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Abstract

Experiments of a number of authors have indicated that the
steady recirculation bubble that forms as the flow separatesfrom
the leading-edge corner of a long flat plate begins to flap at
Reynolds numbers of less than 330. However, global stabil-
ity analysis shows that the flow is absolutelystable at these
Reynolds numbers, with both three-dimensional and the steady-
to-unsteady transition occurring at Reynolds numbers of close
to 400 or more. This situation is similar to the flow past a
backward-facing step; in that case the separating shear layer
undergoes flapping triggered by upstream flow noise exciting
transition through transient exponential amplification ofoptimal
perturbation modes. In this paper the optimal growth modes are
studied to determine their role in triggering early transition to
unsteady flow for a long flat plate. It is found that atRe = 350
the energy growth of the optimal disturbance is greater than104.
In practice, flow or acoustic noise, or rig vibration is not di-
rectly in the form of an optimal disturbance. As a model of a
flow disturbance caused by plate vibration, the effect of sud-
denly moving the plate upwards with a very small but constant
velocity is examined. It turns out such a perturbation excites
the second most amplified optimal mode, leading to formation
and shedding of shear-layer vortices some time later, similar to
those observed experimentally.

Introduction

While global stability analysis has been highly successfulin
predicting the onset of flow transitions for many different types
of flow problems, the Hopf bifurcation and three-dimensional
transitions of a circular cylinder wake being prime examples
(e.g., 6; 2), there are a number of other flows for which global
stability predictions do not well describe the observed experi-
mental behaviour. Classic example are 2D Poiseuille and Cou-
ette flows, which undergo turbulent transition even though sta-
bility analysis indicates absolute stability at observed transi-
tion Reynolds numbers. Another example is the flow over a
backward-facing step. Barkley et al. (1) have shown that theini-
tial absolute wake transition from the steady separated flowis
through a three-dimensional steady transition rather thanquasi-
periodic flapping, which is commonly seen in experiments. The
paper by Blackburn et al. (3) examines the problem in terms
of transient growth of optimal initial spatial perturbation fields.
It turns out that certain initial perturbations can undergotran-
sient exponential amplifications as they are convected down-
stream leading to large-scale modification of the globally stable
flow. These perturbations eventually die away and convect out
of the system. Direct numerical simulations show that seed-
ing the flow with low-level noise is sufficient to reproduce the
flapping behaviour observed experimentally, in terms of both
streamwise wavelength and mean frequency (3). This transi-
tion scenario also covers the smoothed backward-facing step
(11) and stenotic flows (8; 4), i.e., flows through constrictions
in pipes. In the latter case, remarkably high energy amplifica-
tion factors of many orders of magnitude are observed when the
blockage is substantial.
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Figure 1: Problem setup: the plate is assumed semi-infinite in
length and of infinite width. Above a certain Reynolds number
the leading-edge separation bubble sheds quasi-periodic semi-
discrete vortices.

Recent work (7) examines the boundary-layer flow over a
smooth bump, which produces a downstream recirculation bub-
ble. The particular geometry leads to flapping from the recircu-
lation bubble above a certain Reynolds number, even in highly
resolved low-noise numerical simulations. It seems that inthis
case global temporal modes undergo transition as a group with
the frequencies separated by a fixed increment. This situation
effectively leads to ‘beating’ between the temporal modes that
correlates well with the observed flapping of the direct numeri-
cal simulations. Of interest, the global temporal modes resem-
ble the evolved perturbation fields of the optimal perturbation
modes, seemingly connecting the overall flow dynamics to both
global and optimal growth modes. So it appears that flow dy-
namics at Reynolds numbers where the flow is absolutely unsta-
ble will be similar to the flow dynamics at subcritical Reynolds
numbers where flapping is triggered by background noise.

The aim of the current paper is to examine the flow stability
for a different geometry, that of a long flat plate with a square
leading-edge. Relative to the geometries examined above, the
flow near the leading-edge corner is more highly accelerated,
but in general has similar characteristics. Both linear stability
analysis and optimal perturbation mode analysis throw light on
the flow dynamics, and indicate that the above discussed sce-
nario for the cause of the flapping instability appears to be fairly
generic.

Methodology

The flow under investigation is shown in figure 1. The geom-
etry is a long flat plate with a square leading-edge. Ideally the
plate is of (semi-)infinite length so that there is no feedback
to the leading-edge shear layers as shed vortices pass the trail-
ing edge. The plate geometry is two-dimensional. Above a
Reynolds number of the order ofRe = U∞H/ν = 100, the flow
separates from the leading edge corners and a separation bubble
forms. Experiments indicate that at higher Reynolds numbers of
Re ∼ 260–330, a flapping instability of this recirculation zone
leads to quasi-periodic shedding of vortex rollers. These vor-



tical structures appear to become three-dimensional soon after
forming (13), although that is not the focus of this paper which
concentrates on the initial two-dimensional flapping instability.

The flow is governed by the incompressible Navier-Stokes
equations coupled with the continuity equation. From thesethe
linearised Navier-Stokes equations can be extracted for the per-
turbation velocityu′(t,x,y,z) and pressurep′(t,x,y,z). The lin-
earised expansion is based on the two-dimensional steady base
flow.

In this paper the focus is on transient growth of optimal distur-
bances, as previously examined for other flow geometries (e.g.
(3; 9; 7; 5)). The analysis presented uses the approach described
in (3) and so will only be briefly overviewed here. The aim is
to determine the maximum energy growth of an initial pertur-
bation for a chosen time period. This can be expressed as an
eigenvalue problem in which the perturbation can be expressed
in terms of a set of optimal modes which grow to different am-
plitudes over the chosen time interval. These growth amplitudes
effectively represent the associated eigenvalues. Even though
the base flow may be globally stable, the non-normality of the
global modes can lead to massive amplification of perturbations,
i.e., massive transient growth. The relative energy amplification
(G - for growth) of an optimal mode is written as

G(τ) =
E (t = τ)
E (t = 0)

, (1)

whereE (t) = 1
2

R

(u′2 + v′2 +w′2)dV is the kinetic energy per
unit mass in the perturbation velocity field at timet.

In practice, the determination of the optimal growth modes can
proceed using the same time-stepping approach that can deter-
mine the linear stability of a steady base flow or the Floquet
stability of time-periodic flows, i.e., integrating forward in time
from a white noise perturbation field until only the dominant
global modes remain. These can then be extracted based on a
Krylov subspace approach using Arnoldi decomposition as de-
scribed in Barkley and Henderson (2). For the optimal growth
modes, the integration consists of two substeps: integrating the
linear system forward in time untilt = τ; and then integrating
the related adjoint linear system backwards in time, untilt = 0.
This can be repeated until the first few dominant optimal modes
can be extracted to the desired accuracy.

The equations are discretised in space using the spectral-
element approach. The current implementation of the software
has been applied previously to various related problems, such
as the wakes of cylinders (17; 19), spheres (18), tori (14; 15),
and stenotic flows (8; 9). In terms of the current problem, the
extension to the code to extract optimal growth modes has been
validated by comparison with predictions from (5; 3). The cur-
rent implementation is based on the description in (16).

This problem is relatively expensive in computational terms be-
cause of the sizeable regions with large velocity gradientsre-
quiring high resolution. The computational domain was rectan-
gular with the mesh points concentrated towards the plate sur-
faces. The domain dimensions were: inflow length = 10H, out-
flow length = 60H, and the top and bottom boundaries located
at±40H, whereH is the plate thickness. Spatial and temporal
resolution and domain-size tests were performed to ensure that
the predictions were reliable.

Results

Two-Dimensional Baseflow

Numerical simulations show that the flow evolves to a steady
state forRe ≤ 450. Below this and forRe ≥ 100 a separa-
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Figure 2: Reattachment length of the separation bubble as a
function of Reynolds number from various experimental stud-
ies. Where the experimental curves turn over, the flow under-
goes transition to unsteady shedding.

tion bubble forms at the top and bottom leading-edge corners.
Thus the two-dimensional flow is temporally globally stableun-
til at leastRe > 450. However, experiments by various authors
(12; 10; 13) indicate that separation bubble flapping beginsto
occur between 260< Re < 330; presumably the differences are
caused by the background noise level. Figure 2 shows the vari-
ation of reattachment length with Reynolds number.

Absolute instability modes

A global linear stability analysis of the steady flow was per-
formed to investigate the onset of three-dimensional flow. The
results show that the flow undergoes a transition to three-
dimensional steady flow atRe ≃ 390 for a spanwise wavelength
of λ ≃ 12H. Like the backward-facing step, the initial transi-
tion is to a three-dimensional steady flow. Thus both 3D tran-
sition and the transition to unsteady flow occur at significantly
higher Reynolds numbers thaneffective transition occurs in ex-
periments.

Optimal growth solutions

The sensitivity of this flow to perturbations is well known. Ap-
parently similar flows such as stenotic flow (4; 8), flow over
a backward-facing step (3) and flow over a bump (11) show
substantial energy amplification of optimal perturbation modes
for moderate Reynolds numbers. Superficially at least these
flows are similar in that there is an attached recirculation re-
gion bounded by a no-slip boundary on one side and a thin
shear layer emanating from a separation point on the other. A
small perturbation initially located near the separation point can
undergo significant amplification as it advects along the shear
layer.

The situation can be quantified by determining the set of pertur-
bation modes that result in maximal growth over a given time
intervalτ. This can be done for different time intervals and dif-
ferent Reynolds numbers resulting in the energy amplification
factor (G(τ,Re)) of the dominant mode shown in figure 3. As
the Reynolds number increases, for the same advection time,
there is a rapid increase in the energy amplification of the dom-
inant mode. ForRe = 450, the energy growth is almost 7 orders
of magnitude, indicating why it is difficult to obtain a steady
flow at such Reynolds numbers in experiments, since the pro-
jections of background noise onto the optimal growth modes
amplify to large levels as they are advected with the flow. The
maximum growth occurs for larger values ofτ as the Reynolds



number increases. This is consistent with the increase in sep-
aration bubble length with Reynolds number. The perturbation
mode is amplified in the shear layer as it traverses the sepa-
ration zone. Further downstream the mode decays, consistent
with the fact that the flow is absolutely stable at these Reynolds
numbers. Examining the maximum energy amplification with
respect toτ at each Reynolds number indicates that maximum
energy growth increases at 2.5 orders of magnitude for each
Reynolds number increase of 100.
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Figure 3: Energy amplification of the dominant mode as a func-
tion of non-dimensional timeτ for various Reynolds numbers.

Figure 4: Evolution of the optimal initial disturbance with
time for τ = 24 and Re = 350. Times correspond tot =
0,3,6,9,12,15,18,21,24. The solid line indicates the separat-
ing streamline. Only the top half of the domain is shown to save
space. The mode amplitude is maximum close to the leading-
edge corner.

Figure 4 shows the evolution of the most amplified mode for
τ = 24 atRe = 350 in terms of perturbation vorticity. Note that
the perturbation field grows along the separating streamline of
the recirculation zone, similar to what would be expected for
the Kelvin-Helmholtz shear-layer instability. The perturbation
field begins to damp after it passes the end of the recirculation
zone and is advected further downstream.

Nonlinear saturation

Figure 5 shows the evolved vorticity for the full flow field at

Figure 5: The effect of perturbing the flow with the optimal
mode at different perturbation amplitudes. The vorticity field at
t = 15 is shown for perturbation levels of 0.3%, 3% and 30%.
The optimal mode used to perturb the flow corresponds to the
dominant mode forτ = 24 andRe = 350.

t = 15 for an initial flow field consisting of the steady base flow
perturbed by the optimal perturbation mode corresponding to
τ = 24 andRe = 350. The three cases considered are for maxi-
mum perturbation amplitudes of 0.3, 3 and 30% of the base ve-
locity. These levels indicate the maximum percentage change to
the base velocity field at any point over the entire flow domain.
The lowest amplitude case effectively shows the induced linear
perturbation to the otherwise steady vorticity field causedby
the linear growth of the optimal perturbation mode as it advects
downstream. The two higher amplitude cases show the non-
linear saturation of the perturbed flow. The main outcome of
the nonlinear evolution of the optimal mode is, not surprisingly,
the development of strong vortex rollers, as typically seenin
experiments at this and higher Reynolds numbers (e.g., see ref-
erences given in figure 2). These results also seem to be broadly
consistent with the fact that experimentally it is not possible to
observe a steady flow at Reynolds numbers higher than about
300–350.

Growth of non-optimal disturbances

Real flows, of course, are subject to a variety of disturbances
that may perturb the flow and substantially alter the behaviour
of the flow from the ideal case. Examples include flow turbu-
lence, acoustic perturbations and structural vibration, and flow-
induced vibration. Another interesting generic perturbation to
consider is the impulsive movement of the plate downwards at
a constant, but very small, velocity, after the flow has reached a
steady state. The obvious question is how is such a perturbation
relates to the optimal perturbation modes previously examined?

Figure 6 shows the result if a multiple of the induced pertur-
bation velocity field is added linearly to the steady base flow
and the flow is evolved forward in time. This shows the vortic-
ity field at t = 15 for Re = 350, for plate velocities of 0.0001,
0.001 and 0.01. Even for a perturbation velocity of 0.0001 the
vorticity distribution att = 15 still clearly shows the effect of
perturbing the flow. This figure should be compared with fig-
ure 5 depicting the result for similar computations but using the
dominant optimal mode to perturb the flow. Note that the non-
alignment of vortices between the top and bottom surfaces of
the plate in figure 6 is due to the symmetry characteristics of
the imposed perturbation. In fact, the movement of the plate
efficiently feeds energy into the second most dominant optimal
mode, which has almost the same growth multiplier as the most
dominant mode.



Figure 6: The effect of perturbing the flow by moving the plate
at a constant velocity. The vorticity field att = 15 is shown for
plate velocities of 0.0001, 0.001 and 0.01.

Conclusions

The numerical simulations reported in this paper indicate that
the flow dynamics of shear-layer flapping from a long flat plate
are similar to those for the flow over a backward-facing step and
a number of other related cases. The initial global transition
appears to be a steady to steady three-dimensional transition
around a Reynolds number of 390, with two-dimensional global
temporal instability occurring at Reynolds numbers greater than
450. However, for this case and others, there is rapid amplifi-
cation of optimal perturbation modes which effectively cause
early transition in experiments, triggered by flow noise. At
Re = 350, close to the very upper limit of the Reynolds number
range for steady flow, the energy amplification is approximately
4 orders of magnitude. Moving the plate impulsively upwards
with a very small velocity efficiently transfers energy intothe
second most dominant optimal mode leading to the characteris-
tic shear-layer flapping as the perturbation advects downstream.
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