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Abstract

Horizontal convection refers to the flow driven by a buoyancy
imbalance along a horizontal level. In this study, two-dimen-
sional simulations of horizontal convection in a rectangular en-
closure are performed. Continuing from a previous study of hor-
izontal convection in an enclosure with stationary walls, this pa-
per considers an enclosure with movement applied to the floor,
upon which the buoyancy imbalance is applied. This moving
boundary provides mechanical stirring to the convective circu-
lation in the enclosure. Our results identify both a forced con-
vection regime driven by shear on the moving wall; and beyond
a transitional Rayleigh number, a free convection regime driven
by the temperature gradient on the heated boundary. We also
report on the scaling correlations for Nusselt number in terms
of the controlling parameter, Rayleigh number.

Introduction

In the extensively studied problems of confined free convection,
such as the Rayleigh-Bénard convection, the thermal forcings
are applied to more than one surface. For horizontal convec-
tion, the thermal forcing (either by a temperature gradientor a
variation in heat flux) is applied along one horizontal boundary,
while the other boundaries are usually thermally insulated.

Horizontal convection is commonly used as an idealised model
to study the fluid dynamics and heat transfer in the meridional
overturning circulations (MOC) of the oceans. It may also have
applications in geological flows, engineering heat transfer and
built-environment indoor climate.

A relatively thin top layer of the ocean is heated differentially
from the equatorial to the polar regions. An important scien-
tific question is that whether the observed MOC is primarily a
heat engine (i.e. driven by the horizontal convection) or that it
is driven mechanically, for example by winds and internal tides.
The dominant current understanding supports the latter (see the
review by Wunsch and Ferrari [9]); although other researchers
have carried out studies which indicate that horizontal convec-
tion should not be ignored (e.g. Mullarneyet al. [4]; Hughes
and Griffiths [3]).

In Sheard and King [6], numerical investigations were per-
formed with an in-house computational fluid dynamics (CFD)
code. In that study the model was a two-dimensional rectangu-
lar enclosure of various aspect ratios, with an applied tempera-
ture gradient along the bottom wall (referred to here as the floor)
and other walls being thermally insulted. It was determinedthat
for an intermediate range of Rayleigh numbers (approximately
104 . Ra . 109) where steady convective flows dominate, the
Nusselt number, boundary layer thicknesses and peak bound-
ary layer velocity scale with the Rayleigh number by exponents
with values of 1/5, −1/5, and 2/5, respectively. These results
were in agreement with established theory [5, 4, 3], and the re-
lationships were independent of the enclosure aspect ratio.

A significant result arising from Sheard and King [6] is that
unsteady flow develops above a critical Rayleigh number of

Figure 1: A schematic diagram of the system. The origin of
the coordinate system is positioned at the bottom-left corner,
gravity acts vertically downward, and a temperature difference
of δT is imposed along the bottom wall, which is moving with
a velocityV .

somewhere between 3.5×108 and 8.5×108. The onset of un-
steadiness was detected by examining the time dependency of
the heat fluxes through the floor. The unsteadiness in the flow
is found mainly in the plume region due to entrainment, and ed-
dies which are caused by the returning flow out of the plume at
the top of the tank.

In the current study, we introduce an additional driver to the
flow in the enclosure. Here, the floor is moving at a constant
speed (as in the lid-driven cavity flow) in a direction which aids
the existing convective circulation due to horizontal convection
alone. This may model the effect of winds which provide ki-
netic energy to the oceans. Necessarily, our approach is an over-
simplification because, among other reasons, the winds and the
sea-surface temperature in the real oceans are coupled effects
rather than independently prescribed. However, it is appropriate
here as an additional complexity is being introduced to whatis
already a highly idealised model. It is also an interesting combi-
nation of a rather widely studied horizontal convection problem
and the classical lid-driven cavity flow (Ghiaet al. [2]).

Numerical model

Problem definition

The model considered here to study horizontal convection with
a moving floor comprises a two-dimensional rectangular fluid-
filled enclosure of widthL and heightD. The system is depicted
in figure 1. The aspect ratio of the enclosure is defined asAR =
D/L.

The flow is driven by both a linear temperature profile applied
along the floor, as well as a uni-directional constant-speedlin-
ear motion of the floor. Relative to the enclosure, the tem-
perature profile along the floor is unchanged, despite the floor
moving in one direction (it is not clear how these conditions
might be realised in the laboratory, but numerical implementa-
tion is straightforward). Zero-velocity (no-slip) conditions are
imposed on the side and top walls, which are also thermally
insulated by imposition of a zero outward normal temperature
gradient.



Governing equations and dimensionless parameters

The dimensionless governing equations include momentum,
mass conservation, and temperature transport equations. Re-
spectively, these are written as

∂u
∂t

=−(u ·∇)u−∇p+Pr ∇2u−Pr Ra ĝT, (1)

∇ ·u = 0, (2)

∂T
∂t

=−(u ·∇)T +∇2T, (3)

whereu is the velocity vector,p the kinematic static pressure,
t is time,Ra is the Rayleigh number,Pr the Prandtl number,̂g
the unit vector in the direction of gravity, andT is temperature.
Here, lengths are scaled byL, velocities byκT /L (whereκT is
the thermal diffusivity), time byL2/κT , and temperature byδT .

A Boussinesq approximation for the fluid buoyancy is used,
whereby density differences in the fluid are neglected except
in the gravity term (the term containingRa in equation 1).

The horizontal Rayleigh number is defined as

Ra =
gαδT L3

νκT
,

whereg is the gravitational acceleration,ν the kinematic vis-
cosity, andα the volumetric expansion coefficient of the fluid.
The Prandtl number of the fluid is

Pr =
ν

κT
,

and in this studyPr is fixed at 6 (consistent with water). The
Nusselt number, a measure of the ratio of convective to conduc-
tive heat transfer, is

Nu =
FT L

ρcpκT δT
,

where the heat flux is

FT = κT ρcp
∂T
∂y

.

In these relations,ρ is the reference density,cp the specific heat

capacity of the fluid, and
∂T
∂y

the average absolute vertical tem-

perature gradient along the floor. Finally, a Reynolds number
for the moving floor with velocityV is

Re =
V L
ν

,

where a zero Reynolds number corresponds to conventional
horizontal convection.

Numerical method

The governing equations are solved along with the stated
boundary conditions on a two-dimensional domain using an
in-house code employing spectral-element spatial discretisation
(with a polynomial of degree 8 on each element) and a third-
order time integration scheme based on backward differencing.
The meshes and algorithm are the same as those used in [6].
Mesh resolution is concentrated in the vicinity of the walls, par-
ticularly adjacent to the heated floor. These meshes featurea
higher resolution than has been employed in earlier studies(see
[6] for further details).
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Figure 2: Horizontal convection in an enclosure withAR = 0.16
with a moving floor. (a) A plot of log(Nu) against log(Ra) for
variousRe. Akima splines are fitted to the data. (b) Gradients
of the data in (a); i.e. showingγ-variation in theNu ∼ Raγ rela-
tionships.

The code has been validated and employed on a wide range of
studies (e.g. [7, 1, 6]). Additionally, relevant to the setup for the
present study, validations were carried out against two studies:
lid-driven flow in a square cavity [2], and horizontal convection
at Ra ≈ 1012 for an enclosure withAR = 0.16 [4]. In each case
a good agreement was obtained between the present algorithm
and results reported in those studies.

Results and discussion

Heat transfer (Nu) scaling correlations

Heat transfer through the floor is considered at aspect ratios
AR = 0.16 and 1. For these enclosures, computed Nusselt
numbers are plotted against the Rayleigh number in figures 2a
and 3a. In figures 2b and 3b, log-log gradients corresponding
to values ofγ in theNu ∼ Raγ relationships are shown. Results
are shown for a range of Reynolds numbers. Two main obser-
vations can be made about these results:

Firstly, for the parameters considered in this study, aboveRa ≈

109, all of the Nusselt-number correlation curves converge to
the curve forRe = 0, where theNu–Ra relationships are inde-
pendent of Reynolds number, but instead are dependent on the
Rayleigh number. The transitional Rayleigh number (Ra≈ 109)
delineates forced-convection and free-convection regimes. The
transition Rayleigh number for the onset of unsteady horizontal
convection flow is also found to beRa ≈ 109 [6].

Secondly, in agreement with theory,γ = 0.2 is observed over
a range of Rayleigh numbers. This is especially clear for the
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Figure 3: Horizontal convection in an enclosure withAR = 1
with a moving floor. (a) and (b) are as per figure 2.

Re = 0 cases (also reported in [6]). Significantly, here we also
observe the further evidence ofγ values approaching 0.3 at
higher Rayleigh numbers (see figures 2b and 3b). Siggerset
al. [8] derived an upper-bound ofγ = 1/3 using the method of
variational calculus. As far as we are aware, the current study
and [6] are the first numerical or laboratory studies of horizon-
tal convection to observe a trend approaching the upper-bound
value. Generally theγ = 1/5 trend was observed in previous
studies [5, 4, 8, 3].

The effect of an increase inγ on heat transport in the real oceans
can be estimated by an order-of-magnitude calculation [8].Us-
ing L = 107 m, α = 10−5 K−1, δT = 10 K, g = 10 m s−2,
ν = 10−6 m2 s−1, κT = 10−7 m2 s−1, we have an oceanicRa =
1031. With Nu = 0.1Ra0.2 from our simulated data (figures 2
and 3), and usingρ = 103 kg m−3, cp = 4200 J kg−1 K−1, and
an area of 1012 m2, we obtainF = 6.6×1010 W (by compari-
son, Siggerset al. [8] estimatedF = O(1011) W). This estimate
is very small compared toO(1015) W for poleward oceanic heat
transport. However, forγ = 0.3 we obtainF = 8×1013 W, and
for γ = 1/3 we haveF = 9× 1014 W, which are comparable
to the oceanic value. This type of calculation is imprecise (not
least asNu is calculated by extrapolation) and is not useful for
deciding whether the MOC is a buoyancy-induced flow caused
by horizontal convection (a heat engine) or that horizontalcon-
vection plays a minor role while winds and internal tides are
more important drivers. Nevertheless, the estimates calculated
here suggest that for high-Rayleigh-number unsteady horizontal
convection, the amount of heat transported can be 3 to 4 orders
of magnitude higher than previously thought.

Some qualitative flow structures

A single convective circulation is observed in horizontal con-

(a) Ra = 1×104

(b) Ra = 1×106

(c) Ra = 1×108

(d) Ra = 1×1010

Figure 4: Horizontal convection at various Rayleigh numbers in
an enclosure withAR = 0.625 visualized using flooded temper-
ature contours overlaid with streamlines. Dark (cold) to light
(hot) contours show a temperature range ofδT , and streamlines
are equi-spaced between the minimum and maximum value of
the streamfunction in each frame.

vection [5, 4, 3, 6]. Near the floor, a boundary layer is estab-
lished, and flow moves towards the heated end, where it rises
as a plume. At the top of the plume, there is a returning flow.
Mixing due to the returning flow and diffusion cause the flow to
lose buoyancy and complete the circulation. Figure 4 shows the
effect of Rayleigh number on horizontal convection withouta
moving floor. In figure 4a, diffusion dominates; in figure 4b-c,
convective effects become increasingly more pronounced; and
in figure 4d, boundary-layer instability leads to a time-varying
feeding of buoyancy into the plume. Figure 5 shows the vicin-
ity of the plume at Rayleigh numbers across the threshold for
unsteady flow in the enclosure [6]. As Rayleigh number is
increased, the scale of structures within the plume is seen to
decrease in accordance with theory. Figure 4c shows the for-
mation of a mushroom-shaped packet of buoyant fluid in the
boundary layer to the left of the plume, which demonstrates
that instability in the boundary layer must be the source of time-
dependence in this flow.

As mentioned earlier, for horizontal convection with a mov-
ing floor, a transition from forced convection to free convection
is observed. The implication for this on the flow structure is



Figure 5: Detail view of the bottom-right-hand corner of an en-
closure withAR = 0.625 at Rayleigh numbersRa = 1× 108

(left), 1×109 (middle) and 1×1010 (right). Dark to light shad-
ing shows variation over a narrow range of temperatures arbi-
trarily chosen to visualize structures within the plume.

(a) (b)

Figure 6: Plots of temperature and streamlines for horizontal
convection in an enclosure withAR = 2 and a moving floor giv-
ing Re = 150. The temperature profile along the floor increases
to the right, and the floor is moving to the right. Rayleigh num-
bers (a) Ra = 100 and (b) 108 are shown. Temperature contours
are as per figure 4. Solid streamlines show counter-clockwise
circulation, and dashed streamlines show clockwise circulation.
In (a), the secondary (clockwise) circulation is approximately
2% of the strength of the primary circulation.

that the double circulations which exist in the forced convection
regime under some conditions (for certain aspect ratios andRe,
as in the lid-driven cavity flow) would revert to a single convec-
tive circulation as Rayleigh number is increased and the flow
shifts to the free-convection regime (dominated by horizontal
convection).

An example of this behaviour is demonstrated in figure 6, which
shows streamlines obtained at a fixed Reynolds number and
aspect ratio, for flows withRa = 100 (forced convection) and
Ra = 108 (free convection).

Conclusions

Horizontal convection with a moving floor in a two-dimen-
sional rectangular enclosure is investigated using an in-house
CFD code employing the spectral element method. It is found
that a transitional Rayleigh number (Ra ≈ 109) delineates a
forced-convection and a free-convection regime. Examining
the Nu ∼ Raγ relationships foundγ ≈ 0.2 for some intermedi-

ate Rayleigh numbers. AboveRa ≈ 109, an increasing trend
reachingγ ≈ 0.3 was observed, perhaps approaching the theo-
retical upper bound ofγ = 1/3. A previous study [6] found that
the flow also becomes unsteady at around this Rayleigh num-
ber. The implication of this for the real oceans is that at high
Rayleigh numberRa = O(1031), the poleward heat transported
by horizontal convection may be 3 to 4 orders of magnitude
higher than previously thought (i.e.O(1015) W as opposed to
O(1011) W).
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