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Abstract 

To date, several investigations have considered the prospect of 

enhanced dissipation of a vortex pair due to elliptic (short wave) 

instabilities. Recent studies indicate that these modes have the 

potential to significantly reduce the time taken to dissipate vortex 

pairs. This has generated interest in the aviation industry, where 

aircraft trailing wakes pose a significant hazard for nearby 

aircraft. 

Of note, recent studies have indicated that the growth rate of 

these short-wave instability modes depends strongly on the 

strain-rate developed within the core of each vortex. This strain-

rate has been shown to develop naturally simply due to the 

presence of both vortices.  

Studies to date have concentrated on vortex pairs where each 

vortex has the same magnitude of circulation. We extend this by 

varying the circulation ratio of the two vortices; the circulation of 

one vortex is varied while the circulation of the other remains 

constant.  The effect on the strain-rate which develops within 

each core is considered. Of particular interest are the time-scales 

involved in both the strain-rate development and in the two-

dimensional merging process, as sufficient time is required for 

short-wavelength instabilities to occur prior to merging for the 

process to successfully reduce dissipation time. 

A spectral-element method is used to conduct the DNS 

investigation at a circulation Reynolds number of ReΓ = 20,000. 

Introduction  

A significant problem facing the aviation industry today is the 

danger imposed by large commercial aircraft trailing wakes. The 

wake region of an aircraft is highly turbulent and contains a 

counter rotating vortex pair that remains coherent for a long time 

(Gerz, Holzäpfel & Darracq 2002). This poses a significant 

hazard to trailing aircraft; a loss of control may occur when 

entering a wake of another aircraft and a number of accidents and 

near misses have been recorded (FAA Wake Turbulence Training 

Aid, 2007).  

Co-rotating vortices develop with circulation of the same sign; an 

example of this is a wing-tip / wing-flap pair. As they travel 

downstream of generation, they interact and a merging process 

takes place. This merger results in a single vortex that, due to 

symmetry about the centreline of an aircraft, becomes one half of 

a counter-rotating vortex pair of a trailing wake. 

Figure 1 illustrates the parameters of a co-rotating vortex pair 

that will be discussed throughout this paper. The effective vortex 

radius is defined as a, the separation between the cores as b, and 

the circulations as Γ1 and Γ2 respectively. 

 

Figure 1 : 2D representation of co-rotating parallel vortices. Here a is the 

characteristic vortex radius, b is the separation distance between the 
vortex cores and the vortex circulations as Γ1 and Γ2 respectively. 

One of the key parameters in this field of research is the 

Reynolds number based on the circulation of a vortex. This is 

defined as the ratio between circulation and the viscous forces: 

 

(1) 

where  is the kinematic viscosity of the fluid. 

A number of parameters have been studied extensively regarding 

the merging process including circulation Reynolds number, 

vortex strength, separation between the cores of the vortices and 

vortex radius. It has been determined experimentally by Meunier 

& Leweke (2001) that for equal-circulation equal-strength co-

rotating vortices, a critical value of separation ratio exits as 
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. Below this value merging will not occur 

under the inviscid conditions. When viscous effects are taken into 

account, a diffusive stage exists where the vortex radii grow until

c
b

a

b

a
which marks the start of the merging process 

(Meunier & Leweke 2001). The radial growth rate has been 

shown to occur according to  

 

(2) 

where a0 is the initial vortex radius,  is the fluid viscosity and t 

is the current time. 

A key feature of interacting vortices is the growth of three-

dimensional instabilities. Crow (1970) first described a long-

wave instability mode growing within the trailing vortices of 

aircraft. It develops sinusoidally within counter-rotating vortex 

pairs, forming vortex rings which rapidly dissipate. The Crow 

instability has a relatively slow growth rate enabling vortices to 

remain coherent for extended periods.  
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Jimenez (1975) analytically determined that co-rotating vortex 

pairs would be stable to this Crow instability and Meunier & 

Leweke (2005) confirmed this, noting that there was no long-

wave instability observed when they experimentally studied a co-

rotating vortex pair.  In an experimental study by Leweke & 

Williamson (1998) on counter-rotating vortices, a shorter 

wavelength instability was observed to occur concurrently with 

the Crow instability. They found it to significantly increase the 

normalized instability growth rate σ*, and identified this short-

wave instability to be an elliptical instability, in which the vortex 

core streamlines are elliptically deformed. Meunier & Leweke 

(2005) found that, for a co-rotating Lamb-Oseen vortex pair, the 

presence of elliptical instabilities resulted in an earlier onset of 

the merging process than corresponding two-dimensional models 

for ReΓ > 2000. It was proposed that these instabilities lead to a 

quick growth of hence aiding the merging process. 

In Kerswell‟s (2002) review of elliptical instability he remarks 

that the growth rate of three-dimensional elliptical instabilities 

scale with strain-rate. A number of other studies state that the 

elliptical deformations, which lead to elliptical instabilities, 

develop as a result of mutually induced strain (Le Dizès & 

Laporte 2002, Leweke & Williamson 1998).  Le Dizès & Verga 

(2002) found two-dimensional co-rotating vortices elliptically 

deform identically on a non-viscous time scale for 500≤ ReΓ ≤ 

16,000, demonstrating a link between the flow Reynolds number 

and the underlying strain field.  

However, to date there has not been any emphasis placed on how 

the strain-rate develops within a Lamb-Oseen vortex pair when 

considering a vortex pair of unequal circulation (i.e. for  = 1/ 2 

 1). The simulations reported here demonstrate the relationship 

between the ratio of circulations and the vortex core strain-rate 

for unequal co-rotating vortices.   

Flow Geometry 

When analysing vortex pair interactions, prior studies have 

considered a number of different vortex profiles. In particular, 

researchers have considered Batchelor, Lamb-Oseen and Rankine 

profiles. The simplest of these is the Rankine profile, consisting 

of uniform vorticity out to the maximum vortex radius (Treiling, 

Fuentes & van Heijst 2005). 

Meunier & Leweke (2001) found experimentally that an initial 

vortex profile was of Gaussian type, and Le Dizès & Verga 

(2002) numerically demonstrated that any two dimensional 

axisymmetric vortex will relax towards a Gaussian profile. A 

Gaussian profile has a peak vorticity at the core which 

exponentially decreases outwards. A Gaussian type vortex profile 

is represented by,  

 

(3) 

where r is the radial distance from the centre and ao is the initial 

vortex radius. This particular profile is known as the Lamb-

Oseen vortex (Le Dizès & Verga 2002). 

Our study considers a Lamb-Oseen vortex pair, and initially both 

vortices have the profile described by equation 3. However, 

unlike prior studies, we consider the case where each vortex 

within the pair has a different circulation. In order to do this, we 

define the circulation ratio as 

 

(4) 

where 2 is the circulation of the dominant vortex, and 1 is the 

circulation of the weaker vortex. To the authors‟ knowledge, 

prior studies have only considered | | = 1. 

In order to compare results with prior investigations, a non-

viscous time scale is being used, defined as  

 

(5) 

Here, Γ is the circulation of the dominant vortex and a0 is the 

initial radius of the dominant vortex.  

To ensure that the results obtained are meaningful, a comparison 

with the findings of Le Dizès & Verga (2002) was made. In their 

studies they investigated equal strength co-rotating vortex pairs 

for vortices with a variety of profiles. They noted that the 

addition of two identical Gaussian vortices was not a solution of 

the Navier-Stokes equations. A „relaxation‟ period was described 

during which the vortices adjust to form an elliptic profile. After 

this adjustment period (which was found to be inviscid) the two 

vortices diffuse, gradually increasing their aspect ratio prior to 

merging. They found that the Gaussian profile was a global 

attractor of any two-dimensional axisymmetric vortex; the more 

Gaussian-like the initial profile, the quicker the relaxation period.   

The variable used by Le Dizès & Verga (2002) to describe the 

temporal change in vortex profile over the relaxation period was 

the eccentricity of the vortex profile, ε. They noted that the 

eccentricity was a function of the strain field which one vortex 

imposed on the other, defining the eccentricity as 

 

(6) 

Here, Si is the internal strain-rate (defined as the strain measured 

at the vortex core imposed from both vortices) and ωz is the 

vorticity measured at the core. Although Le Dizès & Verga 

(2002) investigated flow Reynolds numbers between 500 ≤ ReΓ ≤ 

16000, they found only a weak dependence on Reynolds number. 

Numerical Technique 

The direct numerical simulations of the governing fluid equations 

were completed using a spectral-element method. The technique 

is 3rd order accurate in time and has been successfully used in 

several prior studies (e.g. Sheard et al 2007).  

For this study the circulation Reynolds number of the dominant 

vortex is being limited to ReΓ = 20,000 for two reasons. The first 

being that at low Reynolds numbers, viscous effects become 

significant and cannot be neglected. A previous study by Le 

Dizès and Verga (2002) showed that within the Reynolds 

numbers 800≤ ReΓ ≤ 8000, merging of co-rotating vortices will 

always occur due to the viscous diffusion of vorticity. The value 

chosen for this study is sufficiently high to minimise this viscous 

diffusion. It also is sufficiently low that a turbulent flow regime 

will not develop. Spectral-element methods are best suited to 

smooth solutions (Karniadakis & Sherwin 2005), so turbulence is 

an undesirable flow regime. Turbulence modelling is also 

computationally expensive; to capture the fine flow structures, a 

very refined mesh is required which increases computational time 

beyond what is suitable for a study of this scale.  

At this Reynolds number, the circulation ratio has been varied 

between 0.1 ≤ Λ ≤ 1.0 in increments of 0.1. The initial separation 

ratio has been set at  to delay the merging process, 

allowing for an extended period in which the vortex core strain-

rate can be observed.   
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Results 

Here, we consider the strain-rate development for both vortices 

as a function of reduced time, t*. The results are subdivided to 

consider the dominant vortex and the weaker vortex separately.    

Dominant vortex results 
Figure 2 shows the time evolution of the strain-rate S for the 

dominant vortex at various values of Λ. Here the strain-rate has 

been calculated within the core of the vortex, and includes the 

effects of both the internal and external strain fields.  

 

Figure 2 : Time evolution of the core strain-rate S for the dominant vortex 

for different ratios of circulation. Shown are  = 0.3 (squares),  = 0.6 

(triangles) and  = 0.9 (circles). The relaxation period ends at t*  40 for 

all  considered. 

For each value of Λ, an initial increase in S is observed, prior to a 

sudden decrease in value. An oscillation in S over time is noted, 

until a steady-state condition is reached. The steady-state value of 

S is reached after approximately 40 normalized time units 

regardless of circulation ratio. However small oscillations are 

observed around a median value at later times.    

This weak fluctuation can be seen throughout vorticity profiles as 

well. Figure 3 pictorially shows the effect of the relaxation 

period. The periodic change in direction of eccentricity is due to 

the weaker vortex encircling the dominant one. At the 

commencement of the simulation (Figure 3a) the weaker vortex 

is to the left of the dominant vortex. At the conclusion of the 

simulation, the weaker vortex is to the right of the dominant 

vortex (Figure 3h). The position of the weaker vortex is made 

apparent in figure 3 by following the major axis direction of the 

dominant vortex. 

Referring back to Figure 2, the value of strain-rate is clearly 

affected by the value of ; this is not surprising, as | |  0, the 

weaker vortex has less influence on the dominant vortex and the 

strain-rate within the dominant vortex S  0. Our results confirm 

this conclusion. 

Analysing the data outside the inviscid relaxation period (i.e. for 

t* > 40) we note that the strain-rate of the dominant vortex 

gradually increases over time. This is due to viscous diffusion 

which acts to increase the major axis of the vortex faster than the 

minor axis. Using a linear least squares fit, the increase in strain-

rate may be modelled. Two important pieces of information come 

from this model. First, we may extrapolate back to t* = 0, to find 

an „initial‟ strain-rate. This strain-rate is not observed 

numerically, however it allows us to compare the variation in S 

magnitude as a function of . Second, the gradient of the line 

provides a measure of strain-rate growth, which is also observed 

to alter as a function of .  
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Figure 3 : Contours of vorticity throughout the relaxation period of the 
dominant vortex in the case Λ = 0.9. (a) represents the initial vortex 

profile, (b) – (h) represent 10 ≤ t* ≤ 70 in increments of t* = 10. Of 

particular interest is the vorticity contours of (a)-(d) which are within the 
relaxation period. 

 
Figure 4 : Estimated strain-rate at t* = 0 at the vortex core. Dominant 

vortex (squares), secondary vortex (triangles). The increasing Si of the 
dominant vortex is indicative of the increasing strength of the secondary 

vortex. The decreasing Si of the secondary vortex is indicative of the 

decrease in relative strength of the dominant vortex. 
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Figure 4 shows the calculated, „initial‟ strain-rate of the dominant 

and weaker vortices as a function of . From the figure, it is seen 

that the „initial‟ core strain-rate of the dominant vortex has a 

linear dependence on the strength of the weaker vortex. As  

1, the strain-rate in the stronger vortex becomes more 

pronounced. This is expected; as  increases, the weaker vortex 

has a more dominating effect on the flow field, causing a stronger 

response from the dominant vortex. 

The gradient determined from the data shown in Figure 2 has a 

different trend to that of the initial values throughout the various 

values of Λ. Figure 5 shows these gradients as a function of Λ.   

 
Figure 5 : Estimated strain-rate gradient at the vortex core according to 
the non-viscous time evolution of strain-rate. For comparison is the 

dominant vortex (squares) and the secondary vortex (triangles). 

For circulation ratios of Λ = 0.5 or above, it can be seen that until 

t*=100, the strain-rate progressively increases at the core of the 

dominant vortex. For values below Λ = 0.5, it appears that the 

core strain-rate decreases with time.  

For Λ = 0.1, it can be deduced that the initial strain-rate is not 

large enough to produce a prolonged strain-rate decrease, hence 

the gradient is quite low. For Λ = 0.2 there is a rapid loss of 

vorticity experienced by the weaker vortex and the induced strain 

of approximately S = 0.02 is not maintained for a long time. As 

the weaker vortex dissapates to below ω = 0.1 there is a rapid 

decrease in the dominant vortex strain-rate as the system 

“relaxes” to only having one vortex present. For Λ = 0.3, the 

weaker vortex remains coherent for the entire span of t*. Its 

vorticity weakens to a level much lower than the Λ = 0.4 case, 

and hence has less of an impact on the dominant vortex. This 

reduced impact allows the dominant vortex to more readily 

absorb the induced strain, and relax to the strain-rate. The case of 

Λ = 0.5 demonstrates that the induced strain-rate at the dominant 

vortex core reaches almost an equilibrium situation, where very 

little change in strain-rate is observed. At circulation ratios 

greater than Λ = 0.5, the strain induced strain-rate increases as 

the simulations proceed. 

Weaker vortex results: 
As per the dominant vortex, the analysis of the secondary vortex 

is undertaken by first scaling the results to a non-viscous time 

scale. Figure 6 shows the strain-rate as a function of t*. 

 

 
Figure 6 : Time evolution of the strain-rate S for the weaker vortex at 

values of Λ = 0.3 (squares), 0.6 (triangles) and 0.9 (circles). All three 

vortex profiles again are subject to a relaxation period, t* < 40. 

For the purpose of the following discussion, the plots of Λ = 0.1 

and 0.2 have been omitted, and will be discussed later in this 

paper. Again the trend for the results is a weak oscillation up to 

approximately t* = 40, where beyond this value, stability of the 

solution is achieved. To further quantify these results, the 

approximated t* = 0, „initial‟ strain-rate and the gradient of these 

strain-rate curves are also shown in Figure 4 and Figure 5 

respectively.  

As opposed to the increasing initial strain-rate values for the 

dominant vortex, Figure 4 shows the estimated „initial‟ core 

strain-rate decreasing as the strength of the vortex increases. 

Intuitively, this is to be expected as the relative vorticity of the 

dominant vortex is lessened. This initial strain-rate decreases 

asymptoticaly to the equal strength condition where Λ = 1.0.  

Also opposing the trends seen in the dominant vortex strain-rate 

plots, the gradient of the strain-rate curves beyond t* = 40 shows 

a decreasing trend.  

Re-including the strain-rate plots of Λ = 0.1 and 0.2 as Figure 7, 

it can be quickly seen that their behaviour is markedly different 

to that of the other circulation ratios.  

 
Figure 7 : Strain-rate of the two weakest vortices, Λ = 0.1 (square), 0.2 

(triangles) and 0.6 (circles). Illustrated is the inconsistent vortex strain-

rate behaviour once the vorticity drops below ω = 0.1 in comparison to 
the coherent secondary vortex of the Λ = 0.6 case. 
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The peak strain-rate for Λ = 0.2 is far higher than any other of 

the vortices modelled, a comparative graph of Λ = 0.6 illustrates 

this. For these low strength secondary vortices, it may be that the 

decrease in vorticity below the ω = 0.1 represents a threshold for 

vortex dissipation (ω = 0.1 was used a cut-off minimum value 

when tracking the vortex cores). Further investigations into this 

area would be needed to fully conclude their behaviour. 

Conclusions 

The prior studies of co-rotating vortices have until now have 

focused on equal strength pairs or not investigated vortex core 

strain-rate. This paper demonstrates the behaviour of both the 

dominant and secondary vortex in a vortex pair, in terms of core 

strain-rate. It has been verified that a relaxation period exists for 

the numerical simulation of a co-rotating vortex pair, and that 

stability occurs beyond t* = 40 on non-viscous time scale. 

Analysing the available data beyond this point reveals that the 

strain-rate in both the dominant and secondary vortices develops 

linearly. For circulation ratios of Λ = 0.4 and below, the 

dominant vortex experiences a decrease in core strain-rate, 

attributed to the low strength of the weaker vortex. Λ = 0.5 and 

beyond sees the dominant vortex core strain-rate increasing with 

time.  

The weaker vortex behaves similarly, responding to the relative 

magnitude of the dominant vortex. As the strength of the weaker 

vortex increases, the initial core strain-rate decreases and the rate 

at which the strain-rate increases, is reduced. The two cases of Λ 

= 0.1 and 0.2 indicate that the weaker vortex may become 

incoherent when it‟s vorticity reduces to below ω = 0.1. This 

may form the basis of further studies.  
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