial heat coefficient on this tendency,
particularly for high values of solid thermal conductivity. Whereas, it
was found that the interfacial coefficient increases the rate of heat
transfer in the solid phase and decreases it in the fluid phase. Both of
these investigations ignored non-Darcian effects and used the simple
Darcymodel, which is only valid for small Reynolds numbers (O(1) or
less) based on the pore scale. Also, they omitted the effect of thermal
dispersion, which has a significant influence on the process of heat
transfer in porous systems as explained in the literature.

In this paper, a more reliable flow model that incorporates non-
Darcian effects, i.e., including the effects of solid boundaries, inertia
and thermal dispersion, combined with the LTNE assumption, was
used to accurately predict the time-dependent forced convection
heat transfer from a circular cylinder embedded in a horizontal
packed bed of spherical particles. The objective of the present study
is to investigate the influences of: porous media on the fluid
flow and heat transfer enhancement; and the thermal properties,
i.e. solid/fluid thermal conductivity ratio and the interfacial heat
transfer coefficient, as represented by Biot number, of the porous
medium on the heat transfer from the cylinder.
2. Mathematical formulation

The problem under consideration is unsteady forced convective
flow over a circular cylinder immersed in a horizontal packed
bed of spherical particles, as illustrated in Fig. 1. The fluid flow is
assumed to be laminar and incompressible. The cylinder is
isothermally heated at a constant temperature Th and cooled by the
incoming external flow at To. The confining horizontal walls have
the same temperature Tw as the flow at the inlet. The blockage ratio
of the bed is Dcy/H¼ 0.25, whereDcy is the cylinder diameter, which
is considered the unit scale length, and H is the bed height. In
analyzing the problem, the following assumptions are invoked: the
porous medium is homogenous and isotropic, no heat generation
occurs inside the porous medium, the inter-particle radiation heat
transfer is ignored, the blockage ratio of the bed is small enough
to neglect the channelling effect at the channel walls on the heat
transfer from the cylinder surface, but local thermal equilibrium
between the two phases is not assumed.

Based on these assumptions, the systemof 2D governing equations
of the average-volume continuity, DarcyeBrinkmaneForchheimer
(DBF) momentum, and LTNE energy can be presented in the following
vectorial form (Nield and Bejan [15], and Kaviany [8]):

V$
�
�u
� ¼ 0; (1)

rf
3

�
v
�
�u
�

v�t
þ 1

3

��
�u$V

�
�u
�� ¼ �mf

K

�
�u
�� rf F 3ffiffiffiffi

K
p 		��u�		��u�

þmf
3
V2��u�� V

D
�Pf
E
; (2)

3
�
rcp

� "
v
D
�T f

E
þ�

�u
�
$V

D
�T
E#

¼V$
h
k V

D
�T
Ei
f v�t f f $eff f

þhsf asf

�

�Ts
��D

�Tf

E�
; (3)
ð1� 3Þ�rcp�sv
�
�Ts
�

v�t
¼V$

h
ks$effV

�
�Ts
�i�hsf asf


�
�Ts
��D

�Tf

E�
; (4)
while, the one-equation energy model can be written following:
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Table 2
Domain size study for the; (a) empty channel, and (b) porous channel at kr¼ 100 and
Bi ¼ 0.01, for two values of ReD ¼ 10 and 250, with order of polynomial p ¼ 6.

Domain (a) Empty channel (b) Porous channel

ReD ¼ 10 ReD ¼ 250 ReD ¼ 10 ReD ¼ 250

Nuf Nuf Nuf Nus Nuf Nus

M1 5.057827 19.441979 7.984645 0.129630 69.705124 0.130727
M2 5.122665 19.539155 7.968639 0.128593 69.699884 0.129716
M3 5.153913 19.660151 7.965108 0.128553 69.698501 0.129681
M4 5.153913 19.660764 7.965108 0.128553 69.698501 0.129681
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where, jh�uij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2 þ �v2

q
, and (rcp)m ¼ 3(rcp)f þ (1� 3) (rcp)s.

The operator h.i denotes local volume average of a quantity.
The Eqs. (1)e(5) are transformed into a non-dimensional form
Eqs. (7)e(11) employing the following dimensionless variables,
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and, the dimensionless form of the one-equation energy model
becomes:
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where, C¼ 3þ (1� 3) (kr/ar), and kr and ar are the solid/fluid thermal
conductivity and diffusivity ratios, ks/kf and as/af, respectively.
In addition, the Reynolds, Darcy, Prandtl, and Biot numbers are
defined, respectively, as:

ReD ¼ uoDcyrf
mf
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D2
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; Bi ¼ D2
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ks
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where, asf is the specific surface area of the packed bed. The
permeability of the porous medium K and the geometric function
F in the momentum equation are inherently tied to the structure
of the porous medium. These are generally based on empirical fits
from experimental findings, i.e., no universal representations exist.
For a randomly packed bed of spheres such coefficients were
reported by Ergun [4] andwere expressed in terms of porosity 3and
particle diameter dp as follows:

K ¼ 33d2p
150ð1� 3Þ2

; F ¼ 1:75ffiffiffiffiffiffiffiffiffiffiffiffiffi
150 33

p : (13)

The effective thermal conductivity of the fluid phase kf$eff is
composed of a sum of the stagnant kst and dispersion kd
Table 1
Four physical domains with their upstream and downstream lengths.

Domain Lu Ld Macro-elements Macro-nodes

M1 3Dcy 10Dcy 560 615
M2 5Dcy 12Dcy 624 683
M3 8Dcy 15Dcy 720 785
M4 8Dcy 20Dcy 800 870
conductivities: kf$eff,(x,y) ¼ kst þ kd(x,y). In this study the stagnant
conductivity depends on the conductivities of the fluid and the
solid phases, and is obtained from the semi-theoretical model of
Zehner and Schluender [29]:
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where l ¼ 1/kr and B¼ 1:25½ð1� 3Þ= 3�10=9. Whereas, the dispersion
conductivity that incorporates the additional thermal transport
due to the fluid’s tortuous path around the solid particles is
determined in both longitudinal and lateral directions based on
the experimental correlation reported by Wakao and Kaguei [26],
and is given by:
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The effective thermal conductivity for the solid phase consists
merely of the phase fraction component which is the stagnant
component since the solid phase is stationary:

ks$eff ¼ ð1� 3Þks: (16)

The DBF momentum Eq. (8) can be transformed to the
Navier-Stokes equation by taking 3¼ 1 and K ¼ N, and the one-
equation energy model 11 to the standard fluid energy equation
by taking C ¼ 1 and kf $eff ¼ kf , to predict the fluid flow and
thermal fields, respectively, in the channel in the absence of the
porous medium. Dirichlet boundary conditions, for the perti-
nent variables, i.e., the velocity and temperature, are imposed
on the inlet and solid boundaries, while Neumann boundary
conditions are imposed at the outlet. Thus, the non-dimensional
initial and boundary conditions can be expressed mathemati-
cally as:

at t ¼ 0 :u¼ y¼ qf ¼ qs ¼ 0
at t>0 :u¼ uo;y¼ qf ¼ qs ¼ 0 at ðx¼ 0; 0<y<HÞ

vu
vx

¼ vqf
vx

¼ vqs
vx

¼ y¼ 0 at ðx¼ L; 0<y<HÞ
u¼ y¼ 0¼ qf ¼ qs ¼ 0 at ð0<x<L; y¼ 0andHÞ
u¼ y¼ 0; qf ¼ qs ¼ 1 atcylinderboundary

(17)
Fig. 2. Typical macro-mesh for; (left) M2 domain and (right) M3 domain.



Table 3
Grid resolution study of the computational domain M2 for different values of kr and Bi by varying p within the range 2e8, at ReD ¼ 1.0.

p kr ¼ 0.01 kr ¼ 1000 Bi ¼ 0.01 Bi ¼ 100

Nuf Nus Nuf Nus Nuf Nus Nuf Nus

2 2.09393 0.20872 1.94596 0.12474 2.54463 0.12691 2.45330 0.23578
3 2.08482 0.20838 1.94019 0.12437 2.53591 0.12655 2.44535 0.23510
4 2.08265 0.20809 1.93520 0.12405 2.53301 0.12623 2.44249 0.23479
5 2.08122 0.20789 1.93199 0.12385 2.53100 0.12603 2.44049 0.23459
6 2.08012 0.20774 1.92979 0.12371 2.52949 0.12589 2.43899 0.23445
7 2.07933 0.20764 1.92818 0.12360 2.52840 0.12578 2.43790 0.23434
8 2.07871 0.20756 1.92696 0.12352 2.52756 0.12570 2.43706 0.23426
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Heat transfer characteristics are evaluated based on the time-
mean local and average Nusselt numbers along the heated
cylinder for the fluid and solid phase as follows:

Nuf4 ¼ hcyDcy
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where n and s denote to the normal and tangential directions at
the cylinder surface, respectively, and S is the circumference of
the cylinder. Consequently, the time-mean average total Nusselt
number Nut is defined as the summation of Nuf and Nus:

Nut ¼ Nuf þ Nus: (19)

Pressure drop is calculated as:

DPf ¼ 		rf u2o�Pf $out � Pf $o
�		; (20)

where the subscripts out and o refer to the outlet and inlet of the
channel.

3. Numerical method of solution

Eqs. (7)e(11) have been solved using a spectral-element method,
which is essentially a high-order finite-element method, see
Karniadakis et al. [7] and Thompson et al. [23]. In terms of the spatial
discretisation, this method employs tensor-product Lagrange
polynomials, associated with GausseLegendreeLobatto quadrature
Fig. 3. Comparison between two numerical models: the present model and the model used
the heat source, for two values of Pe ¼ 10 and 20, with interfacial convective heat transf
Kr ¼ 1.0, respectively, and (b) for the variation of LTNE against Hv at Pe ¼ 100 and Kr ¼ 1.0
points, as shape functions over each quadrilateral element. In this
way, the spatial resolution can be varied by either changing the
number of quadrilateral elements (herefinement), or by changing the
order of the Lagrange polynomial shape functions (perefinement).
For the current study, a polynomial order of p ¼ 6 was employed.

For the temporal discretisation, a two- and three-step time-
splitting scheme, described in Chorin [3], Karniadakis et al. [7]
and Thompson et al. [23], is used for the energy and momentum
equations. For the energy equations, this results in separate equa-
tions being formed for the non-linear advection term and the
linear diffusion term. For the momentum equations, a third equa-
tion is required for the pressure. A Poisson equation is formed for
the pressure term by enforcing continuity at the end of the pressure
sub-step. The non-linear advection equation is solved using a third-
order AdamseBashforth method, and the linear diffusion equation
is solved using a second-order CrankeNicholson method. Because
of the non-linear coupling between the equations, it is necessary to
iterate over each time-step. Iteration is required until convergence
is achieved. In the present study, it is assumed that this occurs
when hui velocity components and Nuf and Nus in two consecutive
iterations differ by less than the convergence criterion of 10�10.

3.1. Domain and grid independency of the results

Tests were conducted to ensure that the numerical results
obtained are independent of the domain size and the spatial grid
resolution. Domain size and grid resolution studies were under-
taken for the configuration of the circular cylinder mounted
between two parallel walls as shown in Fig. 1. Nuf and Nus were
monitored in these studies as an indicator of convergence. The
study of domain size was performed for four physical domains M1,
M2,M3, andM4, according to their upstream Lu and downstream Ld
by Wong and Saeid (2009); (a) for the variation of (u-velocity � Pe) at y ¼ 0.002 along
er coefficient and porosity-scaled fluid/solid thermal conductivity ratio Hv ¼ 1:0 and
.



Fig. 4. Comparison between the present algorithm with the experimental work done
by Nasr et al. (1994), for the air forced convection heat transfer around a circular
cylinder, D ¼ 12.7 mm, embedded in a packed bed of nylon spherical particles,
dp ¼ 6.35 mm, with porosity 3¼ 0.37 and solid/fluid thermal conductivity ratio kr ¼ 8.7.

Fig. 5. Vorticity with streamlines (left), and isotherms (right), around a heated circular cyli
two-equation thermal model, at kr ¼ 1.0 and Bi ¼ 1.0, for different ReD, from top to bottom, 1
vorticity and hot (cold) temperatures. (For interpretation of the references to colour in this

G.F. Al-Sumaily et al. / International Journal of Thermal Sciences 51 (2012) 121e131 125
lengths from the centre of the cylinder as shown in Table 1.
To sufficiently resolve the higher temperature gradients near the
heated cylinder the macro-element distribution was concentrated
around its surface. The macro-mesh resolution is decreased in both
the upstream and downstream directions to the inlet and outlet
boundaries where gradients are smaller. To capture the boundary
layers in the y-direction a finer mesh is employed near the walls
with coarsening towards the core of the channel. The four domains
were examined at two values of ReD ¼ 10 and 250, with polynomial
order p ¼ 6. The results of the study presented in Table 2, showed
that the M2 and M3 domains, described in Fig. 2, are appropriate
choices for the porous and empty channels, respectively, with
numerical errors less than 0.1% as measured by Nusselt number
convergence.

A grid resolution study was undertaken for the M2 domain at
ReD ¼ 1 and 250 for the following parameters: kr ¼ 0.01 and 1000;
Bi¼ 0.01 and 100. This was done by varying pwithin the range 2e8,
while keeping the macro-element layout the same, in order to
ascertain at what spectral resolution the solution becomes grid
independent and subsequently which resolution provides a satis-
factory compromise between accuracy and computational expense.
An advantage of the spectral-element method is the ability to set
polynomial order p at run-time, allowing resolution studies to be
nder mounted in a horizontal; (a) empty channel, (b) packed bed of spheres using the
.0, 40, 70, 100, and 250, with Pr ¼ 7.0. Red (blue) contours represent positive (negative)
figure legend, the reader is referred to the web version of this article.)



Fig. 6. Plots of the transient average fluid Nusselt number Nuf from a heated cylinder placed in (a) an empty channel at ReD ¼ 190, 220, and 250, and (b) a porous channel using the
two-equation thermal model at kr ¼ 1.0, Bi ¼ 1.0, and ReD ¼ 250.
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performed more easily. The results showed that Nuf and Nus are
converged by p ¼ 6 with a relative error of less than 0.5%. Examples
of these results for the case of ReD ¼ 1 are shown in Table 3.

The numerical simulations were performed at a timestep
Dt ¼ 0.001 (determined by a Courant time-step restriction), on the
Monash (University) Sun Grid (MSG) and National Computational
Infrastructure (NCI) high-performance computers.

3.2. Verification of the numerical method

In order to validate the implementation, results from this code
were compared to previously published numerical and experi-
mental results. First, velocity and temperature data for a cooling
air jet impinging on an isothermal heated surface immersed in
a confined porous channel under the LTNE condition was calculated
and compared to the data for the identical problem presented in
Wong and Saeid [27]. For this data, the Rayleigh number is Ra¼ 100,
the Darcy number is Da ¼ 10�3, and the porosity is 3¼ 0.87. Fig. 3a
presents the velocity distribution close to the wall being impinged
upon, and Fig. 3b presents the LTNE parameter, defined as:

LTNE ¼ SN
		qs � qf

		
N

; (21)

where N is the total number of nodes in the domain. This is a simple
measure of the mean difference between the fluid and solid over
the domain. The agreement of both the velocity and temperature
data is very good, although there are some differences, which are yet
Fig. 7. The variation of (a) the total time-mean average Nusselt number Nut from a heated
using the two-equation thermal model at kr ¼ 1.0 and Bi ¼ 1.0 (,), and an empty channe
unexplained. Second, the numerical results were benchmarked
against experimental results obtained by Nasr et al. [14] for the air
forced convection heat transfer around a circular cylinder embedded
in a packed bed of nylon spherical particles. The comparison is pre-
sented in Fig. 4. As recommended in their paper, themodel of Zehner
and Schluender [29] was used to calculate the effective stagnant
thermal conductivity in the energy equation while the dispersion-
enhanced conductivity was neglected. The porous medium was
treated as a continuum by volume-averaging the thermal diffusivity
of the solid and fluid phases. There is clearly good agreement
between the numerical predictions, the experimental results and, as
a further comparison, with the analytical solutions made by Cheng
[2] for mixed convection about a horizontal cylinder embedded in a
fluid-saturated porous medium. Cheng obtained similarity solutions
using the Darcy model in the boundary-layer region.
4. Results and discussion

The effect of the presence of porous media on fluid flow and
forced convection heat transfer around a circular cylinder mounted
in a horizontal channel is investigated for the Reynolds number
range ReD˛½1;250�. The effects of the porous medium’s thermal
properties: solid-to-fluid thermal conductivity ratio kr˛½0:01;1000�
and Biot number Bi˛½0:01;100�, on the convective and conductive
heat transfer from the heated cylinder to the fluid and solid phases,
respectively, and the thermal response inside the porous channel,
are also examined using the two-equation energy model. Following
cylinder embedded in, and (b) the pressure drop DPf through, a packed bed of spheres
l (B), against ReD.



Fig. 8. The distribution of the time-mean local fluid and solid Nusselt number, Nuf4 and Nus4, respectively, over the periphery of a heated cylinder embedded in a packed bed of
spheres, calculated by using the two-equation energy model at kr ¼ 1.0 and Bi ¼ 1.0, and for different ReD.
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that a comparison between the results obtained by the one- and
two-equation energy models is made. The numerical simulations
have been performed at fixed values of Pr ¼ 7, ar ¼ 1.0, Dcy/dp ¼ 20,
3¼ 0.5, and Da ¼ 8.333 � 10�6 for all cases.

4.1. Effect of the presence of porous media

When a bluff body is placed in an uniform stream of fluid for-
a sufficiently high ReD, two separated shear layers are formed, one
on each side of the body, the vorticity of the two layers being
opposite. This is shown in Fig. 5a for a circular cylinder placed in an
uniform stream of water flowing inside a horizontal channel for
1.0 > ReD > 250. Fig. 5b shows the influence of packing the channel
with porous particles on the vorticity of the separated shear layers
formed around and behind the cylinder, and the thermal response.
In Fig. 5, the fields of fluid flow and temperature are described
in terms of vorticity with streamlines and isotherms, respectively,
inside the empty and packed channels. In the empty channel,
a steady wake behind the cylinder is observed for ReD up to 100,
with a clear increase in the length of the wake with increasing ReD.
For ReD � 100, vortex shedding occurs and causes hydrodynamic
and thermal periodic wakes downstream of the cylinder. However,
the figure demonstrates how the porous medium suppresses
shedding due to the high frictional and inertial resistances offered
by the matrix of the porous particles. Within the chosen ReD range,
it is shown that the effect of ReD on the thicknesses of the
Fig. 9. Effect of the solid/fluid thermal conductivity ratio kr of the porous channel on the t
using the one-equation energy model, at selected values of ReD.
hydrodynamic boundary layers is almost negligible in the porous
channel, but it has a considerable influence on the thermal
boundary layers. Fig. 6 displays the time evolution of the average
fluid Nusselt number Nuf from the cylinder in both channels at
selected values of ReD. Unsteady time-periodic behaviour of Nuf
in the empty channel can be seen, with an increase in both the
amplitude and frequency of the vortex shedding as ReD is increased.
However, after the transient has decayed a steady Nuf is obtained in
the porous channel even at the highest value of ReD ¼ 250.

The total heat transfer rateNut from the cylinder and the pressure
drop DPf over the length of the channel with and without the
presence of the porous medium, are presented in Fig. 7. It indicates
that the particles serve as effective enhancers for forced convection
heat transfer, particularly at high ReD (up to four times at ReD ¼ 250
compared with the empty channel). This is due to the influence of
thermal dispersion, where high ReD generates strong convection
effects and high thermal mixing in the fluid phase, which results in
higher Nuf. However, the enhanced heat transfer obtained from
the porous material is at the expense of a significantly increased
unfavourable pressure drop in the packed bed. Thus, the figure
illustrates that the porous medium increases DPf several thousand
fold compared with the empty channel. In addition, the positive
influence ofReD onNut in the porous channel ismore significant than
that in the empty channel. However, interestingly the positive
influence of ReD on the DPf in the porous channel is found to be
significantly less than that in the empty channel. Hence, in the
ime-mean average fluid Nusselt number Nuf from a heated cylinder, and estimated by



Fig. 10. Effect of the solid/fluid thermal conductivity ratio kr of the porous channel on the time-mean average fluid Nusselt number Nuf from a heated cylinder, and estimated by
using the two-equation energy model, at Bi ¼ 1.0 and selected values of ReD.

Fig. 11. Effect of the solid/fluid thermal conductivity ratio kr of the porous channel on
the time-mean average solid Nusselt number Nus from a heated cylinder, and estimated
by using the two-equation energy model, at Bi ¼ 1.0 and selected values of ReD.
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porous channel, Nut increases roughly by 20 times and the pressure
drops approximately by 600 times, by increasing ReD from 1 to 250;
while, in the empty channel, there is almost 4 times augmentation in
Nut with 1250 times drop in pressure, for the same increase in ReD.

Fig. 8 displays the distributions of the time-mean local fluid
and solid Nusselt number, Nuf4 and Nus4, respectively, on the heated
surface of the cylinder embedded in the porous bed, from the
rear stagnation point 4� ¼ 0� anticlockwise from the flow direction,
calculated by using the two-equation energy model at kr ¼ 1.0 and
Bi ¼ 1.0, and at different ReD. These distributions show symmetric
profiles about the streamwise axis of the cylinder. They reveal
that the maxima Nuf4 which are generally expected to occur in the
regions of the highest velocity gradients that cause highest
temperature gradients or around the front stagnation point where
thefluid is impinging, are observed to be at the top andbottomof the
cylinder, i.e., 4� ¼ 90� and 4� ¼ 270�. The values of these two peaks
are shown to increase with increasing ReD. Whereas, the minimum
Nuf4 occurs at the rear stagnation point due to the expansion of
the fluid thermal boundary layer behind the cylinder. However, the
figure showsa different circumferential variation forNus4, hence, it is
almost flat on the most locations of the cylinder’s periphery,
4� ¼ 90�e270�, and strongly independent on ReD. Also, the values of
Nus4 are much lower, approximately 200e300 times at ReD ¼ 250,
than those of Nuf4.

4.2. Effect of the thermal properties of porous media

It is well publicised in the literature that heat transfer can be
increased by using porous media with higher thermal conductivity.
However, the question can be raised: is this always the case? Figs. 9
and 10 which exhibit the effect of kr on the time-mean average
fluid Nusselt number Nuf using the one- and two-equation energy
models, respectively, at different ReD, may answer this question. By
ignoring the convective heat transfer between the two phases, and
considering the porous bed as a quasi-continuum, the one-equation
model predicts that the higher the kr, the higher theNuf, as shown in
Fig. 9. This is due to the high solid thermal conductivity results
in high contact conduction. However, interestingly, Fig. 10 exposes
a different trend of Nuf with kr when the two-equation model is
used. It shows that Nuf increases with increasing kr, but only up to
an intermediate value 10; following this, there is a considerable
decrease in Nuf. The decrease in Nuf for kr > 10 is because the large
contribution of heat transfer from the solid phase to the fluid phase
by convection at Bi ¼ 1.0 which is taken into account in this model.
This contribution produces a highly uniform fluid thermal field
around the hot cylinder, which causes a decrease in temperature
gradient and then a reduction in Nuf. Where, Fig. 11 reveals that the
time-mean average solid Nusselt number Nus is not considerably
influenced by kr until this contribution starts to be effective at the
above-mentioned intermediate value of kr. Thus, it can be seen that
after this value, Nus begins decreasing towards a minimum value
at the highest value of kr. This is because a high kr means a low
conductive thermal resistance within the solid phase, and conse-
quently a high transient conductive heat transfer which seems to be
larger than its contribution to the fluid phase to produce a highly
uniform solid thermal field around the cylinder.

Table 4 shows the variations of Nuf and Nuswith Biwhen kr¼ 10,
for different values of ReD. It reveals that the low rates of Nuf are
produced when Bi is large. This is as expected since it means there
is high heat transfer between the two phases (from the solid to the
fluid at kr ¼ 10). This also could explain the better heat conduction
Nus within the solid phase when Bi is increased. However, small
values of Bi correspond to poor transfer of heat to/from the solid
phase, which enables its thermal field to be effectively independent
of the fluid thermal field.

Isotherms of the steady-state fluid and solid thermal fields with
varying kr and Bi are shown in Fig. 12, when ReD ¼ 10. Clearly,
the isotherms for the two phases are significantly altered when kr
increases, where their thermal boundary layers enlarge in the
transverse direction and shorten in streamwise direction. This causes



Table 4
Values of Nuf and Nus as a function of Bi at different ReD when kr ¼ 10.

Bi ReD ¼ 1.0 ReD ¼ 10 ReD ¼ 40 ReD ¼ 100 ReD ¼ 250

Nuf Nus Nuf Nus Nuf Nus Nuf Nus Nuf Nus

0.01 2.771 0.1256 7.544 0.1287 15.948 0.1294 31.123 0.1296 68.899 0.1297
0.05 2.686 0.1317 7.499 0.1454 15.922 0.1484 31.102 0.1491 68.881 0.1494
0.1 2.620 0.1372 7.458 0.1614 15.898 0.1668 31.082 0.1681 68.864 0.1686
0.5 2.433 0.1553 7.289 0.2259 15.785 0.2437 30.990 0.2483 68.781 0.2503
1.0 2.360 0.1628 7.175 0.2621 15.700 0.2901 30.918 0.2977 68.716 0.3010
5.0 2.252 0.1740 6.845 0.3446 15.401 0.4116 30.650 0.4323 68.466 0.4423
10 2.230 0.1763 6.713 0.3718 15.249 0.4601 30.503 0.4893 68.323 0.5040
50 2.208 0.1786 6.525 0.4068 14.966 0.5361 30.198 0.5861 68.009 0.6140
100 2.205 0.1789 6.490 0.4126 14.895 0.5521 30.112 0.6087 67.912 0.6414
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an elliptic thermal plume to be generated around the circular
cylinder at kr ¼ 1000. However, the figure shows that the fluid
temperature distribution is not affected significantly by changing Bi,
but there is a clear influence from Bi on the temperature distribution
of the solid phase, which seems to be totally isolated from the fluid
phase at Bi ¼ 0.01. Interestingly, the figure illustrates that at very
high kr or Bi, the fluid and solid phases have effectively identical
temperature fields, which indicates the establishment of a thermal
equilibrium state in the porous system.
Fig. 12. Fluid (left) and solid (right) isotherms, around a heated circular cylinder immersed in
and 1000, at Bi ¼ 1.0, (b) Bi, from top to bottom 0.01, 0.1, 1.0, and 100, at kr ¼ 10, using the tw
(cold) temperatures. (For interpretation of the references to colour in this figure legend, th
To demonstrate the role that Bi plays to change the influence
of kr on Nuf, the variation of Nuf versus kr at various values of Bi is
presented in Fig. 13 at ReD ¼ 40 and 250. Two main findings can be
seen in this figure: first, the trend of Nuf against kr is independent of
Biwhen kr� 1.0; however, it becomes dependent highly on Biwhen
kr > 1.0. For example, for kr � 1.0, there is only one increased trend
of Nuf with kr for the entire range of Bi, while for kr > 1.0, Nuf can be
increased or decreased depending on the value of Bi. This finding
was confirmed by Rees et al. [19]. Second, the value of Nuf is not
a horizontal packed bed of spheres for different; (a) kr, from top to bottom 0.01, 10, 100,
o-equation thermal model, at ReD ¼ 10 and Pr ¼ 7.0. Red (blue) contours represent hot
e reader is referred to the web version of this article.)



Fig. 13. The variation of the time-mean average fluid Nusselt number Nuf versus the solid/fluid thermal conductivity rartio kr at different values of Bi, and for two selected values of
ReD, (a) 40 and (b) 250.

Fig. 14. Comparison between the one-equation (dash line) and the two-equation (solid line) energy models for the variation of Nuf against kr, for ReD ¼ 100e250 in steps of 30, and
at two values of Bi, (a) 0.01 and (b) 1.0.
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influenced entirely by Bi for kr � 1.0; however, it decreases as Bi
increases for kr> 1.0 as shownprior in Table 4 at kr¼ 10. The reason
for both of these points is the low rates of the transient conductive
heat transfer in the solid phase caused by the high conductive
thermal resistance at low solid thermal conductivity.

A comparison between the one- and two-equation energy
models for the variation of Nuf for different key parameters, namely:
ReD, kr, and Bi, is described in Fig. 14. It is clear that the one-equation
model always generate Nuf higher than those predicted by the
two-equation model. It may be due to the continuum assumption in
the one-equation model to calculate the thermal properties of
the porous medium. Also, the figure illustrates that the discrepancy
between the results of Nuf of the two models increases with
increasing ReD, increasing kr at high Bi, or increasing Bi for kr > 1.0.

5. Conclusion

The results presented here provide a better understanding of
the influences of the presence of a porous medium of spherical
particles, and its thermal properties, i.e., solid/fluid thermal
conductivity ratio and Biot number, on the rates of heat transfer and
the hydrodynamic and thermal behaviour around a heated circular
cylinder mounted in a horizontal channel. Perhaps not surprisingly,
the results show that the presence of the porous particles alters
significantly the unsteady hydrodynamic and thermal behaviour
inside the channel, where it suppresses the wakes formed behind
the cylinder and produces an unidirectional steady flow. Although
a considerable heat transfer enhancement can be achieved by
packing the channel with porous material, this is at the expense of
a several thousand fold increase in pressure drop.

It is found that a continuous increase in Nuf against kr is pre-
dicted by using the one-equation energy model; however, by using
the two-equation energymodel, the trend of Nufwith kr, for kr> 10,
is entirely governed by Bi. Also, the increase in Bi decreases Nuf
and increases Nus, and high values of kr or Bi lead to establishing
a thermal equilibrium status in the porous bed. The study also
shows that the effect of ReD on Nuf is much more significant than
that of kr and Bi due to the effect of thermal dispersion; therefore,
for all cases the values of Nuf are seen to be always much higher, by
at least two order of magnitudes at ReD ¼ 250, than those of Nus.
The comparison that is made between the two energy models for
the results of Nuf concludes that the one-equation model predicts
Nuf higher than that estimated by the two-equation model, and the
difference between them increases as ReD increases, kr increases at
high Bi, or Bi increases but only for kr > 1.0.

In spite of the fact that the present study is related to packed bed
of spheres, its results can be generalized and used for other types of
porous media.
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Nomenclature

asf specific interfacial area (m�1).
Bi Biot number, Bi ¼ hsf asf D

2
cy=ks.

cp specific heat capacity, (J/kg K).
dp particle diameter, (m).
Dcy cylinder diameter, (m).
Da Darcy number, Da ¼ K=D2

cy.
F geometric function, F ¼ 1:75=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
150 33

p
.

hcy cylinder surface heat transfer coefficient, (W/m2 K).
hsf interfacial heat transfer coefficient, (W/m2 K).
H channel height, (m).
k thermal conductivity, (W/m K).
kr solid/fluid thermal conductivity ratio, kr ¼ ks/kf.
K permeability of the porous medium,

K ¼ 33d2p=150ð1� 3Þ2, (m2).
L channel length, (m).
Nu time-mean average Nusselt number.
Nu4 time-mean local Nusselt number.
p Lagrangian polynomial order.
�Pf fluid pressure, (N/m2).
Pf dimensionless fluid pressure.
Pr Prandtl number, Pr ¼ nf =af .
ReD Reynolds number, ReD ¼ uorf Dcy=mf .
�t time, (sec).
t dimensionless time.
�T temperature, (K).
�u vectorial fluid velocity, (m/s).
u dimensionless vectorial fluid velocity, u ¼ �u=uo.
�u horizontal velocity component, (m/s).
u dimensionless horizontal velocity component.
uo inlet horizontal fluid velocity, (m/s).
�v vertical velocity component, (m/s).
v dimensionless vertical velocity component.
�x; �y horizontal and vertical coordinates, (m).
x; y dimensionless horizontal and vertical coordinates.
Greek symbols
ar thermal diffusivity ratio, ar ¼ as/af.
3 porosity.
q dimensionless temperature, q ¼ ð�T � ToÞ=ðTh � ToÞ.
mf fluid dynamic viscosity, (kg/m s).
rf fluid density, (kg/m3).
4 angular coordinate, (�).
Subscripts
eff effective.
f fluid.
o inlet of the channel.
out outlet of the channel.
s solid.
t total.
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