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Abstract

This is a study of laminar flow around long plates. Two cases are considered: the flow
past a plate with an aerodynamic leading edge and, a rectangular cross-sectioned plate.
An aerodynamic leading-edge plate is a natural precursor to the flow past a rectangular
plate because the shedding is only from the trailing edge. The flow around rectangular
plates is more complex because it involves the interaction between leading- and trailing-
edge shedding. Both natural and forced shedding cases are studied. The source of the
forcing is a small sinusoidal cross-flow oscillation added to the free stream. The acoustic
resonance generated when a rectangular plate is placed in a duct is also examined. Finally,
a limited study on the transition from two- to three-dimensional flow for these geometries

is presented.

In this study, the flow is predicted by solving the incompressible Navier-Stokes
equations numerically. A combination of spectral-element and global spectral schemes is
used for the spatial discretisation. Two different time stepping methods are evaluated.
The numerical scheme is validated by simulating the backward-facing step flow and the
driven cavity flow. Several simulations of the flow around the plates are performed to

determine an adequate domain size and temporal and spatial resolution.

The aerodynamic leading-edge plates mainly consisted of plates with elliptical
leading edges (5:1 axes ratio). The aspect ratio and Reynolds number varied between
3.5 < ¢/t < 125 and 200 < Re < 700 respectively (¢ being the chord and t being
the thickness). The shedding frequency is determined in the natural shedding case and
reasonable agreement is found with a correlation obtained from experimental data at
higher Reynolds numbers. In the forced shedding case, the behaviour of the flow around
these plates shows several similarities with that around short bluff bodies. There is only
a small range of frequencies for which the flow is locked but this range grows with forcing
amplitude. Outside the lock-in range, the mean base pressure approaches that for the
unforced case but the time varying base pressure trace shows the characteristics of beating
between the Strouhal frequency and the forcing frequency. Within the lock-in range, the

mean base pressure is very sensitive to the forcing frequency. Two distinct cases are
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observed in the parameter range studied; one that occurs for lower Reynolds number or
longer plates, and the other for higher Reynolds number or shorter plates. These two
parameters control the thickness of the boundary layer at the trailing edge which directly
influences the shedding process. For most of the lock-in range, both cases show a linear
increase in mean base suction with increasing frequency. For the case with shorter plates
(or higher Reynolds numbers), the mean base suction is noticeably lower than that of the
natural shedding case at the lower frequency end of the lock-in range. The other case
shows a drastic phase shift in shedding relative to the forcing which is associated with
a drop in mean base suction at the higher frequency end of the lock-in range. Overall
the drag force mimics the behaviour of the base suction. Within the lock-in range, there
is a decrease in the fluctuating lift force because of a narrower wake. The simulations
show that the mean base suction in the lock-in range is strongly related to the rate of

generation of vorticity (of one sign) and the vortex formation length.

The flows around rectangular plates with aspect ratios in the range 3 < ¢/t < 16
and Reynolds numbers between 300 < Re < 500 are simulated next. Three cases are
considered: (a) natural shedding; (b) where the flow is forced by a small sinusoidal cross-
flow oscillation; and (c¢) where the plate is placed in a duct and a flow induced acoustic
resonance can occur. In the natural shedding case below a certain aspect ratio and
Reynolds number, the flow appears to lock to an impinging leading-edge vortex (ILEV)
instability mode. This results in a stepwise increase in Strouhal number (based on chord)
with increasing aspect ratio. The ILEV instability described by Naudascher & Wang
(1993) comprises of: (i) the leading-edge shear layer shedding discrete vortices; (ii) the
convection of these vortices past the trailing edge; (iii) and an accompanying pressure
pulse that travel upstream and locks the leading-edge shedding and thus completes a
feedback loop. These simulations with a rectangular plate shows strong base shedding with
vortices forming between the passing of leading-edge vortices. An important conclusion
from the research is the proposal that it is the pressure fluctuations from the base shedding
which has a dominant role in controlling the leading-edge shedding. A modification to
the original ILEV mechanism to incorporate this is described. In addition, both the
forced shedding and duct resonance cases are also strongly influenced by trailing-edge
shedding. In the forced shedding case, the lock-in range is large and the mean base
pressure is not strongly sensitive to the forcing amplitude and Reynolds number. The
forcing frequency which results in a peak mean base suction also shows a stepwise response.
The duct acoustic resonance case involves a plate placed in a solid walled duct. The
sound generated by the flow around the plate may generate an acoustic resonance in the
duct which locks the flow. The flow-sound interaction is modelled using Howe’s acoustic
theory (Howe, 1975, 1980). The frequency range where resonance occurs also shows a

stepwise response. In all three cases, the stepping in Strouhal number based on chord
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is approximately described by the relationship St. = 0.55n, where n is the step number.
This trend matches experimental observations which are performed at higher Reynolds
numbers; especially for the forced and duct acoustic resonance cases. This shows that the
essential physical mechanisms involved are captured in these (low Re, two-dimensional)
simulations. The stepwise response in all three cases requires a synchronisation between
the leading- and trailing-edge shedding. In the natural shedding case, this is a result of the
flow at the trailing-edge sending a pressure pulse to lock the leading edge. In the forced
shedding and duct acoustic resonance cases, the leading-edge shedding is phase-locked
to the forcing/acoustic field. The peak base suction for the forced shedding case, and
the resonance range in the duct resonance case, consistently occurs at approximately the
same phase in the flow cycle relative to the forcing. To maintain the phase relationship
between the leading- and trailing-edge flow, the shedding modes can only increase by
having a complete pair of vortices along the plate. This results in the step change in the
shedding mode once critical aspect ratios are exceeded. The levels of the steps show that
the average convective velocity of the flow structures along the plate is approximately
55% of the free-stream velocity in all cases. Consistent with this are the calculations of
convective velocity along the plate for both the natural and forced shedding cases which
show that the velocity is not significantly influenced by aspect ratio and forcing/shedding
frequency. The mean base suction and drag are generally stronger at the lower aspect
ratio end of each step in both the natural and forced shedding cases. This is a result of
more compact vortices forming at the trailing edge at higher forcing/shedding frequency.
The fluctuating lift force in the natural shedding case is approximately constant which
means that the force coefficient (which is scaled on chord) is inversely proportional to
aspect ratio. In the forced shedding case, the peaks in the fluctuating lift coefficient also
show a stepwise response. This is governed by the phase at which the leading-edge vortices

pass the trailing edge relative to the generation at the leading edge.

Some three-dimensional simulations were performed to capture the main insta-
bility modes close to the onset of three-dimensional flow. For the elliptical leading-edge
plates, the trailing-edge wake vortices develop three-dimensionality similar to the wake
transition for a circular cylinder. Both Mode A and B shedding (Williamson, 1988) were
observed. The transition occurs at a much higher Reynolds number (between Re = 400
and 500 for ¢/t = 7.5), compared with Re = 180 for a circular cylinder. This is presum-
ably due to the thicker boundary layers at the trailing edge. For the rectangular plate, the
boundary layer modes were examined. Experiments indicate the existence of two distinct
mode topologies (Pattern A and B, Sasaki & Kiya, 1991). The current study only found
the presence of Pattern B. It is unclear why the initial instability mode was not found. A

stability analysis is planned to resolve this discrepancy.
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Nomenclature

A physical area.
A, amplitude of the sinusoidal perturbation.
c plate chord length.
cq  drag coefficient based on plate thickness and free-stream velocity.
¢, lift coefficient based on plate chord and free-stream velocity.
¢,  pressure coefficient based on plate thickness and free-stream velocity.
c¢s  speed of sound.
d*  displacement thickness.
E(t) the total kinetic energy of the driven cavity flow as a function of time.
F' number of Fourier planes in the spanwise direction.
Fy reduced frequency based on t'.
f  shedding/resonant frequency.
H  channel height.
h  step height.
K number of elements in a two-dimensional plane.
k loop counter for the Runge-Kutta algorithm.
[ distance between inflow boundary and the plate relative to the plate
thickness t.
[, distance between the plate and the side boundary relative to the
plate thickness .
I3 distance between the plate and the outflow boundary relative to the
plate thickness t.
N number of nodes in one direction of an element.
n  shedding mode (step number) for the flow around a rectangular plate.
m  order of the Legendre polynomial.
P instantaneous acoustic power.
P,, Legendre polynomial of degree m.
p  kinematic pressure.
p"t!  average pressure field at the end of a timestep.

r reattachment length.
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Strouhal number based on thickness.
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Strouhal number based on ¢'.
order of the Runge-Kutta scheme.
Reynolds number based on plate thickness or diameter and free-stream
velocity.
Reynolds number based on t'.
tangent vector to an iso-surface of vorticity.
integral path along the solid surface.
time of one shedding period.
plate thickness.
simulated non-dimensional time using the velocity and length scale.
plate thickness + 2 x displacement thickness.
size of the timestep.
mean free-stream velocity.
velocity vector of the flow field.
intermediate velocity vector field.
velocity vector field at the start and end of a timestep.
velocity components in the z, y and z direction.
forcing amplitude relative to the free-stream velocity.
volume.
convective speed of the vortices.
acoustic particle velocity vector.
local weighting coefficients for the Gauss-Lobatto-Legendre quadrature.
Cartesian coordinates.
vortex formation length.
distance downstream from the leading edge.

distance downstream from the trailing edge.

circulation generated between the leading edge to the trailing edge of the
plate.

circulation per unit length.

magnitude of the circulation produced in one shedding cycle
non-dimensionalised with the free-stream velocity and the

plate thickness.

kinematic viscosity.

Cartesian coordinates in a local element (in computational space).

mean fluid density.

standard deviation of the lift coefficient.
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Chapter 1

Introduction

The study of flow around bluff bodies is one of fundamental importance in fluid mechanics.
It underpins areas as diverse as wind engineering and structural loading, automotive
aerodynamics, cross-flow heat exchangers, mixing, maritime transport, sub-sea structures

and flow induced acoustics.

Many studies have concentrated on pseudo two-dimensional geometries with short
after-bodies such as cylinders, squares or prisms (Roshko, 1961, Bearman & Obasaju,
1982, Bearman, 1984, Williamson, 1988). The two- and three-dimensional instabilities
that develop in the different flow regimes have resulted in many interesting observations.

Long bluff bodies are a natural extension of this work.

More recently, there have been studies on high aspect ratio geometries and, in
particular, long rectangular plates. These have the complication of vortical low structures
developing at both the leading and trailing edges. Studies of this flow will need to include
the interaction between them. Although this is a basic geometry and is used to further the
fundamentals and understanding, several studies on this particular bluff body have been
inspired by practical applications. These include wind structure interactions (Nakamura
et al., 1991), heat exchangers (Cooper et al., 1986) and acoustic flow control (Stokes &
Welsh, 1986).

This work is building on many previous experimental observations and some
computational studies done in association with the Department of Mechanical Engineer-
ing, Monash University and CSIRO Division of Building, Construction and Engineering.
Welsh & Gibson (1979) and Stokes & Welsh (1986) investigated the case where the plate
is placed in a duct and develops a strong acoustic resonance. Parker & Welsh (1983), and
Mills (1998) investigated the plate in an open jet wind tunnel with applied acoustic forc-
ing. Cooper et al. (1986) used the acoustic forcing to try to improve heat transfer. While



(b)

Figure 1.1: (a) A schematic of the long rectangular plate with a sinusoidal perturbation

added to the mean flow and (b) a smoke visualisation from Mills et al. (1995) where an
acoustic perturbation is introduced by speakers in anti-phase placed above and below the

plate.

these studies concentrated on flow induced acoustics and acoustic control, the long rect-
angular plate has also been investigated for its relevance in wind engineering (Nakamura
et al., 1991, Deniz & Staubli, 1997).

A schematic of the general geometry and set up for the flow is shown in Figure
1.1(a). The long side of the rectangular plate is aligned with the flow. Perturbations
to the mean flow may be added by vibrating the bluff body or adding a cross stream
component as in acoustic control. Figure 1.1(b) is a smoke visualisation from Mills et al.
(1995) showing the flow around a rectangular plate subjected to cross-flow perturbations.
This chapter will review studies on bluff-body flows with a focus on long rectangular

plates. These include (a) the natural shedding case which has no external excitation,



(b) the forced shedding case where perturbations are introduced to the flow and (c) the
duct acoustic resonance case. The development of three-dimensional instabilities on bluff

bodies at low and moderate Reynolds numbers will also be discussed.

1.1 Flow instabilities

Several assumptions are commonly made when studying fundamental bluff body aerody-
namics which include the fluid being Newtonian, incompressible and isotropic. This allows
the fluid to be mathematically modelled using the time-dependent incompressible Navier-
Stokes equations and is the basis of the stability analysis and the numerical modelling

here.

The flow around bluff bodies will eventually reach a steady state below a critical
Reynolds number. Any disturbances either from the initial conditions or imposed on the
flow will decay or be convected out of the system and the system will reach an equilibrium
state. As the Reynolds number is increased past a critical point, disturbances are no
longer damped and the flow becomes time dependent. The transition between steady and

time-dependent flow is part of the study of hydrodynamic stability.

A standard approach is to use the Navier-Stokes equations to predict the be-
haviour of a flow represented by the sum of a mean flow plus a perturbation. The equa-
tions are linearised with respect to the perturbation and can be used to predict the growth
or decay of Fourier components. In a local analysis the flow is assumed to be parallel.
The resulting equations are called the Orr-Sommerfeld equations. The analysis identifies
temporal frequencies and spatial wavelengths that will grow for a given velocity profile
and Reynolds number. The two possible types of instabilities predicted by this analysis

are the convective and absolute instabilities.

The convective instability only convects the disturbance downstream from the
source. It is not locally self sustaining and will decay if the source of the disturbance is
removed. The absolute instability is locally self sustaining and the disturbances propagate
upstream and downstream of the source. The convective type of instability is generally
receptive to a wider range of frequencies than the absolute instability which is generally
receptive only over a very narrow band of frequencies. This leads to an absolute instability

being called an oscillator and a convective instability a noise amplifier.

There have been several analyses of the wake behind a rectangular plate. The
leading edge is assumed to be streamlined and with no upstream disturbances, the flow

is parallel at the trailing edge making it an ideal problem for this analysis. Using linear



stability analysis, Koch (1985) analysed the profiles in the wake near the critical Reynolds
number. As the Reynolds number is increased towards the critical value, regions of
convective instability develop. As part of the transition process, the analysis shows regions
with absolute instability in the recirculating region past the critical Reynolds number.
Hannemann & Oertel (1989) studied the instability by numerically simulating the wake
behind the plate. Initially an artificial boundary condition is imposed along the centreline
to maintain symmetry. This is removed once the flow has reached a quasi-steady state.
After that time there is a linear growth of one pure frequency before reaching a transition

to saturation and finally a non-linear saturated state.

Several methods have been proposed to predict the frequency selection in the
linear regime including the initial resonance criterion by Monkewitz & Nguyen (1987) and
the maximum growth criterion by Pierrehumbert (1984). The frequency of shedding in the
saturated state near the critical Reynolds number can be predicted using Koch’s resonance
criteria (Koch, 1985) which is based on the linear stability analysis. The hypothesis is
that the saturated state is dominated by the local resonance occurring spatially at the
transition from absolute to convective instability. Most simulations and experiments are
at a Reynolds number significantly larger than the critical Reynolds number. Although
this analysis is strictly applicable only near the critical Reynolds number, it can be applied
at supercritical Reynolds numbers with the assumption that the non-linear saturated state
is still governed by this local resonance. The theoretical stability analysis has been further
developed to include more physics. While the local linear stability analysis is based on
the initial growth of disturbances in parallel flows, the nonlinear saturated state can be
analysed with the Ginsburg-Landau equation. The spatial developing nature of the flow
which is not considered in the local analysis can be analysed when considering weakly non-
parallel flows and results in the predictions of global instabilities (Huerre & Monkewitz,
1990).

Wake instabilities are present in most bluff body flows above a critical Reynolds
number. With long bluff bodies, it is possible for the flow to separate at the leading edge
and reattach while shedding large-scale vortices. A detailed investigation into the nature
of this separated and reattaching flow is found in Cherry et al. (1984). The instabilities
involved are the Kelvin-Helmholtz instability present in the shear layer and the instability
causing the large-scale shedding. The nature of the instability causes a weak flapping of
the shear layer and shedding to be irregular. Experiments by Soria & Wu (1992) used
long rectangular plates to isolate any trailing-edge effects. The separating and reattaching
flow is shown to be predominantly convectively unstable and receptive to a broad range
of frequencies. The weak flapping of the shear layer without external perturbation could

be the result of regions of local absolute instabilities.
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Figure 1.2: A sketch of the instabilities developing from a plate with a streamlined and a

blunt leading edge, and blunt trailing edges.

Figure 1.2 shows the long plates studied and their associated instabilities. With
an elliptical leading edge, the instability at the trailing edge results in the classical Karman
vortex shedding. A rectangular plate is different from a circular cylinder in that the blunt
leading edge forces the fluid to separate at a fixed point forming a shear layer. The
instability in the shear layer results in it rolling up to form discrete vortices. For a blunt
trailing edge, the interaction between the leading- and trailing-edge flow structures will

be explored in this thesis.

A closely related instability occurs when a local convective instability interacts
with a solid boundary downstream. Disturbances from the object downstream propagate
upstream to complete a feedback loop. These types of instabilities occur when a jet or
a mixing layer impinges on a solid boundary downstream such a bluff bodies, walls or
edges. A classical example of this is the cavity flow where the separating shear layer from
the upstream edge of the cavity interacts with the downstream edge. A comprehensive
review is found in Rockwell & Naudascher (1979). The concept of global instability was
associated with these sort of flows by Rockwell (1990). This instability is of importance to
the cases with a rectangular plate because the shear layer from the leading edge interacts
with either the trailing edge or the sides of the plate. Further discussion on this is included

when the flow around rectangular plates is reviewed.

1.2 Natural shedding

This section focuses on flow over a fixed bluff body. The two-dimensional instabilities

are reviewed in three sections: the flow structures developing at the leading edge; trailing



edge; and the interaction between these elements.

1.2.1 Leading-edge shedding

In this case the flow separates from the edge and forms a shear layer which reattaches
further downstream. Above a critical Reynolds number, the shear layer rolls up into
discrete vortices. In the absence of any controlling influence this shedding is irregular.
Cherry et al. (1984) attempted to study the unsteady nature of this flow. The experiments
were performed at approximately Re = 3,200. Near the separation point, the shear layer
exhibits a low-frequency flapping possibly due to changes to the bubble in the shedding
process. The growth of the shear layer is similar to a plane mixing layer up to about 60%
of the bubble length before being influenced by the reattachment process. The shedding
goes through phases of pseudo-periodic shedding of vortices, large scale irregular shedding
and relatively quiescent phases with 'necking’ of the shear layer after reattachment. In
the pseudo-periodic phase, the spacing between the vortices is between 60% to 80% of
the separation bubble length. Velocity correlations along the span showed that the flow
became three-dimensional soon after separation and the spawise scales grow linearly until
reattachment. The shedding of large scale structures does not immediately show three

dimensionality although the shear layer is three-dimensional.

Sasaki & Kiya (1991) experimented at moderate Reynolds numbers (80 < Re <
800) and studied the nature of the reattachment and the resulting spanwise instability
from the shed vortices. The reattachment length reaches a maximum of about 6.5¢ at
Re = 320. This is the onset of the roll up of the shear layer and vortices being shed. The
reattachment length approaches a constant value of 4.5¢ for Re > 380. The shed vortices

also develop spanwise instability which will be discussed in Section 1.4.2.

Simulations by Tafti & Vanka (1991) studied the reattachment and the shed
vortices at Re = 1,000. Although the calculations were two-dimensional (the shear layer
develops a strong three-dimensionality), it reproduced some experimental trends such as

shedding frequency and convective velocity.

1.2.2 Trailing-edge shedding

With a streamlined leading edge, flow structures from the trailing edge can be studied
in isolation. The trailing-edge shedding is a simple bluff body wake with the interaction
of two boundary layers. The experiment by Eisenlohr & Eckelmann (1988) showed the

relationship between the trailing-edge shedding frequency and the displacement thickness



of the boundary layer at the trailing edge. The experiment used a laminar boundary layer
and aspect ratios of between 50 to 800. The data for all the plates correlated well with
equation 1.1 if the characteristic length was taken to be the plate thickness plus two times
the displacement thickness of the boundary layer. The non-dimensional relationship was
found to be

Fy = —39.2 4+ 0.286Rey (1.1)
where
F, = 1"
,/I
Retf = o
14

t'=plate thickness(t) + 2 x displacement thickness(d*).

Measurements of base pressure as a function of momentum thickness were pre-
sented in Petrusma & Gai (1994). An aerofoil leading edge with ¢/t = 10 was used with
Reynolds numbers of the order of Re = 50, 000. The results were limited to when the mo-
mentum thickness was less than 0.05¢ and the base pressure did not vary significantly with
smaller momentum thickness. The mean base pressure coefficient saturated to ¢, = —0.55
for a laminar boundary layer. When the flow is tripped such that the boundary layer was

turbulent, the mean base pressure coefficient was ¢, = —0.62.

1.2.3 Rectangular plate

While studying the effect of sound, Parker & Welsh (1983) also noted the different natural
shedding regimes that occurred over a wide range of aspect ratios. Varying the Reynolds
number between 14,800 < Re < 31,000 showed no significant change in the flow. There
are four different vortex shedding regimes for the rectangular plate depending on the
aspect ratio which are summarised in Table 1.1 below. A plot of the shedding frequency
as a function of aspect ratio is presented in Figure 1.3. The first transition is accompanied
by a discontinuous change in frequency and is sensitive to external conditions resulting in
small variations between studies (i.e. Okajima et al. 1983 at ¢/t = 2.8, Parker & Welsh
1983 at ¢/t = 3.2, Okajima et al. 1992 (numerical) at ¢/t = 2.1) A detailed study of
the transition from leading-edge shedding directly into the wake to periodic reattachment
was presented by Okajima (1982). The transition characterised by a distinct change in

shedding frequency is dependent on Reynolds number and occurs between 2 < ¢/t < 3 but



asymptotes to ¢/t = 2.8 at high Reynolds numbers. The second regime (3.2 < ¢/t < 7.6)
exhibited a distinct shedding frequency in the wake. This is not present in the next
regime (7.6 > ¢/t > 16) and plates longer than ¢/t > 16 exhibited trailing-edge shedding
independent of the leading edge. Since then Nakamura et al. (1991) and many others
(Ozono et al., 1992, Naudascher & Wang, 1993) have shown that the second and third
regimes, namely aspect ratios between approximately 3 < ¢/t < 15, are dominated by the
global instability which synchronises the leading- and trailing-edge shedding at low and

moderate Reynolds numbers.

This behaviour is not observed for a rounded leading edge which undergoes only
one transition at ¢/t = 1.2 (Parker & Welsh, 1983). This results in a step change in the
shedding frequency shown in Figure 1.8. Below that aspect ratio, the shear layer from
the leading edge interacts directly to form the vortices in the wake. Longer plates showed

only trailing-edge shedding.

c/t Characteristics
c/t < 3.2 Separation from leading edge never reattaches to the
side faces

Shear layer interacts directly to form vortex shedding.

3.2 < ¢/t < 7.6 | Separation from leading edge reattaches periodically.

Separation bubble grows and envelopes trailing edge.

7.6 < ¢/t <16 | Separation from leading edge always reattaches.
Vortices randomly generated from leading edge move
downstream and interact with trailing edge producing

irregular shedding from the trailing edge.

c/t > 16 Separation from leading edge always reattaches.
Vortices randomly generated from leading edge move

downstream but diffuse before reaching the trailing

edge.

Table 1.1 : Summary of flow regimes for flat plate (Parker & Welsh, 1983)

The early studies were inspired by the wind induced excitation of bridge decks
at relatively low wind speeds. Nakamura & Nakashima (1986) studied rectangular, H
and F cross-sections in both a wind tunnel and a water tunnel with aspect ratios, ¢/t
between 2.0 and 5.0. In the wind tunnel, the model was free to vibrate (Re = 5,500)
and flow visualisations were performed in a water tunnel (Re = 1,200). Observation in
both situations for all the bluff bodies showed a feed-back instability. The H geometry
resembles two cavities with a common bottom plate. The instability in the cavity flow was
called the impinging shear layer instability by Rockwell & Naudascher (1978). This led to
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Nakamura & Nakashima (1986) using the classification and in their case the shear layer
does impinge directly on the trailing edge. The instability manifested itself by distinctive
frequency selection. The shedding frequency shows that the instability is still present
even with a splitter plate attached to the trailing edge or the - geometry at large aspect
ratios. This shows that the trailing-edge shedding is not a necessity for this one sided

instability.

A detailed study of the rectangular plate with ¢/t from 3 to 15 at Re = 1,000
was presented in Nakamura et al. (1991). An analysis of the shedding frequency showed
that peaks in the spectrum corresponded to a stepwise increase in Strouhal number based
on chord as shown in Figure 1.3. Each step corresponded to a shedding mode which has a
Strouhal number base on chord approximately an integer multiple of 0.6. Phase measure-
ments along the plate showed that an integer number of vortices, n, developed along the
plate. This number, n, corresponds to the shedding mode as represented by the sketch
in Figure 1.4. The steps in Strouhal numbers (i.e., St. = 0.6n,n = 1,2, ..) corresponding
to the number of vortices along the side, suggests that the average convective velocity
of the flow structures along the plate is approximately 60% of the free-stream velocity
(elaborated in Section 4.1.2). At aspect ratios close to where the shedding mode changes,
namely ¢/t = 8 and 11, two peaks appear in the spectrum. The shedding in those cases

switch randomly between the two modes.

The theory underlying this global instability was based on the cavity flow as
described above. The flapping of the leading-edge shear layer interacts directly with the
trailing edge of the plate. This leads to the emission of a pressure pulse which controls the
evolution of the leading-edge shear layer. This establishes a feed back loop and locks both
the leading- and trailing-edge shedding after a transient period (see Figure 1.6(b)). This
strictly only applies to the first mode, n = 1, of shedding which occurs for approximately
¢/t = 3—6 (Nakamura et al., 1991). The shear layer rolls up into discrete vortices on longer
plates. Instead of the shear layer, the second (n = 2), third (n = 3) or fourth (n = 4)
vortex from the leading edge interacts with the trailing edge completing the feed-back loop
(see Figure 1.6(h)). A better description of this global instability that encompasses all the
modes is the impinging leading-edge vortex (ILEV) instability described by Naudascher
& Wang (1993). This was summarised in Naudascher & Rockwell (1994) and discussed
by Mills et al (1995) who proposed that this better describes the instability. A refinement
to the flow classification by Parker & Welsh (1983) was proposed by Naudascher & Wang
(1993) which incorporated the ILEV instability. The categories are summarised in Figure
1.5 with shorter plates (i.e. ¢/t < 3) called leading-edge vortex shedding (LEVS) and
longer plates (i.e ¢/t > 16) called trailing-edge vortex shedding (TEVS). The shorter
plates are in the same category as short after-body geometries such as cylinders, squares

and triangles. For the longer plates, the vortices shed from the leading edge are too diffuse
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Figure 1.3: Strouhal number based on chord as a function of aspect ratio, ¢/t, from several
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Figure 1.5: Flow classification by Naudascher and Wang (1993) for the long rectangular

plate. The aspect ratios stated are only an approximate.

to have any influence at the trailing edge.

These instabilities have been successfully simulated numerically. Okajima et al.
(1990) showed that at ¢/t of 2.8 and 6 there was a distinct change in shedding frequency
and flow pattern between Re = 500 and Re = 1,200. The shear layer from the leading
edge of shorter plates (¢/t < 2.8) directly form vortices in the wake. Above ¢/t = 2.8 the
leading-edge shear layer reattaches to form what is now known as the first mode (n = 1).
Okajima (1990) then showed that this compared well with experiments. Okajima et al.
(1992) performed more simulations at Re = 1,000 and showed that the first step occurs
at ¢/t = 2.1 in the simulations but ¢/t = 2.8 in the experiment. Ozono et al. (1992)
and Ohya et al. (1992) attempted to simulate the observations of Nakamura et al. (1991).
The simulations at Re = 1,000 showed the stepwise change in Strouhal number based on
chord between ¢/t = 3 and ¢/t = 9 as shown Figure 1.3. For longer plates, the system did
not lock into a particular shedding mode even after several hundred dimensionless time
units of simulation. The shedding switched modes at ¢/t = 6 and ¢/t = 8 with the latter
randomly switching between modes. The lift coefficient showed that at the start of each
step (i.e., ¢/t = 3,6 and 9), the flow was more regular and periodic. As the aspect ratio
is increased, the shedding looses regularity until it locks to the next mode. Nakayama
et al. (1993) performed simulations at Re = 200, 400 and 1,000 for ¢/t = 3 to 10. At
Re = 200 the was no shedding from the leading edge which resulted in only a linear
increase in Strouhal number based on chord with aspect ratio. This has been observed
experimentally. The simulations at Re = 400 showed the same stepping at Re = 1,000

but with less irregularity at certain aspect ratios.

Nakamura (1996) showed that the global instability that control the shedding
from the plate also influences short after-body geometries with splitter plates. Nakamura
(1994) experimented on a circular cylinder, half circular cylinder, half circular cylinder
connected to a 2:1 square block, normal flat plate and H section. The splitter plates

extended up to 15 diameters downstream. In general, from measurements of the shedding
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frequency, the flow gradually switched from Karman shedding to the first mode (n = 1)
and then through a frequency jump corresponding to the transition to the second mode
(n = 2). For the circular cylinder, these transitions occurred at ¢/t = 2.5 and ¢/t = 6.5
respectively. These differ from the rectangular plate probably because of the differences in
the leading-edge shear layer and the absence of trailing-edge shedding. At longer aspect
ratios, there was no single dominant frequency. Within the Reynolds number range of
1600 < Re < 5300 used in the experiment, this instability was almost independent of
Reynolds number but observed more easily at lower Reynolds numbers. The half circular
cylinder with a rectangular block showed a different trend from the other geometries. The
ILEV instability is concluded to result in the shedding frequency displaying distinct steps
(i.e St = 0.6n,n =1,2,...). In those cases where the trailing-edge shedding is suppressed
by a splitter plate, the interaction of the leading-edge vortices past the trailing edge still
feeds back to result in out of phase shedding from both sides of the leading edge and the

system locking to a particular shedding mode.

The feedback discussed previously relies on a weak pressure pulse to complete
the loop. Above a Reynolds number of several thousand, the flow does not lock into these
shedding modes (e.g., Stokes and Welsh, 1986 (Re = 15,000 — 30,000); Mills et al., 1995
(Re = 9,000); Nakamura et al., 1991 (Re > 2000)). Parker & Welsh (1983) did observe a
distinctive frequency in the wake for 3.2 < ¢/t < 7.6 at Re = 23,700 and flow structures
which are similar to the first shedding mode (n = 1). Nakamura et al. (1991) proposed
that the ILEV mechanism is still present but too weak to lock the flow at higher Reynolds
numbers or longer aspect ratios but would manifest itself with additional control of the
leading-edge shedding such as vibrating the plate or external forcing. If some external
excitation is present such as the acoustic resonance examined by Stokes and Welsh (1986),
or the acoustic forcing demonstrated by Mills et al. (1995), a similar stepwise response
in St. with aspect ratio is observed. This will be discussed in more detail in the next

section.

At high Reynolds number, where the ILEV instability does not lock the flow, the
mean base pressure and drag are also not influenced by the ILEV instability. At a fixed
Reynolds number (Re = 8,667), the general trend is a increasing mean base suction and
drag with increasing chord for 6 < ¢/t < 15 (Mills, 1998). With increasing aspect ratio,
there is less interference of the leading-edge structures and more regular vortex shedding
from the trailing edge. If the Reynolds number is low enough so that the shedding is locked
to the ILEV instability, the mean base suction and drag is stronger at shorter aspect ratios
within each mode (Okajima et al. 1992). This is where the shedding frequency is higher

and the shedding, especially at the trailing edge, is more vigorous.
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1.2.4 Summary of feedback mechanisms in the natural shedding

case

A schematic summarising the proposed controlling mechanisms involved in each of the
cases discussed above is given in figure 1.6. The governing mechanisms for long plates

depend on aspect ratio and can be broadly classified as follows.

1. Bodies with an aerodynamic leading-edge and blunt trailing edge (figure
1.6a). In this case only trailing-edge shedding occurs. During the formation of
trailing-edge vortices, there is an associated lowering of the pressure field in the
vicinity of the trailing edge. This causes a time variation in the pressure field at the
leading edge which can affect the formation of the boundary layer there. However,
in this case, there is no leading-edge shedding to close the feedback loop. This
situation is depicted in figure 1.6(a).

2. Bodies of rectangular cross-section of moderate aspect ratio (figure 1.6b).
With a bluff leading edge, the shear layer separates from the leading edge. For
plates of aspect ratio less than ¢/t &~ 6, the shear layer does not have time to form
discrete vortex structures before reaching the end of the plate. Instead the flapping
shear layer periodically reattaches in the vicinity of the trailing edge resulting in
a modification of the pressure field which, in turn, is propagated back upstream
to the leading edge of the plate. This can affect the formation of the leading-edge
shear layer, controlling further flapping. Hence a feedback loop can be established.
This has been referred to as an impinging shear layer instability by Nakamura et al.
(1991), and also occurs for a shear layer separating and reattaching to the corners

of a cavity.

3. Bodies of rectangular cross-section of larger aspect ratio (figure 1.6c). For
longer plates, the leading-edge shear layer sheds discrete vortices. In this case, it
has been proposed that the impinging shear layer instability becomes an impinging
leading edge vortex instability (Naudascher & Wang, 1993). Here, the pressure pulse
produced when the leading-edge vortices pass the trailing edge perturbs the further
development of the leading-edge shear layer, completing a feedback loop that locks
the leading-edge shedding. This mechanism occurs for other long bluff bodies such
as = sections and shorter bluff bodies fitted with splitter plates (Nakamura, 1996).

An important focus of this research, (especially chapter 4) concerns the situation
described in item (3) above. Evidence is provided that the feedback loop as described

needs modification, and that the controlling mechanism for flow past a long plate is
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Figure 1.6: A schematic showing the mechanism involved for (a) trailing-edge vortex
shedding (TEVS), (b) impinging shear layer instability and (c) impinging leading-edge
vortex instability (ILEV).

different from that for shorter bodies with splitter plates, or flow past wide cavities where

the ILEV instability description is adequate.

1.3 Applied forcing

In many situations, the bluff body is not rigid but may exhibit vibrations due to the
fluctuating forces caused by interactions with the fluid. This introduces added complexity
including structural stiffness and damping. A simplification when concentrating on the
fluid mechanics is to apply forcing at small amplitudes relative to length scales, pressures
or velocities of the system. This forcing can be achieved by vibrating the bluff body or
adding a small perturbation to the free-stream velocity such as due to acoustic forcing.
A small perturbation either by external forcing or flow-induced excitation can result in

significant changes in the flow characteristics.

These excitations have been broadly classified into three separate categories by
Naudascher & Rockwell (1994): namely extraneously induced excitation (EIE), instability
induced excitation (IIE) and movement induced excitation (MIE). EIE occurs when the

fluctuations to the flow field and pressure are from an independent external source such
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as forced oscillations, acoustic forcing (e.g., Parker & Welsh, 1983, Mills et al., 1995)
and the velocity perturbation used in this study. Instability induced excitations (ITE) are
caused by instabilities inherent to the flow such as LEVS, ILEV and TEVS described in
the previous section. Structures which vibrate due to fluid forces can amplify the forcing

and experience MIE including phenomena such as flutter and lock-on.

1.3.1 Leading edge

Sigurdson (1995) studied the behaviour of the leading-edge shear layer to applied forcing.
The experimental apparatus consisted of a cylinder mounted coaxially to the flow (i.e.
Axis of the cylinder parallel to the free stream). An acoustic speaker mounted within the
cylinder, which had a small gap at the edge, provided a small local perturbation. The
experiments confirmed many characteristics associated with forcing applied to the shear
layer, such as shorter reattachment lengths and stronger surface pressure fluctuations. The
presence of the Kelvin-Helmholtz instability of the shear layer and large-scale shedding
instability influenced the response to the perturbation. The maximum effect is observed
when the forcing frequency is close to the frequency of the large scale shedding instability.
The shear layer amplifies a broad band of frequencies from approximately the shedding

frequency to the frequency of the Kelvin-Helmholtz instability.

Soria & Wu (1992) studied the shear layer at the leading edge of a rectangular
plate at Re = 900. A small perturbation is introduced by sinusoidally vibrating the side
walls of the water tunnel. The experiments showed that the shear layer is convectively
unstable and receptive to a broad range of frequencies. Soria et al. (1993) extended this
to include more flow visualisation. The shear layer remained nominally two-dimensional
with applied forcing unlike the unforced case. Stronger vortices are shed at the forcing
frequency (which was between St = 0.22 and 0.36) with possible pairing downstream from

the leading edge.

1.3.2 Short bluff bodies

The absolute instability in the flow near the trailing edge of the plate is similar to that
for shorter bluff bodies. The response of the flow around short bluff bodies such as
cylinders and square sections to small perturbations, typically forced oscillations applied
to the geometry, has been well studied. Vorticity is normally shed from a point close to
the leading edge (LEVS). In line with the theoretical predictions of absolute instability,
the shedding only locks to the applied forcing in a small frequency range around the

natural shedding frequency which is also known as the resonant point. The lock-in effect
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Figure 1.7: A qualitative state selection diagram for laminar wakes. (Karniadakis &
Triantafyllou, 1989)

is characterised by a drop in base pressure and a drastic change in the phase between
shedding and forcing at the resonant point. A review of this process is presented in
Bearman (1984).

The lock-in process is governed by the amplitude and frequency of the applied
perturbation or in the case of freely vibrating structures, the structures’ natural frequency
and damping. A description of the system with applied perturbation by Karniadakis &
Triantafyllou (1989) for laminar wakes is illustrated in Figure 1.7 based on computations
of flow past an oscillating circular cylinder. The amplitude of the applied perturbation
has to be above a threshold to influence the flow. The frequency range where lock-in
occurs, also described as the 'range of capture’, increases with amplitude. Outside this
range but within the receptivity range the flow exhibits a quasi-periodic behaviour with
both the forcing frequency and the natural shedding frequency present in the wake. Near
the boundary between the two states, chaotic like behaviour has been observed in their
study. This behaviour was also observed by Blackburn & Henderson (1996) in a freely
oscillating case and was possibly due to intermittent lock-in. The flow recovers its natural
shedding mode outside the receptivity range. Wind tunnel experiments by Stansby (1976)

also show a similar response for the flow around a circular cylinder.

Measurements of lift and drag forces or base pressure with applied forcing are

of particular interest due to obvious practical applications. In the lock-in regime, a wide
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variety of bodies have been shown to experience an increase in the magnitude of base
pressure including circular cylinders (Stansby, 1976, Blackburn & Henderson, 1996), flat
plates placed tangential to the flow, D-shapes, and triangular sections (Bearman & Davies,
1977). The fluctuating lift component also increases in the lock-in regime as shown by
Staubli (1981) for circular cylinders and Bearman & Obasaju (1982) for square sections.
This is due to the vortex structures increasing in spanwise correlation (i.e. suppressing
three-dimensionality) and being more compact. Applied forcing at higher frequencies has
shown to decrease base suction to below the natural shedding case. This includes square
and triangular sections (Bearman & Obasaju, 1982), and circular cylinders and square
sections (Ongoren & Rockwell, 1988).

A comparison of several geometries has show no general relationship between the
‘range of capture’ and the resonant point (Bearman, 1984). The resonant point is at
the lower end of the lock-in range of capture for a circular cylinder but located quite
centrally for a square section. Ongoren & Rockwell (1988) showed clear visualisations of
a phase shift of 7 between the forcing and the shedding as the forcing frequency crosses
the resonant point for a circular cylinder and a triangular section. There have been
contradicting results for a square section as the phase shift has been observed in some
experiments (Bearman & Obasaju, 1982, Nakamura & Mizota, 1975) and not in others
(Ongoren & Rockwell, 1988). The shift in phase occurs over a small frequency range but
has been shown by Bearman & Currie (1979) to be a continuous change. The phase shift
is closely related to the fluctuating lift forces and changes the direction of energy transfer
between the fluid and the bluff-body which can result in an unstable condition where

excitation of the body is possible.

Experimental observations of flow around a blunt trailing edge by Lofty & Rock-
well (1993) showed a behaviour similar to flow around shorter bodies. The rectangular
edge was oscillated in a pitching motion with an amplitude of 4% of the plate thickness.
The vortex shedding locked to the oscillations when the forcing frequency was within 5%
of the natural shedding frequency. Outside this range, a quasi-periodic state was observed
in both velocity and pressure fluctuations in all cases, with a repeatable pattern after sev-
eral shedding cycles. The number of cycles for repetition to occur increases for frequencies
further away from the natural shedding frequency. Within the lock-in regime, detailed
flow visualisation showed the phase shift in shedding and the increasing formation length

with increasing frequency past the phase shift.
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1.3.3 Long bluff bodies

This section reviews the response of longer plates to small perturbations. Several of
these studies have used external acoustic forcing to control the flow which is analogous to
vibrating the body. This is a simplification of the studies involving the bluff body placed
in a rigid walled duct. In that case, the sound power generated by the flow sustains
a resonance in the duct which can exert feedback control on flow. When there is a
blunt leading edge, the ILEV instability changes the response of the system significantly
compared with aerofoil or rounded leading-edge plates which exhibit behaviour similar to
shorter bluff bodies.

Nakamura & Mizota (1975) experimented on vibrating rectangular plates with
aspect ratios of ¢/t = 1,2 and 4. The study was concerned with the galloping instability
exhibited by the shorter plates (¢/t = 1, 2) which is not present with longer plate (¢/t = 4).
The longer plate showed a drastic phase change between the lift force and the applied
forcing close to the natural shedding frequency. Associated with this phase change, the
amplitude of the lift force varies from a minimum below the natural shedding frequency
to a maximum above that frequency. This results in a small frequency range just below
the natural shedding frequency where energy is transferred from the fluid to the structure

(a necessary condition for self excitation).

As previously discussed, Parker & Welsh (1983) initially documented several flow
regimes with varying aspect ratios in the natural shedding cases. Also included in that
study was the effect of sound which was introduced using two speakers in anti-phase
located above and below the plate in an open jet wind tunnel. Figure 1.8 shows the range
of applied frequencies where the flow is receptive to the acoustic field. The effect of the
sound was to reduce the reattachment length at the leading edge resulting in a greater
curvature of the shear layer and more suction on the surface. The reattachment length
also shortened with increasing frequency. The shear layer and the reattachment point
oscillated at the applied frequency and there were patches of vorticity shed once per cycle
from the leading edge which were m out of phase between the top and bottom surfaces.
This was maintained until the vortices passed the trailing edge resulting in the wake also

having the same frequency as the applied forcing.

Parker & Welsh (1983) found that applying sound did not have a significant effect
for the shorter plates (¢/t < 3.2). The second regime (3.2 < ¢/t < 7.6) only generated
discrete patches of vorticity at frequencies which were significantly higher than the natural
shedding frequency (above line AB in Figure 1.8). Below that, the frequency in the wake
was close to that without sound applied. This threshold is independent of the strength of

the acoustic field within the range studied. A possible competition between the natural
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Figure 1.8: Vortex shedding and acoustic Strouhal number for flat plates with and without
sound applied from Parker & Welsh (1983); sound level at mid-chord = 16Pa (rms)
for ¢/t < 3 up to 46Pa (rms) for ¢/t = 16; Line 1: square leading edge, no applied
sound, Re = 14,800 to 31,100; Line 2: semi-circular leading edges, no applied sound,
Re = 23,800; Region 1: square leading edges, stable vortex streets shed near the plate at
applied sound Strouhal number, Re = 23, 800 to 26, 500; Region 2: square leading edges,
unstable vortex streets shed near the plate initially at applied sound Strouhal number,
Re = 23,800 to 26, 500.
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shedding frequency and the applied frequency is present in this case. Only one pair of
vortices was observed to be shed along the plate in a cycle which is similar to the first
natural shedding mode (n = 1). In the third regime (7.6 < ¢/t < 16), where the flow
always reattaches without sound, the flow generated discrete vortices for frequencies larger
than St > 0.05 (lower limit of experiment) with several pairs present along the plate at
a given instant. In both the second and third regimes (3.2 < ¢/t < 16), although the
shedding matched the applied frequency near the plate at higher frequencies, (above line
CD in Figure 1.8), the wake breaks down to a lower frequency away from the trailing
edge. This was close to the frequency without sound for plates in the second regime
(3.2 < ¢/t < 7.6). At higher frequencies but maintaining the same pressure amplitude,
more energy is put into the system. This may cause the flow to be receptive at higher
frequencies but break down away from the plate where the acoustic field is weaker. No
results were presented on the influence of sound for plates longer that ¢/t > 16 and

frequencies higher than St > 0.25 due to experimental limitations.

A similar arrangement was used by Cooper et al. (1986) to investigate the effects
of the sound pressure level and frequency of acoustic forcing on the forced convection
of heat from long rectangular plates. A heated plate with an aspect ratio of ¢/t = 9.3
was used. The local heat transfer coefficient is relatively low in the separated region
and rises to a maximum near the reattachment. When the acoustic field is imposed,
the time average reattachment length decreased with frequency as in Parker & Welsh
(1983) but more significantly at lower velocities and higher sound pressure levels. The
discrete shedding of vortices and the reduced reattachment length results in a higher
maximum local heat transfer coefficient at reattachment and also the overall heat transfer
coefficient. The increase in drag is typically 10% with applied sound and is greater at
lower frequencies and wind speeds. If the reattachment length is used as the characteristic
length, a simple correlation exists between the local Nusselt number (non-dimensional heat
transfer coefficient) at reattachment and the Reynolds number for both cases with and
without sound for all experimental data. A similar correlation was found by Ota & Kon
(1979) who varied the leading edge shape and McCormick et al. (1984) who varied the
angle of attack to control the reattachment length. This suggests that the control of the

reattachment length is crucial to efficient forced convection.

An extension to the study by Parker & Welsh (1983) to investigate the influence
of acoustic forcing on base pressure was presented in Hourigan et al. (1993). The wind
tunnel arrangement was similar to Parker & Welsh (1983). The study involved plates
with aspect ratios of ¢/t = 10, 13 and 15 at a Reynolds number around Re = 9,000. Care
was taken to show that the pressure coefficient was not significantly influenced by flow
velocity to show generalisation of results with respect to Reynolds number. To maintain

a consistent acoustic field, the ratio of the acoustic particle velocity amplitude to the flow
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velocity (Euler number) was kept constant. At ¢/t = 10, the base pressure coefficient
showed a significant reduction close to the critical reduced frequency reaching a minimum
(maximum suction) at that frequency (St = 0.17). At ¢/t = 13, there is a recovery of base
pressure at this critical frequency but two weaker local peaks in base suction at a lower
and higher frequency. An increase in base suction, although not as strong as for ¢/t = 10,
is observed close to the critical frequency for ¢/t = 15. In this study it is assumed that
the convective velocity is approximately 75% of the free-stream velocity, so for an acoustic
Strouhal number of St = 0.17, the vortex spacing along the plate is approximately 4.5
plate thickness. This is approximately the difference in aspect ratio between ¢/t = 10
and 15 which in both cases are excited at this forcing frequency. It therefore suggested
that the aspect ratio influences the phase in the acoustic cycle at which the leading-edge
vortices arrive at the trailing edge. The interference of the leading-edge vortices and the
trailing-edge shedding is reflected in the mean base pressure coefficient. Also supporting
this proposition are measurements of fluctuating velocities in the wake with sound applied
at the critical frequency which show a larger spectral peak when ¢/t = 10 and 15 than at

¢/t = 13, due presumably to more vigorous shedding.

Some preliminary results in a water tunnel at a reduced Reynolds number of
Re = 1300 to ease visualisation were also included. The acoustic field is simulated by
vibrating side walls of the working section. A sample of the flow visualisation is included
in Figure 1.14. This showed more coherent shedding when the applied forcing is close
to the critical frequency. Also observed were large-scale vortices shed from the leading
edge when forcing is applied. The trailing-edge shedding is not as clear because of the
position at which the hydrogen bubbles were introduced. A similar arrangement was also
used by Wu et al. (1993) to investigate the spanwise correlation from a long plate with
a rounded leading edge. The aspect ratio was ¢/t = 5 and the experiment carried out at
Re = 600. The predominant flow structures in this case are from the trailing edge only.
Measurements were taken using two hot-film sensors located approximately 3t from the
trailing edge which were 6¢ and 9¢ apart. When forcing is applied at the natural shedding
frequency, the spanwise correlation increased significantly from 20% without forcing until
saturating at 90% above a certain level of forcing. The low correlation in the unforced
case is due to phase jitter and the formation of streamwise vortices. The phase jitter is
due to small fluctuations in shedding frequencies along the span resulting in a different
phase of shedding along the span. The spanwise instabilities are reviewed in the next
section. The forcing causes the phase of shedding along the span to match the forcing

and suppresses the spanwise instabilities.

The base pressure measurements presented in Hourigan et al. (1993) were ex-
tended to a wide range of plates, 6 < ¢/t < 16, and for a wide range of forcing frequen-

cies, 0.13 < St < 0.26, in Mills et al. (1995). A similar open jet wind tunnel arrange-
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ment to Parker & Welsh (1983) was used and the results were obtained at approximately
Re = 11,000. The amplitude of the sound pressure level near the speaker was kept con-
stant for all plates and frequencies. The acoustic particle velocity is zero near the centre
of the plate and accelerates around the corners. The velocity amplitude approximately
0.1¢ horizontally from the leading edge without mean flow is 4.5% of the mean velocity
for ¢/t = 10. There are small variations for different plates as the speed up depends on
the aspect ratio of the plate. A plot of the absolute mean base pressure as a function
of forcing frequency and aspect ratio is presented in Figure 1.9. There are clear discrete
bands in the parameters where the absolute mean base suction reaches a local maximum.
For each aspect ratio there is at least one well-defined peak. Plate lengths close to the
transition between modes, such as for ¢/t = 8, have two less distinct peaks. When the
Strouhal number based on chord length at which the mean base suction peaks is plot-
ted as a function of chord-to-thickness ratio, as in Figure 1.3, a stepwise increase is also
observed. Mills et al. (1995) compared this with the natural shedding case of Nakamura
et al. (1991) and the acoustic resonance case of Stokes & Welsh (1986) and suggested
that the same instability is present. At higher Reynolds numbers the weak ILEV insta-
bility is not observed naturally possibly due to turbulence and interactions with smaller
scale structures. The response of the mean base pressure measurements suggest that this
instability is excited by the external forcing. Smoke visualisation also confirmed earlier
observations that, over a wide range of frequencies, the flow locked to the forcing and

results in the out of phase shedding from opposite sides of the leading edge.

Okajima & Kitajima (1993) numerically simulated oscillating rectangular plates
with ¢/t = 1,2 and 3 to study the galloping instability. The plates were oscillated at
an amplitude of 14% of the plate thickness and the flow locked-in over a wide range of
frequencies (i.e. from St = 0.076 to St = 0.7, which was the maximum frequency used
in the simulation for ¢/t = 1). From the phase of the predicted lift coefficient relative to
the oscillations, a narrow range of frequencies around St = 0.1 was shown to be unstable.
In that range there is transfer of energy from the fluid to the plate. This low frequency

instability is typical of galloping.

1.3.3.1 Duct acoustic resonance

The behaviour of flow around long rectangular plates subjected to acoustic forcing is
related to the case where the control is from an acoustic resonance generated by a plate
in a duct. A vertical array of plates in cross flow are commonly used in heat exchangers
and the interaction may excite an acoustic resonance (Welsh & Gibson, 1979). The
neighbouring plates are replaced by intermediate duct walls to isolate the sources of

sound for one plate. In these experiments a fixed plate is placed in a rigid walled duct. A
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Figure 1.9: Plot of absolute mean base pressure coefficient (|C,|) as a function of forcing
frequency (St) and aspect ratio (¢/t) from Mills et al. 1995.
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Figure 1.10: A schematic diagram of a plate in a duct influenced by the acoustic resonance.

schematic of this layout is shown in Figure 1.10. The sound generated by the flow field
excites the f-mode which is the fundamental acoustic mode in the cross-flow direction as
defined by Parker (1966). For plates with an aerodynamic leading edge, a natural acoustic
resonance develops when the frequency of the natural shedding of the body matches the
frequency of the S-mode of the duct (Welsh et al., 1984). The strong acoustic resonance
may reach up to 145dB and will lock the flow. Complicated duct modes can be generated
in a duct which may comprise of higher harmonics which vary in phase along the span
or in the longitudinal direction. Only the first S-mode will be considered which consists
of a standing wave in the cross-flow direction with the acoustic particle velocity having
an anti-node in the centre and nodes at the duct walls. This results in a predominantly
cross-flow perturbation to the flow field. Measurements have shown that the acoustic
particle velocity increases near the plate and decays quickly away from the plate in the
streamwise direction (Welsh et al., 1984).

An early investigation involving a long rectangular plate in a duct was presented
in Welsh & Gibson (1979). A plate with ¢/t = 5 was placed in the centre of a square
cross-sectioned duct resulting in 2.6% blockage. The experiments ranged in Reynolds
number between 10,000 < Re < 40,000. At low Mach numbers, the frequency of the first
f-mode is approximately constant. The vortex shedding frequency which was measured
in the wake increased with velocity (constant St). A natural acoustic resonance occurred
when this shedding frequency was close to the frequency of the f-mode. This occurred in
the range of 0.10 < St < 0.12. An excited resonance occurred at a lower velocity where
the natural shedding frequency would be about half that of the S-mode. This resulted in
the shedding frequency nearly doubling to 0.18 < St < 0.21. Flow visualisation showed

that the spacing between vortices along the plate also halved. In both the fundamental
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and high-order resonance, a high sound pressure level developed in the duct. The acoustic
resonance is initially excited when the shedding frequency is close to a harmonic of the
B-mode. These resonance states can also be achieved by fixing the velocity but starting
the plate off centred axially and moving it towards the middle of the working section of
the duct. In their experimental rig, the sound pressure level reached a maximum 3 seconds
after the plate came to rest and a jump in shedding frequency occurred 1% seconds before
the maximum sound pressure level was observed. This suggests that the shedding feeds
into the S-mode of the duct which then develops an acoustic resonance. The acoustic
resonance then locks the flow to that frequency thus sustaining the resonance. In the
resonance state the flow is in a state similar to the cases where a forced perturbation is

applied.

Plates ranging from 0.5 < ¢/t < 16 in length with a rounded leading edge and
either rounded or blunt trailing edges were examined by Welsh et al. (1984). As with
the Welsh & Gibson (1979) study, the velocity in the duct was varied. The Reynolds
number was in the range of 22,500 < Re < 32,000. The rounded leading edge resulted
in no large scale vortices from the leading edge. Unlike the blunt leading edge, no excited
resonance was observed and the natural resonance occurred when the shedding frequency
was close to the f-mode of the duct. At ¢/t = 16, with a rounded trailing edge, the
shedding locked to the duct acoustic resonance when the natural shedding frequency was
between 10% below the resonance frequency (lock-up) to 20% above (lock-down). In this
range the shedding frequency is constant and matched the S-mode of the duct. The
acoustic resonance is weaker when a blunt trailing-edge plate was used. At the same
aspect ratio of ¢/t = 16, the lock-in range was when the natural shedding frequency
was between 7% below the resonance frequency until approximately the natural shedding
frequency. Flow visualisations showed stronger vortices shed from the trailing edge with
more spanwise correlation in the lock-in range. The maximum sound pressure level did
not vary with aspect ratio for ¢/t > 5 but reduced for shorter plates. A switch in
shedding modes corresponding to a jump in shedding frequency was observed for the
shorter plates. Leading-edge shear layers shed directly into the wake when ¢/t < 1 and

no acoustic resonances were observed in the range 1 < ¢/t < 1.33 near transition.

The second part of this study presented in Stokes & Welsh (1986) used blunt
leading-edge plates. Various plates with either rounded or blunt trailing edges up to
¢/t < 16 were experimented with in the range of 8,000 < Re < 44,300. The resonance
range for the various plates are presented in Figure 1.11. Although there were no obvious
changes in the flow, the rounded tailing-edge plates generated higher sound pressure levels
resulting in a clearer visualisation of the flow field and a larger resonance range. In the
second regime (3.2 < ¢/t < 7.6) classified by Parker & Welsh (1983), acoustic resonance

occurred at integer multiples of the natural shedding frequency. The mechanism involved
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Figure 1.11: Resonant range for a blunt leading-edge plate with rounded trailing or blunt
trailing-edge plates from Stokes & Welsh (1986). The data terminated due to, either the
velocity limit, or the onset of higher duct modes. The dotted lines represent ranges of

frequency where resonant sound was present, but was not sufficient to lock the flow.
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here is equivalent to that of Welsh & Gibson (1979) which has been discussed earlier. The
longer plates (7.6 < ¢/t < 16) which do not have a dominant natural shedding frequency,
also show a continuation of this trend where resonant ranges were approximately multiples
of 0.6 in Strouhal number based on chord. For these plates, the resonance could be started
from the random vortices shed from the plate. Once excited, the instability in the flow
field sustains the resonance completing the feedback loop. In the resonance state the flow
visualisation show similar features to acoustically-forced flow. These include a shorter
reattachment length, a higher base suction and out of phase shedding of discrete vortices
from the leading edges which are phase locked to the forcing. As a plate locks to higher
Strouhal numbers, more pairs of vortices are observed along the plate which is similar
to the situation for different modes as the plates are lengthened in the natural shedding
case examined in Nakamura et al. (1991). For example, at ¢/t = 9.17, the resonance
ranges of 1.3 < St. < 1.38, 1.62 < St. < 2.09 and 2.42 < St. < 2.63 corresponded to
modes n = 2, 3 and 4. The resonant ranges shown in Figure 1.11 also indicate a distinct
staging at multiples of approximately St. = 0.6. In the natural shedding case, Nakamura
et al. (1991) also observed the steps in Strouhal number base on chord to have this value.
When the Strouhal number based on chord at which the duct acoustic resonance reaches
a maximum sound pressure level for the rectangular plate is plotted as a function of ¢/t
as in Figure 1.3, a stepwise increase is also observed. As discussed by Mills et al. (1995),

the ILEV instability could be excited by the acoustic resonance of the duct.

An attempt to develop a simple mathematical model for the duct resonance was
presented in Welsh et al. (1984), and Stokes & Welsh (1986). The flow was modelled
as an inviscid flow containing discrete point vortices to model the shed vortices. The
high acoustic velocities (anti-node) and low acoustic pressure (node) observed near the
trailing-edge of the plate suggest that the flow is influenced by the acoustic velocity rather
than acoustic pressure. The acoustic particle velocity of the resonant mode is assumed to
be approximately a potential flow in the cross-flow direction varying sinusoidally. This is
valid when the source region is compact relative to the duct and the flow is approximately
incompressible. Using Howe's theory (Howe, 1975, 1980), which incorporates the flow
field, the vorticity field and the acoustic particle velocities, the transfer of energy between
the fluid and the sound field can be deduced. A positive transfer of energy from the flow
field to the sound field is a necessary but not sufficient condition for acoustic resonance as
the damping to the acoustic field must be considered. Acoustic resonance is sustainable
when the acoustic power generated matches that leaving the system. This simple model
can give a qualitative description of the system. Welsh et al. (1984) used this model
to analyse the trailing-edge shedding from long plates which had no shedding from the
leading edge. The model predicts more losses through the ends of the duct for shorter

plates resulting in a lower sound pressure level and a smaller resonance range. The

28



analysis for a blunt leading edge was presented in Stokes & Welsh (1986). Only leading-
edge vortices were considered. The generation of sound along the plate is negligible
because the vortex trajectory is nearly normal to the acoustic particle velocity. The main
sources or sinks of acoustic energy were from vortices passing the trailing edge because
the vortex path is nearly orthogonal with the acoustic particle velocity. The phase in the
acoustic cycle when the vortices pass the trailing edge was found to be the main criteria
for resonance. In a half cycle, acoustic power is generated or absorbed depending on the
phase of the acoustic field when the vortex passes the trailing edge. This is repeated in
the next half cycle for the vortex on the other side. Contributions from pairs of vortices
further downstream in the wake approximately annihilate each other. For a fixed chord,
and assuming that the convective velocity of these vortices are not a function of shedding
(duct) frequency, the phase at which these vortices enter the wake is controlled by the
shedding frequency. Resonance occurs when the timing of these vortices (relative to the
acoustic particle velocity) entering the wake results in a net transfer of energy between
the flow to the acoustic field. The several distinct resonance ranges are possible because
different numbers of pairs of vortices can exist along the plate while still maintaining this

condition.

As a method of suppressing the acoustic resonance, Stoneman et al. (1988) ex-
perimented with using a second plate placed downstream. All edges of both plates were
rounded with aspect ratios of ¢/t = 85 and ¢/t = 8 for the upstream and downstream
plate respectively. The thickness of the trailing plate was 0.625t of the leading plate and
experiments ranged from 10, 000 < Re < 20,000 based on the upstream plate. As usual,
the trailing-edge shedding from the front plate causes an acoustic resonance for a range
of Strouhal numbers when the shedding frequency is near the S-mode of the duct. Exper-
iments concentrated in suppressing resonance in this range. In this rig, the leading edge
alone produces a sound pressure level of 150dB. When varying the distance between the
plates, the downstream plate can be a source or sink of acoustic energy and the sound
pressure level rises and drops with a period of approximately 3.75 plate thickness of the
upstream plate. The acoustic resonance can be lowered to 94dB or amplified to 153dB.
When the acoustic resonance is significantly damped, there is a narrower lock-in range.
An improved numerical model was developed to simulate and analyse the system. A
discrete vortex model is used to model the flow and the sound field is found by solving
the wave equation which gives a more realistic acoustic particle velocity field than the
potential flow model as it simulates the nodes at the duct walls and the anti-nodes along
the centreline of the plate. The acoustic power and energy is calculated using Howe’s
theory (Howe, 1975, 1980). The model predicts that the suppression or augmentation of
acoustic energy depends on the phase of the acoustic cycle when the vortices from the

upstream plate reach the leading edge of the downstream plate. This in turn depends on
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the convective velocity of the vortices and the plate spacing. Similar to the single plate
case, near the leading edge of the downstream plate, the vortex path is nearly orthogonal
to the acoustic particle velocity creating either a net source or sink of acoustic energy
depending on the direction of the acoustic field in relation to the sign of the vorticity in

the vortex.

A review of experiments involving the interaction of the sound field and the fluid
flow was presented in Welsh et al. (1990). This included experiments on long plates
subjected to external sources of sound and plates placed in ducts which generated acous-
tic resonance. Although high sound pressure levels (i.e. up to 150dB) generated by
acoustic resonance have an obvious influence on the flow and can be easily detected by
experimenters, however, low levels (about 70dB) can also influence the flow field but the
presence of the acoustic modification of the flow field is not as obvious. The influence of
low levels of acoustic resonance on the flow field was shown with rounded leading-edge
plates in solid duct wall at flow velocities well below the critical velocity where loud acous-
tic resonance occurs. The authors warn that low levels of acoustic resonance can influence

the results of wind tunnel experiments.

1.4 Spanwise flow instabilities

The flow over two-dimensional bodies develops three-dimensional or spanwise instabilities
above a critical Reynolds number. There have been many bluff body studies, especially
on circular cylinders, at low Reynolds number near the initial transition to three dimen-
sionality with the aim of understanding phenomena observed at much higher Reynolds
numbers. Apart from being observed experimentally, these have also been successfully
modelled theoretically and numerically in recent times (e.g., Thompson et al., 1996, Hen-
derson & Barkley, 1996).

1.4.1 Short bluff bodies

Many studies have concentrated on circular cylinders because it is a simple geometry with
the only free parameter being the Reynolds number. Although this geometry has been
studied for a long time, recent attention has been focused in the range of 190 < Re <
260 which spans the onset of three dimensionality. The first transition is at Re =~ 45
where the flow changes from being steady in time to large scale von Karman shedding.
The onset of three dimensionality results in distinct changes in the relationship between

shedding frequency and base pressure with Reynolds number. The Strouhal number in
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the wake undergoes discontinuities in the Reynolds number ranges 180 < Re < 194 and
230 < Re < 260 (Williamson, 1988). These ranges cannot be narrowed because the first
discontinuity is hysteretic and the second involves a gradual change with both frequencies
present within the range. Measurements of mean base pressure show a drop in base
suction at the first transition and a local peak in base suction at the second transition
(Williamson & Roshko, 1990). The drop in mean base suction at the first transition is
due to the reduced spanwise correlation. At the second transition, the primary vortex
shedding recovers spanwise correlation resulting in the peak in base suction before being
influenced by smaller three-dimensional structures at higher Reynolds numbers. Early
measurements by Roshko (1955) and visualisation by Hama (1957) showed the transition

to three dimensionality.

A detailed study and classification of these instabilities was presented in Williamson

(1988). The first spanwise instability to develop in the range of 180 < Re < 194 is called
Mode A. There is a transfer of energy between the first and second mode, called Mode B
in the range of 230 < Re < 260 with apparently only Mode B present above this range.
Mode B persists well into the turbulent regime although the regularity decreases as the
flow becomes more turbulent making it more difficult to visualise. Spanwise correlations
of the flow for Re > 1,000 by Wu et al. (1994) clearly indicate the presence of Mode
B streamwise vortical structures. Since the initial classifications, many researchers have
confirmed the presence of these two transitions. Experiments by Norberg (1994) have also
confirmed the presence of theses instabilities. Thompson et al. (1994, 1996), and Hender-
son & Barkley (1996) were the first to accurately predict these instabilities numerically
and theoretically. A combination of flow visualisation from experimental and numerical
simulations by Williamson (1988) and Thompson et al. (1996) shown here in Figure 1.12
highlights the vortical structures of the two different instabilities. The spanwise wave-
length of Mode A is approximately 3 to 4 diameters and that of Mode B is about 0.8 to
1 diameters (Williamson, 1988).

The theoretical prediction by Barkley & Henderson (1996) using the Floquet sta-
bility analysis has identified the most unstable wavelengths and critical Reynolds number
for each shedding mode. The calculations show the critical Reynolds numbers for Mode A
and Mode B are Re = 188.5+1.0 and 259 respectively. At the onset of these instabilities,
the spanwise wavelengths are 3.96 4+ 0.02 and 0.822 diameters for these two modes. An
analysis by Williamson (1996) linked these wavelengths to different physical structures.
Mode A appears to be an elliptical instability of the two-dimensional vortex cores, while
Mode B appears to be an instability of the braid regions between the rollers. Importantly,
the different instabilities lead to two different topologies for the modes. For Mode A, the
streamwise vortical structures connecting the largely two-dimensional vortex rollers are

aligned in the downstream direction so that they are of opposite sign on opposite sides
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Figure 1.12: Visualisation of Mode A (top) and Mode B (bottom) taken from above
the cylinder. The pictures on the left is from Thompson et al. (1996) in which tracer
particles are placed in the simulated flow. The pictures on the right is from experiments
by Williamson (1988).
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of the wake. For Mode B, the reverse is true; here the structures are of the same sign on

each side of the wake.

These spanwise instabilities have been observed on other short bluff bodies. Nu-
merical simulations have been performed on elliptical cylinders, normal flat plates and
squares. Although Mittal & Balchandar (1996) mainly concentrated on the numerical
scheme and the lift and drag forces on an elliptical cylinder, spanwise Mode B patterns
were observed. A flat plate normal to the flow was studied by Najjar & Balchandar (1998).
A direct numerical simulation at Re = 250 showed the system oscillated between a high
and low drag state with a period of 10 times the vortex shedding period. The high drag
state had coherent Karman vortices with the presence of well organised Mode B structures
with a spanwise wavelength of 1.2¢. Robichaux et al. (1999) performed a Floquet stability
analysis for a square-sectioned cylinder. This analysis predicted the growth of the first
spanwise instability at Re = 161 and the second at Re = 190. The spanwise wavelengths
of the first and second modes were 5.2t and 1.2¢ and their vortical structures were similar
to Mode A and Mode B respectively. A third instability called Mode S was also predicted
which was present above Re > 200 and has a spanwise wavelength of 2.8¢. Unlike the
other two modes, this instability is subharmonic and has twice the period of the two-
dimensional shedding. The numerical simulations by Sohankar et al. (1999) on a square
section showed the presence of a both Mode A and Mode B in the three-dimensional wake

transition process.

Only the most basic spanwise phenomena are considered here. Experiments on
bluff bodies, especially circular cylinders at low to moderate Reynolds numbers, have
demonstrated many other features including oblique/parallel shedding, vortex dislocations
and cellular shedding. It may be possible to study these numerically or theoretically in

future with improvements in computing speed and numerical techniques.

1.4.2 Long rectangular plate

Unlike short bluff bodies such as the circular cylinder, there has been less interest in three-
dimensional transition for flow around long rectangular plates. Only vortical structures
from the leading edge have been considered in detail as their interaction with the trailing-
edge structures significantly increases the complexity. Spanwise instabilities develop in
the large-scale vortices shed from the leading edge at low to moderate Reynolds numbers

and the separating shear layer at higher Reynolds numbers.

Sasaki & Kiya (1991) observed the flow near the leading edge of long rectangular
plates in a water tunnel. The plates used had an aspect ratio of ¢/t = 10, 20 and 40 and the
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Figure 1.13: A top view of the long rectangular plate showing a sketch of the spanwise
structures of the shed vortices observed by Sasaki & Kiya (1991).

Reynolds number range in the experiment was 80 < Re < 800. Clear flow visualisations
were obtained using dye tracers and hydrogen bubbles. No large-scale vortices were shed
from the leading edge below Re < 320. Once shedding was observed, the reattachment
length was approximately 4.5¢ in this Reynolds number range. Measurements were taken
between 0.6 to 2 times the re-attachment length. Spanwise instabilities were observed
at the onset of shedding. A sketch of the two instabilities observed in this Reynolds
number range is shown in Figure 1.13. The first mode named Pattern A by Sasaki and
Kiya (1991) is observed in the range of 320 < Re < 380. Slight disturbances could
cause the deformation of the vortex cores. This is amplified by high velocity gradients
in the vortices, near the plate and in the shear layer resulting in A-shape structures.
The streamwise vortex structures which occur between the two-dimensional spanwise
vortices are in phase with subsequent streamwise vortices. The streamwise and spanwise
wavelengths are both approximately between 2¢ and 2.5¢. For Reynolds numbers in excess
of Re > 380, a different mode becomes dominant which has been called Pattern B. This
mode has a wavelength of 3¢ to 4¢ in both the spanwise and streamwise directions. The
streamwise vortices form hairpin-like structures which are significantly stretched in the
streamwise direction. These structures still form in rows but each row is staggered with
respect to the next one. The vortices downstream induce the formation of the initially
two-dimensional upstream vortex to develop waviness shifted by half a wavelength. The

pattern is less regular with increasing Reynolds number.

Similar spanwise instabilities have been observed in wall bounded shear flows.

These are studied in the context of transition to turbulence and unlike the plate, there
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is no separation of the shear layer. At sufficiently high Reynolds numbers, slight per-
turbations to the boundary layer readily generate Tollmein-Schlichting waves which are
discrete patches of vorticity but these waves may also occur without perturbation. Three-
dimensional structures can be observed when the perturbation is not uniform along the
span. Using a vibrating trip wire, Perry et al. (1981) observed A-shape structures sim-
ilar to Pattern A. An alternative structure, called a subharmonic, has been observed by
Kachanov & Levchenko (1984) and Saric & Thomas (1984). The vortex pattern had
twice the wavelength of the Tollomien Schlichting waves because the hairpin structures
were staggered between rows in the streamwise direction. Both patterns were observed
before turbulent transition further downstream. At higher Reynolds numbers when the
boundary layer is turbulent, Head & Banyopadhyay (1981) have observed hairpin vortices.

The separating shear layer prior to reattachment and the shedding of large scale
vortices exhibit three-dimensional instabilities at higher Reynolds numbers. As observed
by Cherry et al. (1984), at Re = 3,200 the shear layer develops three-dimensionality
soon after separation and the spanwise correlation decreases with the development of
the shear layer. The effect of higher Reynolds number and smaller scales is to blur the
visualisation of coherent structures; the same applies to the large scale shedding at higher
Reynolds numbers. Without any perturbation, clear flow structures were not observed
for flow over a rectangular plate at Re = 900 by Soria et al. (1993) and at Re = 1,300 by
Hourigan et al. (1993). The random development of three-dimensional structures in the
shed vortices leads to smaller scale structures downstream. Although some horseshoe-like
structures could be observed further downstream, the pattern is not clear and regular.
A flow visualisation by Hourigan et al. (1993) in Figure 1.14(a) show the randomness of
spanwise structures without forcing. Regular large-scale vortex structures would not be

expected at higher Reynolds numbers.

1.4.2.1 Forced shedding

Experiments by Soria et al. (1993) and Hourigan et al. (1993) included spanwise flow
visualisation of flow around long rectangular plates in a water tunnel. Perturbations are
applied by oscillations of the side walls of a water tunnel. The velocity amplitude near
the walls was v,¢,y = 5% of free-stream velocity in Soria et al. (1993). Two-dimensional
vortex cores develop from the shear layer and spanwise vortex structures develop in a
repeatable manner across the span. Staggered horseshoe structures were observed over a
wide range of frequencies (0.22 < St < 0.36) used in the experiment. Clear visualisation
was obtained by Hourigan et al. (1993) at the same level of perturbation. Figure 1.14(bh)
shows the flow pattern at an applied perturbation frequency of St = 0.20. Together with

a shorter reattachment and stronger shed vortices, the applied perturbation also causes
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Figure 1.14: Flow visualisation from Hourigan et al. (1993) showing the side and top view

(not at the same instant) of a rectangular plate (a) without applied perturbation and (b)

with applied perturbation at St = 0.2

the formation of staggered horseshoe-like structures.
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Chapter 2

Numerical Techniques

Many previous studies on the flow around rectangular plates, especially those with applied
forcing have been done experimentally. This study aims to simulate some of the experi-
mental observations and test some hypotheses previously proposed or suggested by others.
Although the maximum Reynolds number is more limited in the numerical simulations,
it is hypothesised that the important flow physics can still be captured. Comparison with
experimental results will be used to test this claim. Numerical simulations also hope to
give more insight into the physics of the problem by providing detailed time-dependent
data.

Direct numerical simulations with no sub-grid scale or turbulence models are used
to accurately model the flow. As the geometry being studied is a moderately simple one,
a high-order spatial scheme can be used without significant complications. A high-order
scheme uses less nodes to achieve the same resolution, and if well implemented, can result
in a reduction in memory and computational requirements. A unstructured spectral-
element technique is used for spatial discretisation in two dimensions because it allows
for mesh flexibility and can achieve a high order of accuracy. As the geometry is only
two dimensional, a Fourier expansion is used to extend the model to three dimensions
because it is easy to implement and is computationally efficient. A classical three-step

time-splitting scheme is used to advance the simulation in time.

This chapter will describe both the temporal and spatial discretisation used in
this study. A description of the boundary conditions used in the numerical model is
included. To test the accuracy of the model, two benchmark problems were used to
validate the scheme, namely the backward-facing step flow and the driven cavity flow.
To accurately simulate the flow over a rectangular plate, the size of the domain and the

required spatial and temporal resolution are determined. A description of the application
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of Howe's acoustic model is given. Finally, other post-processing steps are also elucidated.

2.1 Numerical scheme

The main software used in this study implements a numerical solver for the time-dependent

incompressible Navier-Stokes equations. These consist of the momentum equation

Ju 1
—=-(u-V)u-V —V 2.1
= (V- Vp + oV (21)
and the incompressibility constraint
V-u=0. (2.2)

As will be discussed in the following sections, the spatial derivatives are evaluated using
a mixture of spectral-element and global spectral discretisations while the equations are
integrated forward in time using a classical three step splitting scheme. This program is a
modification of finite-element software to incorporate high-order interpolation within each
element. It was mainly developed by Mark C. Thompson and Kerry Hourigan from the
Department of Mechanical Engineering, Monash University. This software was initially
developed to study flow past a circular cylinder and has accurately modelled the spanwise
instabilities at low Reynolds numbers (Thompson et al., 1994, 1996).

2.1.1 Spatial scheme

The spatial discretisation is based on a two-dimensional spectral-element scheme. This is
extended into the spanwise direction using a global Fourier spectral scheme. The spectral-
element technique was first applied to the study of fluid dynamics by Patera (1984).
Since then, further refinements have been introduced by Karniadakis (1989, 1990). The
technique employed in this study is similar to that used by Karniadakis & Triantafyllou
(1992) to simulate three-dimensional bluff body flows. Initially, this section will review
the spectral-element scheme used for the two-dimensional simulations and then describe

the extension to three dimensions through a Fourier expansion.

2.1.1.1 Two-dimensional discretisation

Traditionally, the finite-element method has found favour because of its ability to han-
dle complex geometries. Typically first- or second-order elements are used because this

scheme is more computationally efficient using these elements. A global spectral method
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(Canuto et al, 1988) can achieve “spectral convergence” when implemented correctly but
handles only the simplest of geometries without significant complications. The spectral-
element technique is a hybrid of these two techniques. The spectral-element method is
essentially a modification of the Galerkin finite-element method to incorporate a spectral
expansion within each element. When a problem results in a continuous and smooth
solution, the spectral-element technique can achieve exponential convergence, with signif-
icant savings in computations over high-order finite element techniques especially when
high accuracy is required. The end result is a high-order spatial scheme that incorporates

much of the ability of the finite element technique to handle geometries.

The main difference between the traditional Galerkin finite-element method and
spectral-element method is in the choice of basis functions. After mapping the elements
to a computational square, the spectral-element technique uses the tensor product of
high-order Lagrangian polynomials to interpolate the solution variables in each direction
within each element. Importantly, within each local element, the nodes are chosen to be

at the Gauss-Lobatto-Legendre quadrature points which are the roots of the equation,
(1-EHP () =0 with —1<¢<1 (2.3)

where the Legendre polynomials are

1 dam

n = Sl gen (@~ D" where m =0,1,2,... (2.4)

The nodes are stretched towards the boundaries of each element as shown in Figure 2.1
and Figure 2.3(b). Typically between 6th (m = 6) and 12th (m = 12) order polynomials
are used, resulting in an equivalent order of accuracy, and hence between N = 7 to 13
nodes in each direction. The Galerkin weighted residual method is used to form equations
for the solution variables at the nodal points. The momentum equations are multiplied
by the nodal weighting functions, in this case the associated Lagrange polynomials, and
integrated over all space. Because the weighting functions are only non-zero within the
element, the resulting integrals only depend on the local and neighbouring elements.
These integrals are evaluated numerically by Gauss-Lobatto-Legendre quadrature. It
turns out that this is much more efficient computationally than the normal finite-element
approach of using Gauss-Legendre quadrature. For Gauss-Lobatto-Legendre quadrature

the weighting coefficients are given by

2 1
m(m + 1) [P (2,)]

wj = with j =0,1,..,m. (2.5)

This allows an integral to be evaluated by the following approximation :

'/1] f(z)dx = Z w;f(x;) (2.6)
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and is exact if f(z) is a polynomial of degree 2N — 3 or less. (This is slightly less accurate
than for Gauss-Legendre quadrature where the approximation is exact for polynomials of

degree 2N — 1 or less.)

Earlier implementations of these schemes positioned the nodes at the Gauss-
Lobatto-Chebyshev points (Patera, 1984, Karniadakis, 1989) but later used Gauss-Lobatto-
Legendre points (Karniadakis, 1990, Karniadakis & Triantafyllou, 1992). This is mainly

because the compression of the nodes towards element boundaries is not as severe.

Using Lagrange polynomial basis functions and locating the nodes at the Gauss-
Lobatto-Legendre points leads to significant computational benefits. Only a limited num-
ber of nodes in an element contribute to the equations formed at a particular node. For
example, the “Mass” matrix is diagonal which markedly improves the efficiency of time-
stepping problems. This is not the case for traditional finite-element implementations
where Gauss-Legendre quadrature is used. Static condensation techniques further re-
duce the computational requirements. This technique takes advantage of the fact that
the equations for the internal nodes in each element are only a function of the element
boundary nodes. This allows the matrix equations to be decoupled into two sets; one
involving the element boundary nodes, and K small matrix equations for the internal
nodes of each element. After solving the larger matrix equation governing the boundary
nodes, the K smaller matrix equations are inverted to provide the solution at the internal
nodes. Bandwidth minimisation schemes can reduce the bandwidth of the matrices and
sparse matrix solvers are used to solve the large system of equations involved. If the
grid, physical constants and timestep are fixed, the matrices are decomposed using LU
decomposition at the start of the simulation and stored in memory. Implicit steps (i.e. for

pressure and diffusion) are done by backsubstitution from the stored LU decomposition.

2.1.1.2 Spanwise discretisation

An efficient way to extend the method to three dimensions for two-dimensional geometries
is to use a global Fourier spectral discretisation in the third direction. This approach was
used in conjunction with a spectral-element method by Karniadakis (1990) and specif-
ically on two-dimensional circular cylinders by Karniadakis & Triantafyllou (1992) and
Thompson et al. (1996). This global spectral approach has the advantage of exponential
or spectral convergence but restricts the boundary conditions in the spanwise direction

to be periodic.

The spatial discretisation consists of a series of F' equi-spaced planes in the span-
wise direction with an identical spectral-element mesh on each plane. The flow variables

are transformed into Fourier space in the spanwise direction for each node on the spectral-
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element grid. A fast Fourier transform is used to reduce the operation count. This de-
couples the problem into a set of F' Fourier modes which can be solved independently
for the linear operators. This results in the generation of F'/2 smaller matrix equations
rather than one large matrix equation with a large bandwidth which would considerably
increase the storage requirements. The decoupling of the problem into effectively F/2 two-
dimensional planes and the use of static condensation for the spectral-elements discussed
in the previous section facilitates the implementation on parallel architecture machines.
This has not been implemented yet but is work in progress. In the future with advances in
computational performance, it will soon be possible to perform accurate simulations with
spectral-element discretisation in all three dimensions. Although this is significantly more

computationally expensive, it will allow three-dimensional geometries to be simulated.

2.1.2 Temporal scheme

There are many techniques for integrating the Navier-Stokes equations forward in time.
The three step time-splitting technique described in Karniadakis et al. (1991) is well
suited to the spatial technique used here. It splits the Navier-Stokes equations into three
sub-steps and allows a mixture of implicit and explicit high-order temporal schemes to
be used for each sub-step. The momentum equations are split into three semi-discrete

equations, namely the non-linear convective step,

ut —u”

=—u-Vu, 2.7
Y u-Vu (2.7)
the pressure correction step,
u** o u*
= -—vp't! 2.8
and the diffusive step
un+1 o u** 1
e v& 2.9
At Re® ™ (29)

where the superscripts n and n + 1 refers to the time level at the start and end of the
timestep respectively. This technique introduces two intermediate flow fields (i.e. u* and
u*). The pressure (p"*') is obtained by enforcing incompressibility at the end of step
two (Equation 2.8).

The convective equations are non-linear and are normally solved explicitly using
the Adam-Bashforth family of schemes to avoid iterations but this restricts the maximum
size of the timestep. The diffusive step can be solved implicitly using the Adam-Moulton
family of schemes resulting in a Helmholtz equation which is solved by inverting the
equation matrix. The spectral-element spectral scheme used for the simulations described
here uses the third-order Adam-Bashforth scheme for the non-linear step and the second-

order Adam-Moulton (Crank-Nicholson) scheme for the diffusive step. For the pressure
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step, the second intermediate flow field (u*) is forced to satisfy the incompressibility
constraint. As a result the pressure can then be found by solving a Poisson equation,

1
At

and subsequently the pressure sub-step is used to find (u™). When u** satisfies the
1

vt V-, (2.10)

continuity equation then u™*' also satisfies that condition (provided the initial field is

divergence free).

2.1.3 Boundary conditions

Typically, the equation for the convective sub-step is applied to the entire domain includ-
ing the boundary nodes and no boundary conditions are prescribed in this operation (i.e
u* is not fixed at the boundaries). The pressure boundary condition is chosen so that the
the second intermediate velocity field, u*™*, is divergence free everywhere in the domain
and also at the boundaries. Boundary conditions are imposed on the final velocity field,
u"*! when solving the Helmholtz equation for the diffusion step. This ensures that the
velocity boundary condition is satisfied at the end of this timestep and the start of the

next.

As shown by Karniadakis et al. (1991), an appropriate choice of boundary condi-
tion for the pressure gradient normal to the boundary is required to eliminate the splitting
errors and ensure continuity is satisfied at the boundaries. A stable formulation is pro-
posed in Karniadakis et al. (1991) which uses the flow field from previous timesteps to
form a condition for the normal pressure gradient at the boundary. As shown by Karni-
adakis et al. (1991), the order of the time-marching scheme can only be one order above
the order of extrapolation used to find the pressure boundary condition. The numer-
ical scheme used in this study uses a first-order pressure boundary condition resulting
in overall second-order time-accurate scheme (consistent with the order of the diffusion

sub-step).

2.1.4 Stopping criteria for temporal evolution

In the present study, generally only the asymptotic state is of interest. Simulations are
started with either a stationary fluid or a flow field which has reached an asymptotic state
at a lower Reynolds number. Care is taken to ascertain if the flow has reached an asymp-
totic state. This sometimes required between several hundred and several thousand time
units to be simulated before this is achieved (Typically there are 100 or more timesteps

per time unit). The flow is judged to have reached a steady state if the maximum change
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in the velocity field (Au) per timestep is four orders of magnitude below the mean flow
velocity. When the asymptotic flow is not steady, a key indicator such as the total kinetic
energy or the base pressure is monitored. The possible unsteady states observed in these
flows include a periodic state where the flow is repeatable every period, a quasi-periodic
state in that there are a few frequencies present and a chaotic or random state where there
are many frequencies present. The flow is assumed to have reached a periodic state when
the indicator shows a repeatable pattern over several periods. When the flow reaches a
quasi-periodic state, the signal is usually repeated after a much longer time interval than
in the previous case. In this case, the simulation is evolved until several periods of the
longest wavelength is captured and show a repeatable pattern. In the last case, the statis-
tical properties of the signal such as the mean and the standard deviation are calculated
and the simulation is stopped after these properties are approximately constant (taken

over several data sets).

2.2 Validation

To validate the code and investigate typical grid resolutions required, two classical test
problems are studies: namely, flow over a backward-facing step and the driven cavity flow.
These are two distinct problems in that the flow over a backward-facing step involves an
inflow and an outflow boundary, while the driven cavity flow is a closed system. The
driven cavity flow problem is also used to investigate the possibility of using a different
implicit scheme for the non-linear substep namely the Runge-Kutta scheme. This is
studied because the convective step is done explicitly and an improved scheme could

reduce the timestep restriction.

2.2.1 Backward-facing step flow

There are numerous studies involving this particular problem as this is used as a bench-
mark problem to verify numerical methods for computing flows. Results from Kim &
Moin (1985), and Gresho et al. (1993) will be used as validation. Simulations from Kim
& Moin (1985) are chosen because results are presented for a wide range of Reynolds num-
bers using a time-dependent solver. A detailed study of this problem at Re = 800 was
presented by Gresho et al. (1993). Using various spatial schemes including the spectral-
element method, Gresho et al. (1993) showed that at Re = 800, the flow is steady and
stable to perturbations. Gresho et al. (1993) showed that if the flow is not well resolved,
the spectral-element method (as well as other schemes) can predict an artificial unsteady

behaviour even after a long simulation time. The resolution used in this study matches a
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Figure 2.1: A layout for the 'flow over a backward-facing step’ problem (above) and the
spectral-element mesh used for the simulation (below). Note that within each spectral-

element there are 8 x 8 nodes (N = 8).

resolution used in Gresho et al. (1993) to produce a consistent result at Re = 800. It is
assumed that this will also be able to resolve the flow at lower Reynolds numbers. As is
common practice, the reattachment length of the separation bubble formed in the wake

of the step will be used for comparison.

The parameters for this problem is chosen so as to match Kim & Moin (1985)
and Gresho et al. (1993). A layout of the flow over a backward-facing step problem is
shown in Figure 2.1. It involves a two-dimensional channel of height H and an inflow on
the left boundary above a step of height A and outflow some distance downstream. No
slip boundaries are applied to the top and bottom of the channel and the step. In this
particular study, the step height is chosen to be half the channel height and the outflow
boundary to be 17H downstream of the inflow boundary although Kim & Moin (1985)
used a shorter domain (15H). The inflow velocity profile has a parabolic profile which
approximates a fully developed laminar channel flow at the entry to the expanded region.
The parabolic profile is,

uly) = (24y(5 -~ 4).0), v € (0.05) (2.11)

where y is the vertical distance above the step. The parabolic profile chosen has an average
velocity of one unit. The Reynolds number is based on the average inflow velocity and
the channel height H. The normal gradients for all flow variables are set to zero at the

outflow boundary.

Simulations were performed at Reynolds numbers of Re = 10, 100, 200, 400 and
800. The spectral-element mesh used for this problem consisted of a 32 x 4 (K = 128)
regularly spaced element with 8 x 8 (N = 8) nodes in each element as shown in Figure
2.1. The simulations were started with the flow field from a lower Reynolds number and

stopped when the flow reached a steady state. Figure 2.2 shows the streamlines of the
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flow at each Reynolds number after the flow has reached a steady state. The reattachment
length, r, is measured by searching for the point where the flow switches direction along
the first layer of nodes from the bottom boundary. Table 2.1 show a comparison of
reattachment lengths, r, between the present simulations and previous studies . The two
sets of results show only a small difference. A possible source of error other than from
the numerical scheme is the method used for measuring the reattachment length. The
spacing between the first layer of nodes and the boundary and the horizontal spacing of
the nodes are different for the different schemes. This may have a small influence on the

results.

Re | r/h (Present Study) r/h (Comparison)

10 0.81

100 3.19 3.2 (Kim & Moin, 1985)
200 5.39 5.3 (Kim & Moin, 1985)
400 8.61 8.6 (Kim & Moin, 1985)
800 12.05 12.2 (Gresho et al., 1993)

Table 2.1: Comparison of reattachment length and between the present study and Kim
& Moin (1985) and Gresho et al. (1993).

2.2.2 Driven cavity

The classical driven cavity flow problem consists of a square domain with three stationary
walls and a ’sliding lid’. The ’sliding lid’ is normally the top boundary having a uniform
tangential velocity. A sketch of this is show in Figure 2.3(a). The Reynolds number is
based on the length of the domain and the velocity of the lid. The velocity singularity at
the top corners where the lid meets the stationary walls causes problems with high-order
schemes. Some regularisation is required to avoid local artificial oscillations in the velocity
field but only a small amount of regularisation is needed. A velocity profile for the lid is
chosen so that it is uniform for a large proportion of the lid but decays to zero close the
edges where it meets the stationary walls and is also continuous in the first and second

spatial derivatives. The velocity profile is:
u(r) = ((1 —exp(—20(1 — 2%)))*,0), € (-1.0,1.0), (2.12)

where x is the horizontal distance along the lid. This velocity profile is used for both the

spectral-element and global spectral schemes.

The driven cavity flow problem is also a commonly considered benchmark problem

and been used by many authors to validate numerical schemes. In the steady state regime,
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Figure 2.2: Streamline plots for flow over a backward-facing step at Reynolds numbers
(a) Re =10, (b) Re =100, (c) Re =200, (d) Re = 400 and (e) Re = 800.
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the results will be compared to Ghia et al. (1982) because results were presented for a
wide range of Reynolds numbers. It is one of the earlier studies which presented detailed
results for the driven cavity flow using a steady solver and many others have since used
it for comparison. Above a critical Reynolds number, the driven cavity flow will not
asymptote to a steady solution. The time-dependent solution can be periodic, quasi-
periodic or chaotic. In this flow regime the spectral-element simulations will be compared
with results from a global spectral scheme. The global spectral code was also used to
develop and test a modified time-splitting scheme that uses the Runge-Kutta scheme

instead of the Adams-Bashforth scheme for the convective term.

The mesh used for the spectral-element simulation consisted of am 11 x 11 (K =
121) elements with 10 x 10 (N = 10) nodes within each element as shown in Figure 2.3(b).
The elements are stretched towards the boundaries in both directions by locating the edges
of the elements at the Chebyshev collocation points. Figure 2.4 shows the streamlines of
the driven cavity flow at various Reynolds numbers. For Re = 1,000, 5,000 and 7, 500,
the flow reached a steady state. At the higher Reynolds numbers of Re = 10000, 14, 000
and 17,000 the streamlines are a snapshot in time as the flow does not reach a steady

state.

2.2.2.1 Steady state

Simulations were performed using the spectral-element scheme at a Reynolds number of
Re = 100, 400, 1,000, 3,200, 5,000 and 7,500 which corresponded to results presented
in Ghia et al. (1982). The simulations were started using the results from the next lower
Reynolds number except for Re = 100 which was started using a stationary velocity field.
The flow field was integrated until a steady state solution was achieved (i.e. Au/At < 107°
for the entire domain) which required several thousand non-dimensional time units of
integration. The simulations were performed using a timestep of At = 0.0012. Such a
small timestep is a result of Courant restriction from the explicit step in the time-marching
algorithm due to the fine spatial resolution. Although Ghia et al. (1982) presented results
at Re = 10,000, those results were obtained using a steady state solver. When using this
time-dependent solver, the highest Reynolds number at which the solution asymptotes to
a steady state is Re = 8,000. At the next increment in Reynolds number, Re = 8,125,
the solution asymptotes to a periodic state. This was the case even after several thousand
more time units were simulated with the flow in a periodic state. This is in close agreement
with the analytical work of Poliashenko & Aidun (1995) which predicted the flow becoming
unsteady above Re = 7763 with the small difference in the transition Reynolds number

possibly due to the regularisation used in the lid profile for the simulations.
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Figure 2.3: (a) A schematic of the driven cavity flow, (b) the spectral element mesh and

(c) the global spectral mesh.
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(e) (f)
Figure 2.4: Streamlines plots of the driven cavity flow at (a)Re = 1,000, (b)5,000,
(¢)7,500, (d)10, 000, (e)14,000 and (f)17,000. Note: Black lines are positive streamlines
which start at 0.01 with increments of 0.02. Grey lines are negative streamlines which
start at —0.001 with decrements of —0.001. These values are non-dimensionalised with

the cavity length and the lid velocity.
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Figure 2.5: (a) u velocity profile taken vertically at the centre of the cavity and (b) v
velocity profile taken horizontally at the centre of the cavity. Also plotted for comparison
are results from Ghia et al. (1982) which include the maximum or minimum velocities in

the velocity profile. (Note: The velocity profiles are offset for clarity.)
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Figure 2.5 shows a comparison of velocity profiles at various Reynolds numbers
with those from Ghia et al. (1982). Figure 2.5(a) shows the profile of the horizontal
component of velocity taken vertically across the centre of the cavity while Figure 2.5(b)
shows the profile of the vertical component of velocity taken horizontally across the centre
of the cavity. Also shown are the minimum and maximum velocities within each profile
found by Ghia et al. (1982). In this comparison, the two separate simulations produce
graphically identical velocity profiles. The magnitude and location of the maximum and
minimum velocities found by Ghia et al. (1982) are also consistent with the present sim-
ulations. Although there is a small amount of regularisation of the velocity profile of the

"driving lid’, the effect on the overall flow field appears to be small.

2.2.2.2 Global spectral scheme

A global spectral scheme was developed to study the practical implementation of a Runge-
Kutta scheme for the non-linear term. A global spectral scheme is used because it is a
simpler scheme to implement and the spectral convergence allows spatial error to be
much smaller than the temporal errors. The global spectral scheme was developed under
the guidance of Dr. Paul Morris who was formerly with the Department of Mechanical
Engineering at Monash University and is currently at Kodak (Aust.). The implementation

and results acquired have been published in Tan et al. (1998).

An outline of the spatial technique is presented in Canuto et al. (1988). As the
flow is wall bounded, a Global-Galerkin technique is employed with Chebyshev polyno-
mials used to interpolate the flow variables in both directions within the domain. This
node positioning is ideal for studying this problem as the natural compression towards the
boundaries improves the resolution of boundary layers. Other polynomials could be used
but the Chebyshev polynomials have traditionally been favoured because a Fast Fourier
transform exists to convert between real and polynomial space and, of course, they exhibit
spectral convergence. Although a Fast Fourier transform exists, for the large grids used
in the computations, an optimised matrix multiplication routine is found to be faster for
derivatives calculation. Although the operation count is higher, the transform method is
slower because of the numerous logical operations and reordering of the matrices required
by this method. Shen (1991) also found the matrix multiplication to be faster when
studying the regularised driven cavity using a similar spectral method. A direct matrix
method also allows any arbitrary resolution to be used rather than powers of two. The
implicit steps are performed using a matrix diagonalisation technique given by Canuto et
al. (1988).

The classical time-splitting scheme (Equations 2.7, 2.8 and 2.9) uses the Adam-
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Bashforth family of schemes to advance the convective step as shown in Karniadakis
et al. (1991). As this is an explicit step, the Courant stability limit restricts the max-
imum allowable timestep especially for finer grids. For finite difference discretisation
of the convection or diffusion operators on an equi-spaced grid, the maximum timestep
when using fourth-order Runge-Kutta scheme is approximately seven times larger than
for the third-order Adams-Bashforth scheme (Canuto et al., 1988). Although the fourth-
order Runge-Kutta scheme requires approximately four times more computation than the
third-order Adams-Bashforth scheme, an overall saving is gained from the less restrictive
timestep. This led to the investigation into the use of the Runge-Kutta scheme instead
of the Adams-Bashforth scheme.

The initial attempt was for each timestep to advance only Equation 2.7 (the
convective term) with the fourth-order Runge-Kutta scheme and then solve Equation 2.8
and 2.9 using the same method described earlier. This led to results which were more
dissipative than expected. For example this particular problem was found to asymptote to
a steady solution at Re = 10,000 while the spectral-element scheme using the traditional
time-marching algorithm and a prediction by Liffman (1996) both showed the flow to
asymptote to an unsteady state. The error resulted from the Runge-Kutta step which
is meant to advance the equation a full timestep rather than to an intermediate velocity
field(ux). In other words, it leads to a splitting error. When the Runge-Kutta scheme
is applied to Equation 2.7 and summed with Equation 2.8 and 2.9, the result is not the
original Navier-Stokes equation but instead a similar equation containing some spurious
terms. This was realised after tests showed that the convergence was less than first-order

in time.

To overcome this problem, a modified time-splitting scheme is developed to cor-
rectly implement the Runge-Kutta scheme to advance the non-linear term. The temporal
schemes for the pressure correction step and the diffusion step remains the same. This
scheme basically advances all three terms within each Runge-Kutta sub-step. As all the
equations do not explicitly depend on time, a memory efficient Runge-Kutta scheme de-

scribed in Canuto et al. (1988) is used. The resulting algorithm is shown below.

Set u=u"

For k=s,1,-1

ﬁ =—-u-Vu

wow =Yy Vout=0
S = (V)
End For

Set u"t! = u.

The order of the Runge-Kutta scheme is set to four (s = 4) for all the simulations. The
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global spectral scheme produces results which were consistent with the spectral-element
scheme and Liffman (1996) when the above algorithm was used. Simple convergence
tests showed that this scheme is second-order accurate when using a first-order pressure
boundary condition. A comparison between the global spectral technique and the spectral-
element technique for the driven cavity flow in the unsteady regime will be presented in

the next section.

2.2.2.3 Time dependence of High Re cavity flow

This section presents a comparison between the time-dependent characteristics of the
driven cavity flow predicted by the spectral-element technique and the global spectral
technique. For this particular problem, both schemes predicted the system evolved to
a steady state for Reynolds number up to Re = 8,000. Additional simulations were
performed at Re = 9,000, 10,000, 12,000, 14,000, 15,000, 16,000 and 17,000 with the
different schemes for comparison. The total kinetic energy is used to compare the separate
simulations because it is a global measurement which provides and indication of the state
of the flow. This method has been used previously for studying driven cavity flow, e.g.,
Shen (1991), Liffman (1996), and Tan et al. (1998). The total kinetic energy of the flow

is defined as,
1
E(t) = /§|u|2dA, (2.13)

with the integration over the entire domain. For the spectral-element simulation, this
integral is performed using the Gauss-Legendre-Lobatto quadrature within each element
and then by summing over all elements. In the global spectral case, the integral is obtained
by transforming the field into Chebyshev space where finding the integral is only a simple

arithmetic operation.

The global spectral simulations were performed on a 80 x 80 grid as shown in
Figure 2.3(c¢) with a timestep of At = 0.0025. To ascertain that this resolution is sufficient,
a 100 x 100 simulation was performed at the highest Reynolds number. The difference
in the statistical properties in the kinetic energy trace was less than 2%. The spectral-
element simulations were performed on the same grid used for the steady state case but
the timestep reduced at Re = 12,000, 14, 000, 15,000, 16,000 and 17,000 to At = 0.008,
0.008, 0.006, 0.006 and 0.005 respectively. The simulations were performed until an
asymptotic state was reached and then the evolution of the kinetic energy is recorded
over approximately 300 time units. For those cases where a periodic state is attained,
the period was also recorded. Additional results of the global spectral simulation can be
found in Tan et al. (1998).
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Re Spectral-Element Global Spectral

Mean | Period Std. Dev. Mean | Period Std. Dev.
9,000 | 4.551 x 102 2.28 | 7.380 x 1075 | 4.536 x 102 2.28 | 7.357 x 10°¢
10,000 | 4.523 x 102 9.349 x 1075 | 4.472 x 1072 9.338 x 106
12,000 | 4.347 x 102 1.48 | 1.381 x 1077 | 4.388 x 102 1.47 | 1.351 x 1077
14,000 | 4.172 x 1072 1.652 x 1075 | 4.188 x 1072 1.637 x 1075
15,000 | 4.070 x 102 1.60 | 1.938 x 107° | 4.078 x 102 1.58 | 1.833 x 1075
16,000 | 3.986 x 102 2.128 x 107 | 3.940 x 1072 1.831 x 107°
17,000 | 3.861 x 102 7.407 x 1075 | 3.850 x 102 8.421 x 10°°

Table 2.2: Mean, Standard Deviation and Period of the kinetic energy trace at various

Reynolds number from the spectral element simulation and the global spectral simulation.

The mean, standard deviation and period of the kinetic energy trace is sum-
marised in Table 2.2. The results compare well with deviations not exceeding 3% in most
cases. This is likely due to the different spatial and temporal errors from the different
schemes and numerical round off. The larger difference in the standard deviations at
Re = 16,000 and 17,000 is because at those high Reynolds numbers the kinetic energy
trace contains many wavelengths. A much longer time series has to be analysed to reduce

this uncertainty.

2.2.2.4 Runge-Kutta versus Adams-Bashforth

After implementing the different schemes for advancing the non-linear term and showing
that the results for both schemes are consistent, a comparison was made of the perfor-
mance of both schemes. Both time-marching schemes were implemented with the global
spectral discretisation and several simulations were performed to assess the computational

cost and timestep restriction.

In terms of operation count, to perform one timestep using the fourth-order
Runge-Kutta scheme is approximately equivalent to performing four complete timesteps
using the Adam-Bashforth scheme. Simulations of the driven cavity flow with various
timesteps showed that the stability limit of the fourth-order Runge-Kutta scheme is ap-
proximately 6 times larger than using the third-order Adam-Bashforth scheme. This is
approximately consistent with theoretical predictions for a finite difference scheme on a
convective equation discussed earlier. The storage requirements of the two schemes are
equivalent when using the memory efficient Runge-Kutta scheme. This result shows that
the Runge-Kutta scheme can be more efficient if simulations are performed with much

larger timesteps.
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However, when taking larger timesteps, the overall accuracy of the scheme must
also be considered. Both schemes use a first-order pressure boundary condition and a
Crank-Nicholson scheme for the diffusion term which restricts them to be second-order
accurate in time. This means that the larger timesteps with the Runge-Kutta scheme incur
a larger temporal error. Attempts to increase the order of the scheme by using a second-
order pressure boundary condition and a third-order Adam-Moulton scheme instead of the
Crank-Nicholson technique significantly reduces the stability of the overall scheme. The
treatment of the pressure boundary condition requires extrapolating velocity fields from
previous timesteps; however increasing the order of the pressure boundary condition this
way reduces the overall stability. This is also the observation of Karniadakis et al. (1991).
Using the third-order Adam-Moulton scheme is expected to reduce the stability although
it is an implicit scheme as theoretical predictions show that it is not unconditionally stable

like the Crank-Nicholson scheme.

Weighting the cost between a lower operation count and the larger errors, the
spectral-element code used for the simulations in the following chapters has not be mod-
ified to incorporate the Runge-Kutta scheme. The Runge-Kutta scheme would be used
if the order of accuracy of the overall scheme was improved without suffering from a
reduced maximum timestep. The main cause of this reduced timestep is from the im-
plementation of the pressure boundary condition. With further development, it could be
possible to formulate a stable pressure boundary condition that better suits the Runge-
Kutta scheme. Even recently, second-order time-accurate schemes are still used by many
authors (Sohankar et al., 1999, Najjar & Balachandar, 1998, Barkley & Henderson, 1996).

2.3 Flow around long plates

This section will present the preliminary work performed for the simulation of flow past
long plates. The two geometries studied are an elliptical leading-edge plate with a blunt
trailing edge, and a rectangular plate. This section will include a description of the
domain and boundary conditions used. Several simulations were performed to verify that
the computational domain is large enough. A domain which is too small significantly
influences surface pressures due to blockage and therefore hydrodynamic forces on the
plate. Simulations with different resolution and timesteps are performed to verify that

the resolution is sufficient.
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Figure 2.6: The computational domain for (a) the rectangular plate and (b) the elliptical
leading-edge plate. The computational mesh for (c¢) a plate with ¢/t = 10, (K = 562)
and (d) an elliptical leading-edge plate with ¢/t = 7.5, (K = 557).(e) A sketch showing

an elliptical leading-edge plate with an an axes ratio of a:b and an aspect ratio of ¢/1.



2.3.1 Computational domain and boundary conditions

A sketch of the computational domain is shown in Figure 2.6(a) and Figure 2.6(b) for a
rectangular plate and a elliptical leading-edge plate respectively. With the flow direction
from left to right, the inlet, top and bottom boundaries are set to a free-stream condition
which has a unit velocity in the horizontal direction. The normal gradients for all velocity
components are set to zero at the outflow boundary on the right. The velocity on the
plate is set to zero. In those simulations where forcing is applied to the flow, a sinusoidal
cross-flow component is added to all the free-stream boundaries. The resultant boundary
condition is,

u(t) = (Uso, A, sin(2m St t)), (2.14)

where St is the non-dimensional forcing frequency. In later chapters, the phase in the

forcing cycle used to describe the different times in a period is based on the sine wave.

Figure 2.6(c) and Figure 2.6(d) shows typical spectral-element grids used for these
simulations. The elements are concentrated towards the plate. The elements are stretched
towards the plate from the top, left and bottom boundary using a cosine stretching func-
tion. The first few elements from the boundary are merged to reduce the overall number
of elements. Between the plate and the outflow boundary, this stretching was found to
be too severe and to better resolve the wake, a hyperbolic sine stretching function as
described in Thompson et al. (1985) was used. To reduce the overall number of elements,
they are adapted to a coarser mesh away from the wake in the cross-flow direction. The
elements are gradually adjusted from an elliptical leading-edge geometry to a circular

boundary for the elliptical leading-edge plate.

The square edges on the plates are discontinuities that restrict the spatial conver-
gence rate of spectral-element scheme. However this effect is local and does not degrade
the accuracy of the flow field away from these points. A higher concentration of elements

are placed near these points to reduce this effect.

The simulations are normally started from a stationary state. The solution from
a lower Reynolds number is used if one is available. The flow starts shedding between
approximately 80 — 150 time units depending on the Reynolds number. Typically the flow
is evolved for another 100 time units to allow it to settle to an asymptotic state. In those
cases where forcing is applied, the solution of the unperturbed flow is used as an initial

condition.

Extending the model into the spanwise dimension is currently restricted only to
periodic boundaries (effectively an infinite cylinder) by using a Fourier series. The free

parameters in this case are the number of Fourier planes and the size of the spanwise
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domain.

2.3.2 Domain size

When simulating viscous flows over bluff bodies, the size of the domain significantly
influences the surface pressure on the body (Barkley & Henderson, 1996). As the two-
dimensional simulations aim to generate quantitative results of the pressure and forces
on the plate, it is important to determine the required size of the domain in order to
reduce this effect below a certain tolerance. Several simulations were performed on the
flow over an elliptical leading-edge plate to ascertain the required domain size. This size
was then tested on the rectangular plate. These tests were performed without external
forcing and at a low Reynolds number of Re = 300 where the flow structures are larger
and the overall system is more affected by close boundaries. The resolution near the plate
is approximately the same for all the domain sizes tested. The next section will show that

this resolution is adequate.

For the two geometries in this study, there are three parameters that govern the
size of the domain. From Figure 2.6 these are: [; is the distance from the inflow to the
leading-edge of the plate, [ is the distance between the top or bottom boundary to the
plate and [3 is the distance from the trailing edge to the outflow boundary. All distances

are normalised by plate thickness.

In the three-dimensional simulations, the computational domain on each spectral-
element plane is much smaller than for the two-dimensional simulations. This reduces the
size of the problem to a manageable one. These computations are aimed at simulating
the qualitative flow structures. A restrictive domain may affect pressure measurements
but should not significantly influence the large scale flow structures. The majority of the

three-dimensional simulations were with the spanwise domain of 27 ¢ wide.

2.3.2.1 Elliptical leading-edge plate

Simulations were performed on the elliptical leading-edge plate with a 5:1 axes ratio and
an overall aspect ratio of ¢/t = 7.5. The domain has a rounded inflow boundary hence [,
is equivalent to l. This results in only two free parameters. At this Reynolds number,
the flow asymptotes to a periodic state. The mean base pressure (measured at the centre
of the trailing edge) and the peak-to-trough is recorded in Table 2.3 for comparison.
On increasing the size of the domain, the results converged to a mean base pressure of
¢, = —0.274 and a peak-to-trough value of 0.050.
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ly | I3 | Mean ¢, | Peak-to-trough
10 | 4 -0.450 0.085
14 -0.353 0.081
20 | 10 -0.311 0.072
22 | 12 -0.283 0.055
24 | 15 -0.279 0.057
28 | 20 -0.273 0.054
40 | 27 -0.274 0.051
40 | 40 -0.273 0.051
60 | 60 -0.274 0.050

Table 2.3: The mean base pressure and peak-to-trough base pressure difference for various

domain sizes.

It is important to model the essential physics in the two-dimensional simulations.
A small error due to boundary proximity is acceptable so that less elements are required;
especially far away from the plate thereby speeding up computations and allowing a
larger parameter space to be studied. It was decided that an an error of less than 2%
would be tolerated as this is comparable with other uncertainties which include modelling

assumptions and numerical error.

ly | Mean ¢, | Peak-to-trough
12 -0.292 0.042
20 -0.277 0.054
27 -0.275 0.053
40 -0.273 0.051

Table 2.4: The mean base pressure and peak-to-trough base pressure difference with [3
fixed at 40.

I3 | Mean ¢, | Peak-to-trough
28 -0.277 0.054
34 -0.275 0.054
40 -0.273 0.051

Table 2.5: The mean base pressure and peak-to-trough base pressure difference with [,
fixed at 20.

To determine the required distance for Iy and I3, initially I3 is fixed at 40. From

Table 2.4, a distance of [, = 20 would be sufficient to reduce the errors due to the
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boundaries below the acceptable limit. Next [; is fixed at 20 and various values of [3
are experimented on. From Table 2.4, a distance of I3 = 28 appears to be adequate.

Subsequent simulations with elliptical leading-edge plates were performed using I, = 20
and [3 = 28.

2.3.2.2 Rectangular plate

The rectangular plate geometry with ¢/t = 10 is tested with this domain size to determine
if it is adequate. This domain size is compared with another which is 5 units larger in
each direction. Simulations at a higher Reynolds number of Re = 400 is also used as
numerous simulations will be performed at that Reynolds number. At the lower Reynolds
number of Re = 300, the base pressure shows a regular periodic signal but at Re = 400,
the signal is not perfectly periodic because the system is not as strongly locked into a
particular shedding mode. Therefore the peak-to-trough base pressure difference is not
presented at Re = 400. From the base pressure predictions show in Table 2.5, the smaller

domain appears to be adequate and was used in further computations.

Re |1y |ly | I3 | Mean ¢, | Peak-to-trough
300 | 24 | 20 | 28 -0.334 0.074
300 | 29 | 25 | 33 -0.341 0.071
400 | 24 | 20 | 28 -0.482
400 | 29 | 25 | 33 -0.487

Table 2.5: The mean base pressure and peak-to-trough base pressure difference for flow
around a rectangular plate simulated with two different domain sizes at Re = 300 and
400.

2.3.3 Spatial and temporal resolution

Simulations were performed on the same grid as in the previous section but the number
of nodes in each element was increased to determine the resolution required to adequately
resolve the flow. The domain size determined previously was used in these simulations.
The grids for the rectangular plate and the elliptical leading-edge plate is shown in Figure
2.6(c) and Figure 2.6(d) respectively. The investigation will involve both the natural and
forced shedding cases. Base pressure measurements are used for comparison. When the
spatial resolution is increased, the size of the timestep needs to be decreased because of

the stability restrictions imposed by the Courant stability restriction.

60



For the elliptical leading-edge plate, the simulations were performed on a plate
with an elliptical (5:1 axes ratio) leading edge and a overall aspect ratio of ¢/t = 7.5.
The simulations were performed at a Reynolds number of Re = 500 for two different
resolutions. At this Reynolds number, the system reaches a periodic shedding state.
Identical meshes were used, one with a lower resolution of 7 x 7 (N = 7) nodes per
elements and the other higher resolution simulation had 9x9 (/N = 9) nodes per elements.
A timestep of At = 0.007 was used for the lower resolution and At = 0.004 for the higher
resolution. The results of base pressure predictions as shown in Table 2.6 below confirms

that the lower resolution is sufficient to resolve the flow at this Reynolds number.

N | At Mean ¢, | Peak-to-trough
7 10.007 -0.439 0.135
0.004 -0.438 0.134

Table 2.6: The mean base pressure and peak-to-trough base pressure difference at two

different resolutions for a elliptical leading-edge plate at Re = 500.

To ensure that this resolution was sufficient when applied forcing is introduced,
the same geometry was simulated at a Reynolds number of Re = 500 with a sinusoidal
forcing in the cross-flow direction added to the free stream with an amplitude of vy, =
2.5%. A forcing frequency of St = 0.2025 was used because it locks the flow and produce
the strongest mean base suction within the range tested. Again the simulations were
performed on an identical domain but at two resolutions. The lower resolution used 7 x 7
(N = 7) noded elements and the higher, 9 x 9 (N = 9) noded elements. The timestep
for each simulation were At = 0.007 and At = 0.004 respectively. Table 2.7 show the
predicted base pressure. Again, this indicates the lower resolution is sufficient to resolve

the forced shedding case.

N | At Mean ¢, | Peak-to-trough
7 10.007 -0.592 0.305
10 | 0.004 -0.585 0.309

Table 2.7: The mean base pressure and peak-to-trough base pressure difference at two
different resolutions for a elliptical leading-edge plate at Re = 500 with a sinusoidal

cross-flow.

A limited number of simulations were performed at a Reynolds number of Re =
700. At this particular Reynolds number, the same mesh was used but the resolution

within each element was increased to 8 x 8 (N = 8) nodes and the timestep reduced
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to At = 0.005. To verify that this resolution was adequate, a simulation with 10 x 10
(N = 10) nodes with a timestep of At = 0.003 was performed. The results from Table

2.8 indicate that the lower resolution is adequate.

N | At Mean ¢, | Peak-to-trough
8 10.005 -0.582 0.288
10 | 0.003 -0.583 0.286

Table 2.8: The mean base pressure and peak-to-trough base pressure difference at two

different resolutions for a elliptical leading-edge plate at Re = 700.

A similar experiment was performed on the rectangular leading-edge plate at
Re = 400. The difference in this case was that a sinusoidal oscillation with an amplitude
of Ve = 2.5% was applied to all free-stream boundaries. The simulations were carried
out using 7x 7 (N =7) and 9 x 9 (N = 9) noded elements with a timestep of At = 0.007
and At = 0.004 respectively. The flow generates stronger vortices when forcing is applied
therefore a resolution that sufficiently resolves this flow can resolve one without applied
forcing. Figure 2.7 shows a plot of the mean base pressure coefficient for various forcing

frequencies. The lower resolution appear to be able to resolve the flow.

Subsequent simulations with various geometries are performed using grids with a
similar resolution near the plates and 7 x 7 (N = 7) noded elements. A timestep of At =
0.007 is maintained for those simulations. This corresponds to between approximately
700 to 1200 timesteps in a typical shedding period. Tests have shown that increasing the

resolution only changed the properties of the base pressure by less than 2%.

2.4 Post-processing

Once the simulations are performed in subsequent chapters, results are presented which
analyse the results of the simulations. From the vorticity field, the movement of the vortex
cores can be tracked and the circulation evaluated. The application of Howe’s acoustic
model is also done as a post-processing step. The techniques used to implement these

procedures are outlined in this section.

2.4.1 Vortex cores

The shed vortices can be tracked over some time interval to gain more insight into the

flow. The convective velocity of these vortices can also be evaluated. The location of
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Figure 2.7: Mean base pressure measurements as a function of forcing frequency for flow
around a plate with ¢/t = 10 at Re = 400 and v,y = 2.5%. These predictions are from

two different spatial and temporal resolutions.
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the local maximum or minimum in the vorticity field is used to define the location of the
vortex core. This task is more difficult as this scheme is an Eulerian technique which
solves the flow on a fixed grid. To locate the peak value of vorticity within a patch of
vorticity, initially the local maximum value on a node is located. A two-dimensional
Newton-Raphson method is used to refine that location. The same interpolants used
within each spectral-element to solve the flow variables are used when interpolating. The
stopping criteria for the Newton-Raphson iterations are when the change in location is
less than 0.001% of the plate thickness. This process is may be repeated at regular time

intervals to obtain the trajectories of the vortex cores.

2.4.2 Circulation

The point of this exercise is to evaluate the amount of circulation contained in a shed
vortex. To calculate the amount of circulation within a two-dimensional region, either
an area integral or a line integral around the region can be used. In this instance, the

circulation is calculated using the line integral given by,
r— 7(11 . d3. (2.15)

To perform this line integral, the closed path of integration around a region containing
vorticity has to be located. A small value of vorticity is chosen as the cut off value with
the aim of capturing as much of the circulation of a particular vortex while avoiding other
flow structures. The flow field velocity is then found at regular intervals of 0.04¢ along
this iso-contour. The interpolation is done using the same polynomials as the spectral
element scheme. The tangent vector to the iso-contour is found using a cubic spline
between the neighbouring nodes. The integral is evaluated using a first-order method.

Again all interpolation is done using the spectral-element interpolants.

2.4.3 Howe’s acoustic model

Howe’s theory (1975, 1980) has been developed to calculate the sound power generated
by the flow in the presence of an external sound field. This can be used to predict the
acoustic resonance when a plate is placed in a duct. The length and time scales of the
flow and sound field are several orders of magnitude apart when the Mach number is
low. This model is used instead of simulating the fully compressible flow because of
the high computational cost involved due to the small timestep required to capture the

compressible behaviour.

In this case the sound is generated by the vortical flow around the plate. This
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feeds into the sound field in the duct and may generate an acoustic resonance. The
resonance will then lock the flow to that frequency. This model is used to determine the
amount of power transferred between the flow field and the acoustic field. A positive
transfer is a necessary condition for duct resonance to occur. This is not a sufficient
condition because it neglects damping in the duct and receptivity of the flow. An applied

forcing is used to lock the flow in the simulations.

The remainder of this section describes how the model is implemented. This
model has been formulated assuming the flow is rotational, inviscid and isentropic. From
the acoustic model, the acoustic power in a region of the flow is given by the volume
integral,

P=—p /@ (u % v)dV. (2.16)

The volume integral reduces to an area integral in two dimensions. The vorticity, J,
and velocity, u, are properties of the flow field, py is the mean fluid density and v is the

acoustic particle velocity.

The acoustic velocity field for the first f-mode (described in the previous chapter)
in a duct is approximately a standing wave with nodes at the top and bottom walls
of the duct, anti-nodes along the centreline and decaying away from the plate in the
streamwise directions. This leads to the velocity potential of the acoustic particle velocity,
®, satisfying the wave equation. This is expressed as,

D?*®
Dt?

where ¢, is the speed of sound. This has also been used previously by Stoneman et al.

= c2V?0, (2.17)

(1988) to model the acoustic particle velocity.

The wave equation is solved by assuming the solution can be separated into a

function only dependent on time and another on space such that
D(z,y, 2,t) = Oy(t) Py(z, y, 2). (2.18)

Neglecting the convective terms, using this assumption the wave equation reduces to the

following equation for the temporal variation,

d*®, 9
7 + (27f)* @, =0, (2.19)
together with the equation for the spatial variation,
2
2
V20, + ( Wf) ®, — 0. (2.20)
Cs

Solving for the time dependence gives

O, = A,sin(2w f t + @), (2.21)
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with the resonant frequency, f, and phase of oscillations, ¢ matching that of the applied
forcing (i.e. ¢ = 0) used to lock the flow. The amplitude of the oscillations, A,, is set
to unity leaving the only arbitrary scaling factor to be in the spatial part. Solving the
spatial part basically results in the amplitude (as a function of space) of the acoustic
particle velocity in the duct. The spatial part results in an eigenvalue problem which
is solved on the same grid as the flow by modifying the spectral-element scheme. The
boundary condition for the spatial part of the wave equation are zero normal gradients
for all boundaries including the duct centreline except for the plate surface where &, = 0.
This will result in a solution that is mirrored across the centre line and decays away from
the plate. Note that this solution can be arbitrarily scaled. For uniformity between aspect
ratios, the amplitude of the acoustic particle velocity is set to one unit at the centre of
the leading or trailing edge of the plate (the value at these two points are equal because

of symmetry).

As some of the earlier studies (Welsh et al., 1984, Stokes et al., 1988) used a
sinusoidally varying potential flow to model the acoustic particle velocity, this has also
been done for comparison. Firstly, the potential low around a circular cylinder is found.
Then the space around the cylinder is transformed to the space around a rectangular plate
using the Schwarz-Christoffel transformation (Churchill et al., 1974). Finally the velocity

field around the circular cylinder is also transformed to that around a rectangular plate.

A positive time-average acoustic power transfer from the flow to the acoustic
field is necessary to sustain the resonance. Selecting the size of the integration domain
is complicated by the vortices convecting downstream and the finite domain size. The
method used for time averaging and overcoming the finite domain size is addressed when

the model is applied in the Chapter 4.
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Chapter 3

Flow Past a Plate with an Elliptical
Leading Edge

The elliptical leading-edge plate is studied as a precursor to the rectangular plate. The
majority of the simulations in this chapter are performed with the leading edge in the
form of an ellipse with a 5:1 axes ratio. As the nose shape is aerodynamic, the flow does
not separate from the leading edge. This is unlike the rectangular plate and the overall
complexity of the flow is reduced. A boundary layer develops on the plate as the fluid
convects and separates at the sharp trailing edge to form vortex structures in the wake.
This leads to a periodic shedding from alternate edges, typical of bluff bodies above a
critical Reynolds number.

In this chapter, the flow over an elliptical leading-edge plate is analysed; in par-
ticular two-dimensional natural and forced shedding. Initially, the flow without external
forcing is simulated at different Reynolds numbers and the variation in shedding frequency
analysed. The predicted base pressure is one measure used to gauge the response of the
system to low amplitude forcing. Further analysis of the flow field to find the phase of the
shedding relative to the forcing, vortex formation length, and trajectory of the vortices
and circulation contained within them, enables the forces on the plate to be correlated

with the properties of the wake.

3.1 Natural shedding

Simulations are performed for the elliptical leading-edge plate with an aspect ratio of
¢/t = 7.5 at Reynolds numbers between Re = 200 and 700. A snap shot of the flow at
a Reynolds number of Re = 500 is presented in the vorticity plot in Figure 3.1. In this
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Figure 3.1: A vorticity plot of the flow over an elliptical leading-edge plate at Re = 500.
Note: The vorticity key is also applicable to subsequent vorticity plots. Levels between the
blue and red range are not coloured and levels outside the range (i.e. larger magnitude)

are coloured with the maximum intensity.

section, the shedding frequency at various Reynolds numbers will be compared to those
predicted by the correlation of Eisenlohr & Eckelmann (1988).

The base pressure coefficient measurements shown in Figure 3.2(a) were taken at
the centre of the trailing face. They show the flow reaches a periodic state in the Reynolds
number range simulated. This signal is used to determine the shedding frequency. As ex-
pected, these signals show the mean, amplitude and frequency increasing with Reynolds
number. The signals show a frequency twice that of the shedding frequency because
they are taken at the centre of the trailing face. The correlation between the (modified)
Reynolds number and shedding frequency determined by Eisenlohr & Eckelmann (1988),
as described in Section 1.2.2, uses a modified length scale to incorporate the momentum
thickness at the trailing edge. Figure 3.2(b) shows the displacement thickness as a func-
tion of Reynolds number. The displacement thickness is determined from the boundary
layer profile at the trailing edge. Also plotted is the inverse of the displacement thickness
as a function of Reynolds number. Consistent with boundary layer theory, the displace-
ment thickness is (approximately) inversely proportional to Reynolds number. The small
deviation from this relationship is likely caused by the leading-edge geometry which is
not considered by the theory (i.e. the development of the boundary layer as the flow goes

around the nose may cause some deviation).

The next step is to compare the shedding frequency variation with Reynolds
number with the experimental observations. The experiments of Eisenlohr & Eckelmann
(1988) found a correlation between the shedding frequency and the Reynolds number if
a modified length scale is used in determining the Reynolds number. This length scale,
t', is the thickness of the plate plus twice the momentum thickness at the trailing edge.
Figure 3.3 is a plot of the shedding frequency, Fy, as a function of Reynolds number,

Rey, with both parameters scaled with the modified length scale. The correlation from
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Figure 3.2: (a) A sample trace of 50 time units of the base pressure coefficient taken after
a periodic state has been reached and, (b) the displacement thickness and reciprocal (in
gray) at various Reynolds numbers for a 5:1 elliptical leading-edge plate with ¢/t = 7.5.

The base pressure coefficient at Re = 500 is in gray for clarity because of the overlap.
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experimental data found by Eisenlohr & Eckelmann (1988) is also plotted for comparison.
There is a spread of about Sty = 0.04 in the experimental data which is represented by
the gray region.

The experimental data collapses to a linear relationship between the modified
frequency, Fy, and Reynolds number, Rey. The predictions also show approximately a
linear relationship between these two parameters. The gradient of the predicted variation
is also close to that of the experimental correlation. Although most of the predicted data
falls within the range of experimental error associated with the experiments, there appears
to be a shift which is approximately 20 units of Fy.. There are some notable differences
between the experiments and the numerical predictions that cause this difference. In
particular, the experimental correlation was determined for much longer plates (50 <
¢/t < 800). This probably means that the boundary layer profile at the trailing edge has
become self similar. For the short plate used in the simulation (¢/t = 7.5), the effect of
the elliptical leading edge is probably still influencing the boundary layer at the trailing
edge. In addition, the lower limit of the Reynolds number range for the experiments was
Re = 300 (and the upper limit at Re = 15,000). Thus the experimental correlation is
likely to be less reliable at the Reynolds numbers used for the simulations. It is also
possible that boundary layer three-dimensionality is influencing the experimental results

at the higher Reynolds number end of the range studied.

3.2 The effect of applied cross-stream forcing

This section will present the results of simulations of flow past elliptical leading-edge plates
under the influence of external oscillatory cross-flow forcing. In particular, the mean base
pressure coefficient is recorded as a function of forcing frequency, Reynolds number, forcing
amplitude and plate geometry. These results are compared with data from wind tunnel
experiments by Mills (1998). The time trace of base pressure coefficient is used to ascertain
the range of forcing frequencies over which lock-in occurs. In addition, outside this range,
the trace of base pressure coefficient is used to determine if the flow behaves in a quasi-
periodic manner or sheds at approximately its natural shedding frequency. Comparisons
of the flow characteristics between the natural shedding cases and the lock-in range of the
forced shedding cases are presented in the next section and these are related to the base

pressure and forces experienced by the plates.

A snapshot of the vorticity distribution when the flow is in the lock-in state is
shown in Figure 3.4. This simulation is performed at Re = 500, and the forcing is at
St = 0.2025 and vpert = 2.5%. This particular snapshot is taken at 270° in the sinusoidal
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Figure 3.3: A plot of the non-dimensional shedding frequency, Fy, as a function of the
Reynolds number Rey for the flow around an elliptical leading-edge plate with ¢/t = 7.5.
The correlation obtained from experiments by Eisenlohr & Eckelmann (1988) is plotted

for comparison. The gray region is indicative of the spread in the experimental data.
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Figure 3.4: A vorticity plot of the flow around an elliptical leading-edge plate at Re = 500
with forcing at St = 0.2025 and vperr = 2.5%, taken 270° in the forcing cycle.

forcing cycle. Compared with the natural shedding case shown in Figure 3.1, the shed

vortices are more compact and the formation length reduced.

3.2.1 Mean base pressure

Simulations are performed over a range of forcing frequencies. The effects of various
parameters namely Reynolds numbers, forcing amplitudes, plate aspect ratio and leading-
edge geometries are investigated. The range of forcing frequency is chosen to span the
vicinity surrounding the natural shedding frequency. The base pressure coefficient is used
to monitor the flow as it is strongly related to the overall drag and provides a good
indication of the flow state because it is taken at a location where the trailing-edge flow
structures develop. The length of the pressure trace required to determine the mean
depends on the system parameters. When the flow is periodic, averaging over several
periods is sufficient to accurately determine the mean (although one simple period is
adequate). If the signal is quasi-periodic or displays some randomness, a much longer
trace is required. In the quasi-periodic state, the signal typically has a repeatable cycle
which can be up to 20 shedding cycles. In this case the sampling is taken over a few of

these longer or near repeatable cycles.

3.2.1.1 The effect of Reynolds number

The flow over the elliptical leading-edge plate with a 5:1 axes ratio and ¢/t = 7.5 is
subjected to a sinusoidal cross-flow forcing with vper = 2.5%. The simulations were
performed at Reynolds numbers of Re = 300, 500 and 700. Plots of the mean base
pressure coefficient for these flows at various forcing frequencies are shown in Figure 3.5.
When the forcing frequency is significantly below or above the natural shedding frequency,

the mean base pressure coefficient approaches that of the natural shedding. When the
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Figure 3.5: The mean base pressure coefficient for the flow over a 5:1 elliptical leading-
edge plate as a function of forcing frequency at various Reynolds numbers. The amplitude
of the applied perturbation is vpe,y = 2.5%. The vertical arrows represent the natural
shedding frequency and the horizontal arrows show the mean base pressure coefficient in

the absence of forcing.

forcing frequency approaches the natural shedding frequency from below, there is an
initial rise in the mean base pressure coefficient (reduction in base suction). This is more
significant at the higher Reynolds numbers of Re = 500 and 700 than at Re = 300. As
the forcing frequency is increased still further, there is an increase in base suction which
peaks at a forcing frequency slightly above the natural shedding frequency. After it peaks,
the mean base pressure coefficient approaches that of the unforced case. This is not so for
the low Reynolds number case of Re = 300 which rises in a small interval after the mean
base suction peaks. As will be shown in the next section, the steep rise in mean base
pressure at this Reynolds number of Re = 300 is associated with a drastic change in the
relative phase between the forcing and the shedding. Also different at the lower Reynolds
number is that the system is responsive to a smaller range of forcing frequencies, i.e., the

mean base pressure coefficient is altered by the forcing in a smaller frequency band.
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3.2.1.2 The effects of forcing amplitude

The same plate is then subjected to different amplitudes of forcing. The simulations were
performed at a Reynolds number of Re = 500 with two additional forcing amplitudes,
namely vpe,y = 1.0% and 5.0%. The mean base pressure coeflicients for these simulations
are presented in Figure 3.6. The system appears to be very sensitive to the amplitude
of the applied forcing even when the level of forcing is small relative to the free-stream
velocity. As before, at forcing frequencies significantly away from the natural shedding
frequency, the mean base pressure approaches that of the natural shedding case. As
the forcing frequency is increased, there is a rise in the mean base pressure coefficient
(drop in base suction). This occurs at lower forcing frequencies for larger perturbation
amplitudes. The level of increase in base pressure appears to have saturated when the
forcing amplitude is vpe,r = 2.5%, as the case with vy = 5.0% shows a similar pressure
rise. The forcing frequency at which the mean base suction peaks occurs above the natural
shedding frequency for all the cases studied. The forcing frequency at which it peaks
approaches the natural shedding frequency as the amplitude of perturbation is reduced.
This is expected because when the forcing amplitude approaches zero, the flow would shed
at its natural shedding frequency. Both the level of the peak in mean base suction and the
frequency range where the flow is receptive to the forcing increases with amplitude. The
increase in receptivity is shown by the larger frequency range where applied forcing has
an influence on the mean base pressure coefficient and the larger lock-in range which will
be shown in a later section (Section 3.2.3.1). The level of the peak in mean base suction
increases with forcing amplitude and the overall forcing frequency range where the system
is receptive to the applied forcing increases with the amplitude of the perturbation. This
is consistent with results for typical short bluff bodies. As with all cases, when the forcing
frequency is further increased, the mean base pressure approaches that of the natural

shedding frequency.

3.2.1.3 The effects of aspect ratio

Next, the plates with identical leading-edge geometries but with different aspect ratios are
studied. The Reynolds number of the flow is Re = 300 and the forcing amplitude is vpe,+ =
2.5%. In addition to the plate used previously (aspect ratio ¢/t = 7.5), one shorter and
one longer plate with aspect ratios of ¢/t = 3.5 and ¢/t = 12.5 respectively are examined.
Figure 3.7 shows the mean base pressure coefficient as a function of forcing frequency. As
in previous cases, the mean base pressure coefficient approaches that of the unforced case
far away from the natural shedding frequency and the mean base suction peaks at a forcing
frequency higher than the natural shedding frequency. For the longer plate, as the forcing
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Figure 3.6: The mean base pressure coefficient for the flow over an elliptical leading-
edge plate as a function of forcing frequency at Re = 500 and at various perturbation
amplitudes. The amplitude of the applied perturbation is relative to the free-stream
velocity. The vertical arrow represent the natural shedding frequency and the horizontal
arrow shows the mean base pressure coefficient in the absence of forcing.
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frequency is increased toward the natural shedding frequency, there is a less significant rise
in the mean base pressure coefficient (drop in mean base suction). As the forcing frequency
is increased past the value at which the mean base suction peaks, there is a sharp rise in
mean base pressure coefficient for plates with aspect ratios of ¢/t = 7.5 and 12.5. This
will be shown in a later section (Section 3.3.1) to be associated with a dramatic phase
shift. The longer plate with ¢/t = 12.5 shows a larger frequency range where the mean
base pressure coefficient is above the natural shedding value. However the magnitude
of this rise for plates with aspect ratios ¢/t = 7.5 and ¢/t = 12.5 is approximately the
same. The behaviour of the shorter plate is contrary to that for longer plates. There
is a significant rise in mean base pressure coefficient (drop in mean base suction) as the
forcing frequency is increased towards the natural shedding frequency (before the base
suction increase). As the forcing frequency is increased past the forcing frequency which
results in the peak of mean base suction, the mean base pressure coefficient gradually
approaches that of the natural shedding case. The magnitude of the peak in mean base
suction relative to the mean base suction in the natural shedding case is approximately
the same for all three plate lengths. Comparing these results with the those in Figure 3.4
(where the Reynolds number is varied), reducing the aspect ratio of the plate or increasing
the Reynolds number (or vice-versa) produces a similar behaviour. This can be expected
because as the boundary layer grows along the plate, a longer plate will have a thicker
boundary layer and a shorter plate a thinner boundary layer. For a plate with a fixed
aspect ratio, increasing (or decreasing) the Reynolds number will result in a thinner (or
thicker) boundary layer. As this boundary layer has a significant influence on the trailing-
edge shedding, increasing the plate length or lowering the Reynolds number should have
the same effect.

3.2.1.4 Effect of nose geometry

Simulations are performed with a rounded leading edge to investigate the effects of the
leading-edge geometry. This geometry does not lead to vortex shedding from the leading
edge at the Reynolds numbers simulated. Plates with two different lengths were investi-
gated, namely with aspect ratios of ¢/t = 3.5 and ¢/t = 7.5. The perturbation amplitude
was fixed at vper = 2.5%. Figure 3.8 shows the mean base pressure coefficient over a
range of forcing frequencies at Reynolds numbers of Re = 300 and 500. Simulations for
the shorter plate were not performed at the higher Reynolds number of Re = 500. Com-
paring these results with Figure 3.5 and Figure 3.7, the response to the applied forcing
is similar to the elliptical leading-edge plate at the corresponding Reynolds number and
aspect ratio. The rounded leading edge being less aerodynamic than the elliptical leading

edge results in the development of a thicker boundary layer. This results in a lower mean
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Figure 3.7: The mean base pressure coefficient for the flow over an elliptical leading-edge
plate for various aspect ratios as a function of forcing frequency. The flow is at Re = 300
and the amplitude of the forcing is vje,r = 2.5%. The vertical arrows represent the natural
shedding frequency and the horizontal arrows show the mean base pressure coefficient in

the absence of forcing.

7



03
p
04
N M o oo o
0.5+ -- Re = 300, c/t=7.5 -
-- Re = 500, c/t=7.5 2
o6, 0 —Re=300,c/1=35
! ! ! ! | ‘ : : ‘

0.10 0.12 0.14 0.16 0.18 S 020 022 024 0.26

Figure 3.8: The mean base pressure coefficient for rounded leading-edge plates as a func-
tion of forcing frequency. The cases simulated are with ¢/t = 7.5 at Re = 300 and
Re = 500, and ¢/t = 3.5 at Re = 300. The amplitude of the applied perturbation is
Vpert = 2.5%. The vertical arrows represents the natural shedding frequency and the
horizontal arrows show the mean base pressure coefficient in the absence of forcing.

base pressure and shedding frequency in the unforced case. When forcing is applied, the
behaviour of the mean base pressure coefficient reflects this change. The leading-edge
geometry has only a small overall influence on the system when no leading-edge vortices
are shed. The effects of varying the aspect ratio and Reynolds number are similar to those

for the previous leading-edge geometry.

3.2.2 Comparison of mean base pressure with experiments

Many previous studies as discussed in Chapter 1 (Stansby, 1976, Bearman & Davies,
1977, Blackburn & Henderson, 1996) have shown that short bluff bodies experience a
drop in the mean base pressure when the forcing frequency is near the natural shedding
frequency. The simulations of flow over long plates with aerodynamic nose shapes also
show this phenomenon. A comparison with experimental data obtained from flow over
more closely related geometries is discussed in this section.

Experimental measurements of mean base pressure coefficient for the flow over
a similar geometry are presented in Mills (1998). These experiments were performed
at a Reynolds number of approximately Re ~ 9,000 using a plate with a C4 aerofoil
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leading-edge profile. The forcing was applied using speakers connected in anti-phase
mounted above and below the plate. The forcing amplitude was measured at a point 0.077¢
vertically away from the corner of the trailing edge in the absence of any free-stream flow.
As the perturbation velocity field accelerates around the plate, the perturbation level in
the simulations is equivalent to a much higher value if measured at the same location as
for the experiments. The next chapter will compare the level of the amplitude used in
the simulations and that measured in the experiments and show that they are both small

and at approximately the same level.

The mean base pressure for plates with aspect ratios ranging from c/t = 6
to ¢/t = 15 are presented in Figure 3.9(a). The amplitude of the perturbation was
Vpert = 5.0%. The mean base pressure of the natural shedding case has been subtracted
although the variation between the shortest to the longest plate is small (approximately
0.08). These results show that the response to forcing is similar for all plates. At forc-
ing frequencies much lower that the natural shedding frequency, the mean base pressure
coefficient approaches that of the natural shedding case. As the forcing frequency is in-
creased towards the natural shedding frequency, there is a small rise in the mean base
pressure (drop in base suction) coefficient before a sudden drop. The peak in mean base
suction occurs at a forcing frequency below the natural shedding frequency. As the forc-
ing frequency is increased further, there is a gradual recovery in the mean base pressure
coefficient. Figure 3.9(b) shows the effect of varying the amplitude of the perturbation
for a plate with an aspect ratio of ¢/t = 10. The same trends as described earlier for the
various aspect ratios also apply for these cases. The forcing frequency where the drastic
drop in mean base suction occurs reduces and the magnitude of the mean base suction
increases with increasing perturbation amplitude. The flow is receptive over a larger fre-
quency range when a larger perturbation amplitude is applied. As with the simulations,
by extrapolating the forcing frequency at which the peak mean base suction occurs to
a very small forcing amplitude, it is found that this forcing frequency approaches the

natural shedding frequency.

Comparing the simulations and the experimental results, there are several similar
but some contradicting trends. The experiments are performed at a much higher Reynolds
number where the natural shedding frequency is significantly higher and the effects of
varying the aspect ratio on the mean base pressure relative to the respective unforced
case is small. As with the simulations, when the forcing frequency is much lower than
the natural shedding frequency, the forcing only has a small influence on the mean base
pressure. As the forcing frequency increases towards the natural shedding frequency, there
is a small rise of the mean base pressure coeflicient in the experimental case which is similar
to simulations at a lower Reynolds number or with longer plates (but much less). At higher

Reynolds numbers and shorter plates, the rise in mean base pressure (drop in base suction)
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is significantly higher. As the forcing frequency is increased, the experimental data shows
a sharp increase in mean base suction and the peak base suction occurs at a lower forcing
frequency than the natural shedding frequency. In the discussion, Mills (1988) is unsure
whether this is caused by the drastic phase change in the shedding relative to the forcing
or the onset of the flow locking to the forcing. While in the simulations, there is a gradual
increase in mean base suction with the peak mean base suction occurring at a higher
frequency than the natural shedding frequency. As the forcing frequency is increased
further, there is a gradual recovery in the mean base pressure coefficient. The simulations
show the recovery in mean base pressure occurring over a smaller frequency range. Also
the simulations at lower Reynolds number (or for longer plates) show a sudden rise in
mean base pressure coefficient (drop in base suction) and a frequency range where the
mean base pressure coefficient is above that of the natural shedding case. As the forcing
amplitude is increased, both the simulations and the experiments show a larger response
to the forcing. In the experiments, the forcing frequency at which the peak mean base
suction occurs decreases with perturbation amplitude while the opposite occurs in the

simulations.

3.2.3 Base pressure trace

The time trace of the base pressure coefficient has been used as an indicator of the
temporal behaviour of the flow. The two cases studied are flow around plates with ¢/t =
7.5 and 12.5 at Re = 500 and 300 respectively. In both cases, the nose geometry is an
ellipse with a 5:1 axes ratio and the forcing amplitude is vpe,y = 2.5%. From the behaviour
of the mean base pressure, the first case is typical of simulations at higher Reynolds
number (or for shorter plates) while the second is more characteristic of simulations at
lower Reynolds number (or for longer plates). These traces were taken at the centre of

the trailing face and so the frequency is double that of the shedding frequency.

The first case considered is the flow at a Reynolds number of Re = 500 around
a plate with an aspect ratio of ¢/t = 7.5. Samples of the base pressure coefficient trace
at various forcing frequencies are shown in Figure 3.10. The corresponding mean base
pressure is presented in Figure 3.5. At the low forcing frequencies of St = 0.14 and
St = 0.16, the mean base pressure coefficient is not significantly different from the natural
shedding case. The time traces show that the flow is not locked to the forcing and there

are two dominant frequencies.

To study this phenomenon more closely, consider the case for a forcing frequency
of St = 0.16. A spectral plot of the base pressure coefficient trace is shown in Figure 3.11.
The spectrum is obtained by sampling every 0.175 non-dimensional time units with a
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Figure 3.10: Traces of base pressure coefficient in the asymptotic state for various forcing

frequencies.

c/t =

7.5 at Re = 500 and vpert = 2.5%

82

These were taken from flow over a 5:1 elliptical leading-edge plate with



sample length of 1000 non-dimensional time units. The peak at a frequency of St = 0.381
is twice the natural shedding frequency (St = 0.19). This is associated with the natural
shedding and the factor of two is caused by the monitoring point being at the centre of
the trailing face. The other peak at St = 0.030 is the difference between the natural
shedding frequency and the applied forcing (St = 0.19 and St = 0.16). The other two
minor peaks at St = 0.350 and St = 0.411 can be obtained by subtracting or adding the
lower frequency peak with the peak associated with the natural shedding.

From the spectral plot, the response at these forcing frequencies is characteristic
of beating. The flow is not locked to the forcing and therefore is shedding at approximately
its natural shedding frequency. This explains the peak in the spectrum associated with
the shedding frequency. The forcing frequency is close to but not matching the shedding
frequency. Therefore, the phase between the forcing and the shedding is continually
varying. This variation has a longer wavelength and this frequency is the difference
between the shedding and the forcing frequency. This is reflected by the peak at the
lower frequency in the spectral plot. Referring back to the base pressure trace, the high
frequency fluctuations associated with the shedding show variations in the mean and
amplitude between periods within one of the long periods. This is caused by the variation
in the phase of the shedding relative to the forcing. This results in some shedding cycles

being suppressed and others being encouraged by the forcing.

When the forcing frequency is increased further to St = 0.17, the mean base
suction decreases to a minimum. From the base pressure trace, the same process as
described above is occurring except in this case the high frequency fluctuations appear to
be small; this suggests that the shedding is damped by the forcing. Indeed, the forcing
has almost locked the shedding. As the forcing frequency is increased further to St =
0.175, the shedding is locked to the forcing. The flow remains locked to the forcing
until the frequency reaches St = 0.205. Within the lock-in range, there is an increase
in the amplitude and the mean of the base suction as the forcing frequency is increased.
The time-mean base pressure coefficient plotted in Figure 3.5 shows approximately a
linear increase with forcing frequency within this range. These observations indicate the
shedding is more vigorous at a higher frequency. Later sections will show that vortices
with more circulation form closer to the trailing edge at the higher forcing frequency. As
the forcing frequency is increased past St = 0.2075, the flow no longer locks to the forcing.
At these high frequencies, the system mirrors the behaviour occurring at the lower forcing
frequencies. Again, the mean base pressure approaches that of the natural shedding. As
before, two wavelengths are present : the higher frequency corresponds to the shedding
and the lower frequency is the difference between the forcing and the natural shedding
frequency. The fluctuations between shedding cycles over the longer period are also a

result of the variation in the relative phase between the forcing and the shedding. Note
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Figure 3.11: A spectral plot of the base pressure coefficient for flow around a 5:1 elliptical
leading-edge plate with ¢/t = 7.5 and Re = 500. The forcing is at St = 0.16 and
Upert = 25%
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that at a forcing frequency of St = 0.2075 (just outside the lock-in range), the longer
wavelength is nearly 300 non-dimensional time units. This simulation required in excess

of 1,200 non-dimensional time units to allow the transients to decay.

Figure 3.12 shows the pressure traces at various forcing frequencies for the flow
around a plate with ¢/t = 12.5 at Re = 300. Comparing with the higher Reynolds
number case, there are some similarities and differences. When the flow is not locked to
the forcing, there are two dominant wavelengths with the shorter corresponding to the
shedding and the longer the difference between the forcing frequency and the shedding.
The amplitude of the higher frequency signal is generally weaker in this case reflecting the
weaker shedding caused by thicker boundary layers near the trailing edge. As the forcing
frequency is increased towards the natural shedding frequency, although the fluctuations
in the longer wavelength increase, the mean remains approximately unchanged unlike
the higher Reynolds number case. Within most of the lock-in range, 0.13 < St < 0.16,
the mean and fluctuating component of the base suction increases almost linearly with
the forcing frequency. As the forcing frequency is increased to St = 0.165, the flow is
still locked to the forcing but there is a drastic drop in the amplitude and mean of the
base suction associated with the drastic phase shift between the shedding and the applied
forcing (shown later in Section 3.3.1). In the higher Reynolds number case the flow no
longer locks to the forcing and the mean base pressure coefficient again approaches that
of the natural shedding case. As the forcing frequency is increased past St = 0.17, the
response is typical of the lower frequency unlocked state.

These predictions are in agreement with the observations of Lofty & Rockwell
(1993). In those experiments, the shedding from the trailing edge is excited by a pitching
motion of the plate. The flow was phase-locked to the forcing within the lock-in range.
Outside this range, the experiments observed a quasi-periodic state with a repeatable
pattern after several shedding cycles. The experiments also showed that the length (in
time) of this repeatable pattern increases when the forcing frequency is further away from

the natural shedding frequency.

3.2.3.1 State selection

The time trace of the base pressure coefficient can be used to ascertain if the shedding
from the plate is locked to the flow. Figure 3.13 shows the state of the flow as a function of
forcing amplitude and frequency for the flow around a plate with ¢/t = 7.5 and Re = 500.
The lock-in behaviour for the flow for this geometry is similar to that presented in the
state selection diagram of Karniadakis & Triantafyllou (1989) for a circular cylinder. As
shown by the shaded region in Figure 3.13, the range of capture increases with forcing
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Figure 3.12: Traces of base pressure coefficient in the asymptotic state for various forcing

frequencies. These were taken from flow over a 5:1 elliptical leading-edge plate with

c/t =

12.5, Re = 300 and vpert = 2.5%.
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Figure 3.13: The flow state plotted as a function of forcing frequency and amplitude in a
format similar to the state selection diagram in Karniadakis & Triantafyllou (1989). The
forcing amplitude is relative to the free-stream velocity. The darkened circles represent
the peak mean base suction as a function of the forcing frequency for a particular forcing

amplitude.

amplitude. The solid gray line shows the natural shedding frequency (or the resonant
point) is located towards the higher frequency end of the lock-in regime. This means there
is a larger frequency range where lock-down occurs (shedding below the natural shedding
frequency) rather than lock-up. Near the boundary between the two states, no chaotic
behaviour has been observed although long periods in the signals have been observed.
This differs from the chaotic behaviour observed by Blackburn & Henderson (1996) who
simulated flow past a circular cylinder. It is possible that the thicker boundary layer at
the trailing edge inhibits the chaotic behaviour or the larger steps in forcing frequency
may miss capturing the chaotic range. The range of forcing frequency used was not large
enough to study the flow far outside the receptivity boundary where the flow is no longer
quasi-periodic. The gray broken line shows that the frequency at which the mean base
suction reaches a maximum increases away from the natural shedding frequency with

increasing forcing amplitude.
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Comparing the range of capture in Figure 3.13 with the plots of mean base
pressure coefficient at different forcing levels in Figure 3.6, the range where the flow locks
to the forcing also corresponds approximately to where the forcing results in the mean base
pressure coefficient deviating away from the natural shedding case. The control from the
forcing in this range results in the excitation of different modes (frequencies) of shedding
and the magnitude of the mean base pressure is a measure of the strength of these modes.
Within this range, an increase in forcing amplitude also results in larger deviations in the
mean base pressure coefficient. The shedding process is therefore effectively amplifying
the response of the mean base pressure to the forcing. Therefore the overall response of
the mean base pressure in the lock-in range is a result of the controlled shedding frequency

and the shedding process amplifying the forcing.

3.2.4 Lift and drag forces

The previous sections concentrated on monitoring pressure at one point, specifically at the
centre of the trailing edge. Although it is indicative of the overall flow, this section presents
the results of truly global quantities. The time traces of lift and drag coefficients are found
by integrating the pressure coefficient along the plate surface using the same discretisation
as used to calculate the flow variables. Only the pressure forces are included as viscous
forces are negligible at these moderate Reynolds numbers. As this is a symmetric geometry
normal to the flow direction, there is no mean lift. Instead the standard deviation of the
lift coeflicient is analysed. Figure 3.14 shows the standard deviation of the lift coefficient
and the mean drag coefficient as a function of the forcing frequency. Results are presented
for the two cases in the previous section which involve flow around elliptical leading-edge
plates with ¢/t = 7.5 and 12.5 at Re = 500 and 300 respectively. The forcing amplitude
is fixed at vpes = 2.5%.

The fluctuating lift component shows a general linear increase as the forcing
frequency is increased except near to where the flow is locked to the forcing. If this linear
trend is extrapolated to where the forcing frequency is zero, the standard deviation of
the lift coefficient will approach that of the natural shedding case. The linear increase
in the fluctuating lift force with frequency is therefore a result of the forcing. At higher
frequencies, there is less time for the forcing field to go from one extreme to another.
This increase in acceleration causes larger surface pressure to be recorded on the plate
and therefore a larger fluctuating lift force. This fluctuating lift force resists this trend
in the lock-in range and decreases more where the mean base suction or drag force is
greater. Plots of trajectories of the vortices in a later section (Section 3.3.2) will show
that the vortices form closer to the axis of the plate in the lock-in range. The narrower

wake results in less sideway force and therefore a reduction in the fluctuating lift force.
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The decrease in fluctuating lift force is larger at higher Reynolds numbers because the
stronger and more compact vortices contribute a larger portion of the fluctuating lift force
relative to the forcing. The longer plate causes more blockage in the cross-flow direction.
As will be shown in the next chapter (Section 4.2.4), this causes a larger increase in
the forcing amplitude near the plate. The larger velocity fluctuations also cause larger
pressure fluctuations. The longer plate generally has a larger fluctuating lift force because

of the larger pressure fluctuations near the plate due to the forcing.

The fluctuating component of lift has also been shown to decrease near the natural
shedding frequency for an oscillating circular cylinder in simulations by Blackburn and
Henderson (1996). In experiments where the flow is at a much higher Reynolds number
and three dimensional, the lock-in range shows an increase in the fluctuating component
of the lift force for short bodies (Staubuli, 1981, Bearman & Obasaju, 1982). This is due
to the increase in spanwise correlation in the wake when the flow locks to the forcing.

This is not captured in the two-dimensional simulations.

The mean drag coefficient shows a similar trend to the mean base pressure. This
is expected as the pressure at the leading edge is expected to be almost independent of
the frequency of the applied forcing. The applied forcing influences the flow at the trailing
edge which has a strong influence on the mean base pressure and the drag coefficient. The

narrower wake in the lock-in range also results in an increase in mean drag.

3.3 Further analysis

In this section, a more detailed analysis of the flow in the lock-in state will be performed.
The focus is in this range because the forces on the plate are significantly modified by the
forcing when the flow is locked to the forcing. As in the previous section, the two cases
studied are flow around plates with ¢/t = 7.5 and 12.5 at Re = 500 and 300 respectively,
as these are representative of the higher and lower Reynolds number or smaller or larger
aspect ratio cases. Again, the amplitude of the forcing is kept at vpers = 2.5%.

3.3.1 Shedding phase relative to forcing

The phase of the shedding at the trailing edge is revealed by vorticity plots near the
trailing edge taken at four times in the sinusoidal forcing cycle. Figure 3.15 shows these
plots for ¢/t = 7.5 and Re = 500. The forcing frequencies shown are St = 0.17, 0.185

and 0.2025 which are close to the lower, middle and upper limits of the lock-in frequency
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Figure 3.14: Plots of the standard deviation of lift coefficient (o) (top) and mean drag
coefficient (¢7) (bottom) as a function of forcing frequency. The two cases presented are
flow around an elliptical leading-edge plate with ¢/t = 7.5 at Re = 500, and ¢/t = 12.5 at
Re = 300. The forcing amplitude is kept at vperr = 2.5%. The horizontal arrows represent
the quantity without applied perturbations and the vertical arrows the natural shedding

frequency.
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Figure 3.15: Vorticity plots taken near the trailing edge at 0°, 90°, 180° and 270° in the
forcing cycle for flow over a ¢/t = 7.5 elliptical leading-edge plate at Re = 500.

range. These plots show no significant change in phase between the shedding and the
forcing in this frequency range. Therefore, as expected, there is no step change in the
mean base suction within this frequency range which is usually associated with a large
phase shift. When the flow is locked to the shedding, the forcing is seen to enhance strong
shedding. The bottom vortex is formed between approximately 90° to 270° in the forcing
cycle which corresponds to the perturbation velocity accelerating in the upward direction.
The top vortex is formed in the other half of the cycle. This causes the vortices to form

close to the centreline of the plate.

As the forcing frequency is increased, the vortices form closer to the trailing
edge. The increase in the vorticity nearer the plate and the corresponding decrease in the
formation length leads to the increase in mean base suction. This aspect of the flow will

be pursued in the following sections.

Figure 3.16 shows the vorticity plots for flow around an elliptical leading-edge
plate with ¢/t = 12.5 and Re = 300. The first three chosen forcing frequencies of St =
0.13, 0.145 and 0.16 represent the lock-in range and show an increase in mean base
suction with forcing frequency. Within this part of the lock-in range, vortex structures
in the wake are similar to the higher Reynolds number case. The phase between the

shedding and the forcing is approximately constant and is similar to the higher Reynolds
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Figure 3.16: Vorticity plots taken near the trailing edge at 0°, 90°, 180° and 270 in the
forcing cycle for flow over a ¢/t = 12.5 elliptical leading-edge plate at Re = 300.
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number case. Within this range, the increase in frequency also correlates with a shorter
formation length, more concentrated vorticity nearer the plate and a stronger mean base
suction. However, compared with the higher Reynolds number case, the vortices are
more diffused and the formation length longer. This is because of the longer plate, lower
Reynolds number and lower forcing frequencies in the lock-in range. Increasing the forcing
frequency to St = 0.1625 results in a small drop in mean base suction but there are only
minor differences in the wake flow structures compared to St = 0.16. A small increase
in forcing frequency to St = 0.165 results in a large change in mean base pressure as
shown in Figure 3.7. The vorticity plots shows there is approximately a 90° phase change
from the previous cases. The drop in mean base suction corresponds to the vortices being
more diffuse and forming further away from the plate surface. At this forcing amplitude,
this case resides approximately on the lock-in boundary and the flow does not lock to the
forcing above this frequency. A phase shift of 180° is observed in some short bluff bodies
(Bearman & Obasaju, 1982, Nakamura & Mizota, 1975, Ongoren & Rockwell, 1988). The
small frequency range where the phase shift occurs together with its proximity to the
lock-in boundary may inhibit the simulations from capturing the complete (180°) phase
shift. At higher Reynolds numbers, if there is a phase shift, it may occur over a much
smaller frequency range thereby making it very difficult to capture. Such a phase shift is
not likely as there is a gradual recovery in the mean base pressure as the forcing frequency
is increased past the lock-in range shown by Figure 3.5. A phase shift would normally

result in a sharp drop in mean base suction.

3.3.2 Vortex trajectory

The location of the local extrema of vorticity within each wake vortex structure formed at
(and shed from) the trailing edge is determined at regular time intervals over a shedding
(or forcing) cycle for the two cases being studied in detail. This information provides
quantitative information about the wake including the vortex formation length, the phase

of shedding relative to forcing and the convective velocity.

Figure 3.17 shows the location of the local peaks in the vorticity for flow around
the elliptical leading-edge plate with ¢/t = 7.5 and Re = 500 taken at regular time
intervals of 0.21 dimensionless time units over approximately one shedding/forcing cycle.
In the natural shedding case, when the trailing-edge vortex forms, the peak moves towards
the centreline of the plate as vorticity is fed from the boundary layer into the wake vortex
structure. The closely spaced points near the formation region shows that the convective
velocity of the vortex is low initially and it begins to accelerate when it detaches from
the bluff body to approximately a constant velocity. The low convective speed near the

plate is due to the low flow velocities in the immediate wake. As the vortex is shed, it
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initially moves away from the centreline before returning back part of the way, finally
reaching a trajectory tangential to the free stream. As the vortex is formed, the local
peak in vorticity does not develop near the geometric centre of the patch of vorticity
but at a corner which is away from the centreline and towards the plate. As it convects
downstream, the local peak in vorticity also rotates in the direction of the vorticity about
approximately the geometric centre. This rotational movement together with diffusion
and the cross-annihilation of vorticity causes a redistribution of vorticity within the vortex
patch and results in the local peak in vorticity initially moving away from the centreline
and then back towards the centreline before convecting downstream. A more detailed
examination of this behaviour will be discussed in the cases with applied forcing which

also show a similar behaviour.

Also shown in Figure 3.17 are the cases with applied forcing frequencies of St =
0.175, 0.185 and 0.2025 which represent the lower, mid and upper limits of the lock-in
range. The trajectory of the vortex structures show a similar behaviour in the formation
and the convection away from the plate. At St = 0.175 and 0.185, an added feature in the
form of a secondary local peak in vorticity over some part of the forcing cycle is present.

This is shown by the gray circles.

This phenomenon is investigated by a closer examination of the vorticity contours.
These are shown over half a forcing cycle for the case with a forcing frequency of St = 0.175
as shown in Figure 3.18. Starting at 315° in the forcing cycle, the vortex from the lower
side of the plate with a positive sense starts to form. This vortex develops and at 90° in
the forcing cycle, the vortex core has moved downstream and towards the centreline. As
the flow is periodic and symmetric about the centreline, this development can be followed
by observing the vortex forming at the top of the plate with a negative sense at 315° in
the forcing cycle. This vortex still remains attached to the plate while the vortex on the
other side of the plate is forming. This results in the vortex being stretched especially in
the streamwise direction. With the separated boundary layer still connected to the plate,
besides the initial local peak in vorticity translating downstream, another local peak in
vorticity develops a small distance downstream which is more evident in the plots taken
at 45° and 90°. This suggests that the vorticity generated by the plate is still being fed
into that vortex. This development is then tracked by again reverting to the vortex patch
further downstream with a positive sense at 315° in the forcing cycle which still shows the
two local peaks in vorticity. As this vortex moves downstream, there is a redistribution
in the vorticity and the two peaks approach each other until at 90° in the forcing cycle,
there is only one local peak in vorticity present. From here on the vortex patch is mainly
influenced by diffusion as it is convected downstream. These plots also show the path of
the primary peak in vorticity developing nearer the corner of the vorticity patch. Similar

to the natural shedding case, this peak rotates about approximately the geometric centre
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of the vorticity patch in the same sense as the vorticity before coalescing with the other
local peak. This explains the movement of the local peak in the cross-flow direction which
initially moves away from the centreline and then back toward the centreline as it convects
downstream. The secondary local peak develops near the geometric centre and undergoes

mainly translational movement in the streamwise direction.

Returning to figure 3.17, for the cases in which periodic forcing is applied, the
location of the peaks at approximately 0° and 90 in the forcing cycle are shown. The other
half of the cycle (i.e 180° and 270°) can be obtained by mirroring about the centreline
and is omitted to reduce the complexity of the diagrams. For this plate, these diagrams
also show the the phase of shedding relative to the forcing is approximately constant over
the lock-in range. At 0° in the forcing cycle, the vortex on the top side is in the process of
forming. It convects downstream and at 90° in the forcing cycle, it is moving away from
the centreline while in the process of detaching from the plate. At 180° in the forcing
cycle, it is moving back towards the centreline and for the rest of the cycle, it continues

to convect downstream tangential to the streamwise direction.

The formation length is a measure of the distance over which the vortex develops
before shedding into the wake. The distance between the trailing edge of the plate until
where the vortex trajectory is tangential to the free stream is a good indicator of the
formation length. As the forcing frequency is increased, the formation length of the
vortices decreases and the distance of these peaks from the centreline also reduces. The
former effect contributes to the higher mean base suction and drag experienced by the
plate while the latter is reflected in the lower fluctuating component of lift force on the
plate.

Figure 3.19 shows the location of the local peaks in vorticity for the flow around
the plate with ¢/t = 12.5 at Re = 300 in the unperturbed case, and with forcing fre-
quencies of St = 0.13, 0.16 and 0.165. These were taken at a regular time interval of 0.2
time units over a shedding/forcing cycle. The unforced case shows a much broader wake
and a longer formation region compared to the higher Reynolds number flow. This is a
result of the higher viscosity and the thicker boundary layer near the trailing edge. The
flow in this case also experiences a significant amount of stretching of the vortices prior
to detaching from the plate and the presence of another local peak in vorticity over part
of the shedding cycle through a similar process to that outlined for the higher Reynolds
number case with applied forcing.

The trajectories taken for applied frequencies of St = 0.13, 0.16 and 0.165 are
also included in Figure 3.19. A forcing frequency of St = 0.13 is approximately the lower
limit of the lock-in range. The flow shows a large formation length, and through a similar

process described earlier, it develops a secondary local vorticity peak in the shed vorticity.
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Figure 3.17: Plots of the location of the local peaks in vorticity taken at regular intervals
of 0.21 dimensionless time units over a shedding/forcing cycle for the plate with ¢/t = 7.5
and Re = 500 (drawn to scale). The cases shown are without external perturbation (top)
and with applied perturbation (three lower plots) with St = 0.175, 0.185 and 0.2025, and

Upert = 25%

96



Figure 3.18: Contours of vorticity at the trailing edge taken over half a shedding cycle
at four regular intervals of 45°. The flow is around a elliptical leading-edge plate with
¢/t = 7.5 and Re = 500 with forcing at St = 0.175 and vper = 2.5%. Contour levels start
from +/ — 0.5 and increment/decrement in steps of 0.1 up to +/ — 4.4 with the positive
levels darker and negative levels lighter.
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As this is a lower Reynolds number, the length scales are larger. The larger wake and
increased diffusion causes more cross-flow movement in the local vorticity peaks. As the
frequency is increased to St = 0.16 where the mean base suction approaches the maximum,
the wake is narrower and the formation length reduced. At this forcing frequency, the
phase of vortex development relative to the forcing is similar to the forcing at lower
frequencies in the lock-in range and the forced cases for the higher Reynolds number flow.
As shown in the previous section, an increment in forcing frequency from St = 0.1625 to
St = 0.165 (which is close to the upper limit of the lock-in range for this case) shows a
phase change of approximately 90°. This is also evident from the plots of the trajectory
of the local peaks in vorticity. The stage in the development of the vortices at 0° in the
forcing cycle at a forcing frequency of St = 0.165 is approximately equivalent to 90° in the
forcing cycle for the cases at a lower forcing frequency. Also associated with this phase
shift is the drop in base suction which could be attributed partly to the larger formation
length. As in previous cases, the large formation length and the stretched vortices are
associated with the development of another local peak in vorticity within the shed vortex.
In the experiments of Lofty & Rockwell (1993) which excited the plate in a pitching
motion, plots in a similar format also showed the formation length increased as the plate
experienced a phase shift but in their experiments, the formation length also increased as
the forcing frequency was increased before the phase shift occurred.

An overall comparison between the two different plates and Reynolds numbers
shows that the formation length and the width of the wake are larger in the lower Reynolds
number case. This contributes to the lower drag and larger fluctuating lift forces experi-
enced by the plates. For both cases, the lower limit of the lock-in range where the base
pressure and drag are lower than the natural case also show a formation length larger

than the natural shedding case.

3.3.3 Vortex formation length

The previous sections suggest a relationship between the vortex formation length and
the mean base pressure and therefore mean drag experienced by the plate. This section
attempts to show quantitatively this relationship. Although there are various definitions
of the vortex formation length, a common approach, which is used in this study, is to
measure the fluctuating component of the flow velocity in the cross-flow direction along
the centreline of the plate downstream of the trailing edge. The vortex formation length
can be defined as the distance from the trailing edge where this fluctuating component
reaches a maximum (Bearman, 1965, Tombazis & Bearman, 1997). This section will focus
on the natural shedding case and the cases with applied forcing in the lock-in range for

the two plates and Reynolds numbers being considered in detail. Firstly, the variation of
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Figure 3.19: Plots of the location of the local peaks in vorticity taken at regular intervals
of 0.2 dimensionless time units over a shedding/forcing cycle for the flow around the plate
with ¢/t = 12.5 at Re = 300 (drawn to scale). The cases shown are without external
perturbation (top) and for applied perturbation at St = 0.13, 0.16 and 0.165 (bottom
three plots), and vpet = 2.5%.

99



o, lug, G, lug,
07 — 07 — unforced
St=0.13
0.6 06 — St=0.145
St=0.16
0.5 05 — St=0.1625
St =0.165

0.4

unforced

-/
0 St=0.175 0 e
0.2 St=0.185 0.2
St=0.19
0.1 St=0.2025 0.1
St =0.205
| | | | | | | | | | | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) X/t (b) X/t

Figure 3.20: The standard deviation of the vertical component of the flow velocity mea-
sured along the centreline of the plate as a function of the downstream distance from
the trailing edge for the unforced case and at several forcing frequencies. The two cases
shown are at (a) Re = 500 with ¢/t = 7.5 and (b) Re = 300 with ¢/t = 12.5. The forcing

amplitude is at vper = 2.5%.

the standard deviation of the vertical component of velocity with distance downstream
of the trailing edge is determined. This is then used to find the vortex formation length

which is then compared to the mean base pressure coefficient.

Figure 3.20 shows the standard deviation of the horizontal component of the
flow velocity as a function of distance downstream from the trailing edge for the natural
shedding cases, and selected forcing frequencies in the cases with applied forcing. For
both plates and Reynolds numbers, while traversing downstream, the natural shedding
case shows a steep rise before a gradual drop while all the forced shedding cases presented
show a more severe drop. This region upstream of the peak is the near wake region
where the velocities are small. The steeper drop in the forced shedding cases may be a
combination of an amplification of the shedding near the formation region and a higher

decay rate in the wake.

For the case with the higher Reynolds number of Re = 500 and smaller aspect
ratio of ¢/t = 7.5, from the lower limit of the lock-in range up to St = 0.2025, which is
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near the peak in mean base suction, the magnitude of the peak increases, and the dis-
tance downstream from the trailing edge where the peak occurs decreases, as the forcing
frequency is increased. The increase in magnitude of the peak suggests a more intense
shedding and together with the shorter formation length contributes to the increase in
mean base suction. At the lower end of the lock-in range, represented by a forcing fre-
quency of St = 0.175 in Figure 3.19(a), the magnitude of the peak is lower and the
formation length is larger than the natural shedding case contributing to a lower mean
base suction than the unforced case. At the other end of the lock-in range, as the forcing
frequency is incremented from St = 0.2025 to St = 0.205, while the formation length
continues to increase, there is a drop in the magnitude of the peak. The smaller fluctua-
tions in time indicates that the spatial gradients have also decreased (assuming velocity
scales are similar). Therefore this reduction suggests that there is a decrease in the levels

of vorticity within the trailing-edge structures.

There are several differences for the longer plate, ¢/t = 12.5, at a lower Reynolds
number of Re = 300. Near the lower limit of the lock-in range, shown by the forcing
frequency of St = 0.13 in Figure 3.20(b) the magnitude of the peak is approximately
that of the natural shedding and the formation length is less than the natural shedding
case. As the forcing frequency is increased up to a forcing frequency of St = 0.16, there
is a decrease in the vortex formation length and an increase in the magnitude of the
peak which is similar in behaviour to the higher Reynolds number case. As the forcing
frequency is incremented to St = 0.1625 (similar to the upper limit of the higher Reynolds
number case), there is a drop in the magnitude of the peak while the formation length
continues to decrease. At the next increment to St = 0.165, associated with the phase
shift, there is a significant drop in the magnitude of the peak and an increase in the vortex

formation length.

Figure 3.21 shows the formation length and mean base pressure in the lock-in
range for the two plates. In the higher Reynolds number case, the formation length
and the mean base pressure decrease (increasing mean base suction) with the forcing
frequency until St = 0.2025. At St = 0.205, there is a small recovery in the mean base
suction because of the lower vorticity levels discussed earlier. This behaviour is mimicked
in the lower Reynolds number case before the phase shift. At a forcing frequency of
St = 0.165, associated with the phase shift, there is a significant increase in the vortex
formation length which is matched by a decrease in mean base suction. The mean base
pressure and the formation length of the unforced flow corresponds to the properties of
some intermediate forcing frequency in the lock-in range for the higher Reynolds number
case. Although they do not correspond to the same frequency, this still implies that in the
higher Reynolds number case, the vortex formation length and the mean base pressure

are strongly related to each other for the cases with and without applied forcing. In the
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Figure 3.21: The vortex formation length and the mean base pressure coefficient as a
function of the forcing frequency in the lock-in range for plates at Re = 500 and Re = 300
with ¢/t = 7.5 and ¢/t = 12.5 respectively. Dark arrows show the formation length and
the gray arrows show the mean base pressure coefficient in the unforced case. Forcing

amplitude is at vper = 2.5%.
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lower Reynolds number case, near the lower limit of the lock-in range, while the mean
base pressure is similar to the unforced case, the vortex formation length is shorter when
forcing is applied. Comparing the mean base pressure to the magnitude of the peak in
horizontal velocity fluctuations in Figure 3.19(b), the lower Reynolds number case shows
a stronger dependency between these two characteristics. Near the upper limit of the
lock-in range for the higher Reynolds number case and before the phase shift in the lower
Reynolds number case, there is a small drop in mean base suction while the formation
length continues to decrease. As previously discussed, this is associated with a lower
fluctuating component of velocity in the vertical direction. This implies that for the
flow to remain locked to the forcing as the frequency is increased, the formation length
would have to reduce. The drop in mean base suction and magnitude of the peak in the
fluctuating component of the velocity in the horizontal direction prior to dropping out of
the lock-in state shows that the flow is less receptive to the forcing. A possible explanation
for the flow no longer remaining locked to the forcing as the frequency is increased is that
the flow is no longer receptive to the higher frequencies because this would require the

formation of more compact vortices associated with the reduced vortex formation length.

Experiments on flow around a rectangular plate (¢/t = 6) by Bearman (1965) at
Reynolds numbers between approximately 23,000 < Re < 43,000 has previously shown
the relationship between the formation length and base pressure. A splitter plate placed
in the wake was used to control the formation length. Using hot-wire probes, these
experiments showed that the mean base suction was proportional to the formation length.
The data in Figure 3.20 also shows this trend but the proportionality constant varies for
the different Reynolds number and aspect ratios. These experiments also traversed the
probe across the wake at various positions downstream. The peak in fluctuations in this
case represent the vortex centres. The trajectory of these vortices also show a necking
as seen in the previous section and they occur approximately at the formation length in
these experiments. The simulations show a similar trend in the higher Reynolds number
flow but the lower Reynolds number flow shows that the formation length is further
downstream of the position where the vortex trajectory necks for the natural and forced
shedding cases.

In experiments where the plate was excited in a pithing motion, the formation
length increases with increasing forcing frequency within the lock-in range (Lofty & Rock-
well, 1993). In those experiments, the flow is also undergoing a phase shift. In these
simulations, there is an increase in vortex formation length as the phase shift occurs. The
phase shift occurs close to the upper limit of the lock-in boundary in the simulations.
Therefore no comparisons with experiments can be made with further increases in forcing
frequency. The different observations between the experiments and the simulations con-

cerning vortex formation length is related to if and where the phase shift occurs in the
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lock-in range.

3.3.4 Circulation

This section attempts to quantify the amount of circulation in the shed vortices and
the link to the base pressure. Initially a theoretical approach will show the relationship
between the amount of circulation generated and the base pressure. The results from the

two different plates will then be compared with the theoretical predictions.

3.3.4.1 Theory

Morton (1984) derived a relationship between the generation of circulation from a solid
surface and the pressure gradient along that surface. The derivation stated by integrating
around an infinitesimal area at the interface between a solid surface and a fluid. The
momentum equation is then applied to eliminate the temporal derivative of velocity.
When the surface is stationary and diffusion is neglected (because it does not contribute
to the generation of vorticity), the rate of generation of circulation per unit length, 7, is

equivalent to the pressure drop along the surface, expressed by

dn_ 9

=t (3.1)

If we then assume that all the circulation of one sign is generated from one side
of the centreline, integrating along the surface of the plate between point 1 and point 2

along the bottom side of the plate shown in Figure 3.22(a) gives :

2 dry 2 0p
—2dS =— | =4 2
1 dt 5 /1 oS 5 (3.2)

and performing the line integral results in,

dr’

a (p1 — p2), (33)

where here T" is the total circulation. Integrating along the top surface of the plate

gives the rate of generation of negative circulation. The integral on the left hand side of
7 %’
circulation generated in the infinitesimal layer around the plate represented by the gray

Equation 3.2 which results in the rate of generation of positive circulation refers to the

area in Figure 3.21(b). When the flow is in an asymptotic state, there is no accumulation
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Figure 3.22: A sketch of the elliptical leading-edge plate showing (a) the path of inte-
gration from the stagnation point (1) at the leading edge to the centre of the base (2)
where the base pressure is evaluated and (b) the circulation generated on the surface of

the plate being convected into the wake.
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of circulation around the plate and the circulation is convected into the wake. If the flow
is periodic, the amount of circulation generated in one period is equivalent to the amount
convected into the wake. Therefore, the result of integrating both sides of Equation 3.3

over one complete shedding cycle results in,

I'=(p1 —p2)T. (3.4)

If point 1 is assumed to be the leading-edge stagnation point, the pressure coefficient
at this point is a constant with a value of unity. When all the variables are non-

dimensionalised, this gives,

StT,
1-¢

0.5, (3.5)

where ¢, is the mean base pressure coefficient and the factor on the right hand side
is a result of the conversion from kinematic pressure to pressure coefficient. The non-
dimensionalised circulation, I', generated in one shedding period, is derived for the positive
circulation. The top surface generates an equivalent amount of negative circulation so that

the overall amount is zero.

3.3.4.2 Comparison with simulations

This relationship between mean base pressure and the circulation generated in one shed-
ding period is investigated for the flow over elliptical leading-edge plates with ¢/t = 7.5
and 12.5 at Re = 500 and 300 respectively. The analysis is performed only on cases where
the flow is periodic. This includes the natural shedding case and the lock-in range when
the forcing amplitude is vyt = 2.5%. The positive and negative circulation generated in a
period is assumed to be contained in one vortex pair. The technique described in Section
2.4.2 was used to measure the circulation contained within each discrete vortex shed from
the plate. The circulation was calculated by taking a closed loop line integral around
the vortex. The path was chosen to be where the absolute value of the non-dimensional
vorticity is 0.4. This level is less than 15% of the peak vorticity and is chosen so as to
capture as much of the circulation within each vortex patch while isolating each vortex.
This was performed on vortices up to 14 diameter downstream from the trailing edge. For
the flow around a plate with ¢/t = 7.5 at Re = 500, Figure 3.23 shows the integral paths
used for the unforced case and the forced cases with St = 0.175 and 0.2025. When forcing
was applied, these plots were taken at 0° in the forcing cycle. The unforced case is chosen

when the phase of the shedding is approximately equivalent to the forced shedding cases.
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unforced 2.79 -2.47 2.19 -2.14 2.07
St=0.175 2.75 -2.31 -1.91
St=0.2025 2.89 -2.70 243 -2.39 2.342

Figure 3.23: Vorticity plots in the wake of an elliptical leading-edge plate with ¢/t = 7.5
at Re = 500 in the natural and forced shedding cases. In the forced shedding cases, the
plots are taken at 0° in the forcing cycle with the forcing frequency at St = 0.175 and
St = 0.2025, and the amplitude at vy = 2.5%. The flow is in a similar shedding phase
in the unforced case. The outlines show contours of non-dimensional vorticity having an
absolute value of 0.4. These are used as integral paths to calculate the circulation which
are shown below the contours.
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The contour around the vortex closest to the trailing edge is artificially truncated so as
to not include the developing vortex which is forming and the vorticity in the boundary

layer of the plate.

From these plots, the amount of circulation in the vortices does not vary signifi-
cantly between the natural shedding case and the two forced shedding cases (representing
the lower and upper limit of the lock-in range). There is only a marginal increase in cir-
culation but a large difference in mean base pressure between the lower and upper limits
of the forcing frequency in the lock-in range. The rate of generation of circulation is still
higher at the higher forcing frequency because of more vortices being generated in a fixed
time period. This together with the marginal increase in circulation causes the higher
mean base suction. The decay in circulation is greater nearer to the trailing edge. The
vortices are closer and there is likely to be more cross-annihilation of vorticity. The decay
is less further downstream where the vortices are further apart. The diffusion dominates
the decay there and the high Reynolds numbers result in this low rate. The larger error

when the vortices are more diffused also contributes to some of the decay.

These calculations were repeated for the natural shedding case and all frequen-
cies simulated in the lock-in range for the cases with applied perturbation at four regular
intervals in the shedding/forcing cycle. For the cases with applied forcing, this corre-
sponded to 0°, 90°, 180° and 270°. The local peak in vorticity is used to determine the
distance downstream the vortex is from the trailing edge. A selection of these cases for
the flow around the plate with ¢/t = 7.5 at Re = 500 is shown in Figure 3.24. The natural
shedding case and all the forced shedding cases showed a steep decrease within the first 6
to 8 diameters from the trailing edge. In this region, there is a smaller difference between
the different cases. Further downstream, there is a marked decrease in the decay rate.
This trend is more prominent as the forcing frequency is increased and the behaviour of
the unforced case is similar to that for an intermediate frequency in the lock-in range.
To estimate I',, which is the amount of circulation of one sense generated in a forcing
cycle, linear regression on the data obtained near the plate (i.e., 6 to 8 diameters from
the trailing edge) is used to extrapolate the value to the trailing edge. The result of this
analysis (and the other data required to calculate %) is shown in Tables 3.1 and 3.2
for the flow around a plate with ¢/t = 7.5 at Re = 300 and ¢/t = 12.5 at Re = 300

respectively.
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Figure 3.24: The absolute value of the circulation (non-dimensionalised with the plate

thickness and free-stream velocity) contained within each vortex taken at four intervals

in the shedding/forcing cycle as a function of the distance downstream from the trailing

edge. The four cases shown are the natural shedding case and forced shedding cases at
St =0.175, St = 0.19 and St = 0.2025.
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St r, 1-¢ %
0.19 (unforced) | 3.215 | 1.439 | 0.425
0.175 3.260 | 1.344 | 0.424
0.18 3.356 | 1.400 | 0.431
0.185 3.379 | 1.446 | 0.432
0.19 3.349 | 1.492 | 0.426
0.20 3.366 | 1.579 | 0.426
0.2025 3.425 | 1.592 | 0.436
0.205 3.366 | 1.587 | 0.435

Table 3.1 : Computational data for the case with ¢/t = 7.5, Re = 500 and vy = 2.5%.

St r, 1-¢, %
0.15(unforced) | 3.620 | 1.264 | 0.430
0.13 4.180 | 1.253 | 0.433
0.14 3.798 | 1.292 | 0.411
0.145 4.044 | 1.321 | 0.444
0.15 3.560 | 1.350 | 0.395
0.1525 3.576 | 1.363 | 0.400
0.155 3.488 | 1.374 | 0.393
0.16 3.522 | 1.386 | 0.406
0.1625 3.651 | 1.378 | 0.430
0.165 3.004 | 1.242 | 0.399

Table 3.2 : Computational data for the case with ¢/t = 12.5, Re = 300 and vpe,y = 2.5%.

In both cases, the value of ft——l;; is approximately 0.42. The higher Reynolds
number case has smaller deviations between all the cases (+0.015) compared with the
lower Reynolds number case (40.03). For most of the data, the circulation, I',, does not
vary significantly and the increase in base pressure is more dependent on the increase in
frequency. One notable exception is when the phase shift occurs in the lower Reynolds
number case. The drop in mean base suction is accompanied by a significant reduction in
the circulation, I',. The value of ft_—l;l‘; obtained from the simulations can be expected to
be below the theoretical value of 0.5 because the value of I' and therefore I', is likely to
be underestimated. The error in I' is mainly from the exclusion of circulation due to the
choice of cut-off level in vorticity. This results is some circulation not being accounted
for. As there is more diffusion in the lower Reynolds number case, the larger spread in
the data could be from the larger errors associated with this exclusion. Another possible
source of error in estimating I', is in the extrapolation of the data from the wake. The
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linear regression method used to extrapolate the value of I', may not accurately account
for the cross-annihilation of vorticity near the trailing edge of the plate (within the first
two diameters) where the effects may be stronger. There is difficulty in obtaining data in

this region because it is hard to isolate the circulation produced in one shedding cycle.

An analysis similar to this was previously performed on experimental data by
Mills (1998). Mills made measurements in the wake of an aerofoil leading-edge plate with
an aspect ratio of ¢/t = 10 at Re = 1,000. The results of the natural shedding case
were compared to the case where the forcing frequency is approximately equal to the
natural shedding frequency. By showing that I',/(1 —¢,) is a constant for both cases, the
experimental data successfully linked the increase in mean base suction to the increase

in circulation in the wake. When the data presented in Mills (1998) is used to calculate

Sty
1—cp

0.476 and 0.450 respectively. This is closer to the theoretical value and is likely because

the value of , the result of the natural shedding case and the forced shedding case are
the error due to the finite cut-off levels are smaller when the vortices are more compact
and concentrated at higher Reynolds numbers. However, at such high Reynolds numbers,
the development of wake three-dimensionality would cause some of the vorticity generated
to realign in the spanwise direction. Some circulation may not be accounted for when

analysing only a two-dimensional plane.
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Chapter 4

Flow Past a Long Rectangular Plate

The study of flow around long rectangular plates will be presented in this chapter. The
complexity of this relative to the geometry in the previous chapter is increased because
there is shedding from both the leading and trailing edges. The interaction between these
two processes plays a crucial role in the overall flow. As in the previous chapter, the
natural shedding case and the forced shedding case will be studied. The range of aspect
ratios that will be studied start from ¢/t = 3 in the natural shedding case and ¢/t = 6 for

the forced shedding case and reach ¢/t = 16 in both cases.

Initially, the surface pressure on the plate will be used to gauge the overall char-
acteristics such as shedding frequency, base pressure and forces in both the natural and
forced shedding cases. Flow visualisation will then be used to analyse other traits such
as shedding modes and phasing. Other features such as the convective velocity of the
vortices and the vortex formation length will be evaluated to support the theoretical ex-
planations. The acoustic power generated by the plate in a duct will be modelled using
Howe’s theory (Howe, 1975, 1980).

4.1 Natural shedding

This section studies the flow around rectangular plates in the absence of any external
perturbations. This case has been well studied both experimentally and numerically
(Nakamura et al., 1991, Ohya et al., 1992). The shedding from the leading edge and
trailing edge of a rectangular plate locks to a single shedding frequency at low Reynolds
numbers (up to Re = 3,000, Nakamura et al., 1991). This instability relies on the
interaction of the leading-edge vortices with the trailing-edge shedding to generate a
pressure pulse. This pulse locks the leading-edge shedding and completes the feedback
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loop. The pressure pulse is weak and therefore restricts this instability to low Reynolds
numbers and limits the range of aspect ratios for which it is observed. It was initially
classified as the impinging shear layer instability by Nakamura & Nakashima (1986) and
Nakamura et al. (1991) because in some cases (where the aspect ratios are low) the shear
layer directly interacts with the trailing edge and this has similarities with the instability
in the cavity flow. Later studies (Naudascher & Wang, 1993, Naudascher & Rockwell,
1994, Mills et al., (1995), Mills, 1998) prefer the name impinging leading-edge vortex
(ILEV) instability because it better describes the process where leading-edge vortices are
shed, convect downstream and then interact with the trailing edge. The result of this
instability is distinct integer shedding modes (n) where the integer represents the number
of pairs of vortices along the plate. As the aspect ratio is increased, the Strouhal number
based on chord (St.) shows a stepwise response with each increasing step corresponding
to a higher shedding mode.

This section intends to validate the techniques used here by reproducing the
different shedding modes, as the unforced case is a obvious precursor to the forced shedding
cases. Initially, the effects of varying the Reynolds number on plates with aspect ratio of
¢/t = 3 and 10 will be investigated. Next, simulations starting with an aspect ratio of
¢/t = 3 will show the various shedding modes. The influence of the shedding modes on

the pressure and forces on the plate will also be examined.

4.1.1 Effects of Reynolds number

To study the effects of Reynolds number on the flow around long rectangular plates,
simulations were performed for plates with aspect ratios of ¢/t = 3 and 10 at Reynolds
numbers of Re = 300, 400 and 500. The base pressure trace indicates how strongly the
flow is locked to a particular shedding mode. The variations in shedding frequency, mean
base pressure and forces on the two plates with Reynolds number are also presented.

Figure 4.1 shows typical samples of the base pressure trace for an aspect ratio of
c/t = 3 after the flow has reached an asymptotic state for the three Reynolds numbers
considered. The signal is strictly periodic at all three Reynolds numbers suggesting that
the flow is strongly locked to a particular shedding mode. The period is half that of the
shedding because the base pressure is evaluated at the centre of the trailing edge. Any
asymmetry in the shedding would be detected when monitoring the pressure at the centre
of the trailing face. The mean base suction and the amplitude of the trace both increase
with Reynolds number. With less diffusion, the thinner boundary layers and stronger and
more compact vortices contribute to this. Results for a longer plate with an aspect ratio
of ¢/t = 10 are presented in Figure 4.2. At a Reynolds number of Re = 300, a periodic
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Figure 4.1: A 100 time unit sample of the base pressure trace taken when the flow around
a rectangular plate with ¢/t = 3 has reached an asymptotic state for Re = 300, 400 and
500.
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signal is observed as with the shorter plate. Although there is a clear shedding frequency
at a Reynolds number of Re = 400, there is a small drift in the signal. This signifies
that the feedback mechanism has less control on the flow. The base pressure signal at
Re = 500 shows a significant amount of randomness in the signal. Although the frequency
associated with the shedding mode at this aspect ratio is still dominant in the spectrum,
there are also many other frequencies present suggesting that the controlling mechanism
can no longer lock the flow. This signal is obtained after the simulation has been evolved
for 2000 time units ( i.e. &~ 360 periods at the ILEV frequency) and the flow shows no
indication of locking to a particular shedding mode.

This instability that locks the flow to a particular shedding mode is weak since
it relies upon a (weak) pressure pulse from the trailing edge to control the leading-edge
shedding. With increasing Reynolds numbers (i.e greater randomness) or aspect ratios
(i.e. increased distance for pulse to travel), the flow is less likely to lock to a particular
shedding mode. Experiments by Nakamura et al. (1991) showed that above a Reynolds
number of approximately Re = 3,000, the spectrum in the wake became broadband and
showed no affinity to a particular shedding mode. Parker & Welsh (1983) observed a
distinct frequency in the wake only up to an aspect ratio of ¢/t = 7.6 in the Reynolds
number range of 1,500 < Re < 3,000. This corresponded to the second (n = 2) shedding
mode. Only a broadband spectrum is observed in the wake for larger aspect ratios.
Numerical simulations also show that the instability is no longer able to lock the system
to a single frequency past a certain Reynolds number or aspect ratio. Simulations by
Ozono et al. (1992) at Re = 1,000 showed the presence of several frequencies in the lift
coefficient trace past ¢/t = 9. In these simulations at Re = 500, the mean base pressure

trace also shows significant random fluctuations when ¢/t = 10.

Re | c/t St [N Ca oe,

300 3 | 0.170 | —0.493 | 1.25 | 0.256
400 | 3 | 0.180 | —0.651 | 1.40 | 0.360
500 | 3 | 0.188 | —0.738 | 1.59 | 0.392
300 | 10 | 0.151 | —0.334 | 1.11 | 0.0918
400 | 10 | 0.163 | —0.483 | 1.29 | 0.133
500 | 10 | 0.171* | —0.452 | 1.27 | 0.123

Table 4.1: Shedding frequency, mean base pressure coefficient, mean drag coefficient and
standard deviation of the lift coefficient for the two plates at the three Reynolds numbers
simulated. (* Denotes that other frequencies are present.)

Table 4.1 shows global properties for the cases considered in this section. When
the flow is locked to a particular shedding mode, there is only a small (less than 10%)
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Figure 4.2: A 100 time unit sample of the base pressure trace taken when the flow around
a rectangular plate with ¢/t = 10 has reached an asymptotic state for Re = 300, 400 and
500.
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variation in the shedding frequency as the Reynolds number is varied unlike the elliptical
leading-edge plate and short bluff bodies. The frequency selection is less dependent on
Reynolds number when the ILEV instability locks the flow. In experimental observations,
Nakamura et al. (1991) also observed that the shedding frequency is almost independent of
Reynolds numbers while the flow was controlled by this instability. In all the cases where
the flow is dominated by the instability which synchronises the leading- and trailing-edge
shedding, there is an increase in mean base suction, mean drag and fluctuating lift forces.
When this instability no longer dominates (i.e. at ¢/t = 10 and Re = 500), there is a
drop in these three properties from the lower Reynolds number case (Re = 400) indicating
that this instability contributes to an increase in the forces experienced by the plate. It is
uncertain if this is a general trend because this observation is only based on simulations

at three different Reynolds numbers.

4.1.2 Shedding modes

In this section, the aspect ratio of the plate is varied while keeping the Reynolds number
at Re = 400 with the aim of capturing the various shedding modes. The plates studied
range in aspect ratio between ¢/t = 3 and 16 at intervals of unity. Initially, the shedding
frequency estimated from the base pressure trace is presented for those plate lengths that
show a distinct shedding frequency resulting from the ILEV instability. Vorticity plots of
the flow at these aspect ratios will show the different shedding modes associated with this
instability. The base pressure trace will show that there are some random fluctuations
between shedding cycles, especially at the longer aspect ratios, for each mode.

The shedding frequencies for the different plates are shown in Figure 4.3. As the
plate is lengthened from ¢/t = 3 to 5, the shedding frequency decreases. It then rises
again at ¢/t = 6 before following the same trend with another jump at ¢/t = 9. For plates
longer than ¢/t = 10, the flow does not show one distinct frequency except for ¢/t = 13.
When the shedding frequency is normalised with the chord rather than the thickness of
the plate, the graph shows distinct steps of approximately St = 0.55n with each step
corresponding to a shedding mode. As discussed in the first chapter, each shedding mode
has an integer number of vortices along the plate. As the chord is increased, assuming
the convective velocity along the plate is not significantly influenced by the aspect ratio,
the vortices shed from the leading edge take longer to reach the trailing edge, thus the
reduction in shedding frequency. This continues until the flow is no longer receptive to
such a low frequency, then it jumps to the next shedding mode. It is hypothesised that
the longer plates fail to lock to a particular shedding mode because the pressure pulse
drops below the threshold required to lock the leading-edge shedding. As the pressure

pulse travels out radially from the trailing edge, the level at the leading edge decreases as
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Figure 4.3: Shedding frequency as a function of aspect ratio at Re = 400. On the left, the
Strouhal number is based on thickness while on the right it is based on chord. The graph

on the right also shows a comparison of previous numerical and experimental results.

the plate is lengthened.

The non-dimensional frequency based on chord (St.) is the shedding frequency
multiplied by the chord and divided by the free-stream velocity (i.e. St. = ¢f/Uy). The
different steps (shedding modes, n) represent the number of vortices along the plate or
the number of shedding periods required for a leading-edge vortex to travel the length
of the plate. The average convective velocity of a leading-edge vortex along the plate is
therefore the distance travelled by the vortex (¢/n) in one period (1/f) (i.e. Vionw = cf/n).
Therefore the Strouhal number based on chord (St,.) is the ratio of the average convective
velocity of the vortices along the plate and the free-stream velocity, multiplied by the
shedding mode (i.e. St, = (Viomv/Us)n). The stepwise behaviour signifies that the
average convective velocity along the plate is approximately constant for all those plates
that lock to the instability and equivalent to the height of the steps which is 55% of the
free-stream velocity (i.e. Voony/Uso = 0.55).

Also shown in Figure 4.3 are the results from simulations by Ozono et al. (1992)
and experiments by Nakamura et al. (1991). These results are in good agreement with
the simulations at a Reynolds number of Re = 1,000 by Ozono et al. (1992) suggesting
that the two-dimensional simulations are less dependent on Reynolds number. The results

differ more, especially for the longer plates, from those of Nakamura et al. (1991) because

118



the shedding frequency in the experiments is approximately St. = 0.6n. This difference
is likely due to the difference in convective velocity of the vortices along the plate which
could be influenced by the three-dimensional flow and higher Reynolds numbers in the

experiments.

Figure 4.4 shows the vorticity plots for all the cases where the flow is locked to
a particular shedding mode. These plots are taken at approximately the same phase in
the shedding cycle. They show that the aspect ratios of ¢/t = 3, 4 and 5, ¢/t = 6, 7 and
8, ¢/t =9 and 10, and ¢/t = 13 correspond to the shedding modes of n =1, 2, 3 and 4
respectively. The flow around plates at the lower aspect ratio end of each step, which are
shedding at higher frequencies (i.e. at ¢/t = 3, 6, 9 and 13), show the vortices forming
more closely to the trailing edge and a smaller horizontal spacing between the vortices in
the wake. At the higher aspect ratio end of each step (i.e. at ¢/t = 5 and 8), the lower
frequency shedding also results in less regular wake vortices. All these plots are taken
at approximately the same phase in the leading-edge shedding cycle. The trailing-edge
shedding also appears to be at the same phase in the cycle for all the different plate lengths.
Vortices are shed from the trailing edge between the passing of leading-edge vortices.
Previous studies assert that the ILEV instability mechanism synchronises the the leading-
edge shedding with the passing of these vortices at the trailing edge because the latter
generates a pressure pulse (Naudascher & Wang, 1993, Mills, 1998). These simulations
show strong base shedding which are also locked in phase by the influence of leading-
edge vortices. These would generate stronger pressure fluctuations which influences the
leading-edge shedding thus completing the feedback loop. A modification to the ILEV
mechanism to incorporate the role of base shedding and better describe this process is

proposed in a later section (Section 6.3.3).

For the same feedback mechanism to lock the flow independent of aspect ratio,
the phasing between the leading- and trailing-edge shedding would have to be constant.
This ensures that the phase in the shedding cycle at which the leading-edge vortices
pass the trailing edge and the signal (pressure pulse) from the trailing edge affecting
the leading edge is constant for all plate lengths which lock to this instability. This has
also been observed in water tunnel experiments by Mills (1998) at Re = 490 and wind
tunnel experiments by Nakamura (1991) at Re = 1,000. The constant phase relationship
also ensures a similar shedding cycle within a shedding mode as the chord is varied and
a complete pair of vortices along the plate between modes. This has been shown by
phase measurements along the side of the plate and in the path of the vortices convecting
downstream by Nakamura et al. (1991). Besides a similar phase relationship between the
leading- and trailing-edge shedding, all the vorticity plots in Figure 4.4 also show both
the leading- and trailing-edge shedding to be at approximately the same stage in the

shedding cycle. Both leading- and trailing-edge vortices are in the process of forming on
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Figure 4.4: Vorticity plots of flow around rectangular plates at Re = 400 taken at ap-

proximately the same phase in the shedding cycle for the various aspect ratios.
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the bottom side of the plate. On the top side, the leading-edge vortex has just shed and

so has the vortex from the trailing edge.

The trace of the base pressure is studied to gauge the temporal behaviour of the
flow. Traces of 100 time units of base pressure for plates with ¢/t from 7 to 11, and also
13, taken after the flow has reached an asymptotic state are shown in Figure 4.5. At
¢/t = 7, the base pressure shows a nearly perfect sinusoidal signal. Although this aspect
ratio corresponds to approximately the middle of the step, the moderate aspect ratio
allows the instability to lock the flow resulting in a state which is very close to periodic.
When the plate length is increased to ¢/t = 8, although there is still a distinct shedding
frequency, there also appear to be several longer wavelengths present. The low frequency
of the shedding results in the flow not being as receptive to the instability. This is reflected
in small differences between shedding periods. There is a change in shedding mode and
a jump in frequency when the aspect ratio is increased to ¢/t = 9. The base pressure
trace shows the shedding to be approximately periodic which suggests that the flow is
well locked to the instability just after the transition. This behaviour associated with the
transition from one shedding mode to another is also evident for the smaller aspect ratios.
At ¢/t = 10 there are small fluctuations between shedding periods suggesting that the
control of the instability is weakening. Unlike at ¢/t = 8, there are many more random
fluctuations at ¢/t = 11. This is after the simulations were evolved for 1,000 time units.
This is caused by the instability having less control for longer plates and the flow being
less receptive at the longer plate end of each step. The base pressure trace for ¢/t = 12
is similar. At ¢/t = 13, the start of the next step, the instability is able to lock the flow
but there are already small fluctuations between shedding cycles. Above this aspect ratio,
the base pressure trace is not dominated by a single shedding period. Traces of the lift
coefficient in simulations by Ozono et al. (1992) also showed a similar trend in that the
signal was closer to periodic towards the lower aspect ratio within each step. Also note
that the mean base suction is higher when the flow is more receptive to the instability
(i.e. at the shorter aspect ratio within each step). This aspect will be discussed in the

next section (Section 4.1.3).

To gauge the strength of the instability at ¢/t = 11, spectral analysis is performed
on the base pressure trace of the asymptotic flow state. The spectrum shown in Figure 4.6
is obtained from 1000 time units of data sampled every 0.175 time units. Although there
are other frequencies present, the frequency at St = 0.300 which is two times that of the
shedding frequency (because it is measured at the centre of the trailing face) corresponds
to the third shedding mode (i.e., St = 0.150 is equivalent to St. = 1.65, which is the
third shedding mode based on St. = 0.55n). The other shedding frequency of St = 0.243
(St. = 1.33) is a frequency between the second and third mode. The leading-edge shedding

from both sides of the plate is no longer synchronised when the flow is not locked to a

121



-0.1—
-0.3

asl]
-0.7—
-0.1—

clt=7

-0.3 1
05— c/t=38

-0.7—
-0.1—
0.3 c/t=9
-0.5

-0.1—
03— c/t=10

-0.5

-0.3

c/t=12

-0.7—

03— c/t=13
-0.5

0.7 | | | | | | | | | |

0 10 20 30 40 50 . 60 70 80 90 100

Figure 4.5: A sample of 100 time units of the base pressure trace for flow around rectan-

gular plates at several aspect ratios at Re = 400.
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Figure 4.6: A spectral plot of the base pressure trace for a plate with ¢/t = 11 at Re = 400.

particular shedding mode. This is likely to cause a mismatch in the number of vortices
on both sides of the plate in some periods which would result in an asymmetry between
the leading- and trailing-edge shedding. In those periods, the shedding is in between
modes (i.e. three vortices on one side and two on the other) and the shedding frequency
is at an intermediate level between steps. The lower frequency in the spectrum (i.e. at
St=0.057) corresponds to the difference in the two shedding frequencies and is caused
by the presence of the two signals (associated with the two shedding processes) in the
trace. For the longer plates which do not lock to a particular shedding mode, the ILEV
frequencies are present in the flow and become relatively weaker as the chord is increased.

4.1.3 Base pressure and forces

Plots of the mean base pressure coefficient, mean drag coefficient and fluctuating lift
coefficient as a function of aspect ratio are presented in Figure 4.7. Viscous forces are
neglected in the calculation of the overall forces because they are expected to be relatively
small at these moderate Reynolds numbers. It is evident that the mean base suction and
therefore mean drag is higher at the lower aspect ratio end of each step. The possible
contributing factors to this behaviour include how strongly the flow is locked by the

ILEV instability and the higher receptivity of the trailing edge to the higher frequency.
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As discussed in the previous section, the flow is strongly locked at the lower aspect ratio
end of each step and the shedding is more regular. The vorticity plots for those aspect
ratios show more compact vortices forming closer to the trailing edge. The shedding at
the trailing edge is therefore more receptive to the higher frequency and this is reflected
in the mean base pressure and drag coefficient. The overall magnitude and the difference
between the lower and upper aspect ratios of each step is smaller for the longer plates.
The longer plates develop thicker boundary layers at the trailing edge which result in
less vigorous shedding. The ILEV instability has less of an influence on the flow at larger
aspect ratios. These two factors may contribute to the smaller values and difference within
each step for the longer plates. Although the longer plates (¢/t > 11 except ¢/t = 13), do
not lock to the ILEV shedding frequency, the trends in base pressure and force coefficients
associated with this instability are still observed. When the ILEV instability no longer
controls the shedding, there is still a significant amount of the energy in that frequency as
shown by the spectral plot of base pressure coefficient for ¢/t = 11 and this still influences
the forces on the plate, although less so than for the shorter plate. Mean base pressure
measurements by Mills (1988) show that this trend is not present at higher Reynolds
numbers (Re &~ 9,000) where the instability no longer governs the flow. Okajima (1990)
and Okajima et al. (1990) presented simulated and experimental results of mean drag
force and pressure coefficients up to ¢/t = 8 at low Reynolds numbers (250 < Re < 1200)
which also show a small increase at the shorter aspect ratio end of each shedding mode.

There is a decrease in the fluctuating lift force as the plate length is increased.
For the rectangular plate, only the top and bottom surfaces contribute to lift forces. The
lift forces from pairs of vortices along the plate cancel out. The fluctuating component of
the lift is mainly from the alternate shedding from the leading edge and the mismatch at
the trailing edge. As these processes occur for all the plates and the coefficient is based
on the chord, an inverse relationship with aspect ratio is expected. The data does show
an approximate inverse relationship. Further discussion on this will be provided after the
fluctuating lift forces in the forced shedding case have been presented. Superimposed on
this inverse relationship, although less significant, is an effect similar to that found for the
mean drag force in that there is a higher fluctuating lift component at the lower aspect
ratio end of each step. The higher frequencies at the lower aspect ratio end of each step
also result in more compact leading-edge vortices. The larger fluctuations in lift forces,
and the shedding of more compact vortices, indicate that the leading-edge shedding is

also more vigorous at higher frequencies.
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Figure 4.7: Mean base pressure coefficient, mean drag coefficient and standard deviation
of lift coefficient as a function of the aspect ratio for flow around rectangular plates at
Re = 400. The circular symbols represent cases where the flow shows an association with
a particular shedding mode while the squares represent the cases where the flow is not
strictly locked to any shedding mode.
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Figure 4.8: A vorticity plot taken at 90° in the forcing cycle for flow over a ¢/t = 10 plate
with an applied forcing at St = 0.16 and vpe+ = 2.5%.

4.2 Applied forcing

This section examines how the flow around a long rectangular plate is influenced by a
small sinusoidal cross flow oscillation added to the free-stream flow. Initially, the base
pressure is used to gauge the response of the flow as it is a good indicator and closely
related to the drag force. The effects of Reynolds number, forcing amplitude and aspect
ratio are examined. As the forcing amplitude has been measured near the plate in the
experimental data used for comparison, several simulations are performed in the absence
of the mean flow as in the experiments to determine the level of the forcing near the
edges relative to the applied far field amplitude. The overall forces on the plate are also
examined in the later part of this section.

To visualise the effect of applied forcing on the flow structure, Figure 4.8 shows
a colour contour vorticity plot taken at 90° in the forcing cycle for flow over a plate with
¢/t = 10, St = 0.16 and vpers = 2.5%. This forcing frequency results in the strongest
mean base suction within the lock-in range. The applied forcing results in several key
differences compared with the natural shedding cases. Starting from the leading edge, the
shear layer reattaches earlier and more compact vortices are shed. These remain more
compact while they convect toward the trailing edge and coalesce with the vortices shed
from there. The vortices at the trailing edge are marginally more compact than those in

the natural shedding case.

4.2.1 Effect of Reynolds number

The effect of Reynolds number is studied for a plate with ¢/t = 10 and vper = 2.5%.
Simulations were performed for Reynolds numbers of Re = 300, 400 and 500. Each
simulation is started with the velocity field from an unforced simulation at the same
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Reynolds number after reaching an asymptotic state. In the asymptotic state, the lock-
in range of frequencies is larger than for the flow over elliptical leading-edge plates. In
this lock-in range, the base pressure trace shows a repeatable signal like those presented
in the previous chapter. For this plate and forcing amplitude, the lock-in ranges at
Re = 300, 400 and 500 are approximately St = 0.09 — 0.17, 0.12 — 0.23 and 0.11 — 0.24,
respectively. Within this range, both leading- and trailing-edge shedding lock to a single
frequency. The overall study will focus here because the forcing significantly alters the
mean base pressure and forces on the plate in this range. As the forcing frequency moves
outside this range, the trace shows the influence of other frequencies but no clear longer
wavelengths like those found for the elliptical leading-edge plates. The predominantly
convective nature of the leading-edge shedding (Soria & Wu, 1992) is likely the main
factor for the large frequency range in which the flow locks to the forcing. For small
acoustic cross-flow perturbations, Parker & Welsh (1983) found the leading edge to be
phase-locked from St = 0.05 to 0.25 for 7.6 < ¢/t < 16. Within this range, the flow locks
to the forcing and that is the only frequency prominent in the near wake. Simulations by
Okajima & Kitajima (1993) at Re = 1,000 also found a large lock-in region starting from
around St = 0.07 to St = 0.5 which was the highest frequency studied. Although these
simulations were for shorter plates (¢/t < 3), the flow does reattach to the plate. The
wider lock-in range is also a result of the large oscillation amplitude used which was 14%
of the thickness of the plate. Based on the perturbation velocity near the plate (which
will be studied later), this is between two to three times the forcing amplitude used in

the simulations when v,e,+ = 2.5%.

The mean base pressure coefficient as a function of the forcing frequency is shown
in Figure 4.9. The base pressure coefficient and shedding frequency in the unforced case
(also plotted) are from Table 4.1. The responses at the three different Reynolds numbers
do not differ significantly. When the forcing frequency is well below the natural shedding
frequency, the mean base suction is much less than the natural shedding case. There is a
small peak in the mean base suction at approximately St = 0.10 at Re = 300 and 400 and
a more prominent peak at St = 0.12 at Re = 500. As the forcing frequency is increased,
there is a gradual increase in the mean base suction followed by a more dramatic drop.
The forcing frequency where the mean base suction peaks is close to the natural shedding
frequency for the flow at Re = 300 and 400 and does not vary significantly with Reynolds
number. These peaks will be investigated in later sections (Section 4.2.6, 4.3.4, 4.3.6
and 4.3.7). When the forcing frequency is increased further, the mean base suction again
reduces to below that of the natural shedding cases. At forcing frequencies away from
the natural shedding frequency the flow remains locked to the forcing, and the shedding,
especially from the trailing edge, is likely to be less receptive at these frequencies resulting

in the lower mean base suction. A limited number of simulations outside the lock-in range
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Figure 4.9: Mean base pressure as a function of the forcing frequency for a plate with
¢/t = 10 and vpert = 2.5%. Horizontal and vertical arrows show the mean base pressure
and shedding frequency in the unforced cases. The symbols «, 8 and x correspond to
Re = 300, 400 and 500.
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also show this trend suggesting that the forcing still has a significant influence on the flow

over the feedback mechanism that occurs in the absence of forcing in some cases.

4.2.2 Effects of the amplitude of forcing

In this section, simulations with three different levels of forcing are performed to ascertain
the effect on the mean base pressure. These are performed for a plate with ¢/t = 10 at
Re = 400. The mean base pressure coefficient as a function of forcing frequency for
forcing amplitudes of v,y = 1.25%, 2.5% and 5.0% is shown in Figure 4.10. At the
lowest forcing amplitude, the frequency range at which the flow locks to the forcing is
marginally narrower. The lock-in range started from St = 0.12 and the flow remained
locked until St = 0.19 which was the highest frequency simulated. At the highest forcing
amplitude, the flow locked to the forcing in the entire frequency range simulated (i.e.
0.12 < St < 0.20).

The different levels of forcing have only a small effect on the mean base pressure
compared to the elliptical leading-edge plates. (Further evidence is presented in Section
4.2.3.1). The level of forcing in the cases with an elliptical leading-edge plate governs the
frequency range where the flow locks to the forcing (see Figure 3.13). It is within this
range where the forcing has a larger influence on the mean base pressure by controlling
the shedding frequency. For the flow around elliptical leading-edge plates, an increase
in forcing amplitude also leads to larger deviations in mean base pressure relative to the

natural shedding case.

For the rectangular plates, the flow is locked to the forcing over a larger frequency
range. In this case, the effect of increasing the forcing amplitude is only significant
at forcing frequencies near the peak in mean base suction. This is where the trailing-
edge shedding of the rectangular plate is more vigorous and the dependence on forcing
amplitude is similar to the flow around elliptical leading-edge plates. There is also an
increase in the forcing frequency at which the mean base suction peaks as the forcing
amplitude is increased, although smaller than the case with an elliptical leading edge.
(That is, for the rectangular plate the peaks occurs at St = 0.165 when v, = 5.0% and
natural shedding frequency is St = 0.163 while for an elliptical leading-edge plate with
¢/t = 7.5 the peak is at St = 0.21 when vy = 5.0% and natural shedding frequency is
St =0.196.)

Wind tunnel experiments by Mills (1988) also recorded mean base pressure coef-
ficients for various plate lengths, forcing amplitudes and Reynolds numbers. The forcing

frequency at which the mean base suction peaks is approximately constant when the
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Figure 4.10: Mean base pressure coefficient as a function of forcing frequency for three

different forcing amplitudes. The flow parameters were Re = 400 and ¢/t = 10.
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Reynolds number is varied between 5,200 < Re < 12,130. Within this range, the over-
all magnitude of the mean base suction increases with Reynolds number. Although the
simulations are performed only in two dimensions, and at much lower Reynolds numbers,
these trends are also present for the various Reynolds numbers simulated with an aspect
ratio ¢/t = 10.

A set of experiments were also performed at a constant Reynolds number of
Re = 8,667 but varying the forcing amplitudes between 3% and 5% of the free-stream
velocity. The “forcing amplitude” is measured near the plate and how this relates to the
far field forcing amplitude (vper+) in the simulations will be discussed in Section 4.2.4.
Increasing the forcing amplitude generally increased the mean base suction but larger
increases also occurred at forcing frequencies where the mean base suction is stronger
(i.e., forcing amplitude behaves like an amplification factor of the base suction). The
increase in forcing amplitude also caused the mean base suction to rise over a larger band
of forcing frequencies. This suggests that the larger forcing amplitude asserts control over
the flow over a larger frequency range. The increase in forcing amplitude does not cause
the forcing frequency at which the mean base suction peaks to vary significantly except for
aspect ratios of ¢/t = 6 and 7. Mills (1988) suggested that the exception is likely caused
by some influence of the ILEV instability mechanism. Parker & Welsh (1983) observed a
distinct shedding frequency for plates with ¢/t < 7.6, even for Re > 2,000 in the natural
shedding case.

Asin the experimental observations, the numerical simulations also show a greater
rise in mean base suction with forcing amplitude, especially where the mean base suction
is strong. Another similarity between the experimental and simulated results is the small
variation in the forcing frequency which would result in the peak base suction when the
forcing amplitude is varied. Unlike the experimental trend, the frequency band where the
forcing causes a significant increase in the mean base suction does not grow significantly
with forcing amplitude in the simulations. The lock-in range in the simulations even at the
small perturbation amplitude is large and grows only marginally with forcing amplitude.
There is uncertainty over the lock-in range in the experiments. The response over a larger
frequency range in the experiments could be a result of the lock-in range growing with

forcing amplitude.

4.2.3 The response at various aspect ratios
Flow over plates with aspect ratios 6 < ¢/t < 16 are simulated for a range of forcing
frequencies at Re = 400 and v,e,+ = 2.5%. A large lock-in range was also observed for all

the plates which ranged from St = 0.13 to St = 0.20 (highest frequency simulated) for
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the shortest plate (¢/t = 6), and 0.09 < St < 0.19 for the longest plate (c¢/t = 16).

The behaviour of the mean base pressure coefficient as a function of forcing
frequency both predicted by the simulations and measured experimentally by Mills (1988)
is shown in Figure 4.10. Referring to the simulations, plates with an aspect ratio of ¢/t = 6,
7,10, 11, 15 and 16 show a single peak in the mean base suction. These peaks are generally
larger than for plates with aspect ratios of ¢/t = 8, 9, 12, 13 and 14. For the second set
there are two less prominent peaks although one of them is barely noticeable. There is
a distinct trend in the frequency at which the mean base suction peaks. Beginning with
¢/t = 6, a local maximum base suction is recorded for St = 0.17. As the aspect ratio is
increased to ¢/t = 7, the Strouhal number at which maximum base suction occurs drops
to St = 0.16, then St = 0.14 at ¢/t = 8 and St = 0.12 for ¢/t = 9; with the last two
much less noticeable. Plates with an aspect ratio of ¢/t = 8 and 9, which show two local
peaks, have peaks which start at St = 0.174 for ¢/t = 8 and reduce to St = 0.162 at
¢/t = 9. There is a small jump in frequency when increasing the aspect ratio to ¢/t = 10
which shows only a single peak at St = 0.165. Then with increasing aspect ratio, this
peak shifts to St = 0.155 at ¢/t = 11, St = 0.14 at ¢/t = 12, St = 0.13 for ¢/t = 13
and St = 0.11 for ¢/t = 14 with again the last two being relatively small. Similar to
the situation for ¢/t = 8 and 9, plates with ¢/t = 12, 13 and 14 also show another local
peak at a higher frequency which decreases with increasing plate length. For plates with
¢/t = 12, 13 and 14, these peaks are at St = 0.17, 0.157 and 0.155 respectively. Similar
to the trend starting at ¢/t = 10, there is a single larger peak at St = 0.155 which then
decreases to St = 0.145 at ¢/t = 16. The experimental data of Mills (1988) also show
a similar trend in that some plates peak with a strong mean base suction while others
have a weaker peak. As with the simulations, the experimental data does show that the
frequency at which the mean base suction peaks decreases with increasing plate length
before jumping to a higher frequency. Within each set of peaks in the mean base suction,
the experiments show that the magnitude is weaker towards the shorter and longer plate
lengths and stronger at the intermediate lengths while in the simulations, the magnitudes
of the peaks are smaller at the longer aspect ratio end of each set. The experiments do not
show two local peaks in the mean base suction for those plates that have weaker peaks.
These trends in the frequency and magnitude of the peak mean base suction with plate
length will be further investigated in later sections (Section 4.2.6, 4.3.4, 4.3.6 and 4.3.7).

The predictions from the simulations and experimental results show some signif-
icant quantitative differences. Note the difference in range for the horizontal axes and
scales for the vertical axes of these plots. The frequency range is chosen so as to fully
represent the lock-in range at the applied forcing amplitude of vper = 2.5% in the sim-
ulations. The perturbation amplitude was kept at 5% (measured near the plate) which

because of experimental constraints restricted the lowest frequency to be at St = 0.13.
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Figure 4.11: Mean base pressure coefficient as a function of forcing frequency for plates

ranging from ¢/t = 6 to ¢/t = 16. The simulations (left) are performed at Re = 400 with

a forcing amplitude of v,y = 2.5%. The mean base pressure without applied forcing is

shown by the right arrows and the natural shedding frequency (if applicable) is shown

by the vertical arrows. The experiments (right) were performed at Re =

forcing amplitude of 5% of the free-stream velocity.
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The experimental data at higher frequencies are not shown here because the forcing at
those higher frequencies leads to a small variation in the mean base pressure coefficient
relative to the natural shedding case. The simulations were performed in two dimen-
sions at Re = 400 while for the experiments Re = 9,000. Although the applied forcing
suppresses some three-dimensionality in the flow field, it is present at higher Reynolds
numbers (Hourigan et al., 1993). The difference in Reynolds number, and the reduction
in spanwise correlation in the experiments, result in the significant difference in the mean

base pressure coefficient between the simulation and the experiment.

Alongside each plot is an arrow showing the mean base pressure when no applied
forcing is present. The natural shedding frequency in the simulated cases which lock to
a single frequency is also shown. The mean base pressure approaches that of the natural
shedding at the lower and upper limits of the forcing frequency range in the experiments.
The mean base pressure in the simulations for the unforced cases is still influenced by the
ILEV instability and varies significantly with aspect ratio. In the forced cases, the forcing
frequency at which the mean base pressure reaches a minimum (maximum base suction)
does not coincide with the natural shedding frequency. The frequency selection for both
of these cases will be discussed in Section 4.3.2. The trailing-edge shedding is sensitive
to the forcing frequency as shown in Chapter 3. The different frequency of the trailing-
edge shedding in the natural and forced shedding cases contributes to the differences in
magnitude of the peak in base suction for the forced case and the natural case. Further
discussion on the sensitivity of the trailing-edge shedding is included in Section 4.3.6 and
4.3.7. Those plates with relatively smaller peaks in the mean base suction, especially
¢/t =9 and ¢/t = 13, show that only at the peak mean base suction does the value in
the forced shedding case approach the natural shedding case. In these cases, the natural
shedding is locked strongly to the ILEV instability and sheds at a higher frequency. The
forcing frequency at which the mean base suction peaks is lower and the trailing-edge

shedding may not be as responsive to that frequency.

In general, there are large frequency subranges, especially away from the maxima,
where the mean base suction is less than in the natural shedding case. In these subranges,
the flow either locked to the forcing or was strongly influenced by it. The low mean base
suction is a result of the trailing-edge shedding not being responsive to these frequencies.
Vorticity plots in Section 4.3.3 will show that the trailing-edge shedding is suppressed
at high forcing frequencies. Experiments by Bearman & Obasaju (1982) and Ongoren
& Rockwell (1988) also observed that flow around short bluff bodies oscillated at higher
frequencies can reduce the base suction to less than that without forcing. The suppression
of the shedding at the trailing edge of the plate is likely to be similar to the mechanism
controlling the base pressure in the cases involving the short bluff bodies. The experiments

on the plate do not show any clear subrange in forcing frequency where the mean base
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suction is below that of the natural shedding cases. The high Reynolds numbers and the
three-dimensional nature of the flow may reduce the effect of the forcing which leads to
less control of the flow especially at the upper and lower extremes of the forcing frequency

range. In that situation, the mean base pressure will approach the unforced case.

4.2.3.1 Smaller forcing amplitude

A set of simulations is performed with a lower forcing amplitude of vje,s = 1.25% to verify
that the trends observed in the previous section are relatively independent of the level
of forcing. The Reynolds number is kept at Re = 400 and the plate lengths simulated
ranged from ¢/t = 6 to ¢/t = 13. As a result of the smaller forcing amplitude, the lock-
in range is expected to be smaller. The lock-in range for the shortest plate (c¢/t = 6)
is between St = 0.165 and 0.20 (upper limit of forcing frequency) while for the longest
(¢/t = 13) between St = 0.11 and 0.20. In the latter case these are the limits of the
forcing frequencies examined. Plots of the mean base pressure coefficient as a function of
the forcing frequency are shown in Figure 4.12 for the various plates. The plots contain
predictions of mean base pressure when the forcing amplitude is at vpes = 1.25% and 2.5%
for comparison. The results are very similar to those from the previous section for most
plates. There are some more obvious variations for plates with aspect ratios of ¢/t = 7,
8 and 13. At ¢/t = 8, the value of the peak mean base suction at a forcing frequency of
St = 0.18 is larger than for the case with a higher forcing amplitude. At ¢/t = 7, there
is also a strong peak at St = 0.18 and the peak at St = 0.16 is smaller. For the plate
with ¢/t = 13, the peak at St = 0.16 is larger when the forcing amplitude is smaller.
The similarity in all these cases is that these aspect ratios show two local peaks in base
suction. At the lower forcing amplitude, the peak in base suction at the higher forcing
amplitude is larger and dwarfs the lower frequency peak. At the extreme case of ¢/t =7,
the higher forcing amplitude does not show the higher frequency peak. Further discussion
on the high frequency peaks will be presented in Section 4.3.3 and 4.3.4. Besides this
difference, overall trends are similar between the two forcing amplitudes.

4.2.4 The applied forcing without the mean flow

A more detailed and quantitative description of the applied forcing field, especially near
the plate, is presented in this section. The forcing field is examined in more detail because
it is the control mechanism used to influence the flow in these studies. As described
earlier, the global applied perturbation is a sinusoidally oscillating velocity component in
the cross-flow direction added to the velocity at all free-stream boundaries (equivalent to
adding to the free-stream flow). To study the applied forcing only, the flow is examined
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Figure 4.12: Mean base pressure coefficient as a function of forcing frequency for plates
ranging from ¢/t = 6 to ¢/t = 13 simulated at Re = 400 with a perturbation amplitude
of Vpert = 1.25% (left) and 2.5% (right).
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in the absence of the mean free-stream flow. A similar method was used by Mills (1988)
to determine the effective forcing amplitude near the receptive regions i.e., the leading
and trailing edges. In that case the mean flow was turned off to allow the sound pressure

level of the speakers to be calibrated.

These simulations are performed on the same grids as used in the previous simu-
lations and all parameters such as plate dimensions, viscosity and the forcing amplitude
remain the same as those in the previous simulations. The Reynolds number of the flow
is Re = 400 and the forcing amplitude is vpes = 2.5% with both scaled to a free-stream
velocity of one unit. In the simulations, the free-stream velocity is set to zero but the
scaling is based on the previous velocity scale of one unit. These simulations are started
with the fluid at rest and the flow is simulated for several forcing cycles until all transients
have decayed and the field appears periodic.

The velocity field near the plate with an aspect ratio of ¢/t = 10 taken at 90° in
the forcing cycle (i.e. applied forcing is maximum in the upward direction) is shown in
Figure 4.13. The velocity vector plot shows the flow accelerating around the plate. As the
forcing amplitude is small (effectively a small Reynolds number), the flow approaches a

potential flow away from the plate while there is a thick boundary layer around the plate.

Although the global applied perturbation amplitude is constant, the amplitude
near the plate is dependent on the location and the aspect ratio of the plate. This is
investigated in the initial parts of this section. The amplitude of the perturbation (from
the time trace of the velocity magnitude) is monitored at three points near the plate so that
a quantitative comparison can be made at different aspect ratios. These three locations
are shown in the schematic diagram in Figure 4.14. Although they are relative to the top
leading edge of the plate, due to the symmetry in the geometry and the periodic nature
of the forcing, the amplitude is the same for the equivalent locations at the respective
positions from any edge. These locations are chosen to be near the plate but outside the
boundary layer. The boundary layer is avoided because the steep gradients and the non-
linear effects there would cause difficulties when comparing the different aspect ratios.
The points are chosen to be at 0.5 plate thicknesses vertically and horizontally away form
the edge and another point which is both 0.5 plate thicknesses vertically and horizontally

away from the edge.

The velocity magnitude showed a sinusoidal signal at the three monitoring loca-
tions for all the plates examined. The amplitudes at these three points for plates with
¢/t =6, 10 and 16 are plotted in Figure 4.15. The forcing frequency of St = 0.17 is chosen
because it is an intermediate forcing frequency. The levels measured at these points are
up to several times larger than the forcing amplitude of v,y = 2.5%. Points 2 and 3

show very similar amplitudes while the amplitude at point 1 is larger because it is in line

137



T 7T T 1t /N 1 3 g

T T rroor Y/ NN 1

T 7 /7 a A A T

TT 7\ r/Sor /N /N v&;v /Y/YTT /\\
T { I"ii;
o =

T T/R/X/Rr\r\\\ 1 7 7 /ﬂ//’/\ffff/ﬁ/ﬁ/f T

TT N A WA SR T T rrro o220 T T T T

T S S S U N N Y AN AN AN ) 7

T T T 1t 1t 1 7t 77T T 7 7

Figure 4.13: A velocity plot taken at 90° in the forcing cycle for flow around a plate
with ¢/t = 10 at Re = 400 (based on free-stream velocity) with a forcing amplitude of
Upert = 2.5% with no mean flow. The plot is drawn to scale with the gray arrow at the

bottom left of the diagram showing the perturbation amplitude far away from the plate
(Upert = 25%)
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Figure 4.14: Schematic of the leading/trailing edge of the plate showing the locations

where the perturbation amplitude is measured.

with the plate and influenced by the blockage which results in the fluid being accelerated
more. As the plate length is increased, all the amplitudes show a linear increase. The
flow is effectively at a small Reynolds number because of the small amplitude. Since the
positions are outside the boundary layer, the flow is almost irrotational and behaves in a
linear fashion. Therefore the choice of forcing frequency will not have much influence on

the variation of amplitude near the plate.

While the forcing amplitude near the plate is increasing with aspect ratio, the
strength relative to the overall flow must also be considered. The potential low model is
used to gauge the effect of aspect ratio on the magnitude of the velocity at points 1, 2 and
3. The potential low model is used to avoid any influence from vortical structures. The
potential flow field approaches one unit far away from the plate and is in the direction of
the mean flow in the simulations. Table 4.2 shows that the variations in velocity amplitude
are less than 2% between the shortest and longest plate. The small difference is expected
because the plates are long and the aspect ratio has only a small influence on the velocity
near the edges when the flow is in the streamwise direction. With the flow field velocity
approximately constant, the increase in forcing amplitude with aspect ratio is an increase

relative to the flow field velocity.
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Figure 4.15: Effective perturbation amplitude relative to free-stream velocity evaluated at
positions 1, 2 and 3 for plates with ¢/t = 6, 10 and 16 experiencing a cross-flow harmonic
perturbation. Here St = 0.17 and vpet = 2.5%. There is no mean flow but Re = 400 is

based on a unit of free-stream velocity.

c/t Velocity Magnitude

Point 1 | Point 2 | Point 3
6 0.8197 | 0.9857 | 1.1306
10 0.8137 | 09784 | 1.1213
16 0.8099 | 0.9738 | 1.1156

Table 4.2: Velocity magnitude at points 1,2 and 3 from the potential flow model with a

free-stream velocity of one unit.

To verify that the rise in effective amplitude with plate length does not signifi-
cantly alter the results in the previous section, a lower forcing amplitude of vye,s = 2.0%
is applied on the longest plate studied (¢/t = 16). With no mean flow, the velocity ampli-
tudes at the three points are close to that of a plate with an aspect ratio of ¢/t = 10 and
a forcing amplitude of vpe,s = 2.5%. At vpers = 2.0% and ¢/t = 16, the levels at points
1,2 and 3 are 5.7%, 4.3% and 4.3% respectively while at vpes = 2.5% and ¢/t = 10, the
levels are 5.8%, 4.3% and 4.4% with all measurements relative to one unit of free-stream
velocity. Figure 4.16 shows the mean base pressure coefficient as the forcing frequency
is varied for a plate with ¢/t = 16 and Re = 400 at the two levels of forcing. The plot
shows there is only a marginal difference in the mean base pressure variations confirming
that the variation in forcing levels near the plate as the aspect ratio is varied has only a
small influence on the overall results. This is because there is only a marginal difference
in the levels of forcing near the plate between ¢/t = 10 and 16 when the far-field forcing
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Figure 4.16: Mean base pressure coeflicient as a function of forcing frequency for flow over
a plate with ¢/t = 16 at Re = 400 under applied forcing at amplitudes of vpe,y = 2.0%
and 2.5%.

amplitude is constant.

As many of the results, especially those related to mean base pressure, are com-
pared with those of Mills (1998), it is useful to relate the forcing amplitude measured in
the experiments and that for the simulations. As discussed earlier, to measure the pertur-
bation amplitude in the wind tunnel, the fan is turned off and the sound pressure level of
the speakers is calibrated for a plate having an aspect ratio of ¢/t = 10. The level of the
perturbation is measured at a point similar to point 3 but only 0.077¢ from the edge. The
experiments are done in air where the viscosity is less and the boundary layer is thinner.
This location is not used to measure the forcing amplitude in the simulations because
this point would be within the boundary layer and the large gradients and the sensitivity
to plate lengths and viscosity would make it difficult for comparisons: therefore points
outside the boundary layer are chosen. The levels in the experiments ranged from 3% to
5% of the free-stream velocity while those in the simulation ranged from vpe,s = 1.25% to
5% of the free-stream velocity although measured or evaluated at different locations. The
maximum amplification observed in the simulations due to the presence of the plate is
about 4 times at ¢/t = 10. The measured amplitudes in the experiments are around the
range of amplitudes observed near the plate and therefore the levels used in both cases

are of the same order. Differences due to other factors are expected to be more dominant
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such as the Reynolds number and the three-dimensionality of the experiments.

4.2.5 Lift and drag forces

In the previous sections, the focus was on the pressure at one point on the plate. Here
the overall forces are examined for flow over a plate with applied forcing. The mean drag
coefficient and the standard deviation of the lift coefficient, which is a measure of the
fluctuating lift force, are examined for a range of plates lengths and forcing frequencies.
Only the pressure forces are considered because the viscous forces are expected to be
relatively small at these moderate Reynolds numbers. It is relatively simple to calculate
the forces on a rectangular plate as only the leading and trailing faces contribute to drag
and the top and bottom faces contribute to lift forces. In this section and also in preceding
sections, the Reynolds number is chosen to be Re = 400 and the forcing amplitude to be
Upert = 2.5%. The trends observed at these parameters are characteristic of the parameter
range studied and the investigation of a larger set of data at these parameters led to this

choice.

The mean drag coefficient and the fluctuating lift coefficient are plotted in Figure
4.17 for an aspect ratio between 6 < ¢/t < 16 over the range of forcing frequencies. As
expected, the mean drag force coefficient closely mimics the mean base pressure coefficient.
As the contribution from the leading face is close to constant for all cases, the variation in
mean drag force coefficient is a result of the trailing face contribution (i.e., the mean frontal
drag coefficient varied between Cp = 0.774 — 0.851 for ¢/t =10 and, Cp = 0.808 — 0.833
for ¢/t = 13, for all the forcing frequencies simulated). The mean base pressure coefficient
(which is recorded at the centre of the trailing face of the plate) is strongly related to the
pressure force acting on the back face of the plate. The trends in the local maxima in the
mean drag coefficient as the aspect ratio is varied are similar to those of the mean base
suction and are shown by the broken lines. These peaks, which start with plates that only
show a single peak, occur at a lower forcing frequency with increasing aspect ratio until
the frequency is too low to be receptive and lies outside the lock in range. At the next
increment in plate length, a peak develops at a higher forcing frequency and continues
the trend. For the plates that have two local peaks, the higher peak also usually occurs

at a lower forcing frequency when the plate is lengthened.

The plots of fluctuating lift forces show some quantitative difference in behaviour
compared to the mean drag forces. Overall, there is a gradual rise in the fluctuating lift
force with frequency similar to flow around elliptical leading-edge plates. This is also due
to the (cross-stream) applied forcing acting directly on the plate which results in a larger

fluctuating component at higher frequencies. Compared with the mean drag or mean base
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pressure plots, the standard deviation in the lift coefficient shows a local maximum when
there is a larger mean drag or base suction. For those plates that have two local peaks in
mean base suction or drag, the one at the lower frequency is associated with a maximum
local peak, while the one at the higher frequency, to a minimum local peak. Similar to the
mean drag, these local maxima or minima are marked by broken lines. The trends here
are clearer and continuing for between one and two plate lengths outside those trends
for the mean drag coefficient. An explanation for these observations will be discussed
in a following section (Section 4.3.5). It involves the relative phase of the leading-edge
shedding and the phase when the vortices pass the trailing edge. An investigation into
the phase relationship will be presented first.

Also shown in these plots by the arrows are the mean drag coefficient and standard
deviation of the lift coefficient when there is no applied forcing. As with the mean base
pressure, comparing the mean drag coefficient in the natural case with the forced shedding
case is difficult because the natural shedding case is controlled by the ILEV instability
while the applied forcing controls the flow in the forced shedding cases. This will be
revisited in a later section (Section 4.3.6 and 4.3.7). The fluctuating lift force is generally
smaller in the natural shedding case than in the forced shedding case; especially for longer
plates. The forcing results in added pressure fluctuations on the plate surface. Although
the scaling on chord when calculating the lift coefficient helps maintain some uniformity
between plates, the increase in cross-flow blockage and the higher effective perturbation
amplitudes near the plate result in a larger fluctuating component for the longer plates.
In Section 4.1.3, the reason for the declining value of the standard deviation of the lift
coefficient with increasing aspect ratio is discussed. These factors account for the large
difference, especially for longer plates, in the standard deviation of lift coefficient between

the natural and forced shedding cases.

4.2.6 Peaks in mean base suction

In the previous two sections, it is shown that the local peak in mean base suction or drag
coefficient occurred at a lower forcing frequency as the aspect ratio is increased until the
forcing frequency is too low and no longer locks the flow. At this stage another peak
develops at a higher forcing frequency and continues this trend. For those aspect ratios
where there are two local peaks, the peak at the higher forcing frequency also occurs
at a lower forcing frequency as the aspect ratio is increased until the single larger peak
dominates. Using the data on the mean base pressure for various forcing frequencies and
plate lengths (Figure 4.10), the Strouhal number based on chord (St.) of the forcing at
which these local peaks occur from both the present simulation and experimental data of
Mills (1998) is plotted in Figure 4.18. Similar to the behaviour of the natural shedding
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Figure 4.17: Mean drag coefficient (left) and standard deviation of the lift coefficient
(right) as a function of forcing frequency for plates with 6 < ¢/t < 16 at Re = 400 and
Vpert = 2.5%. The arrows on the left show the mean drag coefficient and the standard
deviation of the drag coefficient when no forcing is applied.
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frequency, these plots also show a stepwise increase with chord. The local peak which
occurs at the higher frequency in the simulation for plates with aspect ratios of ¢/t = 8,
9, 12, 13 and 14 appear to be at an intermediate step. The following sections (Section 4.3
especially Section 4.3.4) will further investigate this stepping behaviour.

Within each step, the local peaks are generally greater at the lower aspect ratio
end of each step when forcing is applied. This is consistent with the natural shedding
cases where the mean base suction and drag are higher at the lower aspect ratio end of
each step. On the other hand, within each step, the experiments show the magnitude
of the peak reaching a maximum around the intermediate aspect ratio. The peak that
occurs at the intermediate level between steps in the simulations may have suppressed the
local peak which would correspond to the next higher step. This could therefore restrict
the lower limit in aspect ratio of each step resulting in each step starting with a larger

magnitude peak.

Comparing the two sets of data, the heights of each step (i.e., the values of St,)
are closer for shorter plates but differ for longer plates with the experimental data showing
a higher level. This also occurs when comparing the natural shedding frequency between
the simulations and the experiments. As in the natural shedding case, the steps in the
simulation are approximately St. = 0.55n while in the experiments they are approximately
St. = 0.6n. As in the natural shedding cases, the difference in convective velocity is likely

to cause this.

4.3 Dynamics of the flows

In this section, further investigation of the flow fields is performed with the aim of relating
the trends in the overall observations to the flow characteristics. The Reynolds number of

the flow is at Re = 400 and the forcing amplitude at v,.,+ = 2.5% as in previous sections.

The characteristic stepping in Strouhal number corresponding to the local peaks
in mean base suction for the case where forcing is applied will be examined first. Hourigan
et al. (1993) have proposed that the interaction of the leading- and trailing-edge vortices
has a controlling influence on the strength of the mean base suction. This mechanism
involves the phase in the forcing cycle when the leading-edge vortex passes the trailing edge
and thereby influences the phase of shedding there. More data and further discussion in
Mills (1998) supported this vortex interaction hypothesis. To address this issue through
the numerical simulations, the phasing at the leading edge relative to the forcing, the
convective velocity of the vortices along the plate, and finally the resulting phase of the

shedding relative to the forcing, will be examined. This will then provide strong support
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Figure 4.18: Forcing frequency (non-dimensionalised with chord) which results in a local
peak in the mean base suction as a function of the aspect ratio for the present simulations
and experiments by Mills (1998).
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for this hypothesis from the simulated results.

A secondary question that will be investigated is the variation in the magnitude
of the local peaks in mean base suction. The simulations and the experiments both
show that certain plate aspect ratios have a larger magnitude in the local peak in mean
base suction than others. The sensitivity of the trailing-edge shedding to frequency is
hypothesised to be the controlling mechanism. To further investigate this, the vortex
formation length downstream of the trailing edge will be analysed and compared with the
flow over elliptical leading-edge plates. The similarities between these two cases will be
examined to test this hypothesis. The implications of this for the natural shedding case

where the ILEV instability controls the flow will also be discussed.

4.3.1 Phase of leading-edge shedding

In the cases where the flow is locked to the forcing, the leading-edge shedding is phase
locked. The phase of shedding relative to the forcing also appears to be constant for all
plate lengths and forcing frequencies investigated. To show this, three diverse cases are
chosen: a shorter plate at a lower frequency (¢/t = 8 and St = 0.11); a longer plate at
an intermediate frequency (¢/t = 16 and St = 0.15); and an intermediate plate length at
a higher forcing frequency (c¢/t = 10 and St = 0.20). Figure 4.19 shows the leading-edge
shedding of these three cases at 0°, 90°, 180° and 270° in the forcing cycle. When the
forcing frequency is increased, the shear layer rolls up closer to the leading edge but the

relative phase of shedding to the forcing in each case is approximately the same.

For all cases, the top shear layer is in the initial stages of forming a vortex at
180°. This vortex then gains more circulation from the shear layer at 270°. It starts to
detach at 0° and by 907, it is almost completely shed from the shear layer. The shedding
from the bottom is 180° out of phase with the top. In all cases, the vortex on the top of
the plate forms between 90° and 270° in the forcing cycle. This is when the perturbation
velocity is accelerating in the downward direction. The forcing is therefore causing a
more compact vortex to form closer to the leading edge (relative to the natural shedding
case). During the other half of the cycle, the acceleration upward helps shed the vortex.
This phase relationship is likely to be the most beneficial to the shedding process. The
constant phase relationship between the shedding and the forcing for all the cases is a

result of this.
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Figure 4.19: Vorticity plots of the leading-edge shedding for flow over rectangular plates
at Re = 400 and vpers = 2.5% Vorticity plots taken at 0°, 90°, 180° and 270° in the forcing
cycle for plates with ¢/t = 8, 16 and 10 at applied forcing frequencies of St = 0.11, 0.15
and 0.20 respectively.
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4.3.2 Convective velocity

The streamwise component of velocity of the vortices as they convect along the plate
is investigated in this section. This feature is crucial because it governs the time taken
for a leading-edge vortex to pass the trailing edge thereby affecting the phasing there.
The investigation will cover (1) different plate lengths for the natural shedding case, (2)
various forcing frequencies for a fixed plate length and, (3) various plate lengths for a

constant forcing frequency.

To evaluate the convective velocity of the vortices, their locations are determined
at regular time intervals. The local peak vorticity, which is found using the Newton-
Raphson method as in the previous chapter, is used to define the location of the vortex.
The velocity is evaluated using central differencing between these locations. The sampling
is performed every 0.21 time units over 8 to 10 time units, which is more than one shedding
period. The convective velocities of the vortices on both sides of the plate are calculated.

Figure 4.20 shows the convective velocity of the vortices as they traverse the
length of the plate for the three classes studied. Figure 4.20(a) shows the convective
velocity for flow over plates with aspect ratios of ¢/t = 6, 8, 10 and 13 with no external
forcing. Shown in Figure 4.20(b) is the convective velocity for an aspect ratio of ¢/t = 8
at forcing frequencies of St = 0.11, 0.14, 0.165, 0.174 and 0.19. The forcing frequency is
fixed at St = 0.16 in Figure 4.20(c) and the convective velocities for ¢/t =7, 9, 11, 13 and
15 are shown. In all these cases studied, the convective velocity reaches a minimum close
to the time it is fully formed. After separating from the shear layer, it then accelerates

and reaches saturation at approximately 70% of the free-stream velocity.

4.3.2.1 Natural Shedding

In the natural shedding case, the behaviour is similar for all the plate lengths except for
the shortest (¢/t = 6). Compared to the other plates, the plot for the shortest plate
appears to have been translated approximately 1¢ upstream. This is likely due to the
close proximity of the trailing edge to the leading-edge shedding. The rest of the plates
show a minimum in convective velocity at about 4¢ from the leading edge. At the aspect
ratio of ¢/t = 8, there is some scatter in the plot because the flow is not perfectly periodic
(i.e. every period is not exactly identical) and over the duration of the sampling there is

some difference between the two sides of the plate.
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4.3.2.2 Fixed aspect ratio, variable forcing frequency

When the aspect ratio is fixed at ¢/t = 8, the convective velocity does not show a signifi-
cant dependence on the forcing frequency except at the lowest frequency (St = 0.11). The
low forcing frequency which results in the vortices forming further downstream causes the
convective velocity plot to be effectively translated downstream by approximately 0.75¢.
The rest of the plates show a minimum in the convective velocity at about 2¢ from the
leading edge. Note that this is much less than for the natural shedding case and is a re-
sult of the applied forcing which causes the reattachment length to shorten significantly.
This earlier reattachment when forcing is applied has been shown experimentally by Mills
(1998).

4.3.2.3 Forcing frequency constant, aspect ratio varies

When the forcing frequency is kept constant at St = 0.16, the various plate lengths show
a similar convective velocity history along the plate. There are some differences near the
trailing edge due to the influence of the trailing-edge shedding. Again, the minimum in
convective velocity also occurs at about 2 plate thicknesses from the leading edge. The
overall behaviour of the convective velocity along the plate is similar for all the cases
studied. Perhaps this is not surprising given the low level of forcing. The main influence
of forcing is that it reduces the reattachment length. The average convective velocity for

all the cases studied is approximately the same.

4.3.3 Phase of trailing-edge shedding

The next obvious step is to investigate the trailing-edge shedding and how this relates to
the mean base pressure. Firstly, the flow over a plate with an aspect ratio of ¢/t = 10 is
investigated closely. Next the plate with an aspect ratio of ¢/t = 8 is investigated because
it is typical of the plates that have two local peaks in the mean base suction within the
lock-in range. Finally vorticity plots for the whole range of plates studied will show the

similarities at the trailing edge when the mean base suction peaks.

Figure 4.21 shows vorticity plots for flow around a plate with an aspect ratio of
¢/t =10 at St = 0.12, 0.15, 0.165 and 0.18 together with the plot of mean base pressure
as a function of the forcing frequency. Only plots taken at 0° and 90° in the forcing cycle
are shown. The other half of the cycle mirrors these plots because the flow is locked to

the shedding and is therefore periodic.
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Figure 4.20: Streamwise component of the convective velocity of the vortices along the
plate as a function of distance downstream from the leading edge. (a) Various aspect
ratios in the natural shedding case. (b) Various forcing frequencies at an aspect ratio of
¢/t = 8. (c) Various plate lengths with forcing frequency at St = 0.16. The flow is at
Re = 400 and the applied forcing amplitude at vy, = 2.5%
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As in the previous section, all these plots show the same relative phase of the
leading-edge shedding to the forcing at all forcing frequencies. These vortices convect
downstream and control the shedding at the trailing edge (as the trailing-edge vortices
are formed between the passing of leading-edge vortices.) As the forcing frequency is
gradually increased from St = 0.12 to St = 0.15 and St = 0.165, the gradual increase in
mean base suction is associated with a gradual change in the phase of the trailing-edge
shedding relative to the forcing. When the mean base suction peaks (St = 0.165), there
are similarities between the phases of the leading- and trailing-edge shedding relative to
the forcing. At 0° in the forcing cycles, both the leading- and trailing-edge vortices are
forming on the top side of the plate while on the bottom of the plate, the vortices have
been shed from both the leading and trailing edges. At 90° in the forcing, both shedding
processes are still at a similar phase in that the vortices on the bottom side are just
forming while the top ones are about to be shed. As discussed previously, the applied
forcing is most conducive to shedding at the leading edge at this relative phase. The
similarities at the forcing frequency that results in the mean base suction peaking also
suggest that the forcing is conducive to the shedding. This is seen by the bottom vortex
also developing between approximately 270° and 90° when the perturbation velocity is
accelerating upwards. In this case, the forcing will cause the vortex to form closer to
the base. In the other half of the cycle, the downward acceleration would help shed the
vortex while the one on the other side forms. This phenomenon could cause the strong
mean base suction and will be revisited later in this section. As the forcing frequency
is incremented to St = 0.18, there is a more drastic decrease in the mean base suction.
The vorticity plot shows that the higher forcing frequency suppresses the trailing-edge

shedding. This is consistent with the low mean base suction.

Figure 4.22 shows the vorticity plot for flow around a plate with ¢/t = 8 at
forcing frequencies of St = 0.14 and St = 0.174, which correspond to the two local peaks
in the mean base suction. Also shown is the plot of the mean base pressure as a function
of forcing frequency. Again the relative phase of the leading-edge shedding is fixed and
consistent with all the previous cases. At the forcing frequency of St = 0.14, the phase of
the trailing-edge shedding relative to the forcing is similar to the case where the aspect
ratio is ¢/t = 10 and the forcing frequency is St = 0.165. As both cases show a peak in
the mean base suction, the similar process discussed earlier for the plate with an aspect
ratio of ¢/t = 10 also applies here.

When the forcing frequency is at St = 0.174, the shedding from the trailing
edge appears to be 180° out of phase from the shedding at the lower forcing frequency
(St = 0.14). This also induces a local peak in the mean base suction. As the shedding in
this case is only half a cycle ahead of the previous case and not a complete cycle ahead,

these frequencies correspond to the intermediate step between shedding modes shown in
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Figure 4.21: Vorticity plots for flow over a plate with ¢/t = 10 at Re = 400 taken at 0°
and 90° in the forcing cycle at forcing frequencies of St = 0.12, 0.15, 0.165 and 0.18 with

an amplitude of v, = 2.5%. At the top is a plot of the mean base pressure coefficient

as a function of forcing frequency.
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Figure 4.18. In this case there is not an additional pair of vortices along the plate but
only one half of a pair. Although the local peaks in mean base suction are generally
weaker at these intermediate steps, there is still some resonance that causes the strong
mean base suction. The leading-edge vortices are also passing the trailing edge at 180°
out of phase compared with the lower forcing frequency. The forcing may influence the
leading-edge vortices as they pass the trailing edge as it does the trailing-edge vortices
at the lower forcing frequency. It appears the forcing causes the leading-edge vortices
to move closer to the base. Together with the trailing-edge shedding, the result is a
stronger mean base suction. As shown by mean base pressure plots in Figure 4.12 and
discussed in Section 4.2.3, the magnitude of the peak mean base suction which occurs at
the higher forcing frequency reduces as the forcing frequency is increased. The trailing-
edge shedding, which is still the major contributor to base suction in this case, is influenced
by the applied forcing. Contrary to the other case (peak mean base suction occurring at
the lower forcing frequency), the trailing-edge vortex is forming on the top side of the
plate between 270° and 90° (approximately) in the forcing cycle while the perturbation
velocity is accelerating in the upwards direction. This vortex is shed off the plate in the
other half of the forcing cycle while a vortex from the other side forms. The direction
of the acceleration therefore induces the vortex to form further away from the centreline
of the plate. Vortices which form further away from the centreline should contribute less
to the mean base suction. It follows that an increased forcing amplitude would therefore
reduce the mean base suction by inducing trailing-edge vortices to form further away from
the centreline.

To show that the observations are applicable to all the plates studies, every local
peak in mean base suction is examined. Figure 4.23 shows vorticity plots taken at 0°
in the forcing cycle for all plate lengths studied at forcing frequencies which result in
local peaks in the mean base suction. These are the same plate aspect ratios and forcing
frequencies that are plotted in Figure 4.18 showing the stepwise behaviour. Again the
phase of the leading-edge shedding is consistent with all the previous cases. All plates
that have a single local peak in the mean base suction and the lower forcing frequency
peak for those plates that have two local peaks have approximately the same phase of
shedding relative to the forcing at the trailing edge. In those cases where two local peaks
in base suction are present, the one occurring at the higher forcing frequency shows the
base shedding to be 180° out of phase to those occurring at the lower forcing frequency
and those cases where there is only a single peak in base suction. The vorticity plots
clearly show the different shedding modes that correspond to the stepping in the Strouhal
number based on chord in Figure 4.10. The peaks at aspect ratios of ¢/t = 6, 7 and the
lower forcing frequencies at 8 and 9 show two vortices along the plate (n = 2). At forcing

frequencies where the base suction peaks when ¢/t = 10 and 11, and the lower forcing
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Figure 4.22: Vorticity plots for flow over a plate with ¢/t = 8 at Re = 400 taken at 0° and
90° in the forcing cycle at forcing frequencies of St = 0.14 and 0.174 with an amplitude

of Vpery = 2.5%. At the top is a plot of the mean base pressure coefficient as a function of

forcing frequency.
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frequencies of these peaks when ¢/t = 12, 13 and 14, all correspond to the third mode
of shedding (n = 3). Finally, aspect ratios of ¢/t = 15 and 16 show 4 vortices along the
plate (n = 4). The higher forcing frequency peaks at aspect ratios of ¢/t = 8, 9, 12,
13 and 14 are shedding at an intermediate mode which shows up as frequencies between
the major steps. The phase of shedding of the trailing edge relative to the forcing for all
plates with a single local peak in the mean base suction, and the local peak at the lower
forcing frequencies for the plates that have two peaks, are all similar to the local peak for
the plate with an aspect ratio of ¢/t = 10 which was studied earlier. This suggests that
the same mechanism described earlier is also causing the strong mean base suction for
all plate lengths. The remainder of the local peaks in mean base suction are all shedding

1807 out of phase at the trailing edge.

4.3.4 On the stepping in the natural and forced shedding cases

In the natural shedding case, the impinging leading-edge vortex instability (ILEV) not
only locks both the leading- and trailing-edge shedding to one frequency but also main-
tains the same relative phase between the two processes. This ensures the same phase
relationship between the interaction at the trailing edge, and the arrival of the upstream
travelling signal (pressure pulse) that locks the leading-edge shedding. Therefore the same
mechanism is controlling the flow for all the cases where the flow is locked to this insta-
bility. Although previously assumed, the behaviour of the convective velocity along the
plate has been shown by the data presented in Figure 4.20(a) to be fairly independent
of the aspect ratio. Therefore, to maintain the same phase relationship, as the aspect
ratio is increased, the shedding frequency decreases to allow more time for the vortex
which is shed from the leading edge to arrive at the trailing edge. This continues until
the frequency is too low and the system is no longer receptive to that frequency. At that
stage there is a jump in frequency allowing another period for the vortex to traverse the
plate. This results in an extra pair of vortices along the plate which corresponds to the

next higher shedding mode.

When forcing is applied, the forcing directly locks the flow and does not require
the feedback from the trailing edge. In the simulations, the level of forcing used is strong
enough to lock the flow over a wide range of frequencies and overpowers the natural
instability. The local peaks in the mean base suction also show a stepwise increase with
chord. Similar to the natural shedding case, each step also corresponds to an integer
number of vortices along the plate as for the shedding modes in the unforced case. In
the forced shedding cases, the leading-edge shedding appears to be phase locked to the
applied forcing. Again the convective velocity is only weakly dependent on the aspect

ratio and the forcing frequency. For a given aspect ratio, the forcing frequency controls
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Figure 4.23: Vorticity plots for plates ranging from ¢/t = 6 to 16 with forcing frequencies
chosen so as to result in local peaks in the mean base suction as a function of forcing
frequencies. The plots are taken at 0° in the forcing cycle, the flow is at Re = 400 and

the perturbation amplitude is vpe+ = 2.5%.
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the phase of the trailing-edge shedding relative to the forcing by controlling when the
leading-edge vortex passes the trailing edge. The vorticity plots in Figure 4.23 show that
the phase of the trailing edge relative to the forcing is approximately constant for all plate
lengths and frequencies which result in a strong mean base suction and correspond to the
major shedding modes or steps in Figure 4.18. The relative phase between the forcing
and the trailing-edge shedding, for the reason described earlier, controls the mean base
pressure. The stepwise increase in Strouhal number (based on chord) with aspect ratio in
the forced shedding case also maintains the same phase relationship between the trailing-
and leading-edge shedding. As the phase of the shedding at the trailing edge is controlled
by the passing of the leading-edge vortices at the trailing edge, the hypothesis by Hourigan
et al. (1993) which states that the mean base pressure is due to the interference of the

leading-edge vortices at the trailing edge is also applicable to this case.

In the forced shedding cases, the simulations show some plates displaying a second
local peak in the mean base suction at a higher frequency. In these cases, the shedding
at the trailing edge is about 180° out of phase relative to the forcing compared with the
local peak at the lower forcing frequency or those plates with only a single local peak in
the mean base suction. As these are only half a mode higher (180° is half a cycle), the
forcing frequencies of these cases correspond to an intermediate step between the modes
as shown by the broken lines in Figure 4.18. The vorticity plots for these cases show not
an extra pair of vortices along the plate but one half of a pair. It is likely that some
resonance is occurring at these frequencies but the generally smaller peaks suggest that
they are not as strong as the other local peaks. As the forcing amplitude is increased,
the magnitudes of these peaks decrease (see Figure 4.12). As the leading-edge shedding
remains phase locked, the increase in forcing amplitude therefore opposes the trailing-
edge shedding in these cases. The experiments (Mills, 1998) do not show any excitation
at these modes. They may not be present or be too weak to be detected. The differences
are likely due to the large differences in Reynolds number and the three-dimensionality
of the experimental flow. As an analogy to short bluff body flows, some geometries such
as a square section show a 180° phase shift in the shedding when the forcing frequency
is increased past the resonant point in some experiments (Bearman & Obasaju, 1982,
Nakamura & Mizota, 1975) and not in others (Ongoren & Rockwell, 1988). This is also
likely due to the differences in experimental parameters.

In the natural shedding case, the leading- and trailing-edge shedding is locked
to a single frequency and relative phase by the ILEV instability. This is achieved via a
feedback loop consisting of (i) the leading-edge vortices passing the trailing edge which
control when the trailing-edge vortices form and, (ii) the passing of leading-edge vortices
and the formation of vortices at the trailing edge which send pressure pulses upstream

which then control when further leading-edge vortices form. For the forced shedding
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cases, the first part of the feedback loop of the natural shedding case is still in effect but
the forcing phase locks the leading-edge shedding, leaving no role for the second part.
At the forcing frequencies that result in local peaks in base suction, there is also the
same synchronisation between the leading- and trailing-edge shedding which in this case
is controlled by the forcing. In fact, the relative phase difference between the leading- and
trailing-edge shedding in these two cases is also similar (i.e., in the forced and unforced
cases, when a leading-edge vortex is forming or detaching, so is the trailing-edge vortex on
the same side). To maintain this condition for both the cases, the frequency reduces as the
chord is increased until the overall flow system is no longer receptive to the low frequency
and jumps to the next shedding mode, allowing for another period for the leading-edge
vortex to traverse the plate, and resulting in another pair of vortices along the plate. The
convective velocity of the vortices is not strongly influenced by the chord or frequency.

All these factors lead to the stepwise response in the frequency for both cases.

In both the natural and forced shedding cases, the steps in frequency correspond
to approximately St. = 0.55n. The Strouhal number based on chord is the frequency
multiplied by the chord and divided by the free-stream velocity. Let us consider the first
mode (n = 1). The frequency is the inverse of the time taken by the leading-edge vortex
to travel the chord. Therefore the Strouhal number based on chord, St., is the streamwise
component of the convective velocity of the leading-edge vortex averaged over the chord
and scaled with the free-stream velocity. For the higher modes, the factor n is the number
of periods required for the leading-edge vortex to pass the trailing edge. From Figure 4.20,
both natural and forced shedding cases show the convective velocity initially reaching a
minimum before rising to saturate at about 70% of the free-stream velocity. From the level
of the steps, 55% of the free-stream velocity is a good estimate of the average convective
velocity. Both the experiments for the natural shedding case (Nakamura, 1991) and the
forced shedding case (Mills, 1998) show a step height of about St. = 0.6n. Differences
such as in Reynolds number and three-dimensionality in the experiments may cause a

slightly higher average convective velocity.

4.3.5 Relating the fluctuating lift forces to the flow field

The fluctuating lift forces on the plate, shown in Figure 4.17, also show the stepwise
nature with local maxima corresponding to the major steps and local minima associated
with the half steps. The lift force is dependent on the pressure on the top and bottom
surfaces. The leading-edge vortices result in a low pressure region on the surface near the
vortex. Therefore the fluctuations in the lift force come from the mismatch in vortices
on both sides of the plate. The leading edge sheds vortices alternately contributing to

some of the fluctuating lift force. As this occurs similarly for all plates and frequencies,
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Figure 4.24: Plots of vorticity (centre) and surface pressure coefficient (above and below)
for flow around a plate with ¢/t = 13 at Re = 400 taken at 0° in the forcing cycle with
Vpert = 2.5%. The plot on the left is when St = 0.14 and the right when St = 0.16. The
trace at the bottom left of each plot is the time trace of lift coefficient and the dot on the
trace corresponds to when these plots are taken. The surface pressure plot above/below

corresponds to the pressure coefficient on the top/bottom surface of the plate.

it cannot account for the variations in fluctuating lift forces as the forcing frequency is
varied. The effects of the pairs of vortices along the plate approximately cancel each
other. Once these vortices pass the trailing edge, their effect on the plate is significantly
diminished. Therefore there is a mismatch at the trailing edge as the pairs of vortices
from the top and bottom pass the trailing edge at 180° out of phase. For a given plate
length, the forcing frequency controls the phase relative to the forcing as the vortices
pass the trailing edge while the phase of the leading-edge shedding relative to the forcing
is fixed. The magnitude of the fluctuating lift force is controlled by the relative phase
between the leading-edge shedding and vortices passing the trailing edge because, like the
superposition of two signals, they can either sum together or cancel each other depending
on the relative phase. As the forcing frequency is varied, for those plates that show two
local peaks in their mean base suction, the peak that is associated with the lower frequency
shows a local maximum in the fluctuating lift force (maximum positive superposition),
while the peak that occurs at a higher forcing frequency, where the passing of the leading-
edge vortices and trailing-edge shedding is 180° out of phase relative to the earlier case,
shows a local minimum (maximum cancellation) in the fluctuating lift forces. Therefore
the fluctuating lift force is also dependent on the phasing of the leading-edge vortices as
they pass the trailing edge.

The case where ¢/t = 13, Re = 400 and vpet = 2.5% is used to illustrate the
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relationship between the vortices passing the trailing edge and the fluctuating lift force.
Figure 4.24 shows vorticity plots taken when the forcing is at St = 0.14 and 0.16, which
correspond to local maxima and minima in the standard deviation of lift coefficient. These
plots are taken at 0° in the forcing cycle. The time trace of the lift coefficient in both
plots is sinusoidal and shows that the lift coefficient reaches a maximum (maximum lift
force in the upward direction) at 0° in the forcing cycle. The leading-edge shedding is
approximately at the same shedding phase in both forcing frequencies shown. At the
trailing edge, the plot shows that the flows are approximately 180° out of phase. As a
result, there are three pairs of vortices when St = 0.16 but only two pairs and a single
vortex on the top side when St = 0.14 (neglecting the partially formed vortex on the
bottom side of the leading edge in both cases). In the case when St = 0.14, the extra
vortex on the top side increases the lift coefficient (in the upward direction) because each
vortex is associated with a low pressure region. When St = 0.16, the vortices are paired
and this results in a lower lift coefficient. Naturally, the amplitude of the lift force is
directly related to the standard deviation of lift coefficient. As these two cases are the
extreme cases with respect to the fluctuating lift force, other forcing frequencies would
result in a situation which is between these two.

In the natural shedding case, the leading-edge shedding also contributes to fluctu-
ating lift forces. The number of vortices along the plate (shedding mode) is less significant
because the forces from a pair of vortices cancel each other. The ILEV instability locks
the relative phase of the leading- and trailing-edge shedding. Therefore the vortices pass
the trailing edge at the same phase relative to the leading-edge shedding for all plates
that lock to this instability. As shown in Figure 4.7, although the flow is no longer locked
to one frequency, the larger aspect ratio plates continue the trends in mean base pressure,
mean drag and fluctuating lift forces. The constant relative phase between the leading-
edge shedding and the vortices passing the trailing edge would result in approximately
a constant fluctuating lift force for all plates. As the fluctuating lift coefficient is scaled
with the aspect ratio, an inverse relationship with aspect ratio is expected. For the data
presented in Figure 4.7 with the flow at Re = 400, the relationship is approximately
oo =~ 1.2/(c/t).

4.3.6 On the variation in magnitude of the peak mean base suc-

tion

Also of interest is the magnitude of the local peaks in mean base suction as the forcing
frequency is varied. Some aspect ratio peaks are of larger magnitude than others. This is
also observed in the experimental data of Mills (1998). Certain aspect ratios in the natural
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shedding case also show larger mean base suction than others. For both situations, the

lower aspect ratio end of each step generally has a larger mean base suction.

The previous sections discussed the mechanism which controls the frequency se-
lection for both these cases. In the previous chapter, the trailing-edge shedding on its own
has been shown to be very sensitive to frequency in the lock-in range. In this chapter, the
shedding frequency decreases towards the higher aspect ratio end of each step (constant
St.). The base pressure is strongly controlled by the trailing-edge shedding because of its
proximity. It is likely that the trailing-edge shedding is also sensitive to frequency as in

the previous chapter.

To show the similarities between the two different geometries, the vortex forma-
tion length at the trailing edge is calculated. The mean base pressure and the vortex
formation length are both measures of the state of the flow and are likely to be related.
This is because the core of the vortex is a region of low pressure and larger base suction
results if it develops nearer to the trailing face. Although this does not directly show
the sensitivity of the trailing-edge shedding to (forcing) frequency, this analysis hopes to
show the similarities between the trailing-edge shedding of the flow around the elliptical
leading-edge plate and the rectangular plate. The trailing-edge shedding has been shown
to be sensitive to frequency in the previous chapter. As this controls the strength of the

mean base suction, a similar process may also occur for the rectangular plate.

4.3.6.1 Vortex formation length

The vortex formation length will be calculated for plates with aspect ratios of ¢/t = 8 and
10. These two plates are chosen because the shorter one is characteristic of plates that
show two generally smaller local peaks in the mean base suction, while the longer one
shows only a single dominant peak in the lock-in range. The method used to determine
the vortex formation length is the same as that used in the previous chapter. The stan-
dard deviation of the cross-flow component of velocity is determined along the centreline
downstream of the trailing edge of the plate. The vortex formation length is the distance
downstream where the fluctuating component of the velocity in the cross-flow direction

reaches a maximum.

Figure 4.25 shows the standard deviation of the cross-flow component of velocity
as a function of distance downstream of the plate for several forcing frequencies and for
the natural shedding case. Similar to the flow around elliptical leading-edge plates, all
cases show a steep rise before peaking and then a more gradual decay. Upstream of
the peak is the near wake where the velocities are small and downstream of the peak is
where diffusion and cross-annihilation of the vorticity becomes important. The leading-
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edge shedding does not significantly alter these processes. Compared with the natural
shedding cases, the applied forcing generally increases the level of the fluctuations. This
increase is due to a combination of more vigorous shedding and the additive contribution
of the forcing.

The behaviour at an aspect ratio of ¢/t = 8 is more complex. As the forcing
frequency is increased from St = 0.12 to 0.14, which is at a local peak in the mean
base suction, the formation length shortens and the level of the fluctuation rises. Both
these observations suggest more vigorous shedding. As St is increased to St = 0.16,
the formation length increases and the levels drop off again. Then at St = 0.174, there
is a larger increase and the formation length decreases again. At St = 0.18, both the
fluctuation level decreases and the formation length increases drastically because the high
forcing frequency suppresses trailing-edge shedding.

At an aspect ratio of ¢/t = 10, as the forcing frequency is increased from St = 0.12
through 0.14 to 0.165, there is a gradual decrease in the vortex formation length and an
increase in the level of the fluctuations. This is a sign of a gradual increase in the intensity
of the shedding at the trailing edge. There is a significant increase in the formation length
and decrease in the level of fluctuation as the forcing frequency is increased to St = 0.167
and then to 0.19. As with the shorter plate, this is also the result of the shedding at the

trailing edge being suppressed at high forcing frequencies.

Plots of the vortex formation length and mean base pressure as a function of
forcing frequency for the two aspect ratios studied are shown in Figure 4.26. For most of
the frequency range, there is almost a linear relationship between the vortex formation
length and the mean base pressure. This is similar to the flow around elliptical leading-
edge plates. This relationship is not maintained at high forcing frequencies where the
trailing-edge shedding is suppressed. Compared with the natural shedding case, there is a
greater increase in the mean base suction than there is a decrease in the vortex formation
length when forcing is applied. Other factors such as more compact leading-edge vortices
and the periodic nature of the forced cases may also contribute to the increased mean base
suction when forcing is applied. The fluctuations between periods in the natural shedding
cases at these aspect ratios and Reynolds numbers will reduce the synchronisation between

the flow structures on both sides of the plate and lead to less base suction.

For flow around the rectangular plate with applied forcing, two major factors
influence the mean base pressure. The phase of the trailing-edge shedding relative to the
forcing has been shown in Section 4.3.3 to govern the forcing frequency where the mean
base suction is the strongest. The magnitudes of these peaks are in turn related to the
forcing frequency at which they occur. The magnitude of the peak base suction is higher

when the forcing frequency at which it occurs is higher. The vortex formation length
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Figure 4.25: The standard deviation of the vertical component of the flow velocity mea-
sured along the centreline of the plate as a function of the downstream distance from
the trailing edge for the unforced case and at selected forcing frequencies. The two cases
shown have aspect ratios of (a) ¢/t = 8 and (b) ¢/t = 10 respectively. The flow is at
Re = 400 and the forcing amplitude is vper = 2.5%
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decreases as the frequency increases and higher base suctions are recorded when vortices
form closer to the plate. There is a critical frequency above which the trailing-edge
shedding is suppressed. In conclusion, the frequency selection of the peaks is a function
of the aspect ratio (see Section 4.3.4) and the magnitudes of these peaks in turn depend

on the forcing frequency at which these peaks occur.

As discussed in Section 4.2.3, there appears to be no relationship between the
magnitude of the mean base suction in the natural shedding case and magnitude of the
peak mean base suction in the forced shedding case. The frequency selection in both cases
has been discussed in Section 4.3.4. Generally, there are small differences between the
natural shedding frequency and the forcing frequency where the peak base suction occurs
(See Figure 4.11). This is due to the small differences in the convective velocities of the
vortices along the plate (see Figure 4.20). The different frequencies excited in the natural
shedding case and the forced shedding case result in the different magnitudes in mean
base suction. This is because the response of the trailing-edge shedding (which strongly

influences base suction) is dependent on frequency.

4.4 Duct acoustic resonance

The interest in acoustic resonance controlling the flow around rectangular plates results
from its application in cross-flow heat exchangers (Welsh & Gibson, 1979). The tandem
arrangement of these plates was simplified to a single plate placed in a duct with solid walls
in subsequent studies (Welsh et al.,1984 and Stokes & Welsh,1986). These experiments
found that resonance occurred only around the natural shedding frequency when the plate
had an aerodynamic leading edge but around several distinct ranges with a rectangular
plate.

In this section, the flow around a plate confined within a solid walled duct will be
studied. Experimentally, it is found that the sound generated by the vortex shedding from
the plate may feed into resonant acoustic modes in the duct which then further interact
with the flow leading to a strong acoustic resonance. The acoustic part of the problem
will be modelled using Howe’s acoustic theory (Howe, 1975, 1980) which is described in
Section 2.4.3. An objective of this study is to compare the predictions with the experi-
mental observations of Stokes & Welsh (1988) and to determine the phasing required for

resonance. The source of the resonance will also be examined.

This model decouples the velocity field into an incompressible field and an acoustic
field. It is assumed that there is already a sound field present to lock the flow. In this

case, this is introduced by the cross-flow oscillations added to the free-stream velocity
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as in the previous section. It turns out that, depending on the relative phasing of the
vortex shedding and pre-existing acoustic cross mode, energy can be either transfered
from the flow to the acoustic fields or vice versa (also described in Section 1.3.3 under
Duct acoustic resonance). The rationale of the investigation is to determine whether a
hypothetical acoustic field will enable energy transfer from the flow to the acoustic field so
allowing maintenance of the resonance. This case can then be compared and contrasted
with the natural and forced cases. This approach is used instead of treating both the
flow and sound field simultaneously in a compressible flow simulation because the latter
is much more computationally expensive. This is because for low Mach number flow,
the time scale of the flow field is much greater than the sound field and consequently an
extremely small timestep is required with an explicit integration scheme. Even so, the
decoupled approach also allows the physics to be investigated more deeply through an
ability to adjust the (hypothetical resonant) acoustic field independently of the flow field.
The model attempts to determine the time-averaged transfer of acoustic energy between
the flow field and the sound field. A positive time-averaged transfer of energy from the
flow field to the sound field is a necessary condition for resonance because the energy is
required to sustain the resonance. These simulations treat an ideal model but in reality
there will be some (acoustic) damping which may narrow the resonance range. In effect,
the approach tries to find a necessary but not a sufficient condition for resonance to occur.

Only the first S-mode (i.e. cross-mode) in the duct will be considered in this study.

4.4.1 Applying Howe’s theory

In this study the flow around plates with aspect ratios between 6 < ¢/t < 16 at a Reynolds
number of Re = 400 will be examined. The amplitude of the perturbation used to lock
the flow is vpers = 2.5%. The frequencies used in these analyses are chosen so that the flow
is locked to the forcing. The flow is judged to be locked to the forcing (or periodic) when
the mean base pressure trace is repeatable from one cycle to another and fluctuations
between periods are negligible. The time averaging is done by sampling every 0.21 time

units over one period which results in between 24 and 48 points per period.

The model also requires the acoustic particle velocity field to be determined. This
is obtained by solving the wave equation (Equation 2.17). As described in section 2.4.3,
the wave equation is decoupled into a product of the space and time dependent parts.
The spatial dependence is solved on the same grid as used to simulate the flow to obtain
the nodal variation of the 3-mode. The size of the domain (duct) is therefore the same
as that used in the flow simulation. Velocity nodes of the standing wave at the top and
bottom boundaries in the simulation occur at the solid duct walls. This simulates a plate

in a duct with a blockage ratio of 2.4%. This is close to the levels in the experiments
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of Stokes & Welsh (1988) which were between 2.5% and 5%. The time-dependent factor
consists of a sinusoidal oscillating component which is at the same frequency and is in

phase with the forcing.

In the application of the model, the direction of the average energy transfer is
crucial to determining whether resonance is possible. That is, is there nett transfer of
energy from the flow to the acoustic field or vice versa, for any particular set of flow
parameters? To maintain consistency between the different cases, some variables and
parameters are kept constant. The mean ambient density, p,, is set to one unit. The
amplitude of the acoustic particle velocity can be arbitrarily scaled and still satisfy the
wave equation and the boundary conditions. This ambiguity is removed by setting the
amplitude of the acoustic particle velocity at the centre of the upstream (or downstream
because of symmetry) face of the plate to one unit. The magnitudes of the velocity fields
and the vorticity fields are determined by the free-stream velocity and the thickness of
the plate which are both set to one unit. The only free parameter is viscosity which is

used to control the Reynolds number.

The next hurdle is to determine the bounds of the volume integral which reduces
to an area integral in the two-dimensional simulations. Although the entire region has
to be included, from equation 2.15, only regions of non-zero vorticity contribute to the
acoustic power. The vorticity several plate thicknesses away from the plate upstream of
the leading edge and in the cross-flow direction is negligible. Therefore it is safe to set
the integration boundaries about three plate thicknesses away from the plate in these
directions. As the vorticity in the wake extends arbitrarily far downstream, formally the
downstream integration boundary should be an infinite distance downstream. However,
far downstream of the plate the transfer of energy between the flow and acoustic field is
zero because each vortex contributes positive transfer for half the cycle and negative for
the other half. Only regions near the plate have a nett contribution. If the downstream
boundary is set a fixed distance downstream, a vortex crossing this boundary would only
be a source/sink for part of a cycle. This would result in a bias in the calculation of overall
average acoustic energy transfered. To overcome this, the time average acoustic energy
is calculated with the integration boundary set at various downstream locations. This
would result in a cumulative plot in the streamwise direction of the time average acoustic
energy. The asymptotic value far downstream can then be estimated by extrapolating

this cumulative plot.
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4.4.2 Results from Howe’s model

Figure 4.27 shows the cumulative plots for the plate with an aspect ratio of ¢/t = 10 as a
function of downstream distance for several duct frequencies. There are some aspects of
the general behaviour which are applicable to all plates. The amount of acoustic power
from upstream of the plate is very small because the amount of vorticity there is negligible.
There is only a small amount of acoustic power generated along the plate because the
acoustic particle velocity is deflected from a cross-flow direction to a streamwise direction
in this region. This results in a small value of the cross product between the velocity and
acoustic fields which is used to calculate the acoustic power. There are large contributions
to the time average acoustic power just downstream of the trailing edge. At the trailing
edge, shedding occurs and also passing of the leading-edge vortices. In this region, the
acoustic particle velocity is approximately in the cross flow direction. These two factors
cause the cross product to have a much larger value. Note the sudden change at the trailing
edge: upstream of it there is only a small amount of acoustic power generated but there
are large contributions just downstream. The cumulative time average acoustic power
behaves similarly to a decaying sinusoid further downstream of the plate. The sinusoidal
behaviour is due to pairs of shed vortices of opposite sign approximately nullifying the

contribution of each other and the decay is due to cross-annihilation of the vortices.

The flow and geometry at the trailing-edge region results in a nett positive or
negative transfer of energy and the cumulative total oscillates about a finite mean reflect-
ing the nett transfer as it decays downstream. This mean is the asymptotic value the
cumulative plot will reach far downstream. The plots show that for some frequencies the
mean asymptotes to a positive value and for others it asymptotes to a negative value.
Where the nett transfer is positive (i.e. from the flow to the sound field), resonance is
possible. The wavelength of the oscillations further downstream of the plate decreases as
the forcing frequency is increased. This wavelength represents the distance between shed
vortices from the same side of the plate and this behaviour is expected if the convective
velocity is approximately independent of forcing frequency. Also, as the forcing frequency
is increased, the sinusoidal signal is phase shifted in the upstream direction. This is due
to the variation in the phase of the leading-edge vortices passing the trailing edge and
therefore also the trailing-edge shedding relative to the acoustic field or applied forcing.

This process has been discussed in the previous sections (Section 4.3.3).

To demonstrate clearly that the source of acoustic power is mainly from the re-
gion just downstream of the trailing edge, an attempt is made to remove the downstream
oscillations. Firstly, the wavelength of the downstream oscillation for each frequency is
determined by averaging the distance between both peaks and troughs, ignoring the near-

est cycle immediately downstream of the plate. This wavelength is then used to perform
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Figure 4.27: Cumulative total in the downstream direction of the time averaged acoustic
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a running average over the cumulative time average acoustic power thereby eliminating
most of the downstream oscillations. The downstream oscillations are insignificant be-
cause contributions from each wake pair effectively cancel out resulting in a negligible
nett result. This analysis isolates the source of the acoustic power. Performing this on
the plate with an aspect ratio of ¢/t = 10 at the same set of forcing frequencies as in
Figure 4.27 results in the plots shown in Figure 4.28. This exercise successfully isolates
the source region of the acoustic power. In all cases, there is only a small value upstream
of the trailing edge and this approaches a constant value downstream of the trailing edge.
Therefore the main contribution is from just downstream of the trailing edge. This sup-
ports the argument that the source of acoustic power is from the mismatch at the trailing
edge of the plate resulting from the change in direction of the acoustic particle velocity
(i.e upstream of the edge it is approximately in the streamwise direction and downstream
of the plate it is approximately in the cross-flow direction as seen in Figure 4.13 showing
the forcing field).

At a forcing frequency of St = 0.165 in Figure 4.28, the fluctuations in the
running average further downstream in the wake, although small, are larger than in the
other cases. The strongest mean base suction and the shortest reattachment length are
observed at this duct (forcing) frequency. Compact trailing-edge vortices form close to the
plate. As they convect downstream, they also accelerate. This results in small variations
in the distance between the vortices as they convect downstream. These variations would
be largest when the vortices form closest to the plate. This would explain the larger

fluctuations downstream for the case with St = 0.16.

These plots show the asymptotic value further downstream of the plate. This
value would correspond to the time average acoustic energy generated by the flow. Duct
acoustic resonance is possible for those cases where this asymptotes to a positive value.
The cumulative sum of the time average acoustic power would have to be evaluated far
downstream to obtain the asymptotic value. This is not possible because of the finite
computational domain. Instead, the asymptotic value is estimated from the cumulative
plot downstream of the plate. This is done by analysing the sinusoidal decay. Symbols in
Figure 4.27 when the frequency is at St = 0.19 are used to illustrate these calculations.
The troughs and peaks in the plot are shown by the circular symbols. The first three
plate thicknesses downstream of the plate are ignored because this region is where there
is a nett generation or absorption of acoustic energy. For the rest of each cumulative plot,
the average value between each two troughs is calculated (shown by the cross) and then
averaged with the value at the peak for every cycle (resulting in the square). The same
is done between each two peaks and the intermediate trough. Finally all these values

(squares) are averaged to obtain the asymptotic value.
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This type of analysis is performed for all the plate lengths over the forcing fre-
quency ranges that lock the flow. Plots of the asymptotic value of the time-averaged
acoustic energy as a function of forcing frequency and plate length are shown in Fig-
ure 4.29. The vertical bars represent the maximum and minimum values obtained when
analysing the peaks and troughs and are therefore representative of the errors associated
with the extrapolation technique. For each plate this shows that there are ranges in the
duct frequency where there is a positive transfer of energy from the flow field to the
acoustic field. Some plates even show two distinct frequency ranges where this occurs.
These ranges also show the similar trend of decreasing duct frequency as the aspect ratio
is increased until the forcing frequency is no longer in the lock-in range. As this happens,
another set forms at a higher frequency. This trend can be followed with the dashed lines

crossing the plots in Figure 4.29.

4.4.3 Resonant ranges

The range of frequencies for each plate that could result in duct resonance is plotted in
Figure 4.30. In this plot, the frequency is scaled with the chord (St.) and the results
of Stokes & Welsh (1988) are plotted in the background and in colour (red and yellow).
The simulations clearly show that the duct acoustic resonance frequencies also show a
stepwise increase with chord. The experimental data also shows this trend. There is a
larger deviation at longer aspect ratios because the level of the steps in the experimental
data is about 10% larger than in the simulations. This is also observed when comparing the
simulations with the experimental data in the natural shedding and the forced shedding
cases. Again this is likely due to the difference in the convective velocity and is likely a
result of the large difference in Reynolds number and the three-dimensional nature of the

experiments.

4.4.4 Flow dynamics

To investigate further the source of the acoustic power, this section will examine more
closely the region near the trailing edge where there is a large nett contribution to the
acoustic power. Plots of vorticity from the flow field, the instantaneous acoustic power
intensity (the value of the term within the integral in equation 2.15) and the time-average
acoustic power intensity from the acoustic model will be used to explain the interaction
between the flow and the sound field. The plate with an aspect ratio of ¢/t = 10 at a low,
moderate and high forcing frequency will be examined to show the differences caused by

varying the forcing frequency. The plate with an aspect ratio of ¢/t = 16 will be used to
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Figure 4.29: Time average acoustic power transfered between the flow field and the sound
field for plates ranging from ¢/t = 6 to 16 at various duct frequencies. The vertical bars
represent the errors in extrapolating the time average acoustic power far downstream of

the plate.
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Figure 4.30: A plot of the frequency range (Strouhal number based on chord) where there
is a positive transfer of energy between the flow field and the sound field. The results of
Stokes & Welsh (1988) are plotted in red (rectangular plate) and yellow (plate with blunt

leading edge and rounded trailing edge) for comparison.
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show how resonance is generated at high frequencies even when trailing-edge shedding is

suppressed.

Figure 4.31, 4.32 and 4.33 are taken at forcing frequencies of St = 0.14, 0.165 and
0.19 respectively for flow over a plate with ¢/t = 10. In each plot, vorticity plots taken at
0°, 90°, 180° and 270° in the cycle are shown in (a) through to (d). Part (e) shows the time-
averaged acoustic power intensity while plots (f) and (g) show the instantaneous acoustic
power intensity at 90° and 270° in the duct resonance cycle. The instantaneous power at
0° and 180 in the forcing cycle is non-existent because the acoustic particle velocity is zero
everywhere at that time. The time-average acoustic power intensity in each case shows
a negligible amount of power upstream of the trailing edge and a large contribution just
downstream of the trailing edge. As previously discussed in Section 4.4.2, this mismatch
is the main contributor to the overall acoustic energy transfer. Further downstream are
pairs of vortices that do not contribute a significant nett amount. These correspond to
the decaying sinusoid in the cumulative time-average acoustic power plots in Figure 4.27.

To understand better the mechanism involved in the generation of acoustic power,
the discussion will focus on the timing of the shedding at the trailing edge for a plate with
an aspect ratio of ¢/t = 10. Consider the case with a forcing frequency of St = 0.14. At
90° in the cycle, vortices from the bottom side of the plate are being shed into the wake
(positive vorticity, out of the page). The acoustic particle velocity, v, is in the upward
direction and the flow velocity, u, is predominantly in the streamwise direction. The cross
product of these two vector fields would result in a positive vector (into the page). This is
illustrated in the top right of Figure 4.35. The resulting dot product with the (positive)
vorticity field would result in a region of negative power transfer between the flow field and
the acoustic field (because the instantaneous power transfer is P = —py fw - (u x v)dV).
This is shown by the red (negative) region in the instantaneous plot at 90° in the cycle. At
270° in the cycle, which mirrors the plot at 90° in the cycle, (negative) vortices are being
shed from the top side of the plate. Now the acoustic particle velocity is in the downward
direction and therefore the cross product is now negative (bottom right of Figure 4.35).
The result of the dot product would therefore be positive and this would again lead to
a negative region in the instantaneous plot. These two phenomena lead to the negative
region just downstream of the trailing edge in the time-average plot and therefore an

overall negative transfer of power between the flow field and the acoustic field.

The situation is quite the opposite when the forcing frequency is at St = 0.165.
At 90° and 270° in the cycle (see left column of Figure 4.35), vortices are being shed
from the top (negative vorticity) and bottom (positive vorticity) surfaces of the plate
respectively while the cross product is positive and negative respectively (as with the

previous case with St = 0.14). Although there is a small amount of vorticity forming on
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the opposite side, the shedding of these larger vortices results in a positive (blue) region
near the trailing edge of the plate in both the instantaneous and time-average plots of
acoustic power. This leads to an overall positive transfer of power between the flow field

and the acoustic field.

At the higher forcing frequency of St = 0.19, although the trailing-edge shedding
is suppressed, the passing of the leading-edge vortices into the wake also results in a nett
transfer of acoustic power. Like at the lower forcing frequency St = 0.14, vortices from
the top and bottom side of the plate are being convected into the wake at 90° and 270° in
the forcing cycle respectively. Again this results in the negative region downstream of the
trailing edge in both the instantaneous and time-average plots of acoustic power intensity

and an overall nett transfer of power from the acoustic field to the flow field.

At higher forcing frequencies, although trailing-edge shedding is suppressed, acous-
tic resonance is possible if the timing of the leading-edge vortices is conducive. The range
of positive power transfer at the higher frequencies in Figure 4.29 and the higher level
steps for several of the plates in Figure 4.30 display this phenomenon. To show this mech-
anism, the case where the aspect ratio is ¢/t = 16 and the duct frequency at St = 0.18 is
chosen. Figure 4.34 shows this case in the same format as the previous three diagrams.
The top and bottom vortices passing the trailing edge at 90° and 270° in the cycle result
in the positive region near the plate in both the instantaneous and time-average plots of
acoustic power intensity. This leads to a nett positive transfer of power between the flow
field and the acoustic field.

4.4.5 Discussion on the duct acoustic resonance

The main points in this section will now be reviewed. This includes the source of the
acoustic power, the generation mechanism and the stepwise response of the resonance

ranges.

It is not essential for there to be development of strong trailing-edge vortices
for the development of resonance in the duct (as shown by the case with ¢/t = 16 and
St = 0.18). The main controlling factor is the phase in the acoustic cycle when the
leading-edge vortices pass the trailing edge (which also controls the phase of the trailing-
edge shedding if it is present). When strong trailing-edge vortices develop at the trailing
edge, they form before the arrival of a leading-edge vortex and these vortices coalesce in
the wake. The increased circulation in the combined vortex would only serve to amplify
the overall acoustic power transfer. The other regions of the flow provide a negligible

contribution to the nett acoustic power. There is only a small amount generated upstream
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Figure 4.31: Left : Vorticity plots taken at (a) 0°, (b) 90°, (c) 180°, (d) 270° in the cycle
(¢/t = 10 and St = 0.14). Right : Extracted from the acoustic model are (e) the time-
average acoustic power intensity, and instantaneous acoustic power at (f) 90° and (g) 270°
in the cycle. In the time-average plot, the colour intensity range is [-0.4, 0.4], and for the
instantaneous plots, the range is [-1.5,1.5]. Blue and red represent positive and negative
respectively in all plots. Levels below a magnitude of 0.02 and 0.1 for the average and
instantaneous plots are not coloured and levels outside the range are coloured with the

maximum intensity.
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Figure 4.33: As for Figure 4.31, except for St = 0.19
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Figure 4.34: As for Figure 4.31, except for ¢/t = 16 and St = 0.18

of the trailing edge and the pairs of vortices further downstream nullify the effects of each
other.

The phase in the cycle as the leading-edge vortices enter the wake or influence
the formation of the trailing-edge vortices is crucial in determining whether resonance
can occur. Figure 4.35 shows the two extreme cases with regard to the transfer of energy.
Energy is transfered to the acoustic field when a vortex with a negative sign (clockwise)
enters the wake when the acoustic particle velocity is in the upward direction, and a
positive vortex (anti-clockwise) enters the other half of the cycle when the acoustic particle
velocity is in the downward direction. Energy is transfered in the opposite direction if
the vortices entering the wake at these times are of the opposite signs. Most cases would
be between these two extremes and the amount and overall direction of energy transfer

would depend on which case it is closer to.

Again the resonance range shows a stepwise increase in Strouhal number based on
chord, St., with aspect ratio. The phase of the vortices entering the wake has been shown
to govern the range where resonance is possible. As discussed in relation to the forced
shedding case, the phase of the trailing-edge shedding (which forms vortices between
the passing of leading-edge vortices) relative to the forcing is related to the aspect ratio
and frequency. This same relationship also applied here except the forcing simulates

the presence of an acoustic field. As with the forced shedding case, to maintain this
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favourable phase at the trailing edge, a lower frequency is required as the aspect ratio
is increased thereby resulting in a constant Strouhal number based on chord. As in the
forced shedding case, this is a result of the approximately constant average convective
velocity of the vortices along the plate at various frequencies and aspect ratios. The next
higher or lower step would correspond to either an addition or a reduction in the number
of pairs of vortices while again maintaining the favourable conditions at the trailing edge.
These factors lead to the stepwise response in resonance ranges. The upper and lower
limits in aspect ratio of each step are mainly governed by the lower and upper limits in
forcing frequencies which lock the flow.

Point vortex models used by Stokes & Welsh (1986) and Stoneman et al. (1988)
also predicted the relationship between the resonance range and the timing of vortices
entering the wake (or impinging on the downstream plate for the tandem plate arrange-
ment also studied in Stoneman et al., 1988). A limited set of results by Thompson et al.
(1987) using the vortex cloud method to simulate the flow field and the same treatment
for the acoustic modelling as these simulations also came to this conclusion. A boundary
layer model is used in these vortex methods and difficulties arise because the acoustic
predictions are sensitive to these models. Although previous studies were able to capture
the physics of the problem, they are less accurate because of the flow models used. In the
simulations presented here, the flow field is directly simulated and the acoustic particle
velocity field is accurately represented by the wave equation. This work has also extended
the previous studies by covering a broad range of aspect ratios and frequencies.

4.4.6 On the modelling of the acoustic particle velocity

As a side study, the sensitivity of the predictions from this model is examined when
different approximations are used for the acoustic particle velocity. Besides the wave
equation used in the previous section, two other models of the acoustic particle velocity

will be considered.

The first alternative is to use a potential flow field solution to approximate the
variation of the acoustic particle velocity around the plate. This results in the acoustic
particle velocity consisting of a sinusoidally varying potential flow solution. The assump-
tion of acoustic particle velocity is justifiable when the source region (of acoustic power)
is small relative to the acoustic wavelength (in this case the size of the duct) so compress-
ible effects can be ignored. This poor approximation away form the plate is acceptable
because the source of acoustic power is mainly concentrated in regions near the plate.
This method is examined because it has been used in previous analyses by Welsh et al.
(1984) and Stokes & Welsh (1986).
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Figure 4.35: A schematic diagram showing the direction of the vorticity, flow velocity and
acoustic particle velocity at 90° and 270° when power is transfered from/to the flow field
to/from the acoustic field.
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There are various methods for finding the potential low around a plate. Here
the following approach is used. Firstly the potential flow around a cylinder is solved
analytically. Then the space around the cylinder is transformed to that around a plate
using the Schwarz-Christoffel transformation (Churchill et al., 1974). The velocity field
around the cylinder can then be transformed to the space around the plate for any aspect

ratio.

The second model for the acoustic particle velocity field is for an infinite duct. For
the acoustic field approximation used in the rest of Section 4.4, the same computational
grid is used as for the flow. The distance between the plate and the upstream boundary
is I; = 24t while the downstream boundary is I3 = 28t from the plate. The constraints
imposed on the upstream and downstream acoustic velocity field are zero normal gradients
on the acoustic particle velocity potential. Although these boundaries are far away from
the plate, the boundary conditions that are imposed here artificially constrain the solution
of the wave equation. Physically, this means that no energy (from the acoustic particle
field) is transfered across the boundaries. To evaluate the effect of this constraint, the
acoustic particle velocity from an infinite length duct (extreme case) will be used for
comparison. Although the ducts used in the experiments are long, they are of a finite
length and methods used to condition the flow may constrain the acoustic particle velocity
differently. As it is difficult to quantify and model these conditions, this exercise only

examines the effects the computational constraints have in the computation.

To determine the solution of the wave equation for an infinite duct, the wave
equation is solved with the same boundary conditions but with various duct lengths. The
amplitude of the acoustic particle velocity is solved with the boundary being at 56¢, 112¢
and 224t away from the plate. Then (together with the original domain size) the four
velocity fields are used to extrapolate the amplitude of the acoustic particle velocity for
an infinite duct.

These three different approximations for the acoustic particle velocity are then
used in the calculations. The longest plate (¢/t = 16) is used in this test because the
various approximations differ more as the aspect ratio is increased. To show the differences
between the various approximations, horizontal velocity profiles are taken of the cross-flow
component of the acoustic particle velocity. Figure 4.36 shows these velocity profiles at
several locations vertically displaced from the plate centreline. As all these amplitudes
can be arbitrarily scaled, the potential flow with unit free-stream velocity is used as a
reference. The other two velocity fields are scaled so that all fields are the same at a point
one diameter horizontally away from the plate (shown by the circle). The comparisons are
only shown for one quarter of the plate because the flow is symmetric or anti-symmetric
in all the other quadrants. The length scale in the plot (z) is the distance from the leading
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Figure 4.36: Horizontal velocity profiles of the cross-stream component of the amplitude
of the acoustic particle velocity at several vertical positions from the centreline of the
plate. The different approximations are found using the potential low model and the

wave model with a finite and infinite duct.

edge normalised by the thickness of the plate.

These plots show that the three approximations to the acoustic particle velocity
differ more further away from the plate. This trend is insignificant as only the region
near the plate is crucial in accurately determining the nett generation of acoustic power.
The potential model approaches one unit far away from the plate as expected. Both the
wave models decay away from the plate, in line with the physics. The solution for the
finite duct decays less than for the infinite duct because of the constraints imposed at the
boundaries. The amplitude for the infinite duct approaches zero far away from the plate
while for the finite duct the imposed zero normal gradients of the velocity potential do

not force the cross-flow velocity component to be zero.

Despite the fact that different approximations clearly give similar quantitative

results, for completeness they are used to calculate the time-average transfer of acoustic
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Figure 4.37: Time-average acoustic power intensity as a function of duct frequency for
a plate with ¢/t = 16. The three results are for three different acoustic particle velocity
models: (i) For the wave equation extrapolated to an infinitely long duct, (ii) for the wave

equation for a duct the length of the computational domain, and (iii) for potential flow.

power from the flow field to the acoustic field. The same method as in the previous
sections is used on the flow around the plate with ¢/t = 16. The time-average acoustic
power as a function of duct frequency is plotted in Figure 4.37. There is only a small
difference of less than 3% of the largest magnitude in energy transfer between the results
when using the three different approximations. Using different approximations for the
acoustic field does not alter the trend but only shifts the result by an approximately
constant value. The technique used here only predicts a necessary but not a sufficient
condition for resonance. A small error in the predicted range where resonance is possible
is less significant because resonance would occur in an even narrower range as there is
some damping in the physical system. The potential flow model shows a larger transfer
because the velocity does not decay to zero. To conclude, the overall predictions are not

sensitive to the model used for the acoustic particle velocity.
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Chapter 5

Three Dimensional Flow Simulations

Three-dimensional simulations of flow around long plates with both elliptical and blunt
leading-edge geometry are presented in this chapter. For the elliptical leading-edge plates,
the focus will be on the flow structures that develop in the wake. These will be compared
to those observed in the wake of short bluff bodies such as circular cylinders. The de-
velopment of three dimensionality in the leading-edge structures will be studied for flow
around rectangular plates. These will then be compared with experimental observations.
Simulations are concentrated around Reynolds numbers where transition from two- to

three-dimensional flow occurs.

5.1 Flow around elliptical leading-edge plates

As discussed in Chapter 1, the transition from two to three-dimensional flow around short
bluff bodies, especially circular cylinders, has been well documented. The experimental
observations of Williamson (1988) were the first detailed study of the two stage transition
in the wake of a circular cylinder. Floquet stability analysis by Barkley & Henderson
(1996) showed the critical Reynolds numbers for Mode A and Mode B shedding were
Re = 188.5 & 1.0 and 259 respectively. At transition, the spanwise wavelengths were
3.96 £ 0.02 and 0.822 diameters for these two modes. Williamson (1996) suggested that
Mode A is an instability of the main two-dimensional vortex rollers and Mode B is a result
of an instability in the braid region between these vortices. The nature of these instabilities
leads to different topologies in the wake. In particular, the vorticity of the streamwise
vortical structures connecting the predominantly two-dimensional shed vortices are of
opposite signs on each side of the wake for Mode A shedding and the same sign for Mode
B shedding.
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These instabilities have also been observed in the wake of other short bluff bodies
such as square sections. Again using the Floquet stability analysis, Robichaux et al.
(1999) predicted the transitions for the flow around a square section to be at Re = 161
and 190. In this case, the spanwise wavelength for Mode A and Mode B shedding are 5.2¢
and 1.2t respectively. The analysis also predicted another mode above Re = 200 called
Mode S, which had a spanwise wavelength of 2.8¢. Unlike the first two modes, this mode
is a subharmonic with a period twice that of the vortex shedding.

Above a critical Reynolds number, and in the absence of leading-edge shedding,
the boundary layer on a long plate rolls up and sheds vortices at the trailing edge similar
to short bluff bodies. In this section, the three-dimensional flow over elliptical leading-
edge plates is simulated to investigate the effect of the longer body. The differences are
likely caused by the thicker boundary layer at the trailing edge and the blunt trailing-edge
geometry.

The method used to simulate the three-dimensional flow is described in Chapter
2. It involves expanding from a two-dimensional plane into the spanwise direction using
a Fourier Galerkin method. The boundary conditions applied to the two-dimensional
simulations are now extended throughout the span. The free stream and solid boundaries
have no velocity component in the spanwise direction and the outflow boundary enforces
zero normal gradients on all components of velocity. The Fourier expansion (artificially)
imposes a periodic condition in the spanwise direction. This means that the spanwise
dimension should be chosen to be sufficiently large to capture the relevant spanwise wave-
length. The pressure boundary condition incorporates the spanwise velocity component to
ensure that continuity is satisfied near the solid boundary and the overall scheme formally

maintains second-order temporal accuracy.

To reduce the computational cost of the simulations, the two-dimensional domain
is reduced relative to the domain size used in the two-dimensional simulations. This
enables more Fourier planes to be used and a larger spanwise domain to be simulated.
This is desirable as some spanwise modes may have long wavelengths. Although this will
quantitatively affect the surface pressure on the plate (up to 10%), the interest is mainly
on flow topology in this section which is assumed to be less sensitive to the size of the
computational domain. The computational domain is still kept large enough to avoid
any significant influence on the flow structures. For the simulations of the flow over an
elliptical leading-edge plate, the same leading-edge geometry is used as before which is a
ellipse with a 5:1 axes ratio. The outflow, side and inflow boundaries are positioned at
I3 = 18t and [y = Iy = 10t away from the plate respectively. The resolution near the plate
within each plane is kept approximately the same as in the two-dimensional simulations.

As the Reynolds numbers for these simulations do not exceed those used for the two-
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dimensional cases, and the two-dimensional simulations resolve the flow, it is assumed
that this resolution is sufficient. The same timestep of At = 0.07 non-dimensional time

units are used for these simulations.

The spanwise domain is set to 27 ¢t wide. This is approximately two Mode A wave-
lengths observed for a circular cylinder wake. The spanwise resolution is varied between
24 to 48 Fourier planes to verify that resolution is sufficient to resolve the (spanwise)
flow. This allows discrete resolution of spanwise wavelengths between 27/24t and 27t
(~ [0.25t,6t]). The resolution of longer wavelengths is more limited (i.e. 2wt, 27/2t,
27 /31, ... ). This limits the modes that can appear in the simulations, and thus can have

an impact on the results.

The simulations are started with the velocity field from a two-dimensional sim-
ulation (in the asymptotic state) mirrored onto every plane. The simulations at higher
Reynolds numbers are started with the flow field from the next lower Reynolds number.
A small amount of noise is added to the velocity field at the start of the simulations to
excite any spanwise instabilities that may be present. The noise consists of a random
field at three orders of magnitude below the free-stream velocity. Between 150 to 200
non-dimensional time units (approximately 30 to 50 shedding cycles) are simulated in
each case before any conclusions are drawn. The velocity is monitored at several points
near the trailing edge of the plate. A flow is classified as two-dimensional if the spanwise
component of the velocity shows a clear decay. If a three-dimensional instability develops,
the flow is simulated until there is some repeatability in the flow structures over several
shedding cycles and the mean base pressure over several shedding cycles does not show
large drifts normally associated with changes in shedding modes.

5.1.1 Natural shedding case
5.1.1.1 ¢/t=15

Initially the same aspect ratio of ¢/t = 7.5 as studied in the two-dimensional cases was
chosen. The simulations were performed using 24 Fourier planes in all cases except at
Re = 500 where strong streamwise vortices developed and 48 Fourier planes were used.
Simulations at a Reynolds number of Re = 250, Re = 300 and 400 showed no three-
dimensional instabilities and the noise introduced at the start of the simulations decays to
levels corresponding to round off error. Simulations at Re = 500 showed the development
of three-dimensional flow. Figure 5.1 shows the case where the Reynolds number is Re =
500. This iso-surface plot and all the subsequent visualisations in this section show double

the actual computational domain for clarity. As can be seen from the contouring levels
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of streamwise vorticity (£0.3), the magnitude of the streamwise vorticity is of the same
order as the vorticity levels in the spanwise direction (peak vorticity of around 2 non-

dimensional units in the shed vortices).

The streamwise vortices diffuse rapidly resulting in poorer visualisation past three
or four of the two-dimensional rollers downstream of the plate. Nearer the plate, the iso-
surface plots shows that the streamwise vortical structures connecting the two-dimensional
rollers are of opposite signs on both sides of the wake. There is some distortion of the two-
dimensional rollers especially nearer to the plate. The topology of the wake in this case
is consistent with Mode A shedding in the wake of a circular cylinder. The predominant
wavelength in this case is half the domain width which is 7 ¢. There is some excitation of
the longest wavelength in the domain (27 ¢) which is more noticeable further downstream.
As these are the two longest wavelength that can be captures in this domain, there is
some uncertainty in the wavelength of the dominant mode. This is discussed further after
studying the shorter plate (¢/t = 2.5).

Preliminary results from a Floquet stability analysis by Thompson (2000) have
shown that the first transition for this geometry occurs at approximately Re ~ 470 which
is consistent with these simulations. Relative to the circular cylinder wake transition, the
transition Reynolds number for this geometry is significantly higher probably because of
the thicker boundary layer and the shedding of more diffused vortices at the trailing edge.
No simulations were performed above Re = 500 in search of the next transition because

of computational constraints.

5.1.1.2 ¢/t =25

The flow over a shorter plate with aspect ratio of ¢/t = 2.5 is simulated to bridge the
difference between the long plate and a short bluff body. At this aspect ratio, the elliptical
leading-edge geometry spans the entire chord. Simulations were performed at Reynolds
numbers of Re = 300, 350 and 380. The spanwise resolution was varied between 36 planes

and 48 planes to verify the accuracy of the predictions.

At a Reynolds number of Re = 300, the instability that develops has a wavelength
that spans the entire computational domain. After the flow has reached an asymptotic
state, there is some variation in the spanwise mode which occurs over several shedding
cycles. Figure 5.2 and 5.3 shows the flow at approximately the two extreme cases. Figure
5.2 shows mainly the presence of the longer wavelength while Figure 5.3 show the presence
of a shorter wavelength as well. This mode-mode interaction is similar to that found in the
wake of a circular cylinder simulated by Henderson (1997). The flow shows a significant
distortion to the two-dimensionality of the Strouhal vortices and the streamwise vortices
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Figure 5.1: Iso-surface plot for flow around an elliptical leading-edge plate with ¢/t = 7.5
at Re = 500 viewed from the top (above) and side (below). The plate is shown in
yellow, the positive and negative iso-surfaces of vorticity are coloured light blue and
orange respectively; and the iso-surfaces of pressure are in dark blue. The value of the
iso-surface of kinematic pressure is at —0.2 and streamwise vorticity +0.3. These values
are non-dimensionalised with the free-stream velocity and plate thickness. This colour

scheme is used in all subsequent three-dimensional visualisations.
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are aligned with opposite signs between the two sides of the wake consistent with Mode A
shedding observed in a circular cylinder wake. The different viewpoint used in the separate
plots highlights the behaviour of the streamwise vortices. This shedding mode excites the
longest wavelength in the domain (27 ¢) with sporadic bursts of shorter wavelengths. The
spanwise wavelength of this shedding process together with that of the longer plate will

be further discussed in the following section.

Figure 5.4 shows a visualisation of the flow taken for the simulation at a Reynolds
number of Re = 350. Competition between the two different shedding modes is observed
at this Reynolds number. While there is significantly less distortion to the two-dimensional
vortex tubes, the braid region between the tubes shows the presence of a smaller wave-
length with a topology similar to Mode B shedding. This behaviour is similar to that
observed for a circular cylinder wake at Re = 260. At that Reynolds number the wake is
particularly “clean” in that the Mode B shedding is reasonably regular, while the Mode A
shedding has mostly died out. At higher or lower Reynolds numbers, the circular cylinder
wake is observed to be more chaotic. The increased correlation in the two-dimensional
shedding results in a recovery in base pressure from the Mode A shedding similar to the
flow around circular cylinders (Williamson, 1988). Overall, this competition between the
two modes is consistent with the flow around circular cylinder in which there is a grad-
ual decay (in the mean energy) of one mode and the growth of another as the Reynolds

number is increased.

When the Reynolds number is increased still further to Re = 380, as seen in
Figure 5.5, the flow is dominated by shedding similar to Mode B shedding. This has a
wavelength of approximately 0.8t and the vortex filaments are of the same sign as matching
filaments on opposite sides of the wake consistent with Mode B shedding in the wake of a
circular cylinder (Williamson, 1988). There is also less distortion to the two-dimensional
vortex tubes like the case at Re = 350.

5.1.1.3 Wavelength of Mode A shedding

In these simulations, the domain size restricts the allowable wavelengths to be 27 ¢, 7,
27/3t ... . In the case with ¢/t = 7.5 and Re = 500, the most excited wavelength is 7 ¢,
while at ¢/t = 2.5 and Re = 300, it is 27t with the sporadic presence of some smaller
wavelengths. To estimate the most unstable wavelength, assume that it scales linearly
with the thickness of the plate plus two times the displacement thickness at the trailing
edge. The circular cylinder with a thin boundary layer has a Mode A wavelength of 3.96
diameters at transition. When the displacement thickness is included, the length scale for
the shorter plate is 1.2¢ and the longer plate is 1.3t at their respective Reynolds numbers.
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Figure 5.2: Iso-surface plot for flow around an elliptical leading-edge plate with ¢/t = 2.5
at Re = 300 viewed from the side in a state where only the long wavelength is present.
The value of the iso-surface of kinematic pressure is at —0.25 and streamwise vorticity is
at +1.0.
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Figure 5.3: Iso-surface plot for flow around an elliptical leading-edge plate with ¢/t = 2.5
at Re = 300 viewed from the top in a state where there is also the presence of shorter
wavelength. The value of the iso-surface of kinematic pressure is at —0.25 and streamwise

vorticity is at +1.0.
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Figure 5.4: Iso-surface plot for flow around an elliptical leading-edge plate with ¢/t = 2.5
at Re = 350 viewed from the top. The value of the iso-surface of kinematic pressure is at

—0.2 and streamwise vorticity is at +1.0.
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Figure 5.5: Iso-surface plot for flow around an elliptical leading-edge plate with ¢/t = 2.5
at Re = 380 viewed from the top in a state where there is also the presence of shorter

wavelength. The value of the iso-surface of kinematic pressure is at —0.2 and streamwise

vorticity is at +1.2.
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It therefore might be expected that the wavelengths of Mode A are 4.8t and 5.1t for
c/t = 2.5 and 7.5 respectively. Both of these are between the two largest wavelengths
that can be captured in this simulation (i.e 3.1t and 6.3t). As expected, the simulations
show either one of these modes being dominant in each case. To accurately predict the
most unstable mode, a much larger domain size that can simulate numerous wavelengths

or a stability analysis is required.

The simulations have shown that the wake transition for long plates with stream-
lined leading edges show many similarities with wake transition for circular and square
cross-sectioned cylinders. As the Reynolds number is increased, the transition from two-
dimensional shedding to Mode A and then Mode B shedding has been observed for the
shorter plate (¢/t = 2.5) and the transition from two-dimensional to Mode A shedding for
the longer plate (¢/t = 7.5). The Mode A wavelength may be larger because of the thicker
boundary layer at the trailing edge which sheds more diffused vortices. As only discrete
wavelengths can be captured in these simulations, it is uncertain if these simulations have
captured the most unstable mode. However, the Mode A wavelength instability band is
relatively broad in the circular cylinder wake transition for Reynolds numbers not too
much greater than the critical values, so it is likely that the wake topology is qualitatively
correct. Henderson (1997) has shown that to capture the wake dynamics successfully
requires the domain size to allow many Mode A wavelengths. This appears important
to predict the mean base pressure (Mittal & Balchandar, 1996), and for the interaction
leading to dislocations (Williamson, 1996, Henderson, 1997).

5.1.2 Forced shedding

The transition from two- to three-dimensional flow in the forced shedding case has received
much less attention than the natural shedding case. Applied external forcing has been
known to increase the spanwise correlation and suppress (but not completely) the spanwise
structures in bluff body wakes even at high Reynolds numbers (Wu et al., 1993). Therefore
it is expected that the transition Reynolds numbers would be higher in the forced shedding
case. Note that the forced shedding case is also relevant to the free oscillation case since the
wake induces a sinusoidal forcing on the bluff body. This can lead to natural oscillations

of structures if damping is insufficient.

The plate with an aspect ratio of ¢/t = 7.5 shows spanwise instabilities developing
at Re = 500 in the natural shedding case. This simulation is close to the upper limit of
the Reynolds number range that can be successfully simulated. No three-dimensional
simulations of the flow around elliptical leading-edge plates with applied forcing have

been attempted because of the restriction in Reynolds number with the present resolution.
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Three-dimensional simulations of flow around rectangular plates with applied forcing is
attempted in the following section. There are difficulties in reaching the Reynolds numbers

required for transition in those cases also.

5.2 Flow around rectangular plates

A limited number of three-dimensional simulations were performed on the flow around long
rectangular plates. Compared with short bluff bodies, and especially circular cylinders,
there have been fewer investigations on the three-dimensional transition for this geometry.
In this section, the intent is to study the transition for this geometry and compare with
experimental observations, namely the natural shedding cases studied by Sasaki & Kiya
(1991) and forced shedding cases examined by Hourigan et al. (1993). Sasaki & Kiya
(1991) concentrated on the structures formed by the leading-edge vortices along the plate.
Two different flow topologies were observed in the transition process, namely Pattern A
and Pattern B. Pattern A developed above Re = 320 and consisted of A-shaped structures
with both the spanwise and streamwise wavelengths being between 2¢ and 2.5¢. When
the flow is above Re = 380, hairpin vortices classified as Pattern B are observed. The
main difference is that these vortices have a staggered arrangement in the streamwise
direction and both the spanwise and streamwise wavelengths are between 3t and 4¢. As
the Reynolds number is increased, the hairpin structures are less clear and regular with of
the development of finer scale structure. Applied forcing when the flow is at Re = 1,300
showed the presence of staggered hairpin vortices which were not clearly visible without
forcing (Hourigan et al., 1993).

The approach used for these simulations is the same as those used in the previous
section. For most cases, 32 Fourier planes were used for the simulations which span 2xt.
As discussed in the previous chapter, only discrete wavelengths can be captured within
the domain (i.e., in this case they are 27t, nt, 2/3wt, 1/2nt, ...). This domain size is
chosen because it is able to capture spanwise wavelengths which are within the range
observed experimentally (7t and 2/37t are within the range observed for Pattern B and

Pattern A respectively).

As for the simulations in the previous section, the size of the domain in each
two-dimensional plane is reduced relative to the two-dimensional simulations. Again, this
is to reduce the computational resource requirements to a size that is manageable. For
aspect ratios of ¢/t = 6 and 10, the distance from the plate to the boundaries, [, I,
and 3, are 10¢, 10¢ and 18t respectively. For the longer plate, ¢/t = 13, the distance
to the outflow boundary, I3, is reduced further to 10¢. The resolution near the plate is
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similar to that used in the two-dimensional simulations. This allows the same timestep
of 6t = 0.007 to be used (which gives approximately between 700 to 1,200 timesteps in a
shedding period).

5.2.1 The unforced case

The flows around rectangular plates with aspect ratios of ¢/t = 6, 10 and 13 are simulated
without any external excitation. Most of the simulations are performed at Reynolds
numbers of Re = 350 and 400.

5.2.1.1 ¢/t=6

These simulations at both Re = 350 and 400 showed no development of any spanwise
structures. After approximately 150 time units, the monitoring points in the simula-
tions still showed the decaying of the noise introduced initially. At this stage, the noise
had decreased by between two to three orders of magnitude. It appears likely that a
higher Reynolds number is required for three-dimensional transition at this aspect ratio.
However, it is possible that the reduced spanwise domain has an effect.

At this aspect ratio, the shedding mode has only two pairs of vortices along the
plate (n = 2). This may not be sufficient to trigger the spanwise instability in the leading-
edge vortices. As described by Sasaki & Kiya (1993), the mechanism appears to require
the downstream vortices to trigger the upstream vortices to sustain the instability. The
experiment only studied plates with aspect ratios greater than ¢/t > 10. The vortices in
this case reach the trailing edge before any instabilities develop. The trailing-edge shed-
ding does not develop any spanwise instabilities at these Reynolds numbers. Therefore

the overall flow remains two-dimensional.

5.2.1.2 ¢/t =10

The flow over a plate with this aspect ratio displays the third shedding mode (n =
3). This appears to be adequate to trigger spanwise instabilities at both the Reynolds
numbers simulated (i.e. Re = 350 and 400). The traces show that after 150 time units
(approximately 25 shedding cycles) , the flow has approached an asymptotic state. A 50
time unit trace of the base pressure coefficient (averaged across the span) taken when the

flow has reached an asymptotic state is included in Figure 5.6.

At a Reynolds number of Re = 350, the flow is nearly periodic. The fluctuations
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between cycles are due to small drifts of the three-dimensional structures in the spanwise
direction (i.e. the pattern is not at an identical location for each period). Figure 5.6
and Figure 5.7 shows the flow structures from the side and top view. As in the previous
chapter, the plots show twice the simulated domain for clarity. The plots show some
waviness in the vortex roller that is developing from the shear layer at the leading edge.
The next roller is strongly distorted in the streamwise direction and the development of
streamwise vortices is clear. The resulting structure has been described as hairpin-like by
Sasaki & Kiya (1991). The staggered nature of these vortices in the streamwise direction
is a result of the vortices downstream triggering the instability in the upstream roller. The
argument used was elucidated by Sasaki and Kiya (1991). The structures here are similar
to those classified as Pattern B in their experiments. Both the spanwise and streamwise
wavelength of these instabilities is about 3¢t. The finite size of the domain allows only
discrete spanwise wavelengths to form. These simulations show that this spanwise insta-
bility prefers a wavelength of 7t rather than its neighbouring values (27t and 2/37t).
The wavelengths in the simulation are within the range of those observed by Sasaki and
Kiya (1991) (which were between 3t and 4t for both wavelengths) although the experi-
ments generally used much longer plates where the trailing-edge shedding becomes less
significant. These three-dimensional structures interact with the trailing-edge shedding
and result in a less coherent structure in the wake.

Similar large scale structures are present in the flow at Re = 400. Also present
are smaller scale structures which are less coherent. Therefore, the large scale structures

cannot be visualised as clearly as in the previous case.

5.2.1.3 ¢/t =13

Simulations at Re = 350 and 400 also show similar large-scale spanwise structures at this
aspect ratio. The top view of the flow at Re = 350 is shown in Figure 5.8. The shedding
has not switched to the next mode because of the higher blockage ratio. The latter causes
a small increase in the convective velocity and this results in the flow being more receptive
to the third (n = 3) shedding mode. The spanwise wavelength in this case remains at 7t.
However, in this case, the larger spacing between the vortices shed from the leading edge

results in a larger streamwise wavelength of about 4t.

At Re = 400, the flow no longer locks to a particular shedding mode. Together
with the presence of smaller scales structures, the large scale structures are less clearly
defined and the flow losses (periodic) repeatability.

Several simulations were performed in an attempt to capture Pattern A as de-
scribed by Sasaki and Kiya (1991). These are wedge shaped hairpin vortices which are
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Figure 5.6: Above: Iso-surface plot for flow around a rectangular plate with ¢/t = 10 at
Re = 350 viewed from the side.The value of the iso-surface of kinematic pressure is at
—0.25 and streamwise vorticity is at £1.2. Below: A trace of the base pressure coefficient

taken when the flow has reached an asymptotic state.
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Figure 5.7: Iso-surface plot for flow around a rectangular plate with ¢/t = 10 at Re = 350

viewed from the top. Same iso-surface levels as in Figure 5.6.
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Figure 5.8: Iso-surface plot for flow around a rectangular plate with ¢/t = 13 at Re = 350
viewed from the top. The value of the iso-surface of kinematic pressure is at —0.15 and

streamwise vorticity is at +0.8
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not staggered. In those experiments, Pattern A is observed between 320 < Re < 380 and
Pattern B above Re > 380. Vortical structures similar to Pattern B are observed in the
simulations at Re = 350. The discrepancies in Reynolds numbers where these transitions
occur will be discussed later in this section. As Pattern A is expected to occur at a lower
Reynolds number than Pattern B, simulations are performed with this aspect ratio at
Reynolds numbers of Re = 300, 325 and 340. After 200 time units of simulation, the
monitoring points in all three simulations only showed the decay of the introduced noise.
Only one spanwise wavelength which is within 2¢ and 2.5¢ (experimental spread of wave-
lengths observed for Pattern A) can be captured in these simulations. This wavelength is
2/3nt and is near the lower end of the experimental spread. To encourage the growth of
this mode, a spanwise domain of 5¢ wide was also simulated. This would allow a spanwise
instability with a wavelength of 2.5¢ to develop (which is at the upper limit). No spanwise
instabilities developed in this simulation either. A similar structure has been observed
during the transient startup before the development of Pattern B but it is not present in
the asymptotic state.

There are two major differences between the simulation and the experimental
observations. Firstly, Pattern B is observed in the experiments above Re > 380 while in
the simulations, Pattern B is observed at Re = 350 but no spanwise instabilities at Re =
340. The other issue is concerns the presence of Pattern A. This instability is observed
between 320 < Re < 380 in the experiments but the simulations so far have not been able
to simulate it except as a transient mode. There are some obvious differences between
the methods used for studying the flow and limitations in the numerical simulations.
The experiments were carried out on plates which have much larger aspect ratios (10 <
¢/t < 40) and therefore the influence of the trailing-edge shedding on the leading-edge
flow structures is diminished. For flow around a circular cylinder, Williamson (1989)
has shown that varying the end conditions strongly influenced the spanwise structures
in the wake. In these experiments, no end plates were used. In the simulations, due to
prohibitive computational requirements, only moderate spanwise domains are used. The
nature of the technique used here only allows an integer number of spanwise structures to
develop and this limits the possibilities especially at longer wavelengths. The simulations
performed in this section have only one wavelength within the spread of experimental
data. The inability to capture certain modes may be because the discrete wavelengths
which are able to be captured in the simulations are not within the range of unstable
wavelengths. In conclusion, the differences in observations between the experimental
and numerical simulations are likely to be due to the geometry, end conditions and the
limitations of the numerical technique.
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Figure 5.9: Vorticity plots of flow past a rectangular plate with ¢/t = 10 and Re = 350.
The top plot, (a), is a span averaged from the three-dimensional simulation. The bottom

plot, (b), is a two-dimensional simulation.
5.2.1.4 Comparison with two-dimensional simulation

In this section, several flow characteristics of the two- and three-dimensional simulations
are compared. The case considered here is the rectangular plate with ¢/t = 10 and Re =
350. The computational domain and resolution on a two-dimensional plane is identical
in both cases. Firstly the shedding frequency is compared. The Strouhal numbers, S, in
the two- and three-dimensional cases are St = 0.170 and 0.174 respectively. The shedding
frequency in the three-dimensional simulation is marginally higher because the vortices
along the plate have a higher convective speed. This increase in speed is due to these
vortices being stretched further away from the plate by the extra Reynolds stresses due to
the spanwise instability to where the flow velocity is greater. When the Strouhal number
is based on chord, the shedding frequency in both the two- and three-dimensional cases
are St, = 1.70 and 1.74 respectively. The simulations in Chapter 4 have shown that at
this aspect ratio, the flow locks to the third shedding mode (n = 3). The Strouhal number
based on chord is in good agreement with the larger set of two-dimensional simulations
(i.e. St. = 1.65 when n = 3 and St. = 0.55n). The marginal increase here is due to
the more restrictive domain with the blockage increasing the convective velocity of the

vortices.
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Figure 5.9 shows a comparison of the two-dimensional flow structures between the
two- and three-dimensional simulations. The three-dimensional simulation is reduced to a
two-dimensional plane by averaging across the span. The vorticity plots clearly show that
both cases are locked to the third, n = 3, shedding mode. The main difference between
the plots is the more diffuse leading-edge vortices in the three-dimensional case. This is
especially true closer to the trailing edge where they have been significantly stretched in
the streamwise direction. As with the two-dimensional simulation, strong base shedding
is also observed with trailing-edge vortices forming between the passing of leading-edge

vortices.

5.2.2 Applied Forcing

Some attempts were made to simulate transition in the forced case. Initially, the flow
around a plate with ¢/t = 10 at Re = 400 was examined. The applied forcing ranged
in frequency between St = 0.13 to 0.18 and had an amplitude of vy = 2.5%. Spatial
resolution of up to 48 planes were used in some of the simulations. The simulations
were started with the unforced three-dimensional flow (Pattern B present) . The applied
forcing suppressed all spanwise instabilities in all the cases examined. The flow remained
two-dimensional. The mean base pressure behaviour in these simulations was close to that
in the two-dimensional simulations in previous sections. The differences were presumably

due only to reduced domain size.

It is likely that higher Reynolds numbers are required for three-dimensional tran-
sition in the forced cases. Attempts were made at Re = 500 and 600 with some difficulties
due to increased resolution and consequently larger computational resource requirements
and there is uncertainty about the resolution at these Reynolds numbers in the forced
shedding case. Hourigan et al. (1993) observed these instabilities at Re = 1000 and so the
transition for the forced shedding case would be in this range. More resolution is required
to simulate at higher Reynolds numbers and capture these instabilities. Unfortunately,

the computational resources are not available for this exploration.

There are several project running concurrently or being planned to investigate fur-
ther the spanwise instabilities for both the elliptical leading-edge and the rectangular plate
case. Floquet analysis is currently being performed (outside the scope of this project) on
flows around these geometries to obtain more accurately the transition Reynolds numbers
and the spanwise wavelengths. Experimental work is also planned with the fabrication of
of a water tunnel currently in progress. This facility will provide more information on the

transition Reynolds numbers and the effects of different end conditions.
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Chapter 6

Summary and Conclusions

This chapter reviews the issues covered in this study and conclusions are drawn from the
work presented both here and in previous studies. The numerical techniques employed
and their use in the study of flow around long plates is described. In relation to the
simulation techniques, the topics covered include benchmarking, testing of a modified
temporal scheme, domain and resolution testing, and procedures used for post-processing.
The plates considered either had an elliptical or blunt leading edge and a blunt trailing
edge. The cases considered include natural and forced shedding in two-dimensional space
and a limited number of cases in three dimensions. For the rectangular plate, the duct

acoustic resonance case is also investigated.

6.1 Computational aspects

The approach to this problem involves numerically simulating the flow around the bluff
bodies. As the problem being studied involves receptivity and feedback mechanisms, a
high-order method is preferable because it is able to accurately capture the relatively

weak and sensitive features within the flow.

6.1.1 Numerical technique

The time-dependent Navier-Stokes equations in primitive variables are the governing
equations used in this solver. The spatial scheme consists of a spectral-element /Fourier
method as outlined by Karniadakis & Triantafyllou (1992). The spectral-element method

is used for spatial discretisation on a two-dimensional plane. This technique is similar to a
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Galerkin finite element method except that high-order Lagrangian polynomials (although
others could be used) are used to interpolate within each element. This technique has the
ability to handle geometries like the finite element method and can achieve high orders of
accuracy if the solution is continuous. A global Fourier expansion is used for discretisation
in the spanwise direction. This scheme is chosen because it is relatively simple to imple-
ment and is efficient on computational resources. A classical three-step time-splitting
scheme (Karniadakis et al., 1991) is used to evolve the solution in time. This technique
splits a timestep into convective, pressure and diffusion sub-steps. The convective step
is handled by an explicit third-order Adam-Bashforth scheme. Continuity is enforced to
solve for pressure which results in a Poisson equation. The diffusion is performed using
an implicit second-order Crank-Nicholson scheme which results in a Helmholtz equation.
The latter two steps are solved by matrix inversion. To reduce the splitting errors, a
first-order pressure boundary condition is enforced and the overall scheme is second-order

accurate in time.

6.1.2 Benchmark test

Two commonly used benchmark problems are used for validation, namely the driven
cavity flow and the flow over a backward facing step. These two are chosen because
they are distinct problems with the flow over a backward facing step involving continuous

inflow and outflow while the driven cavity flow is in a closed system.

In the flow over a backward facing step problem, simulations are performed at
various Reynolds numbers and the reattachment length is recorded. The results at Re =
10, 100, 200 and 400 are compared with those of Kim & Moin (1985) and the result at
800 with Gresho et al. (1993). All these cases including at Re = 800 asymptotes to a
steady state as predicted by Gresho et al. (1993). The reattachment length for all the
cases simulated were within 2% of the previous published data. The scheme used in these

simulations can therefore reproduce steady-state results of previous simulations.

Simulations on the driven cavity flow problem were performed over a large Reynolds
number range which resulted in asymptotic states that were either steady or time depen-
dent. A small amount of regularisation to the lid profile was needed to maintain the
spectral convergence. Simulations at Re = 100, 400, 1000, 3200, 5000 and 7500 which
asymptote to a steady state were compared with those of Ghia et al. (1982). Velocity
profiles taken vertically and horizontally across the centre of the cavity were used for
comparison. Plots of velocity profiles showed that the two sets of simulations are visually
indistinguishable. This scheme is therefore able to consistently reproduce results in the

steady regime and the small difference in lid profile is negligible. The asymptotic state
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was steady in time below Re < 8000 in these simulations.

A code using a global spectral technique for spatial discretisation was developed
independently to validate the time dependent results produced and investigate the feasi-
bility of using a Runge-Kutta scheme to advance the convective step. This is a Global-
Galerkin technique which uses Chebyshev polynomials to interpolate the flow variable in
both spatial dimensions. Again, spectral convergence is achievable if the solution is con-
tinuous. The time-stepping scheme is modified from the classical three-step time-splitting

schemed to facilitate the use of a forth-order Runge-Kutta scheme for the convective step.

Simulations were performed with both numerical schemes at Reynolds numbers
ranging from Re = 8,000 to 17,000. The global spectral scheme also predicted that
the flow reaches a steady state at Re = 8,000. The total kinetic energy was used to
monitor the flow. The mean kinetic energy differed by less than 1% between the two
techniques used for simulation. The difference in the standard deviation were also in that
range except at Re = 16,000 and 17,000 where the difference is larger (less than 10%).
This larger difference is due to many frequencies present in the trace and a much larger
sampling time is required to reduce this uncertainty. There is an overall agreement in the

results produced by the independently developed codes using different schemes.

No three-dimensional flow problem was performed to validate the code. This tech-
nique is limited to two-dimensional geometries and periodic boundary conditions in the
spanwise direction. This further limits the number of problems where accurate solutions
have been published. No detailed validation was performed because of the computational
cost and the limited number of accurate flow simulations for comparison. This is the same
code used by Thompson et al. (1994, 1996) and has accurately simulated the two stage

transition for flow around a circular cylinder.

6.1.3 On using the Runge-Kutta scheme for the convective sub-

step

The time-stepping algorithm has been modified to enable the Runge-Kutta scheme to
be used for the convective step. This temporal scheme together with the global spectral
scheme for spatial discretisation has been tested by simulating the driven cavity flow.
This investigation is carried out because implicit schemes (such as the Adam-Bashforth
and Runge-Kutta schemes) have stability limits which restrict the size of the timestep.
The aim of this investigation is to determine if the Runge-Kutta scheme is more efficient

and stable than the current scheme.
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To implement correctly the Runge-Kutta scheme for the convective step, the
pressure and diffusive step also has to be advanced within each sub-step of the Runge-
Kutta scheme. In terms of operation count, using the fourth-order Runge-Kutta scheme
would be approximately equivalent to four discrete timesteps with the Adam-Bashforth
scheme. The benefit of using the fourth-order Runge-Kutta scheme is that timestep could
be six times larger than the third-order Adam-Bashforth scheme (close to theoretical
predictions). In term of storage requirements, the third-order Adam-Bashforth scheme
requires four levels of velocity fields while the Runge-Kutta scheme (any order) would

require only three levels when using the memory efficient algorithm.

Beside operation count and storage requirements, the order of accuracy of the
overall scheme must also be considered. The original scheme and the modified scheme are
both second-order accurate in time because both are limited by the pressure boundary
condition and the order of the diffusive step. Attempts to increase the order of accuracy
either by using higher-order pressure boundary conditions or higher-order implicit schemes
for the diffusive step have resulted in a significant decrease in the allowable timestep.
(Note that the third-order Adams-Moulton scheme is not unconditionally stable unlike

the Crank-Nicholson scheme.)

It was decided that accuracy was more important than the higher operation count
(~ 25%) required to achieve the same simulation time. Therefore the third-order Adam-
Bashforth scheme is maintained for all subsequent simulations. The main constraint
on accuracy in these schemes is the pressure boundary condition and the Runge-Kutta
scheme would be more favourable if a more stable high-order pressure boundary condition

could be formulated.

6.1.4 Simulation of flow around plates

Before the detailed investigation into flow around long plates was undertaken, some pre-
liminary simulations were performed to determine the adequate domain size and resolu-
tions. For flow around bluff bodies, the predictions of surface pressure can be significantly
altered if the boundaries are too close to the body (Barkley & Henderson, 1996). The two-
dimensional simulations are intended to produce quantitative predictions of base pressure
and forces on the plate and therefore some preliminary simulations are performed to de-
termine the adequate domain size. Simulations with various domain sizes are performed
for an elliptical leading-edge plate (5:1 axes ratio) with ¢/t = 7.5 at Re = 300 and a rect-
angular plate with ¢/t = 10 at Re = 300 and 400. The mean and the level of fluctuation
in the base pressure is used to gauge the effect of the domain size. The domain size is

considered adequate when predictions with larger domains differ by less than 2%. These
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simulations show that this is achieved when the distance from the plate to the upstream
domain (l;) and to the side boundary (l3) is 20¢ and the distance from the plate to the
outflow boundary (/3) is 28t.

To check if the resolution is adequate, simulations were performed with higher
spatial and temporal resolution. Again the elliptical leading-edge plate (¢/t = 7.5) and
the rectangular plate (¢/t = 10) were simulated at Re = 500 (upper limit). Simulations of
the natural and forced shedding cases are performed on the same grid using 7x 7 (N = 7)
and 9 x 9 (N = 9) noded elements. The increased resolution required the timestep to
be reduced from At = 0.007 to 0.004. Again the properties of the base pressure trace
is used for comparison and the difference between resolutions in all cases were less than
2%. This shows that the lower resolution is adequate and therefore all the simulations
maintained this resolution around the plate. The higher resolution used for simulating
the flow around the elliptical leading-edge plate (¢/t = 7.5) at Re = 700 was also shown

to be adequate.

6.2 Flow around elliptical leading-edge plates

In this case, there is no leading-edge shedding with the aerodynamic leading edge. This
reduces the complexity and is a natural precursor to studying the flow around rectangular
plates. This geometry shares some similarities with short bluff bodies because vortices

are only shed in the wake.

6.2.1 Natural shedding

The shedding frequency predicted by the simulation is compared with the results obtained
experimentally by Eisenlohr & Eckelmann (1988). Simulations are performed for a plate
with ¢/t = 7.5 between Re = 200 and 700. As with most of the aerodynamic leading-edge
plates, the leading edge is an ellipse with a 5:1 axes ratio. The shedding frequency is
extracted from the base pressure trace which in all these cases asymptote to a periodic

state.

Eisenlohr & Eckelmann (1988) found a correlation between the reduced shedding
frequency (Fy) and the Reynolds number (Rey) if the characteristic length is the plate
thickness plus two times the displacement thickness at the trailing edge. The simulations
are in good agreement with these results. The plots show that the rate of increase of Fy

with Rey is visually indistinguishable. All but the lowest Reynolds number simulated are
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within the range of experimental uncertainty.

6.2.2 Forced shedding

Simulations of flow around elliptical leading-edge plates ranging from ¢/t = 3.5 to 12.5
at Reynolds numbers between 300 < Re < 500 are performed. The forcing is in the form
of a sinusoidal oscillating velocity component in the cross-flow direction added to the free
stream. The amplitude of these oscillations are small relative to the free-stream velocity

(i.e. forcing amplitudes simulated were at v,e,r = 1.25%,2.5% or 5.0%).

The base pressure was used initially to gauge the response of the system. The
forcing only alters the mean base pressure at frequencies close to the natural shedding
frequency. This range approximately corresponds to the lock-in range where the shedding
is locked to the forcing and the base pressure trace shows a periodic oscillation with a
frequency matching that of the forcing (twice the forcing frequency, because taken at the
centre). The lock-in range varies between cases (i.e Re and ¢/t) but grows with increasing
forcing amplitude. This is illustrated in Figure 3.13 which is the state selection diagram
for the case where ¢/t = 7.5 and Re = 500. The state selection diagram for this geometry
is similar to that described for a circular cylinder in Karniadakis & Triantafyllou (1989).
For this geometry, as the forcing amplitude is increased, the lower limit of the lock-in
range grows faster than the upper limit. The natural shedding frequency is closer to the
upper limit of the lock-in range. Outside the lock-in regime, the mean base pressure is
approximately equivalent to that of the natural shedding case and the spectrum showed a
typical 'beating’ process (i.e. the two dominant frequencies present were the natural shed-
ding frequency and a low frequency corresponding to the difference between the forcing
and the natural shedding frequency).

In all the cases studied, there is a linear increase in mean base suction with forcing
frequency for most of the lock-in range. The main difference is the behaviour nearer the
lower and upper limits of the lock-in range. These can be classified into two typical cases,
one that occurs at longer plates or lower Reynolds numbers and the other at shorter
plates or higher Reynolds numbers. It is expected that these two parameters govern the
behaviour because they control the thickness of the boundary layer at the trailing edge
of the plate. At these Reynolds numbers, there was also no shedding from the leading
edge when the nose geometry was rounded. Changing the nose geometry increases the
overall boundary layer thickness along the plate. For the trailing-edge shedding, this is
equivalent to a marginally longer plate.

The behaviour generic to the higher Reynolds number or shorter aspect ratio
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cases is described next. At the lower limit of the lock-in range, there is a decrease in
mean base suction as the flow locks to the forcing. This is followed by linear increases in
mean base suction with forcing frequency. The mean base pressure gradually approached
that of the natural shedding case as the forcing frequency increases pass the upper limit
of the lock-in boundary. There is a distinct difference for the cases where the Reynolds
number is lower or the aspect ratio shorter. At the lower forcing frequency limit of the
lock-in range, the drop in mean base suction associated with the onset of lock-in is less
significant than the earlier case. Again, this is followed by a linear increase in mean
base suction with forcing frequency which dominates the lock-in range. Towards the
upper limit of the lock-in range, there is a drastic drop in mean base suction to below
that of the natural shedding case as the forcing frequency is increased and approaches
the upper limit of the lock-in range. The mean base pressure approaches that of the
natural shedding with further increase in forcing frequency. The sudden drop in mean
base suction (rise in mean base pressure) is associated with a change in the relative phase
between the forcing and the shedding. While the relative phase between the forcing and
the shedding is approximately constant for the rest of the lock-in range, a phase shift
of approximately 90° in the shedding relative to the other forcing frequencies has been
observed in conjunction with the drastic drop in mean base suction when ¢/t = 12.5 and
Re = 300.

Further analysis is performed on two cases which typify the two distinct be-
haviour. The case with ¢/t = 7.5 and Re = 500 is representative of the higher Reynolds
number or shorter aspect ratio cases, and the case with ¢/t = 12.5 and Re = 300 is for
the the lower Reynolds number or longer aspect ratio. The level of applied forcing is at
Upert = 2.5%. The focus will be in the lock-in range where the forcing has more influence

on the pressure and forces on the plate.

The behaviour of the drag force as a function of forcing frequency mimics that of
the mean base pressure. This can be expected as the forcing has an insignificant effect on
the forces at the leading edge and the base pressure is monitored at the trailing face. As
the drag force increases in the lock-in range, the fluctuating lift force decreases. Plots of
vortex trajectories have shown that the vortices form and remain closer to the centre line
in these cases. The narrower wake would account for the increase in drag force and the
decrease in fluctuating lift force. Experiments on flow around bluff bodies have recorded
an increase in fluctuating lift force when forcing is applied (Staubuli, 1981, Bearman
& Obasaju, 1982). In those situations, the flow is three-dimensional in nature and the

applied forcing increases the spanwise correlation and thus the overall forces.

The narrowing of the wake can be related to the phase of the shedding relative to

the forcing. Within the lock-in range, excluding the narrow region where the phase shift
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occurs, the vortices are encouraged by the forcing to form closer to the centreline. This
is supported by visualisation which shows vortices forming on the top side of the plate
between 90° and 2707 in the forcing cycle where the perturbation is accelerating in the

downward direction and the opposite occurs in the other half of the cycle.

The vortex formation length is evaluated for both cases (i.e. Re =500, ¢/t = 7.5
and Re = 300, ¢/t = 12.5) at forcing frequencies that lock the flow and also the natural
shedding case for comparison. In general, the vortex formation length is proportional
to the mean base pressure. As expected, stronger mean base suction is recorded when
the vortices are more compact and form closer to the base of the plate. In determining
the vortex formation length, the standard deviation of the vertical velocity component
along the centreline is also calculated. The analysis shows that the magnitude of the peak
standard deviation also influences the mean base pressure. When both the natural and
forced shedding cases are considered, the mean base pressure is more closely related to the
magnitude of the peak standard deviation for the case where the Reynolds number is lower
and the aspect ratio is greater. In both cases, as the forcing frequency is increased past
the frequency at which the peak base suction occurs, there is a small drop in mean base
suction, a further reduction in vortex formation length and a reduction in the magnitude
of the peak standard deviation of the vertical component of flow velocity. A possible
explanation for this behaviour is that the vortex formation length is controlled by the
forcing (increased frequency resulting in a reduction in vortex formation length) but the
wake is not as receptive to the higher frequency (shown by the decrease in the peak value
of standard deviation, decrease in mean base suction and approaching the upper limit of
the lock-in range). A further increase in forcing frequency for the lower Reynolds number
and longer aspect ratio case results in a drastic increase in vortex formation length in
conjunction with a phase shift in the shedding and a drastic reduction in mean base

suction.

Theoretical predictions have shown that there is a direct relationship between

the mean base pressure and the amount of circulation of one sign generated in one period

(i.e. Equation 3.5, fi]; = 0.5). The circulation contained within the vortices in the
P

wake were examined in both representative cases. Only the periodic cases were examined

which were the natural shedding case and the lock-in range for the forced shedding cases.

Extrapolating the amount of circulation in the wake to the base of the plate, all the

simulations were within, f'i];_; = 0.42 + 0.03. The lower values are mainly due to the
under estimation of the circulation contained in each vortex. The region of integration
used to calculate the circulation is arbitrarily truncated at about 15% of the peak vorticity
level within the vortex so as to isolate individual vortices. Another source of error could
be from the linear extrapolation technique used which may not accurately model the high

levels of cross-annihilation that occur near the trailing edge.
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Earlier in the study, the mean base pressure as a function of forcing frequency
for all cases studied display either one of two distinct characteristics. Further analysis
has shown that there are differences in the wake. In general, the observations at higher
Reynolds number or shorter aspect ratio show a higher natural shedding frequency and
associated lock-in range, smaller length scales (shorter vortex formation length and more
compact vortices), and stronger vortices shed (larger fluctuations in base pressure and
vertical velocity component in the wake) than the cases observed at lower Reynolds num-
ber or longer aspect ratio. The natural cases already show these quantitative differences.
The aspect ratio and Reynolds number govern the thickness of the boundary layer at the
trailing edge. This in turn determines whether compact or diffuse vortices are shed from
the trailing edge. This is indirectly measured by evaluating the vortex formation length
and vortex trajectories in the wake. The small applied forcing has only a limited control
on the flow in a narrow band of frequencies. The simulations have shown that the flow

with the different characteristics in the wake respond differently to the external forcing.

The simulations are performed at Reynolds number below or around where tran-
sition to three-dimensional flow occurs. These two-dimensional simulations in the natural
shedding case are therefore only accurate at these low Reynolds numbers before transition
occurs. As applied forcing suppress the three-dimensionality of the flow, these cases are
valid to a higher Reynolds number. In this study, some comparisons were made with
experiments, in particular those of Mills (1988) which were performed at Re ~ 9,000.
In that situation, the flow is three-dimensional even with applied forcing. As a result,
there are differences between the experimental observations and the numerical predictions

which have been previously discussed.

6.3 Flow around rectangular plates

The study of flow around rectangular plates has increased complexity when compared to
the previous section with the additional interaction of leading- and trailing-edge shedding.
This study involves three different flow situations, namely the natural shedding case, the
forced shedding case and the duct acoustic resonance case. Firstly, the main points of
observations in each situation will be reviewed. Next, the mechanism in each case will be
described and related to the predictions. Finally, the similarities between the three cases
are highlighted.
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6.3.1 Results from simulations
6.3.1.1 Natural shedding

At moderately low Reynolds numbers, studies in the past have shown that the flow around
rectangular plates lock to distinct shedding modes depending on the aspect ratio (Okajima
et al., 1990, Nakamura et al., 1991 and Ohya et al., 1992). Only n (integer) pairs of vortices
can develop along the sides of the plate when the flow is locked to a particular mode. The
increasing number of vortex pairs along the plate also result in the Strouhal number based
on chord (St.) of the shedding to show a stepwise increase with aspect ratio ¢/t with each
step corresponding to a particular shedding mode (n). The mechanism that locks the flow
to the different modes has been classified as the impinging leading-edge vortex instability
(ILEV) by Naudascher & Wang (1993). Simulations of the natural shedding cases are
performed in the lead up to the forced shedding and duct acoustic resonance case to

study the relationship between cases.

Firstly several simulations are performed to study the effect of Reynolds number.
Flow around plates with aspect ratios of ¢/t = 3 and ¢/t = 10 are simulated at Re = 300,
400 and 500. All simulations with ¢/t = 3 locked to the first shedding mode (n = 1) while
at ¢/t = 10, the flow locked to the third shedding mode (n = 3) when Re = 300 and 400.
At Re = 400, there are small fluctuations between periods in the base pressure trace and
at Re = 500, the flow no longer locked to a particular shedding mode and there are several
frequencies present in the base pressure trace. When the flow is locked to a particular
mode, varying the Reynolds number has only a small influence on the shedding frequency
(i.e. less than 10%). Nakamura et al. (1991) also found that the shedding frequency is
independent of Reynolds number when this mechanism locks the flow. The base pressure
trace showed that the mean and fluctuating levels increasing with Reynolds number for
all cases where the flow is locked. There is a drop in the mean and fluctuating levels when

the Reynolds number is increased and the flow no longer locked to a shedding mode.

Next, the aspect ratio is varied between ¢/t = 3 to 16 at Re = 400 to study the
effect of varying the aspect ratio. The flow locked to a shedding mode between ¢/t = 3
to 10 and also at ¢/t = 13. Vorticity plots showed that ¢/t = 3, 4 and 5 locked to n = 1,
¢/t =6, 7and 8 ton = 2,9 and 10 to n = 3, and ¢/t = 13 to n = 4. The shedding
frequency (Strouhal number based on chord) approximately corresponds to St. = 0.55n
for all these cases. The base pressure trace showed more fluctuations between periods
towards the higher aspect ratio end of each shedding mode. The spectrum taken from the
base pressure trace when ¢/t = 11 (not locked) showed the presence of two frequencies,
one corresponding to the n = 3 shedding mode and another to a frequency which is in
the middle of the n = 2 and 3 shedding mode.
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The effect of the ILEV instability is also seen in the base pressure and forces on
the plate. The mean base suction and drag forces are generally higher at the lower aspect
ratio end of the step and decrease with aspect ratio. This trend continues even to aspect
ratios that no longer lock to a single frequency. The standard deviation of lift coefficient

is approximately inversely proportional to aspect ratio.

6.3.1.2 Forced shedding

At higher Reynolds numbers where the wake only shows a broad band of frequencies,
experiments with applied external forcing have shown that the system is more receptive
at particular frequencies (Mills et al., 1995 and Mills, 1998). These experiments showed
that the forcing frequency (St.) which excited the peak base suction also showed a stepwise
increase with aspect ratio. Applied forcing is introduced into the simulations with the

aim of simulating these observations and further study the mechanism involved.

Initially, several simulations are performed using ¢/t = 10 to examine the effect
of varying Reynolds number and forcing amplitude. The lock-in range in these cases
are much larger than the cases with the aerodynamic leading-edge plates. Firstly, the
Reynolds number is varied from Re = 300 to 500 while the forcing is fixed at vpes = 2.5%.
The mean base pressure as a function of forcing frequency shows a similar trend. The
forcing frequency where the peak base suction occurred varied by 0.05 in Strouhal number.
The magnitude of the peak increases with Reynolds number. Next, the forcing amplitude
is varied between v,y = 1.25% and wvpey = 5.0% while the Reynolds number is fixed
at Re = 400. Again the overall behaviour in mean base pressure is similar between
forcing levels. The increase in mean base suction with forcing levels is greater at forcing

frequencies that result in strong base suction.

Next, flow around plates ranging between ¢/t = 6 to 16 are simulated at Re = 400
with a forcing level of v,y = 2.5%. The forcing frequency at which the mean base suction
peaks also displays a stepwise increase with aspect ratio. These steps corresponds to
St. = 0.55n with ¢/t = 6 to 9 at n = 2, ¢/t = 10 to 14 at n = 3, and ¢/t = 15 and 16
at n = 4. In some cases where these peaks occurred at lower forcing frequencies, another
peak developed at a higher frequency within the lock-in range. The mean base suction
showed another local peak in cases with aspect ratios of ¢/t = 8, 9, 12, 13 and 14. The
forcing frequency at which these peaks occur correspond to a frequency which is between
the major steps (i.e. for ¢/t = 8 and 9, it is between n = 2 and 3 and for ¢/t = 12, 13 and
14, it is between n = 3 and 4). When the forcing amplitude is decreased to v,e,; = 1.25%,
the peaks corresponding to the major steps decreased in magnitude but the magnitude of

the peaks associated with the intermediate steps increased.
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The stepwise nature of the peaks in base suction is also seen in the mean drag
and fluctuating lift forces. The mean drag force shows a similar trend to that observed for
the mean base pressure. The standard deviation of lift coefficient showed local maxima
corresponding to the cases associated with the major steps while the intermediate steps

showed local minima.

Vorticity plots showed that the major steps corresponding to the peak in mean
base suction has the same n integer pairs of vortices along the plate as the level of the
steps. The second peaks that occurs at a higher frequency have an extra vortex present
along the plate compared with the major step at that aspect ratio. As a result the

trailing-edge shedding is 180° out of phase compared with the lower frequency peak.

6.3.1.3 Duct acoustic resonance

Sound generated from flow around a plate placed in a duct can excite resonant modes
in the duct which in turn locks the flow. Stokes & Welsh (1986) found it possible to
generate that resonance at several distinct frequency bands. These bands also showed
a stepwise increase with aspect ratio. Previous theoretical and computational models
(Welsh et al., 1984, Stokes & Welsh, 1986, Stoneman et al., 1988) have proposed the
mechanism for the sound generation. The current simulations improve on the previous
work by accurately simulating the flow (i.e. no flow and boundary layer models). The
flow field and the acoustic field are decoupled and the acoustic field is modelled using
Howe’s acoustic theory (Howe 1975, 1980).

These simulations are performed at Re = 400 and the applied forcing used to
lock the flow is vyer = 2.5%. The acoustic model predicts distinct frequency ranges
where there is a nett transfer of energy from the flow field to the acoustic field. This is a
necessary condition for acoustic resonance. The ranges of St. where resonance is possible
also showed a stepwise increase with aspect ratio. Again these steps are approximately
at St. = 0.55n. Further investigations showed that the predictions were not sensitive
to the different approximations used for the acoustic particle velocity. The different
approximations tested are the potential flow model and the wave model with different

duct lengths.

6.3.2 On the controlling mechanism

In this section, the proposed controlling mechanism involved in each of the three cases

is reviewed and supported by further analysis. Figure 6.1 shows a sketch of the essential
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components involved. The underlying mechanism in each case was used to explain the
behaviour of the flow predicted by the simulations. The relationship and similarities

between the mechanisms involved in each case will be highlighted.

6.3.2.1 Natural shedding

In the natural shedding case, it is generally agreed that the impinging leading-edge vortex
instability (ILEV) which locks the flow at low and moderate Reynolds numbers consists
of a feed back loop (Nakamura et al., 1991, Ohya et al., 1992, Naudascher & Wang, 1993).
As shown in Figure 6.1(a), this mechanism consists of leading-edge vortices convecting
downstream. These vortices interact with the trailing-edge vortices and pressure fluctua-
tions develop with the passing of the leading-edge vortices and the development of discrete
vortices at the trailing edge. These pressure fluctuations radiate out and if they are strong
enough at the leading edge to lock the shedding, it completes the feed back loop. This re-
sults in a synchronisation between the leading- and trailing-edge shedding. Vorticity plots
taken from the simulations have shown that in all cases where this mechanism locks the
flow, there is a constant relative phase between the leading- and trailing-edge shedding.
To maintain this synchronisation, the possible modes can either increase or decrease by
an integer pair of vortices. Again as shown by vorticity plots, there can be only n integer
pairs of discrete vortices along the plate. With only a pair generated each period, this
means that a flow structure would require n periods to convect from the leading edge to

the trailing edge.

This mechanism is also responsible for the frequency selection. When the flow is
periodic and a flow structure requires n periods to traverse the plate, then the Strouhal
number based on chord, St. (which is ¢f/Uy), divided by the shedding mode n, is the
average convective velocity of these structures. The calculations have shown that the
behaviour of the convective velocity of the vortices are approximately uniform for plates
with different aspect ratio. It follows then that the shedding frequency of St. = 0.55n
means that the average convective velocity is 55% of the free-stream velocity for all the

aspect ratios tested that lock to the flow.

As the aspect ratio is increased, the shedding frequency, St, would have to de-
crease to allow more time for the vortices to traverse the plate. This continues until the
system is no longer receptive to such a low frequency that it jumps to the next step.
This is seen in the reduction in mean base suction and drag force as the aspect ratio is
increased within a shedding mode. The lower frequency shedding also results in the base
pressure trace showing some random fluctuations between periods. After the step jump

in frequency, these trends continue with further increases in aspect ratio. The trend in
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Figure 6.1: Schematic representation of the mechanism involved in the (a) natural shed-

ding, (b) forced shedding and (c) duct acoustic resonance cases.
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base pressure and drag force continue even when the flow no longer locks to the shedding.
This is not surprising as spectral plots of the base pressure trace shows that the ILEV
frequency is still significant for the case with ¢/t = 11 and Re = 400 which does not lock
to the single frequency due to a competition between this shedding mode (n = 3) and a

lower intermediate mode (between n =2 and n = 3).

The synchronisation between the leading- and trailing-edge shedding also results
in a more uniform fluctuating lift force with aspect ratio. Pairs of vortices along the plate
approximately cancel the effect of each other. The leading-edge shedding and the passing
of vortices at the trailing edge are the main contributors to the fluctuating lift forces.
As these two processes are synchronised, the the levels of the fluctuation in the lift force
is approximately constant and the standard deviation in the fluctuating lift coefficient

(based on chord) would therefore be inversely proportional to the aspect ratio.

The receptivity range of the system is a combination of the receptivity at the
leading and trailing edges. In the case where the trailing-edge shedding is suppressed,
such as the - section at Re = 300, Nakamura (1996) found the first shedding mode
(n = 1) occurred between ¢/t = 3 to 10 and the second shedding mode (n = 2) occurred
between ¢/t = 11 to 15(limit of experiment), n = 2. In that case, where only the leading-
edge shedding is significant, the shedding frequency (St) range is much larger compared
to the rectangular plate. The presence of the trailing-edge shedding, although influenced
by the passing of the leading-edge vortices, reduces the receptivity range of the system

an leads to transition between shedding modes at shorter intervals in aspect ratio.

This feedback mechanism relies on a relatively weak pressure pulse from the
trailing edge to synchronise the leading-edge shedding. With increasing distance (larger
aspect ratios), the pressure pulse which propagates radially would be weaker at the leading
edge. The leading-edge shedding would not lock if the strength of this pulse falls below
a critical level. As the Reynolds number increases, any disturbances from upstream and
due to flow structures would experience less damping. The level of “background” noise
levels due to chaos and turbulence also grows with increasing Reynolds number. Since
the pressure pulse does not grow as rapidly with Reynolds number, these disturbances
would drown the signal at higher Reynolds numbers. This would explain the upper limit

in aspect ratio and Reynolds number where the flow no longer locks to a single frequency.

6.3.2.2 Forced shedding

Although not present in the natural shedding case at higher Reynolds number, this mech-
anism can be excited if there is some external influence (Nakamura et al., 1991). This is

seen in the forced shedding and the duct acoustic resonance cases. Hourigan et al. (1993)
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proposed the forcing frequency where the mean base suction peaks is determined by the
interference of leading-edge vortices at the trailing edge. Further refinements by Mills
(1998) showed that the phase in the forcing cycle at which the leading-edge vortex arrives
at the trailing edge determines the frequency selection. These simulations also show this

to occur and builds on these observations.

The key components in the forced shedding cases is shown in Figure 6.2(b). The
simulations have shown that the leading-edge shedding is phase-locked to the forcing in
all cases where the flow is locked to the forcing. As in the natural shedding case, they
convect downstream and the trailing-edge vortices form between the passing of leading-
edge vortices. This locks shedding of both the leading- and trailing-edge vortices to
one frequency which is the applied forcing frequency. The phase of the trailing-edge
shedding relative to the forcing or the leading-edge shedding is therefore determined
by these leading-edge vortices. The behaviour of the trailing-edge-shedding, which also
experiences the global forcing, would be governed by its relative phase to the forcing as

well.

For all aspect ratios tested, at the forcing frequency that corresponds to the peak
base suction, or the lower frequency peak in those cases where there are two local peaks,
the phase of shedding at the trailing edge relative to the forcing is constant. To maintain
this phase relationship, as in the natural shedding case, there can be only an increase or
decrease in a complete pair of vortices along the plate. The vorticity plots also show that
there are n (integer) number of vortices along the plate with integer increases at critical
aspect ratios. At this relative phase, the direction of the acceleration in the perturbation
velocity induces the vortices forming at the trailing edge towards the centreline of the
plate. Vortices forming closer to the base and the narrower wake results in the stronger

base suction predicted by the simulations.

The frequency selection also depends on the convective velocity of the leading-
edge vortices. Calculations have shown that the behaviour of the convective velocity of
these vortices is not significantly influenced by the aspect ratio and the forcing frequency.
One difference under forcing is that the leading-edge vortex is more compact and the
minima in convective velocity occurs closer to the leading edge suggesting that they
form closer to the leading edge compared with the natural shedding case. Based on the
synchronisation of the trailing-edge shedding and the behaviour of the convective velocity
of the leading-edge vortices, the stepwise response in the forcing frequency St. where these
peaks in mean base suction occur would therefore also show a stepwise response as in the
natural shedding case. The number of vortices along the plate (n) correspond to the level
of the steps. Again the level of the steps at St. = 0.55n would signify that the average

convective velocity of the vortices along the plate is 55% of the free-stream velocity.
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At some aspect ratios, where the peak in base suction occurs at a low forcing
frequency, another local peak develops at a higher forcing frequency within the lock-in
range. These cases show that the trailing-edge shedding is 180° out of phase relative
to the cases corresponding to the major steps. These cases have only one extra vortex
along the plate, and as a result, the forcing frequency (St.) is at an intermediate level
between steps. Simulations at a different level of forcing show that the magnitude of
these peaks decrease with increasing forcing levels. As the trailing-edge shedding is out
of phase relative to the major steps, the applied forcing is actually suppressing the mean
base suction by inducing the trailing-edge vortices to form further from the centreline of

the plate.

The mechanism excited by the forcing can also explain other observations found in
the simulations. The forcing frequency at which the base suction peaks is not significantly
altered by variations in Reynolds number and forcing amplitude. These parameters do
not significantly alter the behaviour of the convective velocity of vortices along the plate.
As the same mechanism is involved, the forcing frequency at which the peak base suction
occurs would not vary significantly. The effect of increasing the forcing amplitude is to
increase the mean base suction with larger increases at forcing frequencies which result
in strong mean base suction. At these forcing frequencies, there is strong base shedding,
and as in the case where the nose is aerodynamic, the base suction grows with forcing
amplitude. Even with a small forcing amplitude, the lock-in range of frequencies is large.
This is caused by the leading-edge shedding locking to the large range of frequencies.
The vortices from the leading edge have a strong influence on the trailing-edge shedding

thereby locking the entire system over a large band of frequencies.

As in all previous cases, the behaviour of the drag force mimics that of the mean
base pressure. The fluctuating lift force shows local maximums corresponding to the
major steps and local minimums corresponding to the intermediate steps. This is a result
of the phase at which the leading-edge vortices pass the trailing edge. They can either
add or oppose the fluctuating component resulting from the leading-edge shedding. The
magnitude of the peak in base suction and drag force is higher for cases with aspect
ratios closer to the lower end of each step. In these cases, the forcing frequency is higher.
The simulations have shown that the vortex formation length decreases with increasing
frequency. Therefore the vortices form closer to the trailing edge in these cases and
this results in stronger base suction. If the forcing frequency is increased further, the
simulations show that the trailing-edge shedding is suppressed and this results in a lower

mean base suction.
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6.3.2.3 Duct acoustic resonance

In this case, the sound field resonating in the duct completes the feed back loop. Figure
6.1(c) shows the essential components in this particular case once resonance occurs. The
predictions in this study and previous studies have shown the region near the trailing
edge to be the main source of sound (Stokes & Welsh, 1986, Thompson et al., 1987).
Energy transfered from the flow to the sound field will then sustain the resonant field.
The resonant sound in turn locks the leading-edge shedding. The final result is a feed
back loop with the sound field, trailing- and leading-edge shedding locking to the resonant

frequency.

The technique used in this study assumes the flow is close to incompressible and
decouples the flow field and the acoustic field. A resonant acoustic field is assumed to be
present and the flow is locked to that frequency by the external applied forcing. Howe’s
acoustic theory is then used to determine if there is a nett transfer of energy form the
flow field to the acoustic field. This is a necessary but not a sufficient (because energy

losses are neglected) condition to sustain the resonance.

The acoustic model predicts only a negligible amount of sound generated between
the leading and trailing edge because the acoustic particle velocity is approximately tan-
gential to the flow. Upstream of the plate, a negligible acoustic power is generated because
the amount of vorticity is negligible. Further downstream of the plate, vortex pairs cancel
the effect of each other. Nett acoustic energy is generated when vortices are shed at the
trailing edge or leading-edge vortices pass the trailing edge and enter the wake. Contour
plots of acoustic power and analysis of the shedding process have shown that the phase
in the resonance cycle these vortices are introduced into the wake govern the direction of

average energy transfer.

As the leading-edge shedding is phase-locked to the resonant sound, the phase of
the leading-edge vortices passing the trailing edge and the trailing-edge shedding is again
dependent on aspect ratio and resonant (forcing) frequency as for the forced shedding
cases. It is not surprising then that the frequency bands where resonance is possible
also shows steps approximately corresponding to St = 0.55n. In the plates simulated,
some plates showed two or three frequency bands where resonance is possible. In these
cases, each increasing band corresponds to an additional pair of vortices along the plate.
Even when trailing edge shedding is suppressed at higher forcing frequencies, resonance

is possible with acoustic power generated from leading-edge vortices entering the wake.
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6.3.2.4 Similarity between cases

One common feature in all three cases is the frequency selection which in each case shows
stepwise increases of St = 0.55n with aspect ratio. After reviewing each case, it was found
that they all rely on a synchronisation between the leading- and trailing-edge shedding. In
all cases the leading-edge vortices convect downstream and this controls the trailing-edge
shedding. The difference is the way the leading-edge shedding is synchronised to shed
alternately. In the natural shedding case, there is a pressure pulse from the the trailing
edge. In the cases with applied forcing or duct resonance, the leading-edge shedding is
phase-locked to the applied forcing or sound field. These triggers (pressure pulse, applied
forcing or acoustic fields) travel much faster than the flow velocity in these cases because
the flow field is almost incompressible. The frequency selection is therefore based on the
role of the leading-edge vortices which take a finite time to travel the length of the plate.
This study has shown that the behaviour of the convective velocities of these vortices is
not significantly influenced by aspect ratio and forcing frequency (when applied). The
stepwise increase with aspect ratio is therefore a result of the system maintaining the

synchronisation between the leading- and trailing-edge shedding.

The simulations have shown that in each case the steps in frequency are approxi-
mately St = 0.55n. This is a result of the convective velocity of the flow structures between
the leading and trailing edges being 55% of the free-stream velocity. The independent
experiments in each case show that the steps are closer to St = 0.6n (Nakamura et al.,
1991 in the natural shedding case, Mills, 1988 in the forced shedding case and Stokes &
Welsh, 1986 in the acoustic resonance case). In these experiments, the Reynolds numbers
are generally higher and the flow three dimensional (Nakamura et al., 1991 at Re = 1,000,
Mills, 1988 at Re ~ 9,000 and Stokes & Welsh at Re ~ 15,000 — 30,000). As a result,
the average convective velocity of flow structures along the plate in the experiments may

be higher than in the simulations.

Although these simulations are two dimensional, they have captured the major
mechanism controlling the flow. Physically at these Reynolds numbers, there is some
three-dimensionality in the flow, the mechanism is two dimensional and the vortex rollers
are still predominantly two dimensional with some spanwise distortions. This allows the

flows to be simulated with a reasonable amount of accuracy in two dimensions.

6.3.2.5 On the feedback mechanism in the natural shedding cases

The flow around long bodies with bluff leading edges can lock to a particular shedding
mode thereby synchronising the leading-edge shedding with the flow structures at the
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trailing edge. To achieve this, a feedback loop is established between the leading and
trailing edges. There are some differences in several parts of the feedback loop as shown in
Figure 6.2. This diagram builds on previous works (see Section 1.2.4) and the observations
in this study. The selection is dependent mainly on aspect ratio and the trailing-edge
geometry. The common component is the separated leading-edge shear layer and the
pressure pulse generated around the trailing edge which feeds back and controls the shear
layer thus completing the loop. Small aspect ratio geometries where the vortices from the

leading edge are shed directly into the wake are not considered here.

The first of three cases considered here is where the leading-edge shear layer di-
rectly interacts with the trailing edge (shown in blue, Figure 6.2). This has been classified
by Nakamura (1986) as the impinging shear layer instability. That study involved geome-
tries with rectangular, H and F cross-sections ranging between ¢/t = 2 and 5. Here, the
shear layer interacts directly with the trailing edge which in turn sends a pressure pulse to
lock the leading-edge shedding. This classification of impinging shear layer instability has
been used previously in other cases to describe the situation where the shear layer inter-

acts with a solid boundary downstream which send a pressure pulse upstream influencing
the shear layer (Rockwell & Naudascher, 1978).

The term impinging leading-edge vortex instability (ILEV) was proposed by Nau-
dascher & Wang (1993) to incorporate the shedding of leading-edge vortices in those cases
where the leading-edge shear layer does not reach the trailing edge (i.e. n = 2,3,..). The
earlier case (n = 1) could be included in this classification because vortices are shed from
the leading edge although the shear layer does periodically reach the trailing edge. This
process is highlighted in red (Figure 6.2). The shear layer at the leading edge rolls up
into discrete vortices and convect along the body. As these vortices pass the trailing
edge, a pressure pulse is generated. This pulse travels upstream to lock the leading-edge
shedding. Examples of where this occurs include the - section and a wide variety of bluff

bodies such as cylinders and square sections fitted with splitter plates (Nakamura, 1996).

Previous studies and classification associated with the flow around long rect-
angular plates did not highlight the important role of shedding from the trailing edge
(Nakamura et al., 1991, Ozono et al., 1992, Naudascher & Wang, 1993). In these simu-
lations, although pressure fluctuations do occur when the leading-edge vortices pass the
trailing edge, strong base shedding is also observed. The pressure fluctuations associated
with the formation of trailing-edge vortices are larger in these simulations. This is seen
in the large mean and fluctuating components in base pressure. A description of the
feedback process occurring in these simulations is shown in green (Figure 6.2). Vortices
are shed from the shear layer at the leading edge. These vortices convect along the plate

and interact with the shedding at the trailing edge (i.e., trailing-edge vortices forms be-
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Figure 6.2: A schematic showing the possible feedback mechanisms for flow around a long

body with a bluff leading edge experiencing no external excitation.

tween the passing of leading-edge vortices). The pressure pulse from the base shedding
then feeds back upstream and controls the leading-edge shedding. As discussed earlier
in Section 6.3.2.1, the added influence of the trailing-edge shedding compared with those
cases without is the more limited range of shedding frequencies in each shedding mode.
Previous description of this feedback mechanism such as the impinging shear layer or
the impinging leading-edge vortex instability does not discriminate between trailing-edge
geometries. As a result, the trailing-edge shedding has been excluded from the feedback
mechanism. In the case of a rectangular plate, the simulations show strong base shedding
which would dominate the effect of leading-edge vortices passing the trailing edge. The
description proposed here to incorporate the base shedding is therefore more applicable

to cases with significant base shedding.
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6.4 Three-dimensional simulations

A limited number of three-dimensional flow simulations are performed to study the transi-
tional states for flow around elliptical leading-edge and rectangular plates. The Reynolds
numbers in these simulations are chosen around where transition from two- to three-
dimensional flow occurs. In the case where the leading edge is aerodynamic, the transition
in the wake is examined. The spanwise instability of leading-edge vortices is the focus in
simulations involving rectangular plates. The nature of the technique used here enforces
periodic boundary conditions on the spanwise boundaries. This allows only discrete span-
wise wavelengths (more limited at longer wavelengths) to be captured and therefore may

influence the results.

6.4.1 Elliptical leading-edge plate

Simulations are performed for the low around elliptical leading-edge plates with a 5:1 axes
ratio and aspect ratios of ¢/t = 7.5 and 2.5. Two spanwise shedding modes have been
observed similar to Mode A and Mode B in the wake of a circular cylinder. The spanwise
wavelengths in these simulations are generally larger because of the thicker boundary

layers near the trailing edge and the resulting vortices being more diffused.

The simulations were able to capture three-dimensional vortical structures with
topology similar to Mode A at Re = 500 and ¢/t = 7.5. Two wavelengths of this shedding
were simulated in the computational domain resulting in a spanwise wavelength of x¢.
It is uncertain if the most unstable mode is captured because only discrete wavelengths
can be simulated. No spanwise instabilities were observed in simulations at Re = 400
and below. Mode B shedding is expected to dominate at higher Reynolds number but no

simulations were attempted due to computational constraints.

Simulations with ¢/t = 2.5 have captured two shedding modes in the transition
process. The simulation captured a long wavelength flow structure at Re = 300 with
topology consistent with Mode A shedding. As only one wavelength of this flow structure
was captured within the domain (27t), there is some uncertainty as to which is the most
unstable wavelength. There are smaller wavelengths that develop in certain shedding
cycles. This could be either a competition between shedding modes or a result of the
restrictive domain. At Re = 350, Mode A shedding is suppressed and the presence of
some flow structures consistent with Mode B shedding is present. The wavelength of
these structures is uncertain because they are sporadic and not uniform across the span.
When the Reynolds number is increased to Re = 380, these structures become stronger

and more regular. These flow structures have a spanwise wavelength of approximately
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0.8¢.

Simulations with applied external forcing are not attempted for this geometry
because of the difficulty in simulating at higher Reynolds number to capture the transition.

Some simulations with applied forcing are attempted with the rectangular plate.

6.4.2 Rectangular plate

The flow around plates with ¢/t = 6, 10 and 13 is simulated at Re = 350 and 400. No
spanwise instability was observed in the simulations with ¢/t = 6. Flow structures similar
to those classified as Pattern B by Sasaki & Kiya (1991) are observed when ¢/t = 10
and 13 at both Re = 350 and 400. These were hairpin-like structures arranged in a
staggered manner on both sides of the plate. In all cases, two wavelengths were captured
in the domain and therefore the spanwise wavelength is approximately 3¢. The streamwise
wavelengths is approximately 3t when ¢/t = 10 and 4¢ when ¢/t = 13. Both streamwise

and spanwise wavelengths are within the range of experimental uncertainty.

Further simulations to capture Pattern A have not been successful. These were
performed with ¢/t = 13 at several Reynolds number below Re < 350 and with different
spanwise domain sizes. Simulations with applied forcing for plates with ¢/t = 10 and
Re = 400 all resulted in the flow reaching a two-dimensional state. The forcing amplitude
was at vpey = 2.5% and the frequency ranged ranged between St = 0.13 and 0.19. To

capture transition in these cases would require simulations with higher Reynolds number.
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