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Interaction of an unequal-strength vortex pair
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Abstract

In this investigation, two-dimensional simulations of unequal
strength Lamb–Oseen counter-rotating vortex pairs were con-
ducted using a spectral-element method. Simulations were per-
formed at three different Reynolds numbers,Re= 6660, 13340
and20000, and various relative strength of vortex circulation ra-
tios were considered. The strain adaptation and the viscous re-
laxation were shown to be dependent on the relative strength of
the vortices, but independent of Reynolds number. The vortex
pairs converged to a unique solution on the viscous time-scale
for each relative strength value. The completion of the adapta-
tion and the relaxation are determined based on the variation of
the vortex eccentricity which is a ratio of the strain rate to the
vorticity at each vortex center. The viscosity begins to affect the
vortex dynamics once those two processes are completed.

The two-dimensional simulation results also provide the initial
base flows of vortex pairs which will be used in future three-
dimensional stability analysis studies.

Introduction

The phenomenon of self adaptation of a vortex dipole acting un-
der a mutually induced strain field has been discussed in previ-
ous studies of Moore and Saffman [9] and Ting and Klein [12].
In numerical simulations of the vortex pair problems, the two
mechanisms comprising self adaptation (namely inviscid and
viscous adaptation) are essential to alter vortex pairs with any
profiles (e.g. Rankine vortex and Lamb–Oseen vortex) toward
the quasi-steady solution of the Navier–Stokes equations.

Vortex pair formation

When a vortex pair forms, it gradually settles itself by two
mechanisms; the first one is the strain adaptation and the sec-
ond is the viscous relaxation (Sippet al. [11]). Although these
two mechanisms are discussed separately, the current investiga-
tion will not define the time of transition between the two.

The first stage requires two vortices to adapt to the induced
strain from its counterpart. This adaptation has been shown to
be an inviscid process (Le Dizès and Verga [6]), as strain is the
dominant mechanism. This process involves the modification
of the flow structure of each vortex, from axisymmetric to an
elliptic form. This was first addressed in Moore and Saffman
[9] who considered the time evolution of the stream-function of
a vortex under strain.

The second stage is a viscous relaxation. A vortex pair with two
identical circular vortices will evolve towards a physical solu-
tion of the Navier–Stokes equations, where each vortex has an
elliptic cross section. Beyond this, each vortex radius will grow
over time due to viscous dissipation. Batchelor [1] developed
an equation to evaluate the viscous evolution of the radius as a
function of time

a =
√

a2
o +4νt, (1)

whereν is the viscosity of the fluid andt is the time scale.

Equal strength vortex pairs

Previous research has investigated the self adaptation of vortex
pairs in a two-dimensional flow with equal circulation strength
for both co-rotating or counter-rotating orientation (Sippet al.
[11], Le Dizès and Verga [6]). Various vortex profiles have been
considered. The important finding is that the strain adaptation
and the viscous relaxation of a vortex pair are independent of
Reynolds number.

Vortex pairs under different viscous effects have been shown to
evolve to a unique dipole solution which can be described by a
spacing ratio,a/b; of the vortex effective radius,a to the vortex
separation,b (Sippet al. [11]).

Different evolution behavior of various vortex profiles have
been described by measuring the vortex deformation. Sippet
al. [11] used the vortex aspect ratio of the deformed vortex
whereas Le Diz̀es and Verga [6] defined two vortex eccentrici-
ties referred to as the local and global eccentricities. The vortex
deformation here was monitored by computing the local eccen-
tricity which measures the deformation of the flow-field stream-
function at the vortex core (Le Dizès and Verga [6]). Here the
eccentricity,εi , was defined as the ratio of internal strain rate,
Si , with the angular velocity at the vortex core (defined by Le
Dizès and Verga [6] as half of the core vorticity). The internal
strain rate is different from the external strain as the external one
ignores the influence from the interaction between the vorticity
and the strain (Le Diz̀es and Verga [6]). Thus the choice of the
local eccentricity is more representative for the purpose of this
investigation.

Beside the spacing ratio ofa/b and the deformation scale of
εi ; another ratio which describes the vortices relative circula-
tion is defined asΛ; (the weaker vortex circulation divided by
the stronger vortex circulation). In general,Λ is negative for
counter-rotating vortex pairs and positive for co-rotating pairs,
|Λ|= 1 denotes an equal strength (even) vortex pair.

An even vortex pair deforms co-operatively due to the expo-
sure of the equal induced strain. Previous observations de-
scribed such deformation as an elliptic deformation (Leweke
and Williamson [5], Meunieret al. [8]); (though the vortex
pair alignments are different for the co-rotating and the counter-
rotating cases). A co-rotating pair is observed to merge due
to the radius growing by viscous diffusion which increases the
value ofa/b to the point where merging occurs. Due to this,
the current investigation only focuses on counter-rotating vor-
tex pairs.
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Unequal strength vortex pairs

By comparison with equal strength vortex pairs, relatively lit-
tle work has been conducted considering vortex pairs with un-
equal circulations. Ortegaet al. [10] experimentally considered
unequal-strength counter-rotating vortex pairs formed from par-
ticular wing platforms. Three-dimensional instabilities of the
vortex pairs were observed, however the structures and the in-
stability mechanisms driving the growth of the vortex pairs were
not described in detail. Bristolet al. [2] conducted a similar
study of unequal strength vortex pairs analytically and numer-
ically. Co-rotating cases were also considered. The instability
growth rates and the wavenumbers were predicted by a theoret-
ical model and were compared with the results of the numerical
simulations. Self-adaptations and the deformations of the un-
equal strength vortices used in their numerical validation were
not addressed.

By considering only specific planforms, the work of Ortegaet
al. [10] was restricted to particular values ofΛ and Reynolds
number. This limited the general observations they could make
on the instability process affecting the vortex pair. By consid-
ering the strain response of an unequal strength vortex pair, this
investigation serves as the basis for a wider parameter study
which will provide a more general understanding of the phys-
ical mechanisms underpinning dissipation of unequal strength
vortex pairs.

Unequal strength vortex pairs commonly appear in engineer-
ing flows. One typical example is the vortices from the trailing
edge of an aircraft wing. This area is one of active research
in the aviation industry. Although such vortex pairs are three-
dimensional, thorough understanding of the two-dimensional
vortex dynamics underpinning these flows is essential, and is
the focus of the present study. The dependence of the relative
strength and the independence of the Reynolds numbers are de-
scribed. The self-adaptation and the viscous relaxation for a
range of vortex pair circulations (Λ ∈ [−1,−0.1]) are addressed
and compared.

Simulation flow description

The initial base flow was constructed by super-imposing two
Lamb–Oseen vortices with equal radius and an initial spacing
ratio of a/b = 0.25.A schematic representation of the pair ge-
ometry is shown in figure1.

Figure 1: Schematic diagram of a vortex pair

For all simulations, the circulation-based Reynolds number,
Re(= Γ/ν) was set to6660, 13340or 20000, respectively. The
vorticity equation of a Lamb-Oseen vortex in cylindrical co-
ordinates based on the vortex center is

ωaxial =
Γ

πa2◦
e−( r

a◦ )2
, (2)

whereΓ is the vortex circulation andωaxial is the vorticity on
X−Y plane;r is the radius dimension anda◦ is the initial radius
of a vortex. This equation is resolved into thex andy compo-
nents in the numerical model. The positive vortex strength is
held constant at,Γ+ = 3π. The negative vortex circulation,Γ−,
was equivalent to the product of theΛ and the positive vortex
circulation.Λ (∈ [−1,−0.1]) has increments of0.045.

For an even vortex pair, a self-induced velocity ofU = Γ/2πb
propels the pair in a direction perpendicular to the line con-
necting the vortex centers. However, the self-induced velocity
of an uneven pair is not similarly translational because of the
difference of the circulation strengths. Considering two point
vortices, the induced velocity isU+ = Γ−/2πb on the positive
vortex andU− = Γ+/2πb on the negative vortex. The resultant
velocity of the pair,UResultant, can be approximated linearly as a
function ofΓ+, Γ− andb along the line joining two vortices. A
moving reference frame was applied in the simulations to con-
fine the vortex pair movement within the center of the grid. The
details are provided in the numerical formulation section.

Eccentricity and internal strain

We define the eccentricity as a ratio of the internal strain rate,
Si to the magnitude of the half vorticity,|ωaxial|/2 at the vor-
tex center. Following the work of Le Dizès and Verga [6].
This eccentricity is appropriate to describe how the flow stream-
function is adjusted due to the induced strain around the vortex
core from its counterpart because of the involved internal strain
which quantifies the interaction between the strain and the vor-
ticity around the core. The equations for computing the vorticity
(3) in the simulations and the the strain rate tensor (4) are

ωaxial =
(

∂v
∂x
− ∂u

∂y

)
, (3)

τ̃ =
1
2
(

∂ui

∂x j
+

∂u j

∂xi
), (4)

=




∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)

1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y


 ,

whereu andv are the flow field components. The strain rate
magnitude (principal strain ratio) is equal to the largest eigen-
value ofτ̃. The direction of this principal strain rate is parallel to
the corresponding eigenvector of this eigenvalue. Herein strain
is referred to as the internal strain which is measured at the vor-
tex center.

Numerical formulation

A spectral-element method was used in this direct numerical
simulation investigation. High-order Lagrangian polynomials
were employed as the interpolation scheme within each macro
element. A third-order accurate backwards multi-step time inte-
gration scheme was applied. Details of the scheme are provided
in Karniadakiset al. [7]. The spatial accuracy is dependent
on the order of Lagrangian polynomials within each element.
A grid independence study was performed which monitored the
convergence of the eccentricity and the instantaneous vortex cir-
culations.
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The mesh has441 macro elements and the simulations have
been performed at two resolutions. The lower resolution mesh
employed10th- order polynomials within each element. Lower
resolution computations have been completed for200 compu-
tational time units. The flow-field has been sufficiently re-
solved for the self-adaptation and the viscous relaxation. How-
ever, a few results showed that the uneven vortex pair interac-
tion is sensitive with the strength difference whenΛ is close
to −0.1. Moreover, for simulations at high Reynolds number
(up to20000) high numerical noise was observed. These simu-
lations have been recomputed at a higher resolution mesh with
13th- order polynomials, but they were only computed up to100
time units. The vortex interaction up to that point is well beyond
the adaptation and the relaxation completion so that the physics
describing the vortex interaction have already been captured.

The domain is a square of lengthl wherel is 100times the vor-
tex initial radius,a◦. A picture of the grid is shown in figure2.
This domain size has been validated by a domain analysis; that
the domain is sufficiently large for the vorticity at the bound-
aries to be negligible, as the vorticity is an exponential function
in equation (2).

Grid features & Moving reference

The grid is sufficiently refined at its center for the physics un-
derlying the motion of the vortex pairs to be captured. A nar-
row layer of elements is aligned with the the domain bound-
aries. This layer was found to minimise the generation of spu-
rious vorticity due to the interaction between the imposed time-
dependent boundary velocities and the small finite velocities
propagated from the pair.

The instantaneous center of the rotational motion is located by
a linear function ofΓ+, Γ− andb. If only the resultant trans-
lational component of the positive vortex is subtracted from
the velocity field, the negative vortex can still rotate around
the positive vortex but the pair cannot move out of the refined
computational domain. This moving reference mechanism is
implemented when the mesh boundaries are defined as time-
dependent boundaries. The translational velocity component
of the positive vortex is subtracted over the whole computa-
tional domain but imposed against that component along all the
boundaries to balance the motion.

Results – Unequal strength vortex pairs

Having described the formation and the interaction of general
vortex pairs, this section now considers unequal strength vor-
tex pairs. The unequal strength vortex pairs were considered
(with Λ =−0.1,−0.37and−0.73) and compared with an equal
strength vortex pair (Λ = −1.0). The unequal strength vortex
pairs were seen to interact differently to an equal strength pair.
The major differences are summarised as the following points:

(a) Uneven vortices rotated around each other because of the
unequal induced velocities, the rotational motion is similar to
co-rotating vortex pairs but without merging consequently.

(b) The relative rotational speed was found to be inversely de-
pendent on the relative strength of the vortices,Λ.

(c) The vortex pair experienced asymmetric deformation be-
cause of the unequal induced strains. In this current investi-
gation, the deformation of the negative vortex increased when
Λ decreased toward−0.1, whereas the positive vortex deforma-
tion decreased.

(d) The deformation time-scale of each vortex differed from the
other.

Figure 2: The spectral element mesh; the square domain has
side length100a.

Four vorticity contour snapshots from the simulations com-
puted at Re= 20000are presented in figure3 for Λ = −0.1,
−0.37, −0.73 and−1.0. These snapshots were all captured at
t∗vis = 0.015on the viscous time scale (= tν/πa2

o). Each vortex
pair at this stage has reached steady state far beyond the strain
adaptation phase, but the vortex pair evolution continues due to
the viscous effect described in the literature as viscous relax-
ation.

The referenceΛ = −1.0 pair deformed symmetrically into an
elliptic vortex pair. TheΛ = −0.73 pair deformed asymmet-
ric, and rotation of the vortices occurred. The asymmetric
deformation became obvious when|Λ| was decreased. The
Λ =−0.37 and the−0.1 cases show a contrast in the topology.
ForΛ =−0.37, the positive vortex deformed slightly in its weak
vorticity region but the core remained comparatively circular.
On the other hand, the negative vortex was stretched angularly
and compressed radially with respect to the positive vortex cen-
ter. The biggest deformation is the most extremeΛ case. For
theΛ =−0.1 pair, the entire positive vortex remained relatively
circular while the negative vortex deformed extensively. The ro-
tational speed increased with the increment inΛ. Table1 gives
the instantaneous eccentricity values of the vortices shown in
figure3.

Instantaneous Eccentricity –εi (t∗vis = 0.015)
Λ −0.1 −0.37 −0.73 −1.0

Positive vortex 0.012 0.063 0.126 0.170
Negative vortex 1.233 0.407 0.226 0.170

Table 1: Instantaneous eccentricity,εi of the vortices of the pairs
with differentΛ =−0.1,−0.37,−0.73and−1.0; Results com-
puted att∗vis = 0.015on the viscous time scale, Reynolds num-
ber= 20000.

Results – Strain adaptation

The strain adaptation phase involved the modification of the
flow structure surrounding the vortices to adapt the induced
strain from its counterpart. From the work of Le Dizès and
Verga [6], the co-rotating vortices deform due to the strain in
the vortex cores and the weaker vorticity regions. But the de-
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Figure 3: Vorticity contour snapshots ofΛ = −0.1, −0.37,
−0.73 and−1.0. Re= 20000. Solid and dashed lines show
positive and negative vorticity, respectively, and contour levels
are arbitrary.

formation process is not uniform across the vortex. The weaker
vorticity region experienced more complicated flow interaction
and became more elliptic than the core.

Similar interactions were observed in our simulations. How-
ever, the modification of the flow structure around the negative
and the positive vortices were not alike because of the unequal
induced strains. In particular, the deformation magnitudes and
deformation time-scales of the vortices were different. In figure
4, a time-series snapshot of the simulation ofΛ = −0.415at a
lower Reynolds number= 13340illustrates the flow structure
evolution during the strain adaptation phase. The direction of
the principal strain at each vortex center is also displayed. The
time-series show is from the beginning of the simulation until
the flow interaction between the two vortices was settled. The
settlement of the flow was monitored by the oscillation of the
eccentricity shown in figure7 which is att∗vis =≈ 7.5e−3. The
moment is determined by the amplitude of the eccentricity to be
within 1%of the mean eccentricity.

The flow modification begins with the negative vortex pulled
around the positive vortex and deformed. The core of the nega-
tive vortex rapidly deforms into a elliptic shape while the posi-
tive core remains relative circular. The weaker vorticity regions
of both vortices displayed elliptic deformation (t∗vis = 0.67e−3
& 1.35e−3). The negative vortex evolved more rapidly. Vor-
tex filaments were observed to emanate from the vortex core of
each vortex (t∗vis = 2.70e−3, 3.60e−3 & 4.72e−3). The fil-
ament emanation is stronger from the negative vortex which is
under a stronger induced strain. These filaments were observed
to decay rapidly. The outer region of the positive vortex became
steady earlier as the emanation eased when some unsteady ac-
tivities occurred around the negative vortex (t∗vis = 5.85e− 3
& 6.75e− 3). At the last three snapshots (t∗vis = 7.65e− 3 &
9.45e−3), the vortex pair have formed into an asymmetric el-
liptic vortex pair which is similar to the example in figure3 of
Λ =−0.37.

The principal strain direction for both vortices was observed to
be maintained at around±45◦ with respect to the imagined line

Figure 4: Snapshots of aΛ =−0.415vortex pair evolution dur-
ing the strain adaptation on the viscous time scale.Re= 13340.
Contour lines and shading is as per Figure 3.

connecting two vortices. Although it varied slightly att∗vis =
0.67e− 3 & 1.35e− 3, it gradually settles to about±45◦ ori-
entation. The rotational motion does not appear to impact the
strain direction. The strain, the vorticity and the eccentricity
of the Λ = −0.415 pair shown in figure4 were plotted on the
viscous time scale(Re= 13340) in figure5, 6 and7.

The peak vorticity of each vortex throughout the simulation de-
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Figure 5: Strain ofΛ = −0.415vortex pair plotted against the
viscous time scale,Re= 13340. The solid line represents the
positive vortex and the dashed line is negative.
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Figure 6: Vorticity ofΛ = −0.415 vortex pair plotted against
the viscous time scale,Re= 13340. The solid line represents
the positive vortex and the dashed line is negative.

cayed due to viscosity as shown in figure6. The vorticity decay
rates,∂ω/∂t∗vis are computed to be|32.21| for the positive vortex
and|13.56| for the negative vortex. Both curves are assumed to
be linear. The strain curves in figure5 show a similar trend to
the eccentricity curves shown in figure7. Both figures begin
with overshoots for the vortices and then become steady in a
linear trend. The overshoots on both figures correspond to each
other (following from the vorticities constantly decay with time
from the beginning). Therefore, it is reasonable to state that
the first stage of the vortex pair interaction must be dominated
by the strain instead of the viscous effect. Although the eccen-
tricity here is mainly concerned about the vortex core and does
not take account of the mean vortex structure changes, the au-
thors have assumed that the difference between the local and the
global eccentricities was small as the vortices are concentrated
in this investigation.

Moreover, the modification of the flow has different time scales
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Figure 7: Eccentricity ofΛ =−0.415vortex pair plotted against
the viscous time scale,Re= 13340. The solid line represents the
positive vortex and the dashed line is negative.

for each vortex in the unequal strength pair. In figure7, os-
cillations of the negative vortex eccentricity are maintained for
longer and have larger amplitudes. The oscillation duration is
consistent with the vorticity contour snapshots that relatively
stronger activities occurred in the negative vortex and they took
longer to settle.

Results – Viscous relaxation

After the strain adaptation, the viscous effect dominated the
flow evolution. Previous work has shown that the viscous effect
can modify any vortex type toward the common quasi-steady
solution of the Euler equation, the Gaussian vortex (Sippet
al. [11] and Le Diz̀es and Verga [6]). By choosing a Lamb–
Oseen vortex profile, we have avoided considering the effect of
any non-Gaussian vortex on the adaptation and relaxation. The
Lamb-Oseen vortex is a vortex with Gaussian profile.

The evolution of the unequal-strength vortex pair diverged to
two different states. The divergence reflected how one vortex
deformed more than the other. The deformation difference is
controlled by the unequal induced strain independent of viscous
effects. The eccentricity plots at different Reynolds numbers
(6660,13340and20000) of two Λ values−0.415and−1.0 are
shown in figure8. For reference, theΛ = −1.0 case is plotted
which has identical results for both vortices over time. The ec-
centricities of all vortices converged to a unique state which was
independent of Reynolds number. This was consistent with the
finding of the previous work on equal-strength vortex pair (Sipp
et al. [11] and Le Diz̀es and Verga [6]).

The oscillation frequency was found to be a function of viscos-
ity. All four curves show the same behavior. The eccentricity
oscillation amplitude about the mean value appears to be af-
fected by the induced strain or the vortex circulation. The in-
duced strain experienced by the negative vortex is identical ini-
tially for all Λ. The negative vortex circulation decreases when
Λ is increased toward−0.1 from −1.0. The oscillation ampli-
tude in figure8(a) is greater and the oscillation wavelength is
longer for the vortex with a weaker circulation.

On the other hand, the positive circulation was identical ini-
tially for the positive vortex, but the induced strain varied with
Λ. In figure8(b), the eccentricity oscillation has a bigger am-
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Figure 8: Eccentricity plotted against the viscous time scale. (a)
Negative vortex (b) Positive vortex.Λ = −0.415(thick) & −1
(thin). Re= 20000(solid),13340(dash)& 6660 (double-dot)

plitude when the induced strain is stronger but the oscillation
wavelength is shorter. The positive vortex under a weaker in-
duced strain oppositely has a longer wavelength oscillation but
smaller magnitude.

As the viscosity affected the flow at all times, the circulation
and the induced strain should decay with an equal rate. Thus
the positive vortex circulation equates to the induced strain on
the negative vortex whenΛ was varied.

Conclusions

Unequal strength counter-rotating vortex pairs have been in-
vestigated two-dimensionally using a spectral element method.
The vortex pair relative strength,Λ, was varied from−1.0 to
−0.1. Simulations have been carried out at three Reynolds num-
bers:6660, 13340and20000(based on the circulation).

The unequal strength vortex pair interaction was shown to be
dependent onΛ. The difference of the induced strain on each
vortex caused the vortices to evolve with distinct time scales
and deform at different magnitudes. Eccentricity was defined
to represent that magnitude. For an unequal vortex pair, the
negative (weaker) vortex required more time than the positive

(stronger) vortex to settle and the interaction dynamics is also
stronger. However, the final states of the vortices were inde-
pendent of the Reynolds number, and the converged vortex pair
structure was only dependent on the initial spacing ratio and the
Λ.

An evolution of Λ = −0.415 vortex pair atRe= 13340was
shown. The positive vortex was found to have a higher vorticity
decay rate than the negative vortex. The principal strain direc-
tion in was observed to have a slight variation at the beginning
of the simulations and settled to about±45◦ orientation later on
with respect to the a line joining two vortices.
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