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Abstract

Recent preliminary experiments have indicated that a neutrally
buoyant tethered sphere develops a large diameter quasi-circular
trajectory, unlike the oscillations observed for non-neutrally
buoyant tethered spheres. This shows similarities to the path
of buoyant bubbles, which may follow zig-zag and/or helical
paths depending on the Reynolds number. The current study
explores the behaviour using well resolved numerical simula-
tions. The forces like tension, buoyancy and fluid force are con-
sidered. It is found that there exist six different flow regimes
within the range of the Reynolds number = [50, 800] according
to the sphere response. Regime I (Re = [50, 205]) and Regime II
(Re = [210, 260]) are characterised by steady axisymmetric flow
structure without body movement except the loss of axisymme-
try in Regime II. The sphere starts to vibrate from Regime III
(Re = [270, 280]). Regime IV (Re = [300, 330]) shows sup-
pressed body oscillation and steep decrease of off-centered dis-
tance in the plane normal to streamwise direction (yz plane). In
Regime V (Re = [335, 550]), the sphere oscillates around (0,
0) in yz plane. The sphere of Regime VI (Re = [600, 800]) os-
cillates rather irregularily. The transitions are compared with
those for a fixed sphere. In addition, the effect of moving away
from neutral buoyancy is examined.

Introduction

Vortex-induced vibration (VIV) of structures is of practical in-
terest to many fields of engineering; for example, it can cause
vibrations of heat exchanger tubes, and it influences the dynam-
ics These are only a few in a number of problems where VIV is
important. The practical significance of VIV has led to a large
number of fundamental studies, many of which are discussed in
the comprehensive reviews [15, 22]. As the wakes and the vor-
tex shedding patterns of bluff bodies are closely related to VIV,
the literature of the sphere at rest is worth to be reviewed. The
review of VIV of the tethered bluff bodies follows.

Sphere at Rest

The wake transitions for another widely studied bluff body, the
sphere, are remarkably different to those of the circular cylin-
der [6, 12, 19, 18]. A major difference in the wake transition
behaviour of the sphere and the circular cylinder wake is that
the sphere wake becomes asymmetrical prior to a transition
to unsteady flow, whereas the cylinder wake does not become
asymmetrical until the wake goes unsteady [20]. For the sphere
wake, the transition from attached to separated flow at the rear
of the sphere has been found from direct numerical simulations
to beRe1 = 20 [19, 6]. As the Reynolds number increased, the
wake remains steady and axisymmetric up toRe2 = 211 [6].
The transition to asymmetry is through a regular bifurcation,
i.e. steady to steady flow [19]. Their studies located the transi-
tion at Re2 = 212. [6], experimentally and numerically, found
the resulting wake to undergo a regular bifurcation through a
shift of the steady recirculating bubble behind the sphere from

the axis. The remarkable early dye visualizations of Magar-
vey and Bishop [9] found that a double-threaded wake exists
in the range ofRe = [200, 350]. Since then, more accurate
experiments and numerical simulations have refined this range
considerably. These two threads of vorticity trail downstream
from the recirculation bubble. This wake structure has also
been predicted numerically by Tomboulides and Orszag [19].
The steady asymmetric wake undergoes a further transition to
unsteady flow atRe = 277.5 as determined by stability analy-
sis [11]. Tomboulides and Orszag [19], and Johnson and Pa-
tel [6] support this bifurcation scenario, with unsteady wakes
being observed forRe > 280. In all cases, the unsteady wake
consisted of hairpin-shaped vortex loops shedding downstream
from the sphere, in the same plane as that of the initial steady
asymmetric structures. The periodic wake of the sphere remains
planar-symmetric up toRe ≈ 375, as observed numerically by
Mittal [10].

Tethered Circular Cylinder

One of the simplest extensions to the classical problem of an
elastically mounted oscillating cylinder is a circular cylinder
whose motion is confined to an arc by a restraining tether. In
contrast to the elastically mounted cylinder, little progress has
been made regarding the fluid-structure interaction of a tethered
body. This system geometry has practical applications in sub-
merged pipelines, offshore spar platforms and light craft teth-
ered in air. It is also of interest because it exhibits flow-induced
oscillation where the combined effects of in-line oscillation and
transverse oscillation may be observed.

Recently, Ryanet al. [14] numerically studied the tethered
cylinder system with a spectral element method. It was found
that, at large mean layover angles, the tethered cylinder would
behave in a fashion similar to the elastically mounted cylinder
with low mass ratio and oscillate in either the upper or lower
branch of shedding depending on the reduced velocity,U∗, and
the mass ratio,m∗. Here,U∗ is the flow velocity normalised
by cylinder diameterD and frequency of body oscillationf ,
andm∗ is the body mass normalised by the displaced mass of
fluid. They noted the cylinder system to be strongly influenced
by the mean layover angle, as this parameter determined if the
oscillations would be dominated by in-line oscillations, trans-
verse oscillations or a combination of the two. Three branches
of oscillation are noted, an in-line branch, a transition branch
and a transverse branch. The in-line oscillation for small lay-
over angle corresponds to a classic Karman street wake, and
the transverse oscillation for larger layover angle at higher flow
speeds corresponds to the formation of vortex pairs. Within the
transition branch, the cylinder oscillates at the vortex shedding
frequency and modulates the drag force such that the drag signal
is dominated by the lift frequency. It was found that the mean
amplitude response is greatest when the cylinder is oscillating
predominantly transverse to the fluid flow, and the oscillation
frequency is synchronized to the vortex shedding frequency of
a stationary cylinder, except at very high reduced velocities.
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Tethered Sphere

Both numerically and analytically, the tethered cylinder pro-
vides a simplification to the fully three-dimensional problem
of a tethered sphere. The majority of early work on tethered
spheres was concerned with the action of surface waves on teth-
ered buoyant structures [4, 16]. They employed empirically ob-
tained drag and inertia coefficients for use in Morison’s equa-
tion. The tethered sphere was found to vibrate vigorously due
to the waves as expected. However, the coupling of the wave
motion and the dynamics of the sphere made it difficult to un-
derstand the underlying dynamics of the sphere motion.

The research concerning fully submerged tethered bodies was
first examined by Govardhan and Williamson [2] who found
that a tethered sphere does indeed vibrate in a uniform flow.
In particular, they found that it will oscillate vigorously at a
transverse peak-to-peak amplitude of about two diameters. The
transverse oscillation frequency was at half the frequency of the
in-line oscillations, although the natural frequencies of both the
in-line and transverse motions were the same. In the Reynolds
number range of their experiments (Re < 12,000), the response
amplitude was a function of the flow velocity. However, con-
clusions regarding the synchronization of natural and vortex
formation frequencies were lacking due to the large scatter in
the literature of the vortex formation frequency in the wake of a
sphere. Govardhan and Williamson [2] noted that the maximum
root-mean-square (RMS) amplitude was approximately 1.1 di-
ameters, regardless of the mass ratio. It was further found that
the vortex shedding frequency for a fixed sphere matched the
natural frequency for the tethered sphere at the same reduced
velocity,U∗ ≈ 5, at which the local peak in the RMS response
occurred. This suggests that the local peak in the RMS response
is caused by a resonance between the natural frequency of the
tethered body and the wake vortex shedding frequency, and is
known as Mode I response. For high mass ratios (typically
m∗ ≫ 1), the oscillation frequency at highU∗ tended toward
the natural frequency. However, it is interesting to note that the
oscillation frequency for low mass ratios (m∗ < 1) at highU∗

did not correspond to either the natural frequency or the vortex
shedding frequency for a fixed sphere. Through wind tunnel
experiments, Jauvtiset al. [5] were able to study mass ratios
betweenm∗ = 80 andm∗ = 940 and reduced velocities in the
range ofU∗ = [0, 300]. For the sphere ofm∗ = 80, they found
a new mode of vibration (which they define as Mode III) and
which extends over a broad regime ofU∗ from 20 to 40.

Govardhan and Williamson [3] extended their previous study on
sphere vortex-induced vibration and found that the body oscil-
lation frequency (f ) is of the order of the vortex shedding fre-
quency of fixed body (fvo) and there exist two modes of periodic
large-amplitude oscillation, defined as modes I and II [2, 21],
separated by a transition regime exhibiting non-periodic vibra-
tion. In the case of the very light tethered body, the transition
between modes is quite distinct, especially when the response
amplitude is plotted versus the parameter(U∗/ f ∗)St which is
equivalent tofvo/ f , where a jump between modes is clearly ex-
hibited They noted that the phase of the vortex force relative
to sphere dynamics is quite different between the modes I and
II. This difference in the phase of the vortex force is consistent
with the large difference in the timing of the vortex formation
between modes, which was observed from the vorticity mea-
surements for the light sphere vibrations. This mode cannot be
explained as the classical lock-in effect, since between 3 and 8
cycles of vortex shedding occurs for each cycle of sphere mo-
tion. For reduced velocities beyond the regime for Mode III,
another vibration mode was discovered that grew in amplitude
and persisted to the limit of flow speed in the wind tunnel [5].
The sphere dynamics of this Mode IV were characterized by in-

Figure 1: Coordinate system and geometry of tethered sphere
and forces

termittent bursts of large-amplitude vibration, in contrast to the
periodic vibrations of Modes I, II and III.

Pregnalato [13] numerically found that a buoyant tethered
sphere oscillates at large amplitude over a wide range of re-
duced velocity, which is similar to the previous studies ([2, 21]).
He adopted a spectral element method and a coordinate trans-
form to solve the combined fluid-structure system. Even though
the flow is within laminar regime (Re = 500), he observed the
Modes I, II and III which are shown in [5].

Formulation

The tethered sphere system is descirbed in Figure 1, and the
forces acting on the sphere are a tension (T ), a buoyancy force
(B), the fluid force in the streamwise direction (Fx), the lateral
direction (Fy) and the transverse direction (Fz). The tether is
assumed to be inextensible, which has been shown to be rea-
sonable within this parameter range by the previous experimen-
tal studies. It is also assumed that the tether is attached to the
centre of mass, and it has showed negligible effect on the body
dynamics as long as the tether length (L) is long enough com-
pared to the size of the body,e.g. L≥ 5D, whereD is diameter
of sphere or circular cylinder ([13, 14]).

The tension is linked to the other force components by:

T = Fx cosθ+(Fy +B)sinθcosφ+Fz sinθsinφ, (1)

whereθ, the tether angle, is the angle between the tether and
the streamwise (x) axis, andφ is the the inclination angle of the
sphere in the phase (yz)plane. For reference,θ plus the layover
angle of [14] equals 90o.

The equations of motion of the sphere are given by:

mẍ = Fx−T cosθ, (2)

mÿ = (Fy +B)−T sinθcosφ, (3)

mz̈ = Fz−T sinθsinφ. (4)

The dynamics of a tethered sphere were investigated for mass
ratio of m∗ = 1.0 which is neutrally buoyant. The case of
m∗ = 0.91 was also studied to evaluate the effect of introduc-
ing a small degree of buoyancy.
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Computational Method

Time Advancement

A high-order, three-step, time-splitting scheme was employed
in the solution of the velocity and pressure field. The three
steps account for the convection, pressure and diffusion terms
of the Navier-Stokes equation. In the first of the three substeps,
the convection term was evaluated using a third order Adams-
Bashforth scheme and Adams-Moulton scheme. Then, the pres-
sure field was evaluated by forming a Poisson equation by tak-
ing the divergence of the equation for the pressure, and enforc-
ing continuity at the end of the substep. The diffusion term was
evaluated with the theta form of the Crank-Nicholson scheme.
This results in a Helmholtz equation. Both the Poisson equation
for the pressure and the Helmholtz equations for the viscous
terms lead to linear matrix problems, once the equations are
discretised in space. The matrices are inverted at the start of the
time-stepping procedure; subsequently, the effects of continuity
(pressure) and viscous diffusion at each timestep only involve
matrix multiplication. Because the convection term is nonlin-
ear, it is generally treated with an explicit (third-order) Adams-
Bashforth method. For the VIV case, there is strong coupling
between the fluid and the structural response. The explicit ap-
proach becomes unstable and the overall time-stepping has to
be treated semi-implicitly. This is done by iterating through
the three substeps and structural update until the velocity and
pressure fields, and the cylinder motion, converge. Note that
except for the first iteration, the advection term is treated by a
semi-implicit Adams-Moulton method, which improves the sta-
bility. Typically, it takes two or three outer iterations to establish
convergence; however, the timestep can generally be chosen to
up to an order of magnitude greater than the Courant timestep,
which controls the non-iterative approach used for the forced
oscillation simulations.

Spatial Discretisation

Fully three dimensional simulation was performed using a spec-
tral element/Fourier spectral method with a global Fourier spec-
tral discretisation in the third dimension, which is the azimuthal
direction in the present study. This has been employed previ-
ously for the case of the flow past a circular cylinder [8, 17].

The spatial discretisation consists ofF equi-spaced planes in
the azimuthal direction, each consisting of an identical spec-
tral element mesh in two (streamwise and transverse directions)
dimensions. The flow variables are transformed into Fourier
space in the azimuthal direction for each node on the spectral
element mesh using a fast Fourier transform. This decouples
the problem into a set ofF Fourier modes which are then solved
independently for the linear operators.

The spatial domain in the streamwise and transverse direc-
tions was discretised into a number of macro elements, with
the majority concentrated in the wake and boundary-layer re-
gions. Some care was taken to construct a near-optimal mesh,
and domain size and resolution studies were conducted to val-
idate the predictions. Within each element, the mesh geom-
etry as well as the velocity and pressure fields, were repre-
sented by eighth-order tensor-product polynomials associated
with Gauss-Lobatto-Legendre quadrature points. Details of the
approach and implementation have been provided by Thompson
et al. [17]. Higher-order boundary conditions in Karniadakis
et al. [7] are used for the pressure gradient at no-slip bound-
aries and at the far-field boundaries. At the outlet, the pressure
is fixed and the normal velocity gradient is set to zero.

Figure 2: The first mesh used for a tethered sphere system,
showing macro element. This mesh is extended along the az-
imuthal direction with 24 Fourier modes.

Figure 3: The second mesh used for a tethered sphere system,
showing macro element. This mesh is extended along the az-
imuthal direction with 24 Fourier modes.

Grid Resolution

A grid resolution study was performed to assess the suitability
of the mesh used for all of the simulations of the flow past a
tethered sphere. At Reynolds number 300, the flow past a sta-
tionary sphere is known to be unsteady and characterized by
the presence of periodically shed vortices. Based on this, the
Reynolds number of 300 was selected, and the Strouhal number
(St) was computed to compare the results to the established data
from previous studies.

The mesh has 5D inlet/side length and 20D outlet length and
the number of macro elements is 239, as shown in Figure 2.

The resolution of the grid was improved by increasing the order
of the polynomial interpolantsp (p-refinement in the finite ele-
ment method) in discrete steps from 5 to 9. Except forp = 5, no
difference was shown inSt over the range ofp. The obtained
Strouhal number of 0.134 was favorably matched with the value
of Johnson and Patel [6] (St = 0.137) and of Tomboulides and
Orszag [19] (0.136). Regarding the number of Fourier modes of
spectral element method, Ghidersa and Dušek [1] showed that 6
Fourier modes were sufficient in capturing the secondary insta-
bility for Re = 275. However, the breaking of planar symmetry
for Re≥ 350 means that more modes are required to accurately
resolve the vortices not only because they shed asymmetrically
but also because they are coupled with the motion of the sphere.
Therefore, together with the need for additional resolution to
handle an increase ofRe up to 800, 24 Fourier modes was se-
lected.

To confirm the validity of the choice for the number of Fourier
modes, each fluid force coefficient was determined while in-
creasingp from 5 to 9 for 24 Fourier modes. Table 1 shows
that p ≥ 6 is enough to accurately capture the forces acting on
the tethered sphere. Considering this result and the expected
long computational time for three-dimensional simulations, it
was decided thatp = 6 would be used to simulate the tethered
sphere.

Figure 4: The third mesh used for a tethered sphere system,
showing macro element. This mesh is extended along the az-
imuthal direction with 24 Fourier modes.
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p value Cx Cy Cz

5 0.679 -0.0207 0.057
6 0.677 0.0025 0.062
7 0.677 0.0027 0.061
8 0.677 0.0027 0.061
9 0.678 0.0028 0.061

Table 1: Streamwise fluid force coefficientCx, transverse fluid
force coefficientCy and lateral fluid force coefficientCz with
the increase of polynomial interpolantp. The results are for
the tethered sphere withm∗ = 1.0 and 10D tether length. All
coefficients are mean values.

Mesh r value θ value

first (Figure 2) 1.51 4.1
second (Figure 3) 1.52 3.9
third (Figure 4) 1.52 4.1

Table 2: r is the distance from the axis of symmetry (x) to the
sphere, andθ is the angle between the tether andx axis. The
results are for the tethered sphere withm∗ = 1.0 and 10D tether
length. All values are mean values.

As well as the previous mesh used, two additional domains have
been used for resolution study. The first mesh was the previous
mesh shown in Figure 2. The second shown in Figure 3 has 15D
inlet length and 22D outlet length, which are longer than those
of first one, and 5D sides lengths. The number of macro ele-
ments is 251. The third and the largest mesh has 15D inlet/side
length and 40D outlet length and has 338 macro elements. This
mesh is shown in Figure 4. The resultant mean values ofr (off-
centered distance) and φ for the first, second and third mesh
have little difference, which is shown in Table 2. This indi-
cates that the first mesh has enough resolution for the tethered
sphere simulation. Here, ther is a new parametre defined by
r =

√

y2 + z2 and is explained more in the next section.

Results

Using the spectral element/Fourier spectral code, the simula-
tions have been performed using high performance computers
in the range ofRe = [20, 800]. All simulations have been run in
parallel to reduced the calculation time, and some simulations
have been run over 4000 non-dimensional time units to reach
stabilized conditions. ForRe = 400 case, the calculation time to
compute up to 4000 time units was about 24 hours. The initial
Reynolds numbers were chosen in the range ofRe = [50, 800]
in steps of 50 and intermediate Reynolds numbers between any
two neighboring Reynolds numbers were selected if any differ-
ence in body dynamics was observed.Re = 205, 210, 270, 280
and 330 are some examples chosen by this process. The tether
length was chosen to 10D for all cases. The effect of the tether
length will be investigated later. The initial value ofθ was set
to 5o andφ was to 0o. Theseθ andφ values were chosen due
to the calculation time needed to reach to the converged solu-
tion. Several different values ofθ (15o, 30o, 45o, and 60o), and
φ (5o and 10o) have been tested, but needed more time to the
converged solutions which showed little difference in the terms
of ther, amplitude, and frequency of the sphere.

Off-Centered Distance : r

To quantify the body response, a parameterr is defined and
named theoff-centered distance, which means the distance from
the line in the streamwise direction passing through the tether
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Figure 5: Off-centered distance,r, of neutrally buoyant sphere

pivot to the centre of the body in yz plane in Figure 1. Because
the orientation of vortex shedding for a fixed sphere in uniform
flow is quite arbitrary,r is a better quantity thany or z for a neu-
trally buoyant tethered sphere in which the effect of tension is
very small. The mean valuer goes to zero if the body moves or
oscillates around the axis of symmetry. Ther was calculated by
r =

√

y2 + z2. The body oscillation amplitude and frequency
have also been calculated from ther. Figure 5 shows the time
averaged (mean) value ofr calculated from mean values ofy
andz.

Amplitude

It is found that as theRe is increased, the tethered sphere expe-
riences six different flow regimes, which are similar to those of
the fixed sphere. The definition of the regimes are determined
mainly by the amplitude and the frequency of the body oscil-
lation. In addition, the mean value ofr is used to identify the
first and the second flow regimes. The first regime (Regime I)
is characterised by steady axisymmetric flow structure without
body movement. Its Reynolds number range isRe≤ 205 based
on the Reynolds numbers where the numerical simulations have
been made. The sub states of a separation bubble forming at
the rear of the body are contained within this regime because
they maintained an axisymmetry flow field. The second regime
(Regime II) is also steady but with the loss of axisymmetry.
The breaking of axisymmetry is observed fromRe = 210, and
axisymmetry is replaced by planar-symmetry with the appear-
ance of the double-threaded wake. This regime is observed up
to Re = 250.

In Regime II, the mean ofr increases asRe is increased. As
Reynolds number increased further, the sphere starts to vibrate
from Re = 270. It was named Regime III. This critical Reynolds
number is slightly lower than that of a fixed sphere (Re ≈ 280
[19]). This trend in critical Reynolds number for a tethered
sphere is also observed in the transition to Regime II. TheRe is
211 for a fixed sphere [6], and 205 for a tethered one. Regime
IV begins atRe = 300. It shows suppressed body oscillation
and a steep decrease of the mean ofr. In the range ofRe =
[335, 500] (Regime V), the mean ofr goes to zero which means
the body oscillates around (0, 0) in the plane normal to stream
i.e. yz plane in Figure 1. The amplitude in this regime gradu-
ally increases asRe is increased. In Regime VI, the vibrations
become chaotic and the sphere undertakes chaotic wandering,
having no restoring buoyant forces. The oscillation amplitude
becomes less meaningful and very long integration times will
be required to determine more precisely the time-mean position
of the sphere.

583



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500  600  700  800  900

A
/D

Re

I
II

III
IV
V

VI

Figure 6: Response of tethered sphere, neutrally buoyant case :
Amplitude ofr
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Figure 7: Response of tethered sphere, neutrally buoyant case :
Frequency ofr

Frequency

The frequency response of the sphere is expressed by a Strouhal
number (St) based on the dominant body oscillation frequency
in radial direction (f ), freestream velocity (U), and sphere dia-
mater (D). Due to the steady flow of Regime I and II, and the
chaotic body motion of Regime VI, the frequencies of Regime
III, IV and V are more meaningful in Figure 7. Only theSt of
0.108 for Regime V is close to (still less than) that of the fixed
sphere (St = 0.134). TheSt for Regime III is 0.068, and 0.217
for Regime IV.

Trajectory

To identify the vibration shape, the trajectories in yz plane of
Regime III, IV and V are investigated. It should be noticed that
the orientation of the motion is arbitrary, because the start of
vortex shedding for the neutrally buoyant sphere is quite arbi-
trary. The variation of oscillation amplitudes shown in Figure 6
can be observed in Figure 8 Figure 9. These figures indicate
that the shape of the body oscillation of the unsteady regimes is
close to straight line except forRe = 280 and 500. The differ-
ence in two trajectories seems due to the transition between the
regimes, asRe = 280 and 500 are located at the transition points
between Regime III and IV, and Regime V and VI respectivley.
In the numerical simulations, those two Reynolds numbers are
the last ones of the corresponding regimes.

Re=270 Re=280 Re=300 Re=330 Re=400 Re=450 Re=500

Figure 8: Trajectory in yz plane. Regime III, IV and V. Both
axes are of the same scale.

Re=270 Re=280 Re=300 Re=330 Re=400 Re=450 Re=500

Figure 9: Trajectory in xy plane. Regime III, IV and V. Both
axes are of the same scale.

Vortex Structure

The vortex structure of each regime is shown in Figure 10 and
Figure 11. The vorticity plot of Regime I is not presented be-
cause of its axisymmetry. Figure 10 is the plots of streamwise
vorticity. The sphere is off-centred from the axis of symme-
try in Regime II although the flow is steady. This is due to the
asymmetry of the double-threaded vortex loops. From Regime
III, the vortices start to shed periodically, however, the hairpin-
shaped vortex loops do not appear as can be seen in the pic-
ture corresponding toRe = 270 in Figure 10.The hairpin-shaped
vortex loops appeared from Regime IV. For the regimes where
the hairpin vortex loops appear, the Hussain field is shown in
Figure 11 to identify the difference of the loops between the
regimes. It seems that these vortex loops maintain their planar-
symmetry in Regime IV, but begin to lose the symmetry within
Regime V. The sphere in Regime VI (Re = 550) shows irregular
behaviour and a vorticity contour is shown in Figure 11. After
the flow become irregular, the difference in the vortex sturucture
is hard to identify.

Conclusions

It is found that there exist six different flow regimes within the
range of the Reynolds number = [50, 800]. Regime I (Re =
[50, 205]) shows steady axisymmetry flow structure without
body movement. Regime II (Re = [210, 260]) is also charac-
terised by steady flow structure except the loss of axisymme-
try. The sphere starts to oscillate at Regime III (Re = [270,
280]). Regime IV (Re = [300, 330]) shows suppressed body
oscillation and the off-centered distance decreases rapidly. In
Regime V (Re = [335, 550]), the sphere vibrates around (0,0) in
yz plane. In Regime VI (Re = [600, 800]), the sphere oscillates
rather irregularily at larger amplitude than other regimes. Of
note is that, in spite of some similarity, the transitions between
regimes appear at lower Reynolds numbers than those for the
fixed sphere.
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Figure 10: Streamwise vorticity. Each picture corresponds to Regime II,III, IV, V and VI from the left.

Figure 11: Hussain field. Each picture corresponds to Regime IV, V andVI from the left.
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[1] Ghidersa, B. and Dǔsek, J., Breaking of axixsymmetry
and onset of unsteadiness in the wake of a sphere,J. Fluid
Mech., 423, 2000, 33–69.

[2] Govardhan, R. and Williamson, C. H. K., Vortex-induced
motions of a tethered sphere,J. Wind Eng. Ind. Aerodyn.,
69-71, 1997, 375–385.

[3] Govardhan, R. and Williamson, C. H. K., Vortex-induced
vibrations of a sphere,J. Fluid Mech., 531, 2005, 11–47.

[4] Harlemann, D. and Shapiro, W., The dynamics of a sub-
merged moored sphere in oscillatory waves,Coastal Eng.,
2, 1961, 746–765.

[5] Jauvtis, N., Govardhan, R. and Williamson, C. H. K., Mul-
tiple modes of vortex-induced vibrations of a sphere,J.
Fluids Struct., 15, 2001, 555–563.

[6] Johnson, T. A. and Patel, V. C., Flow past a sphere up to a
Reynolds number of 300,J. Fluid Mech., 378, 1999, 19–
70.

[7] Karniadakis, G. E., Israeli, M. and Orszag, S. A., High-
order splitting methods of the incompressible Navier-
Stokes equations,J. Comp. Phys., 97, 1991, 414–443.

[8] Karniadakis, G. E. and Triantafyllou, G. S., Three-
dimensional dynamics and transition to turbulence in the
wake of bluff objects,J. Fluid Mech., 238, 1992, 1–30.

[9] Magarvey, R. and Bishop, R., Wakes in liquid-liquid sys-
tems,Phys. Fluids, 4, 1961, 800–805.

[10] Mittal, R., Planar symmetry in the unsteady wake of a
sphere,AIAA J., 37, 1999, 388–390.

[11] Natarajan, R. and Acrivos, A., The instability of the steady
flow past spheres and disks,J. Fluid Mech., 254, 1993,
323–344.

[12] Ormières, D. and Provansal, M., Transition to turbulence
in the wake of a sphere,Phys. Rev. Lett., 83, 1999, 80–83.

[13] Pregnalato, C. J.,The Flow-Induced Vibrations of a Teth-
ered Sphere, Ph.D. thesis, Monash University, Melbourne,
Australia, 2003.

[14] Ryan, K., Pregnalato, C. J., Thompson, M. C. and Houri-
gan, K., Flow-induced vibrations of a tethered circular
cylinder,J. Fluids Struct., 19, 2004, 1085–1102.

[15] Sarpkaya, T., A critical review of the intrinsic nature
of vortex-induced vibrations,J. Fluids Struct., 19, 2004,
389–447.

[16] Shi-Igai, H. and Kono, T., Study on vibration of sub-
merged spheres caused by surface waves,Coastal Engi-
neering Japan, 12, 1969, 29–40.

[17] Thompson, M. C., Hourigan, K. and Sheridan, J., Three-
dimensional instabilities in the wake of a circular cylinder,
Exp. Therm. Fluid Sci., 12, 1996, 190–196.

[18] Thompson, M. C., Leweke, T. and Provansal, M., Kine-
matics and dynamics of sphere wake transition,J. Fluids
Struct., 15, 2001, 575–585.

[19] Tomboulides, A. G. and Orszag, S. A., Numerical in-
vestigation of transitional and weak turbulent flow past a
sphere,J. Fluid Mech., 416, 2000, 45–73.

[20] Williamson, C. H. K., The existence of two stages in
the transition to three-dimensionality of a cylinder wake,
Phys. Fluids, 31, 1988, 3165–3168.

[21] Williamson, C. H. K. and Govardhan, R., Dynamics and
forcing of a tethered sphere in a fluid flow,J. Fluids
Struct., 11, 1997, 293–305.

[22] Williamson, C. H. K. and Govardhan, R., Vortex-induced
vibrations,Ann. Rev. Fluid Mech., 36, 2004, 413–455.

585




