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Abstra
t
This is a study of laminar 
ow around long plates. Two 
ases are 
onsidered: the 
owpast a plate with an aerodynami
 leading edge and, a re
tangular 
ross-se
tioned plate.An aerodynami
 leading-edge plate is a natural pre
ursor to the 
ow past a re
tangularplate be
ause the shedding is only from the trailing edge. The 
ow around re
tangularplates is more 
omplex be
ause it involves the intera
tion between leading- and trailing-edge shedding. Both natural and for
ed shedding 
ases are studied. The sour
e of thefor
ing is a small sinusoidal 
ross-
ow os
illation added to the free stream. The a
ousti
resonan
e generated when a re
tangular plate is pla
ed in a du
t is also examined. Finally,a limited study on the transition from two- to three-dimensional 
ow for these geometriesis presented.In this study, the 
ow is predi
ted by solving the in
ompressible Navier-Stokesequations numeri
ally. A 
ombination of spe
tral-element and global spe
tral s
hemes isused for the spatial dis
retisation. Two di�erent time stepping methods are evaluated.The numeri
al s
heme is validated by simulating the ba
kward-fa
ing step 
ow and thedriven 
avity 
ow. Several simulations of the 
ow around the plates are performed todetermine an adequate domain size and temporal and spatial resolution.The aerodynami
 leading-edge plates mainly 
onsisted of plates with ellipti
alleading edges (5:1 axes ratio). The aspe
t ratio and Reynolds number varied between3:5 � 
=t � 12:5 and 200 � Re � 700 respe
tively (
 being the 
hord and t beingthe thi
kness). The shedding frequen
y is determined in the natural shedding 
ase andreasonable agreement is found with a 
orrelation obtained from experimental data athigher Reynolds numbers. In the for
ed shedding 
ase, the behaviour of the 
ow aroundthese plates shows several similarities with that around short blu� bodies. There is onlya small range of frequen
ies for whi
h the 
ow is lo
ked but this range grows with for
ingamplitude. Outside the lo
k-in range, the mean base pressure approa
hes that for theunfor
ed 
ase but the time varying base pressure tra
e shows the 
hara
teristi
s of beatingbetween the Strouhal frequen
y and the for
ing frequen
y. Within the lo
k-in range, themean base pressure is very sensitive to the for
ing frequen
y. Two distin
t 
ases areiii



observed in the parameter range studied; one that o

urs for lower Reynolds number orlonger plates, and the other for higher Reynolds number or shorter plates. These twoparameters 
ontrol the thi
kness of the boundary layer at the trailing edge whi
h dire
tlyin
uen
es the shedding pro
ess. For most of the lo
k-in range, both 
ases show a linearin
rease in mean base su
tion with in
reasing frequen
y. For the 
ase with shorter plates(or higher Reynolds numbers), the mean base su
tion is noti
eably lower than that of thenatural shedding 
ase at the lower frequen
y end of the lo
k-in range. The other 
aseshows a drasti
 phase shift in shedding relative to the for
ing whi
h is asso
iated witha drop in mean base su
tion at the higher frequen
y end of the lo
k-in range. Overallthe drag for
e mimi
s the behaviour of the base su
tion. Within the lo
k-in range, thereis a de
rease in the 
u
tuating lift for
e be
ause of a narrower wake. The simulationsshow that the mean base su
tion in the lo
k-in range is strongly related to the rate ofgeneration of vorti
ity (of one sign) and the vortex formation length.The 
ows around re
tangular plates with aspe
t ratios in the range 3 � 
=t � 16and Reynolds numbers between 300 � Re � 500 are simulated next. Three 
ases are
onsidered: (a) natural shedding; (b) where the 
ow is for
ed by a small sinusoidal 
ross-
ow os
illation; and (
) where the plate is pla
ed in a du
t and a 
ow indu
ed a
ousti
resonan
e 
an o

ur. In the natural shedding 
ase below a 
ertain aspe
t ratio andReynolds number, the 
ow appears to lo
k to an impinging leading-edge vortex (ILEV)instability mode. This results in a stepwise in
rease in Strouhal number (based on 
hord)with in
reasing aspe
t ratio. The ILEV instability des
ribed by Naudas
her & Wang(1993) 
omprises of: (i) the leading-edge shear layer shedding dis
rete vorti
es; (ii) the
onve
tion of these vorti
es past the trailing edge; (iii) and an a

ompanying pressurepulse that travel upstream and lo
ks the leading-edge shedding and thus 
ompletes afeedba
k loop. These simulations with a re
tangular plate shows strong base shedding withvorti
es forming between the passing of leading-edge vorti
es. An important 
on
lusionfrom the resear
h is the proposal that it is the pressure 
u
tuations from the base sheddingwhi
h has a dominant role in 
ontrolling the leading-edge shedding. A modi�
ation tothe original ILEV me
hanism to in
orporate this is des
ribed. In addition, both thefor
ed shedding and du
t resonan
e 
ases are also strongly in
uen
ed by trailing-edgeshedding. In the for
ed shedding 
ase, the lo
k-in range is large and the mean basepressure is not strongly sensitive to the for
ing amplitude and Reynolds number. Thefor
ing frequen
y whi
h results in a peak mean base su
tion also shows a stepwise response.The du
t a
ousti
 resonan
e 
ase involves a plate pla
ed in a solid walled du
t. Thesound generated by the 
ow around the plate may generate an a
ousti
 resonan
e in thedu
t whi
h lo
ks the 
ow. The 
ow-sound intera
tion is modelled using Howe's a
ousti
theory (Howe, 1975, 1980). The frequen
y range where resonan
e o

urs also shows astepwise response. In all three 
ases, the stepping in Strouhal number based on 
hordiv



is approximately des
ribed by the relationship St
 = 0:55n, where n is the step number.This trend mat
hes experimental observations whi
h are performed at higher Reynoldsnumbers; espe
ially for the for
ed and du
t a
ousti
 resonan
e 
ases. This shows that theessential physi
al me
hanisms involved are 
aptured in these (low Re, two-dimensional)simulations. The stepwise response in all three 
ases requires a syn
hronisation betweenthe leading- and trailing-edge shedding. In the natural shedding 
ase, this is a result of the
ow at the trailing-edge sending a pressure pulse to lo
k the leading edge. In the for
edshedding and du
t a
ousti
 resonan
e 
ases, the leading-edge shedding is phase-lo
kedto the for
ing/a
ousti
 �eld. The peak base su
tion for the for
ed shedding 
ase, andthe resonan
e range in the du
t resonan
e 
ase, 
onsistently o

urs at approximately thesame phase in the 
ow 
y
le relative to the for
ing. To maintain the phase relationshipbetween the leading- and trailing-edge 
ow, the shedding modes 
an only in
rease byhaving a 
omplete pair of vorti
es along the plate. This results in the step 
hange in theshedding mode on
e 
riti
al aspe
t ratios are ex
eeded. The levels of the steps show thatthe average 
onve
tive velo
ity of the 
ow stru
tures along the plate is approximately55% of the free-stream velo
ity in all 
ases. Consistent with this are the 
al
ulations of
onve
tive velo
ity along the plate for both the natural and for
ed shedding 
ases whi
hshow that the velo
ity is not signi�
antly in
uen
ed by aspe
t ratio and for
ing/sheddingfrequen
y. The mean base su
tion and drag are generally stronger at the lower aspe
tratio end of ea
h step in both the natural and for
ed shedding 
ases. This is a result ofmore 
ompa
t vorti
es forming at the trailing edge at higher for
ing/shedding frequen
y.The 
u
tuating lift for
e in the natural shedding 
ase is approximately 
onstant whi
hmeans that the for
e 
oeÆ
ient (whi
h is s
aled on 
hord) is inversely proportional toaspe
t ratio. In the for
ed shedding 
ase, the peaks in the 
u
tuating lift 
oeÆ
ient alsoshow a stepwise response. This is governed by the phase at whi
h the leading-edge vorti
espass the trailing edge relative to the generation at the leading edge.Some three-dimensional simulations were performed to 
apture the main insta-bility modes 
lose to the onset of three-dimensional 
ow. For the ellipti
al leading-edgeplates, the trailing-edge wake vorti
es develop three-dimensionality similar to the waketransition for a 
ir
ular 
ylinder. Both Mode A and B shedding (Williamson, 1988) wereobserved. The transition o

urs at a mu
h higher Reynolds number (between Re = 400and 500 for 
=t = 7:5), 
ompared with Re = 180 for a 
ir
ular 
ylinder. This is presum-ably due to the thi
ker boundary layers at the trailing edge. For the re
tangular plate, theboundary layer modes were examined. Experiments indi
ate the existen
e of two distin
tmode topologies (Pattern A and B, Sasaki & Kiya, 1991). The 
urrent study only foundthe presen
e of Pattern B. It is un
lear why the initial instability mode was not found. Astability analysis is planned to resolve this dis
repan
y.
v
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Nomen
lature
A physi
al area.Ao amplitude of the sinusoidal perturbation.
 plate 
hord length.
d drag 
oeÆ
ient based on plate thi
kness and free-stream velo
ity.
l lift 
oeÆ
ient based on plate 
hord and free-stream velo
ity.
p pressure 
oeÆ
ient based on plate thi
kness and free-stream velo
ity.
s speed of sound.d� displa
ement thi
kness.E(t) the total kineti
 energy of the driven 
avity 
ow as a fun
tion of time.F number of Fourier planes in the spanwise dire
tion.Ft0 redu
ed frequen
y based on t0.f shedding/resonant frequen
y.H 
hannel height.h step height.K number of elements in a two-dimensional plane.k loop 
ounter for the Runge-Kutta algorithm.l1 distan
e between in
ow boundary and the plate relative to the platethi
kness t.l2 distan
e between the plate and the side boundary relative to theplate thi
kness t.l3 distan
e between the plate and the out
ow boundary relative to theplate thi
kness t.N number of nodes in one dire
tion of an element.n shedding mode (step number) for the 
ow around a re
tangular plate.m order of the Legendre polynomial.P instantaneous a
ousti
 power.Pm Legendre polynomial of degree m.p kinemati
 pressure.pn+1 average pressure �eld at the end of a timestep.r reatta
hment length. xiii



St Strouhal number based on thi
kness.St
 Strouhal number based on 
hord.Stt0 Strouhal number based on t0.s order of the Runge-Kutta s
heme.Re Reynolds number based on plate thi
kness or diameter and free-streamvelo
ity.Ret0 Reynolds number based on t0.~s tangent ve
tor to an iso-surfa
e of vorti
ity.S integral path along the solid surfa
e.T time of one shedding period.t plate thi
kness.t simulated non-dimensional time using the velo
ity and length s
ale.t0 plate thi
kness + 2 � displa
ement thi
kness.�t size of the timestep.U1 mean free-stream velo
ity.u velo
ity ve
tor of the 
ow �eld.u�;u�� intermediate velo
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Chapter 1
Introdu
tion
The study of 
ow around blu� bodies is one of fundamental importan
e in 
uid me
hani
s.It underpins areas as diverse as wind engineering and stru
tural loading, automotiveaerodynami
s, 
ross-
ow heat ex
hangers, mixing, maritime transport, sub-sea stru
turesand 
ow indu
ed a
ousti
s.Many studies have 
on
entrated on pseudo two-dimensional geometries with shortafter-bodies su
h as 
ylinders, squares or prisms (Roshko, 1961, Bearman & Obasaju,1982, Bearman, 1984, Williamson, 1988). The two- and three-dimensional instabilitiesthat develop in the di�erent 
ow regimes have resulted in many interesting observations.Long blu� bodies are a natural extension of this work.More re
ently, there have been studies on high aspe
t ratio geometries and, inparti
ular, long re
tangular plates. These have the 
ompli
ation of vorti
al 
ow stru
turesdeveloping at both the leading and trailing edges. Studies of this 
ow will need to in
ludethe intera
tion between them. Although this is a basi
 geometry and is used to further thefundamentals and understanding, several studies on this parti
ular blu� body have beeninspired by pra
ti
al appli
ations. These in
lude wind stru
ture intera
tions (Nakamuraet al., 1991), heat ex
hangers (Cooper et al., 1986) and a
ousti
 
ow 
ontrol (Stokes &Welsh, 1986).This work is building on many previous experimental observations and some
omputational studies done in asso
iation with the Department of Me
hani
al Engineer-ing, Monash University and CSIRO Division of Building, Constru
tion and Engineering.Welsh & Gibson (1979) and Stokes & Welsh (1986) investigated the 
ase where the plateis pla
ed in a du
t and develops a strong a
ousti
 resonan
e. Parker & Welsh (1983), andMills (1998) investigated the plate in an open jet wind tunnel with applied a
ousti
 for
-ing. Cooper et al. (1986) used the a
ousti
 for
ing to try to improve heat transfer. While1
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(b)Figure 1.1: (a) A s
hemati
 of the long re
tangular plate with a sinusoidal perturbationadded to the mean 
ow and (b) a smoke visualisation from Mills et al. (1995) where ana
ousti
 perturbation is introdu
ed by speakers in anti-phase pla
ed above and below theplate.these studies 
on
entrated on 
ow indu
ed a
ousti
s and a
ousti
 
ontrol, the long re
t-angular plate has also been investigated for its relevan
e in wind engineering (Nakamuraet al., 1991, Deniz & Staubli, 1997).A s
hemati
 of the general geometry and set up for the 
ow is shown in Figure1.1(a). The long side of the re
tangular plate is aligned with the 
ow. Perturbationsto the mean 
ow may be added by vibrating the blu� body or adding a 
ross stream
omponent as in a
ousti
 
ontrol. Figure 1.1(b) is a smoke visualisation from Mills et al.(1995) showing the 
ow around a re
tangular plate subje
ted to 
ross-
ow perturbations.This 
hapter will review studies on blu�-body 
ows with a fo
us on long re
tangularplates. These in
lude (a) the natural shedding 
ase whi
h has no external ex
itation,2



(b) the for
ed shedding 
ase where perturbations are introdu
ed to the 
ow and (
) thedu
t a
ousti
 resonan
e 
ase. The development of three-dimensional instabilities on blu�bodies at low and moderate Reynolds numbers will also be dis
ussed.1.1 Flow instabilitiesSeveral assumptions are 
ommonly made when studying fundamental blu� body aerody-nami
s whi
h in
lude the 
uid being Newtonian, in
ompressible and isotropi
. This allowsthe 
uid to be mathemati
ally modelled using the time-dependent in
ompressible Navier-Stokes equations and is the basis of the stability analysis and the numeri
al modellinghere. The 
ow around blu� bodies will eventually rea
h a steady state below a 
riti
alReynolds number. Any disturban
es either from the initial 
onditions or imposed on the
ow will de
ay or be 
onve
ted out of the system and the system will rea
h an equilibriumstate. As the Reynolds number is in
reased past a 
riti
al point, disturban
es are nolonger damped and the 
ow be
omes time dependent. The transition between steady andtime-dependent 
ow is part of the study of hydrodynami
 stability.A standard approa
h is to use the Navier-Stokes equations to predi
t the be-haviour of a 
ow represented by the sum of a mean 
ow plus a perturbation. The equa-tions are linearised with respe
t to the perturbation and 
an be used to predi
t the growthor de
ay of Fourier 
omponents. In a lo
al analysis the 
ow is assumed to be parallel.The resulting equations are 
alled the Orr-Sommerfeld equations. The analysis identi�estemporal frequen
ies and spatial wavelengths that will grow for a given velo
ity pro�leand Reynolds number. The two possible types of instabilities predi
ted by this analysisare the 
onve
tive and absolute instabilities.The 
onve
tive instability only 
onve
ts the disturban
e downstream from thesour
e. It is not lo
ally self sustaining and will de
ay if the sour
e of the disturban
e isremoved. The absolute instability is lo
ally self sustaining and the disturban
es propagateupstream and downstream of the sour
e. The 
onve
tive type of instability is generallyre
eptive to a wider range of frequen
ies than the absolute instability whi
h is generallyre
eptive only over a very narrow band of frequen
ies. This leads to an absolute instabilitybeing 
alled an os
illator and a 
onve
tive instability a noise ampli�er.There have been several analyses of the wake behind a re
tangular plate. Theleading edge is assumed to be streamlined and with no upstream disturban
es, the 
owis parallel at the trailing edge making it an ideal problem for this analysis. Using linear3



stability analysis, Ko
h (1985) analysed the pro�les in the wake near the 
riti
al Reynoldsnumber. As the Reynolds number is in
reased towards the 
riti
al value, regions of
onve
tive instability develop. As part of the transition pro
ess, the analysis shows regionswith absolute instability in the re
ir
ulating region past the 
riti
al Reynolds number.Hannemann & Oertel (1989) studied the instability by numeri
ally simulating the wakebehind the plate. Initially an arti�
ial boundary 
ondition is imposed along the 
entrelineto maintain symmetry. This is removed on
e the 
ow has rea
hed a quasi-steady state.After that time there is a linear growth of one pure frequen
y before rea
hing a transitionto saturation and �nally a non-linear saturated state.Several methods have been proposed to predi
t the frequen
y sele
tion in thelinear regime in
luding the initial resonan
e 
riterion by Monkewitz & Nguyen (1987) andthe maximum growth 
riterion by Pierrehumbert (1984). The frequen
y of shedding in thesaturated state near the 
riti
al Reynolds number 
an be predi
ted using Ko
h's resonan
e
riteria (Ko
h, 1985) whi
h is based on the linear stability analysis. The hypothesis isthat the saturated state is dominated by the lo
al resonan
e o

urring spatially at thetransition from absolute to 
onve
tive instability. Most simulations and experiments areat a Reynolds number signi�
antly larger than the 
riti
al Reynolds number. Althoughthis analysis is stri
tly appli
able only near the 
riti
al Reynolds number, it 
an be appliedat super
riti
al Reynolds numbers with the assumption that the non-linear saturated stateis still governed by this lo
al resonan
e. The theoreti
al stability analysis has been furtherdeveloped to in
lude more physi
s. While the lo
al linear stability analysis is based onthe initial growth of disturban
es in parallel 
ows, the nonlinear saturated state 
an beanalysed with the Ginsburg-Landau equation. The spatial developing nature of the 
owwhi
h is not 
onsidered in the lo
al analysis 
an be analysed when 
onsidering weakly non-parallel 
ows and results in the predi
tions of global instabilities (Huerre & Monkewitz,1990). Wake instabilities are present in most blu� body 
ows above a 
riti
al Reynoldsnumber. With long blu� bodies, it is possible for the 
ow to separate at the leading edgeand reatta
h while shedding large-s
ale vorti
es. A detailed investigation into the natureof this separated and reatta
hing 
ow is found in Cherry et al. (1984). The instabilitiesinvolved are the Kelvin-Helmholtz instability present in the shear layer and the instability
ausing the large-s
ale shedding. The nature of the instability 
auses a weak 
apping ofthe shear layer and shedding to be irregular. Experiments by Soria & Wu (1992) usedlong re
tangular plates to isolate any trailing-edge e�e
ts. The separating and reatta
hing
ow is shown to be predominantly 
onve
tively unstable and re
eptive to a broad rangeof frequen
ies. The weak 
apping of the shear layer without external perturbation 
ouldbe the result of regions of lo
al absolute instabilities.4



Trailing Edge Shedding

Leading Edge Shedding

Figure 1.2: A sket
h of the instabilities developing from a plate with a streamlined and ablunt leading edge, and blunt trailing edges.Figure 1.2 shows the long plates studied and their asso
iated instabilities. Withan ellipti
al leading edge, the instability at the trailing edge results in the 
lassi
al Karmanvortex shedding. A re
tangular plate is di�erent from a 
ir
ular 
ylinder in that the bluntleading edge for
es the 
uid to separate at a �xed point forming a shear layer. Theinstability in the shear layer results in it rolling up to form dis
rete vorti
es. For a blunttrailing edge, the intera
tion between the leading- and trailing-edge 
ow stru
tures willbe explored in this thesis.A 
losely related instability o

urs when a lo
al 
onve
tive instability intera
tswith a solid boundary downstream. Disturban
es from the obje
t downstream propagateupstream to 
omplete a feedba
k loop. These types of instabilities o

ur when a jet ora mixing layer impinges on a solid boundary downstream su
h a blu� bodies, walls oredges. A 
lassi
al example of this is the 
avity 
ow where the separating shear layer fromthe upstream edge of the 
avity intera
ts with the downstream edge. A 
omprehensivereview is found in Ro
kwell & Naudas
her (1979). The 
on
ept of global instability wasasso
iated with these sort of 
ows by Ro
kwell (1990). This instability is of importan
e tothe 
ases with a re
tangular plate be
ause the shear layer from the leading edge intera
tswith either the trailing edge or the sides of the plate. Further dis
ussion on this is in
ludedwhen the 
ow around re
tangular plates is reviewed.1.2 Natural sheddingThis se
tion fo
uses on 
ow over a �xed blu� body. The two-dimensional instabilitiesare reviewed in three se
tions: the 
ow stru
tures developing at the leading edge; trailing5



edge; and the intera
tion between these elements.1.2.1 Leading-edge sheddingIn this 
ase the 
ow separates from the edge and forms a shear layer whi
h reatta
hesfurther downstream. Above a 
riti
al Reynolds number, the shear layer rolls up intodis
rete vorti
es. In the absen
e of any 
ontrolling in
uen
e this shedding is irregular.Cherry et al. (1984) attempted to study the unsteady nature of this 
ow. The experimentswere performed at approximately Re = 3; 200. Near the separation point, the shear layerexhibits a low-frequen
y 
apping possibly due to 
hanges to the bubble in the sheddingpro
ess. The growth of the shear layer is similar to a plane mixing layer up to about 60%of the bubble length before being in
uen
ed by the reatta
hment pro
ess. The sheddinggoes through phases of pseudo-periodi
 shedding of vorti
es, large s
ale irregular sheddingand relatively quies
ent phases with 'ne
king' of the shear layer after reatta
hment. Inthe pseudo-periodi
 phase, the spa
ing between the vorti
es is between 60% to 80% ofthe separation bubble length. Velo
ity 
orrelations along the span showed that the 
owbe
ame three-dimensional soon after separation and the spawise s
ales grow linearly untilreatta
hment. The shedding of large s
ale stru
tures does not immediately show threedimensionality although the shear layer is three-dimensional.Sasaki & Kiya (1991) experimented at moderate Reynolds numbers (80 < Re <800) and studied the nature of the reatta
hment and the resulting spanwise instabilityfrom the shed vorti
es. The reatta
hment length rea
hes a maximum of about 6:5t atRe = 320. This is the onset of the roll up of the shear layer and vorti
es being shed. Thereatta
hment length approa
hes a 
onstant value of 4:5t for Re > 380. The shed vorti
esalso develop spanwise instability whi
h will be dis
ussed in Se
tion 1.4.2.Simulations by Tafti & Vanka (1991) studied the reatta
hment and the shedvorti
es at Re = 1; 000. Although the 
al
ulations were two-dimensional (the shear layerdevelops a strong three-dimensionality), it reprodu
ed some experimental trends su
h asshedding frequen
y and 
onve
tive velo
ity.1.2.2 Trailing-edge sheddingWith a streamlined leading edge, 
ow stru
tures from the trailing edge 
an be studiedin isolation. The trailing-edge shedding is a simple blu� body wake with the intera
tionof two boundary layers. The experiment by Eisenlohr & E
kelmann (1988) showed therelationship between the trailing-edge shedding frequen
y and the displa
ement thi
kness6



of the boundary layer at the trailing edge. The experiment used a laminar boundary layerand aspe
t ratios of between 50 to 800. The data for all the plates 
orrelated well withequation 1.1 if the 
hara
teristi
 length was taken to be the plate thi
kness plus two timesthe displa
ement thi
kness of the boundary layer. The non-dimensional relationship wasfound to be Ft0 = �39:2 + 0:286Ret0 (1.1)whereFt0 = ft02�Ret0 = vt0�t0=plate thi
kness(t) + 2 x displa
ement thi
kness(d�).Measurements of base pressure as a fun
tion of momentum thi
kness were pre-sented in Petrusma & Gai (1994). An aerofoil leading edge with 
=t = 10 was used withReynolds numbers of the order of Re = 50; 000. The results were limited to when the mo-mentum thi
kness was less than 0:05t and the base pressure did not vary signi�
antly withsmaller momentum thi
kness. The mean base pressure 
oeÆ
ient saturated to 
p = �0:55for a laminar boundary layer. When the 
ow is tripped su
h that the boundary layer wasturbulent, the mean base pressure 
oeÆ
ient was 
p = �0:62.1.2.3 Re
tangular plateWhile studying the e�e
t of sound, Parker & Welsh (1983) also noted the di�erent naturalshedding regimes that o

urred over a wide range of aspe
t ratios. Varying the Reynoldsnumber between 14; 800 < Re < 31; 000 showed no signi�
ant 
hange in the 
ow. Thereare four di�erent vortex shedding regimes for the re
tangular plate depending on theaspe
t ratio whi
h are summarised in Table 1.1 below. A plot of the shedding frequen
yas a fun
tion of aspe
t ratio is presented in Figure 1.3. The �rst transition is a

ompaniedby a dis
ontinuous 
hange in frequen
y and is sensitive to external 
onditions resulting insmall variations between studies (i.e. Okajima et al. 1983 at 
=t = 2:8, Parker & Welsh1983 at 
=t = 3:2, Okajima et al. 1992 (numeri
al) at 
=t = 2:1) A detailed study ofthe transition from leading-edge shedding dire
tly into the wake to periodi
 reatta
hmentwas presented by Okajima (1982). The transition 
hara
terised by a distin
t 
hange inshedding frequen
y is dependent on Reynolds number and o

urs between 2 < 
=t < 3 but7



asymptotes to 
=t = 2:8 at high Reynolds numbers. The se
ond regime (3:2 < 
=t < 7:6)exhibited a distin
t shedding frequen
y in the wake. This is not present in the nextregime (7:6 > 
=t > 16) and plates longer than 
=t > 16 exhibited trailing-edge sheddingindependent of the leading edge. Sin
e then Nakamura et al. (1991) and many others(Ozono et al., 1992, Naudas
her & Wang, 1993) have shown that the se
ond and thirdregimes, namely aspe
t ratios between approximately 3 � 
=t � 15, are dominated by theglobal instability whi
h syn
hronises the leading- and trailing-edge shedding at low andmoderate Reynolds numbers.This behaviour is not observed for a rounded leading edge whi
h undergoes onlyone transition at 
=t = 1:2 (Parker & Welsh, 1983). This results in a step 
hange in theshedding frequen
y shown in Figure 1.8. Below that aspe
t ratio, the shear layer fromthe leading edge intera
ts dire
tly to form the vorti
es in the wake. Longer plates showedonly trailing-edge shedding.
=t Chara
teristi
s
=t < 3:2 Separation from leading edge never reatta
hes to theside fa
esShear layer intera
ts dire
tly to form vortex shedding.3:2 � 
=t � 7:6 Separation from leading edge reatta
hes periodi
ally.Separation bubble grows and envelopes trailing edge.7:6 < 
=t � 16 Separation from leading edge always reatta
hes.Vorti
es randomly generated from leading edge movedownstream and intera
t with trailing edge produ
ingirregular shedding from the trailing edge.
=t > 16 Separation from leading edge always reatta
hes.Vorti
es randomly generated from leading edge movedownstream but di�use before rea
hing the trailingedge.Table 1.1 : Summary of 
ow regimes for 
at plate (Parker & Welsh, 1983)The early studies were inspired by the wind indu
ed ex
itation of bridge de
ksat relatively low wind speeds. Nakamura & Nakashima (1986) studied re
tangular, Hand ` 
ross-se
tions in both a wind tunnel and a water tunnel with aspe
t ratios, 
=tbetween 2.0 and 5.0. In the wind tunnel, the model was free to vibrate (Re = 5; 500)and 
ow visualisations were performed in a water tunnel (Re = 1; 200). Observation inboth situations for all the blu� bodies showed a feed-ba
k instability. The H geometryresembles two 
avities with a 
ommon bottom plate. The instability in the 
avity 
ow was
alled the impinging shear layer instability by Ro
kwell & Naudas
her (1978). This led to8



Nakamura & Nakashima (1986) using the 
lassi�
ation and in their 
ase the shear layerdoes impinge dire
tly on the trailing edge. The instability manifested itself by distin
tivefrequen
y sele
tion. The shedding frequen
y shows that the instability is still presenteven with a splitter plate atta
hed to the trailing edge or the ` geometry at large aspe
tratios. This shows that the trailing-edge shedding is not a ne
essity for this one sidedinstability.A detailed study of the re
tangular plate with 
=t from 3 to 15 at Re = 1; 000was presented in Nakamura et al. (1991). An analysis of the shedding frequen
y showedthat peaks in the spe
trum 
orresponded to a stepwise in
rease in Strouhal number basedon 
hord as shown in Figure 1.3. Ea
h step 
orresponded to a shedding mode whi
h has aStrouhal number base on 
hord approximately an integer multiple of 0:6. Phase measure-ments along the plate showed that an integer number of vorti
es, n, developed along theplate. This number, n, 
orresponds to the shedding mode as represented by the sket
hin Figure 1.4. The steps in Strouhal numbers (i.e., St
 = 0:6n; n = 1; 2; ::) 
orrespondingto the number of vorti
es along the side, suggests that the average 
onve
tive velo
ityof the 
ow stru
tures along the plate is approximately 60% of the free-stream velo
ity(elaborated in Se
tion 4.1.2). At aspe
t ratios 
lose to where the shedding mode 
hanges,namely 
=t = 8 and 11, two peaks appear in the spe
trum. The shedding in those 
asesswit
h randomly between the two modes.The theory underlying this global instability was based on the 
avity 
ow asdes
ribed above. The 
apping of the leading-edge shear layer intera
ts dire
tly with thetrailing edge of the plate. This leads to the emission of a pressure pulse whi
h 
ontrols theevolution of the leading-edge shear layer. This establishes a feed ba
k loop and lo
ks boththe leading- and trailing-edge shedding after a transient period (see Figure 1.6(b)). Thisstri
tly only applies to the �rst mode, n = 1, of shedding whi
h o

urs for approximately
=t = 3�6 (Nakamura et al., 1991). The shear layer rolls up into dis
rete vorti
es on longerplates. Instead of the shear layer, the se
ond (n = 2), third (n = 3) or fourth (n = 4)vortex from the leading edge intera
ts with the trailing edge 
ompleting the feed-ba
k loop(see Figure 1.6(b)). A better des
ription of this global instability that en
ompasses all themodes is the impinging leading-edge vortex (ILEV) instability des
ribed by Naudas
her& Wang (1993). This was summarised in Naudas
her & Ro
kwell (1994) and dis
ussedby Mills et al (1995) who proposed that this better des
ribes the instability. A re�nementto the 
ow 
lassi�
ation by Parker & Welsh (1983) was proposed by Naudas
her & Wang(1993) whi
h in
orporated the ILEV instability. The 
ategories are summarised in Figure1.5 with shorter plates (i.e. 
=t < 3) 
alled leading-edge vortex shedding (LEVS) andlonger plates (i.e 
=t > 16) 
alled trailing-edge vortex shedding (TEVS). The shorterplates are in the same 
ategory as short after-body geometries su
h as 
ylinders, squaresand triangles. For the longer plates, the vorti
es shed from the leading edge are too di�use9
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ow around a re
tangular plate showing the di�erent modesof shedding.
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TEVS, c/ t < 3 ILEV, 3 < c/ t < 16 LEVS, c/ t > 16Figure 1.5: Flow 
lassi�
ation by Naudas
her and Wang (1993) for the long re
tangularplate. The aspe
t ratios stated are only an approximate.to have any in
uen
e at the trailing edge.These instabilities have been su

essfully simulated numeri
ally. Okajima et al.(1990) showed that at 
=t of 2.8 and 6 there was a distin
t 
hange in shedding frequen
yand 
ow pattern between Re = 500 and Re = 1; 200. The shear layer from the leadingedge of shorter plates (
=t < 2:8) dire
tly form vorti
es in the wake. Above 
=t = 2:8 theleading-edge shear layer reatta
hes to form what is now known as the �rst mode (n = 1).Okajima (1990) then showed that this 
ompared well with experiments. Okajima et al.(1992) performed more simulations at Re = 1; 000 and showed that the �rst step o

ursat 
=t = 2:1 in the simulations but 
=t = 2:8 in the experiment. Ozono et al. (1992)and Ohya et al. (1992) attempted to simulate the observations of Nakamura et al. (1991).The simulations at Re = 1; 000 showed the stepwise 
hange in Strouhal number based on
hord between 
=t = 3 and 
=t = 9 as shown Figure 1.3. For longer plates, the system didnot lo
k into a parti
ular shedding mode even after several hundred dimensionless timeunits of simulation. The shedding swit
hed modes at 
=t = 6 and 
=t = 8 with the latterrandomly swit
hing between modes. The lift 
oeÆ
ient showed that at the start of ea
hstep (i.e., 
=t = 3; 6 and 9), the 
ow was more regular and periodi
. As the aspe
t ratiois in
reased, the shedding looses regularity until it lo
ks to the next mode. Nakayamaet al. (1993) performed simulations at Re = 200, 400 and 1; 000 for 
=t = 3 to 10. AtRe = 200 the was no shedding from the leading edge whi
h resulted in only a linearin
rease in Strouhal number based on 
hord with aspe
t ratio. This has been observedexperimentally. The simulations at Re = 400 showed the same stepping at Re = 1; 000but with less irregularity at 
ertain aspe
t ratios.Nakamura (1996) showed that the global instability that 
ontrol the sheddingfrom the plate also in
uen
es short after-body geometries with splitter plates. Nakamura(1994) experimented on a 
ir
ular 
ylinder, half 
ir
ular 
ylinder, half 
ir
ular 
ylinder
onne
ted to a 2:1 square blo
k, normal 
at plate and H se
tion. The splitter platesextended up to 15 diameters downstream. In general, from measurements of the shedding12



frequen
y, the 
ow gradually swit
hed from Karman shedding to the �rst mode (n = 1)and then through a frequen
y jump 
orresponding to the transition to the se
ond mode(n = 2). For the 
ir
ular 
ylinder, these transitions o

urred at 
=t = 2:5 and 
=t = 6:5respe
tively. These di�er from the re
tangular plate probably be
ause of the di�eren
es inthe leading-edge shear layer and the absen
e of trailing-edge shedding. At longer aspe
tratios, there was no single dominant frequen
y. Within the Reynolds number range of1600 < Re < 5300 used in the experiment, this instability was almost independent ofReynolds number but observed more easily at lower Reynolds numbers. The half 
ir
ular
ylinder with a re
tangular blo
k showed a di�erent trend from the other geometries. TheILEV instability is 
on
luded to result in the shedding frequen
y displaying distin
t steps(i.e St
 = 0:6n; n = 1; 2; :::). In those 
ases where the trailing-edge shedding is suppressedby a splitter plate, the intera
tion of the leading-edge vorti
es past the trailing edge stillfeeds ba
k to result in out of phase shedding from both sides of the leading edge and thesystem lo
king to a parti
ular shedding mode.The feedba
k dis
ussed previously relies on a weak pressure pulse to 
ompletethe loop. Above a Reynolds number of several thousand, the 
ow does not lo
k into theseshedding modes (e.g., Stokes and Welsh, 1986 (Re = 15; 000 � 30; 000); Mills et al., 1995(Re = 9; 000); Nakamura et al., 1991 (Re > 2000)). Parker & Welsh (1983) did observe adistin
tive frequen
y in the wake for 3:2 < 
=t < 7:6 at Re = 23; 700 and 
ow stru
tureswhi
h are similar to the �rst shedding mode (n = 1). Nakamura et al. (1991) proposedthat the ILEV me
hanism is still present but too weak to lo
k the 
ow at higher Reynoldsnumbers or longer aspe
t ratios but would manifest itself with additional 
ontrol of theleading-edge shedding su
h as vibrating the plate or external for
ing. If some externalex
itation is present su
h as the a
ousti
 resonan
e examined by Stokes and Welsh (1986),or the a
ousti
 for
ing demonstrated by Mills et al. (1995), a similar stepwise responsein St
 with aspe
t ratio is observed. This will be dis
ussed in more detail in the nextse
tion. At high Reynolds number, where the ILEV instability does not lo
k the 
ow, themean base pressure and drag are also not in
uen
ed by the ILEV instability. At a �xedReynolds number (Re = 8; 667), the general trend is a in
reasing mean base su
tion anddrag with in
reasing 
hord for 6 � 
=t � 15 (Mills, 1998). With in
reasing aspe
t ratio,there is less interferen
e of the leading-edge stru
tures and more regular vortex sheddingfrom the trailing edge. If the Reynolds number is low enough so that the shedding is lo
kedto the ILEV instability, the mean base su
tion and drag is stronger at shorter aspe
t ratioswithin ea
h mode (Okajima et al. 1992). This is where the shedding frequen
y is higherand the shedding, espe
ially at the trailing edge, is more vigorous.
13



1.2.4 Summary of feedba
k me
hanisms in the natural shedding
aseA s
hemati
 summarising the proposed 
ontrolling me
hanisms involved in ea
h of the
ases dis
ussed above is given in �gure 1.6. The governing me
hanisms for long platesdepend on aspe
t ratio and 
an be broadly 
lassi�ed as follows.1. Bodies with an aerodynami
 leading-edge and blunt trailing edge (�gure1.6a). In this 
ase only trailing-edge shedding o

urs. During the formation oftrailing-edge vorti
es, there is an asso
iated lowering of the pressure �eld in thevi
inity of the trailing edge. This 
auses a time variation in the pressure �eld at theleading edge whi
h 
an a�e
t the formation of the boundary layer there. However,in this 
ase, there is no leading-edge shedding to 
lose the feedba
k loop. Thissituation is depi
ted in �gure 1.6(a).2. Bodies of re
tangular 
ross-se
tion of moderate aspe
t ratio (�gure 1.6b).With a blu� leading edge, the shear layer separates from the leading edge. Forplates of aspe
t ratio less than 
=t � 6, the shear layer does not have time to formdis
rete vortex stru
tures before rea
hing the end of the plate. Instead the 
appingshear layer periodi
ally reatta
hes in the vi
inity of the trailing edge resulting ina modi�
ation of the pressure �eld whi
h, in turn, is propagated ba
k upstreamto the leading edge of the plate. This 
an a�e
t the formation of the leading-edgeshear layer, 
ontrolling further 
apping. Hen
e a feedba
k loop 
an be established.This has been referred to as an impinging shear layer instability by Nakamura et al.(1991), and also o

urs for a shear layer separating and reatta
hing to the 
ornersof a 
avity.3. Bodies of re
tangular 
ross-se
tion of larger aspe
t ratio (�gure 1.6
). Forlonger plates, the leading-edge shear layer sheds dis
rete vorti
es. In this 
ase, ithas been proposed that the impinging shear layer instability be
omes an impingingleading edge vortex instability (Naudas
her & Wang, 1993). Here, the pressure pulseprodu
ed when the leading-edge vorti
es pass the trailing edge perturbs the furtherdevelopment of the leading-edge shear layer, 
ompleting a feedba
k loop that lo
ksthe leading-edge shedding. This me
hanism o

urs for other long blu� bodies su
has ` se
tions and shorter blu� bodies �tted with splitter plates (Nakamura, 1996).An important fo
us of this resear
h, (espe
ially 
hapter 4) 
on
erns the situationdes
ribed in item (3) above. Eviden
e is provided that the feedba
k loop as des
ribedneeds modi�
ation, and that the 
ontrolling me
hanism for 
ow past a long plate is14
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(a) (b) (c)Figure 1.6: A s
hemati
 showing the me
hanism involved for (a) trailing-edge vortexshedding (TEVS), (b) impinging shear layer instability and (
) impinging leading-edgevortex instability (ILEV).di�erent from that for shorter bodies with splitter plates, or 
ow past wide 
avities wherethe ILEV instability des
ription is adequate.1.3 Applied for
ingIn many situations, the blu� body is not rigid but may exhibit vibrations due to the
u
tuating for
es 
aused by intera
tions with the 
uid. This introdu
es added 
omplexityin
luding stru
tural sti�ness and damping. A simpli�
ation when 
on
entrating on the
uid me
hani
s is to apply for
ing at small amplitudes relative to length s
ales, pressuresor velo
ities of the system. This for
ing 
an be a
hieved by vibrating the blu� body oradding a small perturbation to the free-stream velo
ity su
h as due to a
ousti
 for
ing.A small perturbation either by external for
ing or 
ow-indu
ed ex
itation 
an result insigni�
ant 
hanges in the 
ow 
hara
teristi
s.These ex
itations have been broadly 
lassi�ed into three separate 
ategories byNaudas
her & Ro
kwell (1994): namely extraneously indu
ed ex
itation (EIE), instabilityindu
ed ex
itation (IIE) and movement indu
ed ex
itation (MIE). EIE o

urs when the
u
tuations to the 
ow �eld and pressure are from an independent external sour
e su
h15



as for
ed os
illations, a
ousti
 for
ing (e.g., Parker & Welsh, 1983, Mills et al., 1995)and the velo
ity perturbation used in this study. Instability indu
ed ex
itations (IIE) are
aused by instabilities inherent to the 
ow su
h as LEVS, ILEV and TEVS des
ribed inthe previous se
tion. Stru
tures whi
h vibrate due to 
uid for
es 
an amplify the for
ingand experien
e MIE in
luding phenomena su
h as 
utter and lo
k-on.1.3.1 Leading edgeSigurdson (1995) studied the behaviour of the leading-edge shear layer to applied for
ing.The experimental apparatus 
onsisted of a 
ylinder mounted 
oaxially to the 
ow (i.e.Axis of the 
ylinder parallel to the free stream). An a
ousti
 speaker mounted within the
ylinder, whi
h had a small gap at the edge, provided a small lo
al perturbation. Theexperiments 
on�rmed many 
hara
teristi
s asso
iated with for
ing applied to the shearlayer, su
h as shorter reatta
hment lengths and stronger surfa
e pressure 
u
tuations. Thepresen
e of the Kelvin-Helmholtz instability of the shear layer and large-s
ale sheddinginstability in
uen
ed the response to the perturbation. The maximum e�e
t is observedwhen the for
ing frequen
y is 
lose to the frequen
y of the large s
ale shedding instability.The shear layer ampli�es a broad band of frequen
ies from approximately the sheddingfrequen
y to the frequen
y of the Kelvin-Helmholtz instability.Soria & Wu (1992) studied the shear layer at the leading edge of a re
tangularplate at Re = 900. A small perturbation is introdu
ed by sinusoidally vibrating the sidewalls of the water tunnel. The experiments showed that the shear layer is 
onve
tivelyunstable and re
eptive to a broad range of frequen
ies. Soria et al. (1993) extended thisto in
lude more 
ow visualisation. The shear layer remained nominally two-dimensionalwith applied for
ing unlike the unfor
ed 
ase. Stronger vorti
es are shed at the for
ingfrequen
y (whi
h was between St = 0:22 and 0:36) with possible pairing downstream fromthe leading edge.1.3.2 Short blu� bodiesThe absolute instability in the 
ow near the trailing edge of the plate is similar to thatfor shorter blu� bodies. The response of the 
ow around short blu� bodies su
h as
ylinders and square se
tions to small perturbations, typi
ally for
ed os
illations appliedto the geometry, has been well studied. Vorti
ity is normally shed from a point 
lose tothe leading edge (LEVS). In line with the theoreti
al predi
tions of absolute instability,the shedding only lo
ks to the applied for
ing in a small frequen
y range around thenatural shedding frequen
y whi
h is also known as the resonant point. The lo
k-in e�e
t16
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tion diagram for laminar wakes. (Karniadakis &Triantafyllou, 1989)is 
hara
terised by a drop in base pressure and a drasti
 
hange in the phase betweenshedding and for
ing at the resonant point. A review of this pro
ess is presented inBearman (1984).The lo
k-in pro
ess is governed by the amplitude and frequen
y of the appliedperturbation or in the 
ase of freely vibrating stru
tures, the stru
tures' natural frequen
yand damping. A des
ription of the system with applied perturbation by Karniadakis &Triantafyllou (1989) for laminar wakes is illustrated in Figure 1.7 based on 
omputationsof 
ow past an os
illating 
ir
ular 
ylinder. The amplitude of the applied perturbationhas to be above a threshold to in
uen
e the 
ow. The frequen
y range where lo
k-ino

urs, also des
ribed as the 'range of 
apture', in
reases with amplitude. Outside thisrange but within the re
eptivity range the 
ow exhibits a quasi-periodi
 behaviour withboth the for
ing frequen
y and the natural shedding frequen
y present in the wake. Nearthe boundary between the two states, 
haoti
 like behaviour has been observed in theirstudy. This behaviour was also observed by Bla
kburn & Henderson (1996) in a freelyos
illating 
ase and was possibly due to intermittent lo
k-in. The 
ow re
overs its naturalshedding mode outside the re
eptivity range. Wind tunnel experiments by Stansby (1976)also show a similar response for the 
ow around a 
ir
ular 
ylinder.Measurements of lift and drag for
es or base pressure with applied for
ing areof parti
ular interest due to obvious pra
ti
al appli
ations. In the lo
k-in regime, a wide17



variety of bodies have been shown to experien
e an in
rease in the magnitude of basepressure in
luding 
ir
ular 
ylinders (Stansby, 1976, Bla
kburn & Henderson, 1996), 
atplates pla
ed tangential to the 
ow, D-shapes, and triangular se
tions (Bearman & Davies,1977). The 
u
tuating lift 
omponent also in
reases in the lo
k-in regime as shown byStaubli (1981) for 
ir
ular 
ylinders and Bearman & Obasaju (1982) for square se
tions.This is due to the vortex stru
tures in
reasing in spanwise 
orrelation (i.e. suppressingthree-dimensionality) and being more 
ompa
t. Applied for
ing at higher frequen
ies hasshown to de
rease base su
tion to below the natural shedding 
ase. This in
ludes squareand triangular se
tions (Bearman & Obasaju, 1982), and 
ir
ular 
ylinders and squarese
tions (Ongoren & Ro
kwell, 1988).A 
omparison of several geometries has show no general relationship between the'range of 
apture' and the resonant point (Bearman, 1984). The resonant point is atthe lower end of the lo
k-in range of 
apture for a 
ir
ular 
ylinder but lo
ated quite
entrally for a square se
tion. Ongoren & Ro
kwell (1988) showed 
lear visualisations ofa phase shift of � between the for
ing and the shedding as the for
ing frequen
y 
rossesthe resonant point for a 
ir
ular 
ylinder and a triangular se
tion. There have been
ontradi
ting results for a square se
tion as the phase shift has been observed in someexperiments (Bearman & Obasaju, 1982, Nakamura & Mizota, 1975) and not in others(Ongoren & Ro
kwell, 1988). The shift in phase o

urs over a small frequen
y range buthas been shown by Bearman & Currie (1979) to be a 
ontinuous 
hange. The phase shiftis 
losely related to the 
u
tuating lift for
es and 
hanges the dire
tion of energy transferbetween the 
uid and the blu�-body whi
h 
an result in an unstable 
ondition whereex
itation of the body is possible.Experimental observations of 
ow around a blunt trailing edge by Lofty & Ro
k-well (1993) showed a behaviour similar to 
ow around shorter bodies. The re
tangularedge was os
illated in a pit
hing motion with an amplitude of 4% of the plate thi
kness.The vortex shedding lo
ked to the os
illations when the for
ing frequen
y was within 5%of the natural shedding frequen
y. Outside this range, a quasi-periodi
 state was observedin both velo
ity and pressure 
u
tuations in all 
ases, with a repeatable pattern after sev-eral shedding 
y
les. The number of 
y
les for repetition to o

ur in
reases for frequen
iesfurther away from the natural shedding frequen
y. Within the lo
k-in regime, detailed
ow visualisation showed the phase shift in shedding and the in
reasing formation lengthwith in
reasing frequen
y past the phase shift.
18



1.3.3 Long blu� bodiesThis se
tion reviews the response of longer plates to small perturbations. Several ofthese studies have used external a
ousti
 for
ing to 
ontrol the 
ow whi
h is analogous tovibrating the body. This is a simpli�
ation of the studies involving the blu� body pla
edin a rigid walled du
t. In that 
ase, the sound power generated by the 
ow sustainsa resonan
e in the du
t whi
h 
an exert feedba
k 
ontrol on 
ow. When there is ablunt leading edge, the ILEV instability 
hanges the response of the system signi�
antly
ompared with aerofoil or rounded leading-edge plates whi
h exhibit behaviour similar toshorter blu� bodies.Nakamura & Mizota (1975) experimented on vibrating re
tangular plates withaspe
t ratios of 
=t = 1; 2 and 4. The study was 
on
erned with the galloping instabilityexhibited by the shorter plates (
=t = 1; 2) whi
h is not present with longer plate (
=t = 4).The longer plate showed a drasti
 phase 
hange between the lift for
e and the appliedfor
ing 
lose to the natural shedding frequen
y. Asso
iated with this phase 
hange, theamplitude of the lift for
e varies from a minimum below the natural shedding frequen
yto a maximum above that frequen
y. This results in a small frequen
y range just belowthe natural shedding frequen
y where energy is transferred from the 
uid to the stru
ture(a ne
essary 
ondition for self ex
itation).As previously dis
ussed, Parker & Welsh (1983) initially do
umented several 
owregimes with varying aspe
t ratios in the natural shedding 
ases. Also in
luded in thatstudy was the e�e
t of sound whi
h was introdu
ed using two speakers in anti-phaselo
ated above and below the plate in an open jet wind tunnel. Figure 1.8 shows the rangeof applied frequen
ies where the 
ow is re
eptive to the a
ousti
 �eld. The e�e
t of thesound was to redu
e the reatta
hment length at the leading edge resulting in a greater
urvature of the shear layer and more su
tion on the surfa
e. The reatta
hment lengthalso shortened with in
reasing frequen
y. The shear layer and the reatta
hment pointos
illated at the applied frequen
y and there were pat
hes of vorti
ity shed on
e per 
y
lefrom the leading edge whi
h were � out of phase between the top and bottom surfa
es.This was maintained until the vorti
es passed the trailing edge resulting in the wake alsohaving the same frequen
y as the applied for
ing.Parker & Welsh (1983) found that applying sound did not have a signi�
ant e�e
tfor the shorter plates (
=t < 3:2). The se
ond regime (3:2 < 
=t < 7:6) only generateddis
rete pat
hes of vorti
ity at frequen
ies whi
h were signi�
antly higher than the naturalshedding frequen
y (above line AB in Figure 1.8). Below that, the frequen
y in the wakewas 
lose to that without sound applied. This threshold is independent of the strength ofthe a
ousti
 �eld within the range studied. A possible 
ompetition between the natural19
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shedding frequen
y and the applied frequen
y is present in this 
ase. Only one pair ofvorti
es was observed to be shed along the plate in a 
y
le whi
h is similar to the �rstnatural shedding mode (n = 1). In the third regime (7:6 < 
=t < 16), where the 
owalways reatta
hes without sound, the 
ow generated dis
rete vorti
es for frequen
ies largerthan St > 0:05 (lower limit of experiment) with several pairs present along the plate ata given instant. In both the se
ond and third regimes (3:2 < 
=t < 16), although theshedding mat
hed the applied frequen
y near the plate at higher frequen
ies, (above lineCD in Figure 1.8), the wake breaks down to a lower frequen
y away from the trailingedge. This was 
lose to the frequen
y without sound for plates in the se
ond regime(3:2 < 
=t < 7:6). At higher frequen
ies but maintaining the same pressure amplitude,more energy is put into the system. This may 
ause the 
ow to be re
eptive at higherfrequen
ies but break down away from the plate where the a
ousti
 �eld is weaker. Noresults were presented on the in
uen
e of sound for plates longer that 
=t > 16 andfrequen
ies higher than St > 0:25 due to experimental limitations.A similar arrangement was used by Cooper et al. (1986) to investigate the e�e
tsof the sound pressure level and frequen
y of a
ousti
 for
ing on the for
ed 
onve
tionof heat from long re
tangular plates. A heated plate with an aspe
t ratio of 
=t = 9:3was used. The lo
al heat transfer 
oeÆ
ient is relatively low in the separated regionand rises to a maximum near the reatta
hment. When the a
ousti
 �eld is imposed,the time average reatta
hment length de
reased with frequen
y as in Parker & Welsh(1983) but more signi�
antly at lower velo
ities and higher sound pressure levels. Thedis
rete shedding of vorti
es and the redu
ed reatta
hment length results in a highermaximum lo
al heat transfer 
oeÆ
ient at reatta
hment and also the overall heat transfer
oeÆ
ient. The in
rease in drag is typi
ally 10% with applied sound and is greater atlower frequen
ies and wind speeds. If the reatta
hment length is used as the 
hara
teristi
length, a simple 
orrelation exists between the lo
al Nusselt number (non-dimensional heattransfer 
oeÆ
ient) at reatta
hment and the Reynolds number for both 
ases with andwithout sound for all experimental data. A similar 
orrelation was found by Ota & Kon(1979) who varied the leading edge shape and M
Cormi
k et al. (1984) who varied theangle of atta
k to 
ontrol the reatta
hment length. This suggests that the 
ontrol of thereatta
hment length is 
ru
ial to eÆ
ient for
ed 
onve
tion.An extension to the study by Parker & Welsh (1983) to investigate the in
uen
eof a
ousti
 for
ing on base pressure was presented in Hourigan et al. (1993). The windtunnel arrangement was similar to Parker & Welsh (1983). The study involved plateswith aspe
t ratios of 
=t = 10, 13 and 15 at a Reynolds number around Re = 9; 000. Carewas taken to show that the pressure 
oeÆ
ient was not signi�
antly in
uen
ed by 
owvelo
ity to show generalisation of results with respe
t to Reynolds number. To maintaina 
onsistent a
ousti
 �eld, the ratio of the a
ousti
 parti
le velo
ity amplitude to the 
ow21



velo
ity (Euler number) was kept 
onstant. At 
=t = 10, the base pressure 
oeÆ
ientshowed a signi�
ant redu
tion 
lose to the 
riti
al redu
ed frequen
y rea
hing a minimum(maximum su
tion) at that frequen
y (St = 0:17). At 
=t = 13, there is a re
overy of basepressure at this 
riti
al frequen
y but two weaker lo
al peaks in base su
tion at a lowerand higher frequen
y. An in
rease in base su
tion, although not as strong as for 
=t = 10,is observed 
lose to the 
riti
al frequen
y for 
=t = 15. In this study it is assumed thatthe 
onve
tive velo
ity is approximately 75% of the free-stream velo
ity, so for an a
ousti
Strouhal number of St = 0:17, the vortex spa
ing along the plate is approximately 4:5plate thi
kness. This is approximately the di�eren
e in aspe
t ratio between 
=t = 10and 15 whi
h in both 
ases are ex
ited at this for
ing frequen
y. It therefore suggestedthat the aspe
t ratio in
uen
es the phase in the a
ousti
 
y
le at whi
h the leading-edgevorti
es arrive at the trailing edge. The interferen
e of the leading-edge vorti
es and thetrailing-edge shedding is re
e
ted in the mean base pressure 
oeÆ
ient. Also supportingthis proposition are measurements of 
u
tuating velo
ities in the wake with sound appliedat the 
riti
al frequen
y whi
h show a larger spe
tral peak when 
=t = 10 and 15 than at
=t = 13, due presumably to more vigorous shedding.Some preliminary results in a water tunnel at a redu
ed Reynolds number ofRe = 1300 to ease visualisation were also in
luded. The a
ousti
 �eld is simulated byvibrating side walls of the working se
tion. A sample of the 
ow visualisation is in
ludedin Figure 1.14. This showed more 
oherent shedding when the applied for
ing is 
loseto the 
riti
al frequen
y. Also observed were large-s
ale vorti
es shed from the leadingedge when for
ing is applied. The trailing-edge shedding is not as 
lear be
ause of theposition at whi
h the hydrogen bubbles were introdu
ed. A similar arrangement was alsoused by Wu et al. (1993) to investigate the spanwise 
orrelation from a long plate witha rounded leading edge. The aspe
t ratio was 
=t = 5 and the experiment 
arried out atRe = 600. The predominant 
ow stru
tures in this 
ase are from the trailing edge only.Measurements were taken using two hot-�lm sensors lo
ated approximately 3t from thetrailing edge whi
h were 6t and 9t apart. When for
ing is applied at the natural sheddingfrequen
y, the spanwise 
orrelation in
reased signi�
antly from 20% without for
ing untilsaturating at 90% above a 
ertain level of for
ing. The low 
orrelation in the unfor
ed
ase is due to phase jitter and the formation of streamwise vorti
es. The phase jitter isdue to small 
u
tuations in shedding frequen
ies along the span resulting in a di�erentphase of shedding along the span. The spanwise instabilities are reviewed in the nextse
tion. The for
ing 
auses the phase of shedding along the span to mat
h the for
ingand suppresses the spanwise instabilities.The base pressure measurements presented in Hourigan et al. (1993) were ex-tended to a wide range of plates, 6 < 
=t < 16, and for a wide range of for
ing frequen-
ies, 0:13 < St < 0:26, in Mills et al. (1995). A similar open jet wind tunnel arrange-22



ment to Parker & Welsh (1983) was used and the results were obtained at approximatelyRe = 11; 000. The amplitude of the sound pressure level near the speaker was kept 
on-stant for all plates and frequen
ies. The a
ousti
 parti
le velo
ity is zero near the 
entreof the plate and a

elerates around the 
orners. The velo
ity amplitude approximately0:1t horizontally from the leading edge without mean 
ow is 4.5% of the mean velo
ityfor 
=t = 10. There are small variations for di�erent plates as the speed up depends onthe aspe
t ratio of the plate. A plot of the absolute mean base pressure as a fun
tionof for
ing frequen
y and aspe
t ratio is presented in Figure 1.9. There are 
lear dis
retebands in the parameters where the absolute mean base su
tion rea
hes a lo
al maximum.For ea
h aspe
t ratio there is at least one well-de�ned peak. Plate lengths 
lose to thetransition between modes, su
h as for 
=t = 8, have two less distin
t peaks. When theStrouhal number based on 
hord length at whi
h the mean base su
tion peaks is plot-ted as a fun
tion of 
hord-to-thi
kness ratio, as in Figure 1.3, a stepwise in
rease is alsoobserved. Mills et al. (1995) 
ompared this with the natural shedding 
ase of Nakamuraet al. (1991) and the a
ousti
 resonan
e 
ase of Stokes & Welsh (1986) and suggestedthat the same instability is present. At higher Reynolds numbers the weak ILEV insta-bility is not observed naturally possibly due to turbulen
e and intera
tions with smallers
ale stru
tures. The response of the mean base pressure measurements suggest that thisinstability is ex
ited by the external for
ing. Smoke visualisation also 
on�rmed earlierobservations that, over a wide range of frequen
ies, the 
ow lo
ked to the for
ing andresults in the out of phase shedding from opposite sides of the leading edge.Okajima & Kitajima (1993) numeri
ally simulated os
illating re
tangular plateswith 
=t = 1; 2 and 3 to study the galloping instability. The plates were os
illated atan amplitude of 14% of the plate thi
kness and the 
ow lo
ked-in over a wide range offrequen
ies (i.e. from St = 0:076 to St = 0:7, whi
h was the maximum frequen
y usedin the simulation for 
=t = 1). From the phase of the predi
ted lift 
oeÆ
ient relative tothe os
illations, a narrow range of frequen
ies around St = 0:1 was shown to be unstable.In that range there is transfer of energy from the 
uid to the plate. This low frequen
yinstability is typi
al of galloping.1.3.3.1 Du
t a
ousti
 resonan
eThe behaviour of 
ow around long re
tangular plates subje
ted to a
ousti
 for
ing isrelated to the 
ase where the 
ontrol is from an a
ousti
 resonan
e generated by a platein a du
t. A verti
al array of plates in 
ross 
ow are 
ommonly used in heat ex
hangersand the intera
tion may ex
ite an a
ousti
 resonan
e (Welsh & Gibson, 1979). Theneighbouring plates are repla
ed by intermediate du
t walls to isolate the sour
es ofsound for one plate. In these experiments a �xed plate is pla
ed in a rigid walled du
t. A23
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Β-modeU∞

rectangular plate

rigid wallsFigure 1.10: A s
hemati
 diagram of a plate in a du
t in
uen
ed by the a
ousti
 resonan
e.s
hemati
 of this layout is shown in Figure 1.10. The sound generated by the 
ow �eldex
ites the �-mode whi
h is the fundamental a
ousti
 mode in the 
ross-
ow dire
tion asde�ned by Parker (1966). For plates with an aerodynami
 leading edge, a natural a
ousti
resonan
e develops when the frequen
y of the natural shedding of the body mat
hes thefrequen
y of the �-mode of the du
t (Welsh et al., 1984). The strong a
ousti
 resonan
emay rea
h up to 145dB and will lo
k the 
ow. Compli
ated du
t modes 
an be generatedin a du
t whi
h may 
omprise of higher harmoni
s whi
h vary in phase along the spanor in the longitudinal dire
tion. Only the �rst �-mode will be 
onsidered whi
h 
onsistsof a standing wave in the 
ross-
ow dire
tion with the a
ousti
 parti
le velo
ity havingan anti-node in the 
entre and nodes at the du
t walls. This results in a predominantly
ross-
ow perturbation to the 
ow �eld. Measurements have shown that the a
ousti
parti
le velo
ity in
reases near the plate and de
ays qui
kly away from the plate in thestreamwise dire
tion (Welsh et al., 1984).An early investigation involving a long re
tangular plate in a du
t was presentedin Welsh & Gibson (1979). A plate with 
=t = 5 was pla
ed in the 
entre of a square
ross-se
tioned du
t resulting in 2.6% blo
kage. The experiments ranged in Reynoldsnumber between 10; 000 < Re < 40; 000. At low Ma
h numbers, the frequen
y of the �rst�-mode is approximately 
onstant. The vortex shedding frequen
y whi
h was measuredin the wake in
reased with velo
ity (
onstant St). A natural a
ousti
 resonan
e o

urredwhen this shedding frequen
y was 
lose to the frequen
y of the �-mode. This o

urred inthe range of 0:10 < St < 0:12. An ex
ited resonan
e o

urred at a lower velo
ity wherethe natural shedding frequen
y would be about half that of the �-mode. This resulted inthe shedding frequen
y nearly doubling to 0:18 < St < 0:21. Flow visualisation showedthat the spa
ing between vorti
es along the plate also halved. In both the fundamental25



and high-order resonan
e, a high sound pressure level developed in the du
t. The a
ousti
resonan
e is initially ex
ited when the shedding frequen
y is 
lose to a harmoni
 of the�-mode. These resonan
e states 
an also be a
hieved by �xing the velo
ity but startingthe plate o� 
entred axially and moving it towards the middle of the working se
tion ofthe du
t. In their experimental rig, the sound pressure level rea
hed a maximum 3 se
ondsafter the plate 
ame to rest and a jump in shedding frequen
y o

urred 112 se
onds beforethe maximum sound pressure level was observed. This suggests that the shedding feedsinto the �-mode of the du
t whi
h then develops an a
ousti
 resonan
e. The a
ousti
resonan
e then lo
ks the 
ow to that frequen
y thus sustaining the resonan
e. In theresonan
e state the 
ow is in a state similar to the 
ases where a for
ed perturbation isapplied. Plates ranging from 0:5 � 
=t � 16 in length with a rounded leading edge andeither rounded or blunt trailing edges were examined by Welsh et al. (1984). As withthe Welsh & Gibson (1979) study, the velo
ity in the du
t was varied. The Reynoldsnumber was in the range of 22; 500 < Re < 32; 000. The rounded leading edge resultedin no large s
ale vorti
es from the leading edge. Unlike the blunt leading edge, no ex
itedresonan
e was observed and the natural resonan
e o

urred when the shedding frequen
ywas 
lose to the �-mode of the du
t. At 
=t = 16, with a rounded trailing edge, theshedding lo
ked to the du
t a
ousti
 resonan
e when the natural shedding frequen
y wasbetween 10% below the resonan
e frequen
y (lo
k-up) to 20% above (lo
k-down). In thisrange the shedding frequen
y is 
onstant and mat
hed the �-mode of the du
t. Thea
ousti
 resonan
e is weaker when a blunt trailing-edge plate was used. At the sameaspe
t ratio of 
=t = 16, the lo
k-in range was when the natural shedding frequen
ywas between 7% below the resonan
e frequen
y until approximately the natural sheddingfrequen
y. Flow visualisations showed stronger vorti
es shed from the trailing edge withmore spanwise 
orrelation in the lo
k-in range. The maximum sound pressure level didnot vary with aspe
t ratio for 
=t > 5 but redu
ed for shorter plates. A swit
h inshedding modes 
orresponding to a jump in shedding frequen
y was observed for theshorter plates. Leading-edge shear layers shed dire
tly into the wake when 
=t < 1 andno a
ousti
 resonan
es were observed in the range 1 < 
=t < 1:33 near transition.The se
ond part of this study presented in Stokes & Welsh (1986) used bluntleading-edge plates. Various plates with either rounded or blunt trailing edges up to
=t < 16 were experimented with in the range of 8; 000 < Re < 44; 300. The resonan
erange for the various plates are presented in Figure 1.11. Although there were no obvious
hanges in the 
ow, the rounded tailing-edge plates generated higher sound pressure levelsresulting in a 
learer visualisation of the 
ow �eld and a larger resonan
e range. In these
ond regime (3:2 < 
=t < 7:6) 
lassi�ed by Parker & Welsh (1983), a
ousti
 resonan
eo

urred at integer multiples of the natural shedding frequen
y. The me
hanism involved26
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Figure 1.11: Resonant range for a blunt leading-edge plate with rounded trailing or blunttrailing-edge plates from Stokes & Welsh (1986). The data terminated due to, either thevelo
ity limit, or the onset of higher du
t modes. The dotted lines represent ranges offrequen
y where resonant sound was present but was not suÆ
ient to lo
k the 
ow.
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here is equivalent to that of Welsh & Gibson (1979) whi
h has been dis
ussed earlier. Thelonger plates (7:6 < 
=t < 16) whi
h do not have a dominant natural shedding frequen
y,also show a 
ontinuation of this trend where resonant ranges were approximately multiplesof 0:6 in Strouhal number based on 
hord. For these plates, the resonan
e 
ould be startedfrom the random vorti
es shed from the plate. On
e ex
ited, the instability in the 
ow�eld sustains the resonan
e 
ompleting the feedba
k loop. In the resonan
e state the 
owvisualisation show similar features to a
ousti
ally-for
ed 
ow. These in
lude a shorterreatta
hment length, a higher base su
tion and out of phase shedding of dis
rete vorti
esfrom the leading edges whi
h are phase lo
ked to the for
ing. As a plate lo
ks to higherStrouhal numbers, more pairs of vorti
es are observed along the plate whi
h is similarto the situation for di�erent modes as the plates are lengthened in the natural shedding
ase examined in Nakamura et al. (1991). For example, at 
=t = 9:17, the resonan
eranges of 1:3 < St
 < 1:38, 1:62 < St
 < 2:09 and 2:42 < St
 < 2:63 
orresponded tomodes n = 2, 3 and 4. The resonant ranges shown in Figure 1.11 also indi
ate a distin
tstaging at multiples of approximately St
 = 0:6. In the natural shedding 
ase, Nakamuraet al. (1991) also observed the steps in Strouhal number base on 
hord to have this value.When the Strouhal number based on 
hord at whi
h the du
t a
ousti
 resonan
e rea
hesa maximum sound pressure level for the re
tangular plate is plotted as a fun
tion of 
=tas in Figure 1.3, a stepwise in
rease is also observed. As dis
ussed by Mills et al. (1995),the ILEV instability 
ould be ex
ited by the a
ousti
 resonan
e of the du
t.An attempt to develop a simple mathemati
al model for the du
t resonan
e waspresented in Welsh et al. (1984), and Stokes & Welsh (1986). The 
ow was modelledas an invis
id 
ow 
ontaining dis
rete point vorti
es to model the shed vorti
es. Thehigh a
ousti
 velo
ities (anti-node) and low a
ousti
 pressure (node) observed near thetrailing-edge of the plate suggest that the 
ow is in
uen
ed by the a
ousti
 velo
ity ratherthan a
ousti
 pressure. The a
ousti
 parti
le velo
ity of the resonant mode is assumed tobe approximately a potential 
ow in the 
ross-
ow dire
tion varying sinusoidally. This isvalid when the sour
e region is 
ompa
t relative to the du
t and the 
ow is approximatelyin
ompressible. Using Howe's theory (Howe, 1975, 1980), whi
h in
orporates the 
ow�eld, the vorti
ity �eld and the a
ousti
 parti
le velo
ities, the transfer of energy betweenthe 
uid and the sound �eld 
an be dedu
ed. A positive transfer of energy from the 
ow�eld to the sound �eld is a ne
essary but not suÆ
ient 
ondition for a
ousti
 resonan
e asthe damping to the a
ousti
 �eld must be 
onsidered. A
ousti
 resonan
e is sustainablewhen the a
ousti
 power generated mat
hes that leaving the system. This simple model
an give a qualitative des
ription of the system. Welsh et al. (1984) used this modelto analyse the trailing-edge shedding from long plates whi
h had no shedding from theleading edge. The model predi
ts more losses through the ends of the du
t for shorterplates resulting in a lower sound pressure level and a smaller resonan
e range. The28



analysis for a blunt leading edge was presented in Stokes & Welsh (1986). Only leading-edge vorti
es were 
onsidered. The generation of sound along the plate is negligiblebe
ause the vortex traje
tory is nearly normal to the a
ousti
 parti
le velo
ity. The mainsour
es or sinks of a
ousti
 energy were from vorti
es passing the trailing edge be
ausethe vortex path is nearly orthogonal with the a
ousti
 parti
le velo
ity. The phase in thea
ousti
 
y
le when the vorti
es pass the trailing edge was found to be the main 
riteriafor resonan
e. In a half 
y
le, a
ousti
 power is generated or absorbed depending on thephase of the a
ousti
 �eld when the vortex passes the trailing edge. This is repeated inthe next half 
y
le for the vortex on the other side. Contributions from pairs of vorti
esfurther downstream in the wake approximately annihilate ea
h other. For a �xed 
hord,and assuming that the 
onve
tive velo
ity of these vorti
es are not a fun
tion of shedding(du
t) frequen
y, the phase at whi
h these vorti
es enter the wake is 
ontrolled by theshedding frequen
y. Resonan
e o

urs when the timing of these vorti
es (relative to thea
ousti
 parti
le velo
ity) entering the wake results in a net transfer of energy betweenthe 
ow to the a
ousti
 �eld. The several distin
t resonan
e ranges are possible be
ausedi�erent numbers of pairs of vorti
es 
an exist along the plate while still maintaining this
ondition.As a method of suppressing the a
ousti
 resonan
e, Stoneman et al. (1988) ex-perimented with using a se
ond plate pla
ed downstream. All edges of both plates wererounded with aspe
t ratios of 
=t = 813 and 
=t = 8 for the upstream and downstreamplate respe
tively. The thi
kness of the trailing plate was 0:625t of the leading plate andexperiments ranged from 10; 000 < Re < 20; 000 based on the upstream plate. As usual,the trailing-edge shedding from the front plate 
auses an a
ousti
 resonan
e for a rangeof Strouhal numbers when the shedding frequen
y is near the �-mode of the du
t. Exper-iments 
on
entrated in suppressing resonan
e in this range. In this rig, the leading edgealone produ
es a sound pressure level of 150dB. When varying the distan
e between theplates, the downstream plate 
an be a sour
e or sink of a
ousti
 energy and the soundpressure level rises and drops with a period of approximately 3.75 plate thi
kness of theupstream plate. The a
ousti
 resonan
e 
an be lowered to 94dB or ampli�ed to 153dB.When the a
ousti
 resonan
e is signi�
antly damped, there is a narrower lo
k-in range.An improved numeri
al model was developed to simulate and analyse the system. Adis
rete vortex model is used to model the 
ow and the sound �eld is found by solvingthe wave equation whi
h gives a more realisti
 a
ousti
 parti
le velo
ity �eld than thepotential 
ow model as it simulates the nodes at the du
t walls and the anti-nodes alongthe 
entreline of the plate. The a
ousti
 power and energy is 
al
ulated using Howe'stheory (Howe, 1975, 1980). The model predi
ts that the suppression or augmentation ofa
ousti
 energy depends on the phase of the a
ousti
 
y
le when the vorti
es from theupstream plate rea
h the leading edge of the downstream plate. This in turn depends on29



the 
onve
tive velo
ity of the vorti
es and the plate spa
ing. Similar to the single plate
ase, near the leading edge of the downstream plate, the vortex path is nearly orthogonalto the a
ousti
 parti
le velo
ity 
reating either a net sour
e or sink of a
ousti
 energydepending on the dire
tion of the a
ousti
 �eld in relation to the sign of the vorti
ity inthe vortex.A review of experiments involving the intera
tion of the sound �eld and the 
uid
ow was presented in Welsh et al. (1990). This in
luded experiments on long platessubje
ted to external sour
es of sound and plates pla
ed in du
ts whi
h generated a
ous-ti
 resonan
e. Although high sound pressure levels (i.e. up to 150dB) generated bya
ousti
 resonan
e have an obvious in
uen
e on the 
ow and 
an be easily dete
ted byexperimenters, however, low levels (about 70dB) 
an also in
uen
e the 
ow �eld but thepresen
e of the a
ousti
 modi�
ation of the 
ow �eld is not as obvious. The in
uen
e oflow levels of a
ousti
 resonan
e on the 
ow �eld was shown with rounded leading-edgeplates in solid du
t wall at 
ow velo
ities well below the 
riti
al velo
ity where loud a
ous-ti
 resonan
e o

urs. The authors warn that low levels of a
ousti
 resonan
e 
an in
uen
ethe results of wind tunnel experiments.1.4 Spanwise 
ow instabilitiesThe 
ow over two-dimensional bodies develops three-dimensional or spanwise instabilitiesabove a 
riti
al Reynolds number. There have been many blu� body studies, espe
iallyon 
ir
ular 
ylinders, at low Reynolds number near the initial transition to three dimen-sionality with the aim of understanding phenomena observed at mu
h higher Reynoldsnumbers. Apart from being observed experimentally, these have also been su

essfullymodelled theoreti
ally and numeri
ally in re
ent times (e.g., Thompson et al., 1996, Hen-derson & Barkley, 1996).1.4.1 Short blu� bodiesMany studies have 
on
entrated on 
ir
ular 
ylinders be
ause it is a simple geometry withthe only free parameter being the Reynolds number. Although this geometry has beenstudied for a long time, re
ent attention has been fo
used in the range of 190 < Re <260 whi
h spans the onset of three dimensionality. The �rst transition is at Re � 45where the 
ow 
hanges from being steady in time to large s
ale von Karman shedding.The onset of three dimensionality results in distin
t 
hanges in the relationship betweenshedding frequen
y and base pressure with Reynolds number. The Strouhal number in30



the wake undergoes dis
ontinuities in the Reynolds number ranges 180 < Re < 194 and230 < Re < 260 (Williamson, 1988). These ranges 
annot be narrowed be
ause the �rstdis
ontinuity is hystereti
 and the se
ond involves a gradual 
hange with both frequen
iespresent within the range. Measurements of mean base pressure show a drop in basesu
tion at the �rst transition and a lo
al peak in base su
tion at the se
ond transition(Williamson & Roshko, 1990). The drop in mean base su
tion at the �rst transition isdue to the redu
ed spanwise 
orrelation. At the se
ond transition, the primary vortexshedding re
overs spanwise 
orrelation resulting in the peak in base su
tion before beingin
uen
ed by smaller three-dimensional stru
tures at higher Reynolds numbers. Earlymeasurements by Roshko (1955) and visualisation by Hama (1957) showed the transitionto three dimensionality.A detailed study and 
lassi�
ation of these instabilities was presented inWilliamson(1988). The �rst spanwise instability to develop in the range of 180 < Re < 194 is 
alledMode A. There is a transfer of energy between the �rst and se
ond mode, 
alled Mode Bin the range of 230 < Re < 260 with apparently only Mode B present above this range.Mode B persists well into the turbulent regime although the regularity de
reases as the
ow be
omes more turbulent making it more diÆ
ult to visualise. Spanwise 
orrelationsof the 
ow for Re > 1; 000 by Wu et al. (1994) 
learly indi
ate the presen
e of ModeB streamwise vorti
al stru
tures. Sin
e the initial 
lassi�
ations, many resear
hers have
on�rmed the presen
e of these two transitions. Experiments by Norberg (1994) have also
on�rmed the presen
e of theses instabilities. Thompson et al. (1994, 1996), and Hender-son & Barkley (1996) were the �rst to a

urately predi
t these instabilities numeri
allyand theoreti
ally. A 
ombination of 
ow visualisation from experimental and numeri
alsimulations by Williamson (1988) and Thompson et al. (1996) shown here in Figure 1.12highlights the vorti
al stru
tures of the two di�erent instabilities. The spanwise wave-length of Mode A is approximately 3 to 4 diameters and that of Mode B is about 0:8 to1 diameters (Williamson, 1988).The theoreti
al predi
tion by Barkley & Henderson (1996) using the Floquet sta-bility analysis has identi�ed the most unstable wavelengths and 
riti
al Reynolds numberfor ea
h shedding mode. The 
al
ulations show the 
riti
al Reynolds numbers for Mode Aand Mode B are Re = 188:5� 1:0 and 259 respe
tively. At the onset of these instabilities,the spanwise wavelengths are 3:96 � 0:02 and 0:822 diameters for these two modes. Ananalysis by Williamson (1996) linked these wavelengths to di�erent physi
al stru
tures.Mode A appears to be an ellipti
al instability of the two-dimensional vortex 
ores, whileMode B appears to be an instability of the braid regions between the rollers. Importantly,the di�erent instabilities lead to two di�erent topologies for the modes. For Mode A, thestreamwise vorti
al stru
tures 
onne
ting the largely two-dimensional vortex rollers arealigned in the downstream dire
tion so that they are of opposite sign on opposite sides31



Figure 1.12: Visualisation of Mode A (top) and Mode B (bottom) taken from abovethe 
ylinder. The pi
tures on the left is from Thompson et al. (1996) in whi
h tra
erparti
les are pla
ed in the simulated 
ow. The pi
tures on the right is from experimentsby Williamson (1988).
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of the wake. For Mode B, the reverse is true; here the stru
tures are of the same sign onea
h side of the wake.These spanwise instabilities have been observed on other short blu� bodies. Nu-meri
al simulations have been performed on ellipti
al 
ylinders, normal 
at plates andsquares. Although Mittal & Bal
handar (1996) mainly 
on
entrated on the numeri
als
heme and the lift and drag for
es on an ellipti
al 
ylinder, spanwise Mode B patternswere observed. A 
at plate normal to the 
ow was studied by Najjar & Bal
handar (1998).A dire
t numeri
al simulation at Re = 250 showed the system os
illated between a highand low drag state with a period of 10 times the vortex shedding period. The high dragstate had 
oherent Karman vorti
es with the presen
e of well organisedMode B stru
tureswith a spanwise wavelength of 1:2t. Robi
haux et al. (1999) performed a Floquet stabilityanalysis for a square-se
tioned 
ylinder. This analysis predi
ted the growth of the �rstspanwise instability at Re = 161 and the se
ond at Re = 190. The spanwise wavelengthsof the �rst and se
ond modes were 5:2t and 1:2t and their vorti
al stru
tures were similarto Mode A and Mode B respe
tively. A third instability 
alled Mode S was also predi
tedwhi
h was present above Re > 200 and has a spanwise wavelength of 2:8t. Unlike theother two modes, this instability is subharmoni
 and has twi
e the period of the two-dimensional shedding. The numeri
al simulations by Sohankar et al. (1999) on a squarese
tion showed the presen
e of a both Mode A and Mode B in the three-dimensional waketransition pro
ess.Only the most basi
 spanwise phenomena are 
onsidered here. Experiments onblu� bodies, espe
ially 
ir
ular 
ylinders at low to moderate Reynolds numbers, havedemonstrated many other features in
luding oblique/parallel shedding, vortex dislo
ationsand 
ellular shedding. It may be possible to study these numeri
ally or theoreti
ally infuture with improvements in 
omputing speed and numeri
al te
hniques.1.4.2 Long re
tangular plateUnlike short blu� bodies su
h as the 
ir
ular 
ylinder, there has been less interest in three-dimensional transition for 
ow around long re
tangular plates. Only vorti
al stru
turesfrom the leading edge have been 
onsidered in detail as their intera
tion with the trailing-edge stru
tures signi�
antly in
reases the 
omplexity. Spanwise instabilities develop inthe large-s
ale vorti
es shed from the leading edge at low to moderate Reynolds numbersand the separating shear layer at higher Reynolds numbers.Sasaki & Kiya (1991) observed the 
ow near the leading edge of long re
tangularplates in a water tunnel. The plates used had an aspe
t ratio of 
=t = 10, 20 and 40 and the33



Pattern A Pattern B
320<Re<380 Re>380

Figure 1.13: A top view of the long re
tangular plate showing a sket
h of the spanwisestru
tures of the shed vorti
es observed by Sasaki & Kiya (1991).Reynolds number range in the experiment was 80 < Re < 800. Clear 
ow visualisationswere obtained using dye tra
ers and hydrogen bubbles. No large-s
ale vorti
es were shedfrom the leading edge below Re < 320. On
e shedding was observed, the reatta
hmentlength was approximately 4:5t in this Reynolds number range. Measurements were takenbetween 0.6 to 2 times the re-atta
hment length. Spanwise instabilities were observedat the onset of shedding. A sket
h of the two instabilities observed in this Reynoldsnumber range is shown in Figure 1.13. The �rst mode named Pattern A by Sasaki andKiya (1991) is observed in the range of 320 < Re < 380. Slight disturban
es 
ould
ause the deformation of the vortex 
ores. This is ampli�ed by high velo
ity gradientsin the vorti
es, near the plate and in the shear layer resulting in ^-shape stru
tures.The streamwise vortex stru
tures whi
h o

ur between the two-dimensional spanwisevorti
es are in phase with subsequent streamwise vorti
es. The streamwise and spanwisewavelengths are both approximately between 2t and 2:5t. For Reynolds numbers in ex
essof Re > 380, a di�erent mode be
omes dominant whi
h has been 
alled Pattern B. Thismode has a wavelength of 3t to 4t in both the spanwise and streamwise dire
tions. Thestreamwise vorti
es form hairpin-like stru
tures whi
h are signi�
antly stret
hed in thestreamwise dire
tion. These stru
tures still form in rows but ea
h row is staggered withrespe
t to the next one. The vorti
es downstream indu
e the formation of the initiallytwo-dimensional upstream vortex to develop waviness shifted by half a wavelength. Thepattern is less regular with in
reasing Reynolds number.Similar spanwise instabilities have been observed in wall bounded shear 
ows.These are studied in the 
ontext of transition to turbulen
e and unlike the plate, there34



is no separation of the shear layer. At suÆ
iently high Reynolds numbers, slight per-turbations to the boundary layer readily generate Tollmein-S
hli
hting waves whi
h aredis
rete pat
hes of vorti
ity but these waves may also o

ur without perturbation. Three-dimensional stru
tures 
an be observed when the perturbation is not uniform along thespan. Using a vibrating trip wire, Perry et al. (1981) observed ^-shape stru
tures sim-ilar to Pattern A. An alternative stru
ture, 
alled a subharmoni
, has been observed byKa
hanov & Lev
henko (1984) and Sari
 & Thomas (1984). The vortex pattern hadtwi
e the wavelength of the Tollomien S
hli
hting waves be
ause the hairpin stru
tureswere staggered between rows in the streamwise dire
tion. Both patterns were observedbefore turbulent transition further downstream. At higher Reynolds numbers when theboundary layer is turbulent, Head & Banyopadhyay (1981) have observed hairpin vorti
es.The separating shear layer prior to reatta
hment and the shedding of large s
alevorti
es exhibit three-dimensional instabilities at higher Reynolds numbers. As observedby Cherry et al. (1984), at Re = 3; 200 the shear layer develops three-dimensionalitysoon after separation and the spanwise 
orrelation de
reases with the development ofthe shear layer. The e�e
t of higher Reynolds number and smaller s
ales is to blur thevisualisation of 
oherent stru
tures; the same applies to the large s
ale shedding at higherReynolds numbers. Without any perturbation, 
lear 
ow stru
tures were not observedfor 
ow over a re
tangular plate at Re = 900 by Soria et al. (1993) and at Re = 1; 300 byHourigan et al. (1993). The random development of three-dimensional stru
tures in theshed vorti
es leads to smaller s
ale stru
tures downstream. Although some horseshoe-likestru
tures 
ould be observed further downstream, the pattern is not 
lear and regular.A 
ow visualisation by Hourigan et al. (1993) in Figure 1.14(a) show the randomness ofspanwise stru
tures without for
ing. Regular large-s
ale vortex stru
tures would not beexpe
ted at higher Reynolds numbers.1.4.2.1 For
ed sheddingExperiments by Soria et al. (1993) and Hourigan et al. (1993) in
luded spanwise 
owvisualisation of 
ow around long re
tangular plates in a water tunnel. Perturbations areapplied by os
illations of the side walls of a water tunnel. The velo
ity amplitude nearthe walls was vpert = 5% of free-stream velo
ity in Soria et al. (1993). Two-dimensionalvortex 
ores develop from the shear layer and spanwise vortex stru
tures develop in arepeatable manner a
ross the span. Staggered horseshoe stru
tures were observed over awide range of frequen
ies (0:22 < St < 0:36) used in the experiment. Clear visualisationwas obtained by Hourigan et al. (1993) at the same level of perturbation. Figure 1.14(b)shows the 
ow pattern at an applied perturbation frequen
y of St = 0:20. Together witha shorter reatta
hment and stronger shed vorti
es, the applied perturbation also 
auses35



(a)

(b)

Figure 1.14: Flow visualisation from Hourigan et al. (1993) showing the side and top view(not at the same instant) of a re
tangular plate (a) without applied perturbation and (b)with applied perturbation at St = 0:2the formation of staggered horseshoe-like stru
tures.
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Chapter 2
Numeri
al Te
hniques
Many previous studies on the 
ow around re
tangular plates, espe
ially those with appliedfor
ing have been done experimentally. This study aims to simulate some of the experi-mental observations and test some hypotheses previously proposed or suggested by others.Although the maximum Reynolds number is more limited in the numeri
al simulations,it is hypothesised that the important 
ow physi
s 
an still be 
aptured. Comparison withexperimental results will be used to test this 
laim. Numeri
al simulations also hope togive more insight into the physi
s of the problem by providing detailed time-dependentdata. Dire
t numeri
al simulations with no sub-grid s
ale or turbulen
e models are usedto a

urately model the 
ow. As the geometry being studied is a moderately simple one,a high-order spatial s
heme 
an be used without signi�
ant 
ompli
ations. A high-orders
heme uses less nodes to a
hieve the same resolution, and if well implemented, 
an resultin a redu
tion in memory and 
omputational requirements. A unstru
tured spe
tral-element te
hnique is used for spatial dis
retisation in two dimensions be
ause it allowsfor mesh 
exibility and 
an a
hieve a high order of a

ura
y. As the geometry is onlytwo dimensional, a Fourier expansion is used to extend the model to three dimensionsbe
ause it is easy to implement and is 
omputationally eÆ
ient. A 
lassi
al three-steptime-splitting s
heme is used to advan
e the simulation in time.This 
hapter will des
ribe both the temporal and spatial dis
retisation used inthis study. A des
ription of the boundary 
onditions used in the numeri
al model isin
luded. To test the a

ura
y of the model, two ben
hmark problems were used tovalidate the s
heme, namely the ba
kward-fa
ing step 
ow and the driven 
avity 
ow.To a

urately simulate the 
ow over a re
tangular plate, the size of the domain and therequired spatial and temporal resolution are determined. A des
ription of the appli
ation37



of Howe's a
ousti
 model is given. Finally, other post-pro
essing steps are also elu
idated.2.1 Numeri
al s
hemeThe main software used in this study implements a numeri
al solver for the time-dependentin
ompressible Navier-Stokes equations. These 
onsist of the momentum equation�u�t = �(u � r)u�rp + 1Rer2u; (2.1)and the in
ompressibility 
onstraint r � u = 0: (2.2)As will be dis
ussed in the following se
tions, the spatial derivatives are evaluated usinga mixture of spe
tral-element and global spe
tral dis
retisations while the equations areintegrated forward in time using a 
lassi
al three step splitting s
heme. This program is amodi�
ation of �nite-element software to in
orporate high-order interpolation within ea
helement. It was mainly developed by Mark C. Thompson and Kerry Hourigan from theDepartment of Me
hani
al Engineering, Monash University. This software was initiallydeveloped to study 
ow past a 
ir
ular 
ylinder and has a

urately modelled the spanwiseinstabilities at low Reynolds numbers (Thompson et al., 1994, 1996).2.1.1 Spatial s
hemeThe spatial dis
retisation is based on a two-dimensional spe
tral-element s
heme. This isextended into the spanwise dire
tion using a global Fourier spe
tral s
heme. The spe
tral-element te
hnique was �rst applied to the study of 
uid dynami
s by Patera (1984).Sin
e then, further re�nements have been introdu
ed by Karniadakis (1989, 1990). Thete
hnique employed in this study is similar to that used by Karniadakis & Triantafyllou(1992) to simulate three-dimensional blu� body 
ows. Initially, this se
tion will reviewthe spe
tral-element s
heme used for the two-dimensional simulations and then des
ribethe extension to three dimensions through a Fourier expansion.2.1.1.1 Two-dimensional dis
retisationTraditionally, the �nite-element method has found favour be
ause of its ability to han-dle 
omplex geometries. Typi
ally �rst- or se
ond-order elements are used be
ause thiss
heme is more 
omputationally eÆ
ient using these elements. A global spe
tral method38



(Canuto et al, 1988) 
an a
hieve \spe
tral 
onvergen
e" when implemented 
orre
tly buthandles only the simplest of geometries without signi�
ant 
ompli
ations. The spe
tral-element te
hnique is a hybrid of these two te
hniques. The spe
tral-element method isessentially a modi�
ation of the Galerkin �nite-element method to in
orporate a spe
tralexpansion within ea
h element. When a problem results in a 
ontinuous and smoothsolution, the spe
tral-element te
hnique 
an a
hieve exponential 
onvergen
e, with signif-i
ant savings in 
omputations over high-order �nite element te
hniques espe
ially whenhigh a

ura
y is required. The end result is a high-order spatial s
heme that in
orporatesmu
h of the ability of the �nite element te
hnique to handle geometries.The main di�eren
e between the traditional Galerkin �nite-element method andspe
tral-element method is in the 
hoi
e of basis fun
tions. After mapping the elementsto a 
omputational square, the spe
tral-element te
hnique uses the tensor produ
t ofhigh-order Lagrangian polynomials to interpolate the solution variables in ea
h dire
tionwithin ea
h element. Importantly, within ea
h lo
al element, the nodes are 
hosen to beat the Gauss-Lobatto-Legendre quadrature points whi
h are the roots of the equation,(1� �2)P 0m(�) = 0 with � 1 � � � 1 (2.3)where the Legendre polynomials arePm = 12mm! dmd�m (x2 � 1)m where m = 0; 1; 2; :: : (2.4)The nodes are stret
hed towards the boundaries of ea
h element as shown in Figure 2.1and Figure 2.3(b). Typi
ally between 6th (m = 6) and 12th (m = 12) order polynomialsare used, resulting in an equivalent order of a

ura
y, and hen
e between N = 7 to 13nodes in ea
h dire
tion. The Galerkin weighted residual method is used to form equationsfor the solution variables at the nodal points. The momentum equations are multipliedby the nodal weighting fun
tions, in this 
ase the asso
iated Lagrange polynomials, andintegrated over all spa
e. Be
ause the weighting fun
tions are only non-zero within theelement, the resulting integrals only depend on the lo
al and neighbouring elements.These integrals are evaluated numeri
ally by Gauss-Lobatto-Legendre quadrature. Itturns out that this is mu
h more eÆ
ient 
omputationally than the normal �nite-elementapproa
h of using Gauss-Legendre quadrature. For Gauss-Lobatto-Legendre quadraturethe weighting 
oeÆ
ients are given bywj = 2m(m + 1) 1[Pm(xj)℄2 with j = 0; 1; ::; m: (2.5)This allows an integral to be evaluated by the following approximation :Z 1�1 f(x)dx �= NXj=1wjf(xj) (2.6)39



and is exa
t if f(x) is a polynomial of degree 2N �3 or less. (This is slightly less a

uratethan for Gauss-Legendre quadrature where the approximation is exa
t for polynomials ofdegree 2N � 1 or less.)Earlier implementations of these s
hemes positioned the nodes at the Gauss-Lobatto-Chebyshev points (Patera, 1984, Karniadakis, 1989) but later used Gauss-Lobatto-Legendre points (Karniadakis, 1990, Karniadakis & Triantafyllou, 1992). This is mainlybe
ause the 
ompression of the nodes towards element boundaries is not as severe.Using Lagrange polynomial basis fun
tions and lo
ating the nodes at the Gauss-Lobatto-Legendre points leads to signi�
ant 
omputational bene�ts. Only a limited num-ber of nodes in an element 
ontribute to the equations formed at a parti
ular node. Forexample, the \Mass" matrix is diagonal whi
h markedly improves the eÆ
ien
y of time-stepping problems. This is not the 
ase for traditional �nite-element implementationswhere Gauss-Legendre quadrature is used. Stati
 
ondensation te
hniques further re-du
e the 
omputational requirements. This te
hnique takes advantage of the fa
t thatthe equations for the internal nodes in ea
h element are only a fun
tion of the elementboundary nodes. This allows the matrix equations to be de
oupled into two sets; oneinvolving the element boundary nodes, and K small matrix equations for the internalnodes of ea
h element. After solving the larger matrix equation governing the boundarynodes, the K smaller matrix equations are inverted to provide the solution at the internalnodes. Bandwidth minimisation s
hemes 
an redu
e the bandwidth of the matri
es andsparse matrix solvers are used to solve the large system of equations involved. If thegrid, physi
al 
onstants and timestep are �xed, the matri
es are de
omposed using LUde
omposition at the start of the simulation and stored in memory. Impli
it steps (i.e. forpressure and di�usion) are done by ba
ksubstitution from the stored LU de
omposition.2.1.1.2 Spanwise dis
retisationAn eÆ
ient way to extend the method to three dimensions for two-dimensional geometriesis to use a global Fourier spe
tral dis
retisation in the third dire
tion. This approa
h wasused in 
onjun
tion with a spe
tral-element method by Karniadakis (1990) and spe
if-i
ally on two-dimensional 
ir
ular 
ylinders by Karniadakis & Triantafyllou (1992) andThompson et al. (1996). This global spe
tral approa
h has the advantage of exponentialor spe
tral 
onvergen
e but restri
ts the boundary 
onditions in the spanwise dire
tionto be periodi
.The spatial dis
retisation 
onsists of a series of F equi-spa
ed planes in the span-wise dire
tion with an identi
al spe
tral-element mesh on ea
h plane. The 
ow variablesare transformed into Fourier spa
e in the spanwise dire
tion for ea
h node on the spe
tral-40



element grid. A fast Fourier transform is used to redu
e the operation 
ount. This de-
ouples the problem into a set of F Fourier modes whi
h 
an be solved independentlyfor the linear operators. This results in the generation of F=2 smaller matrix equationsrather than one large matrix equation with a large bandwidth whi
h would 
onsiderablyin
rease the storage requirements. The de
oupling of the problem into e�e
tively F=2 two-dimensional planes and the use of stati
 
ondensation for the spe
tral-elements dis
ussedin the previous se
tion fa
ilitates the implementation on parallel ar
hite
ture ma
hines.This has not been implemented yet but is work in progress. In the future with advan
es in
omputational performan
e, it will soon be possible to perform a

urate simulations withspe
tral-element dis
retisation in all three dimensions. Although this is signi�
antly more
omputationally expensive, it will allow three-dimensional geometries to be simulated.2.1.2 Temporal s
hemeThere are many te
hniques for integrating the Navier-Stokes equations forward in time.The three step time-splitting te
hnique des
ribed in Karniadakis et al. (1991) is wellsuited to the spatial te
hnique used here. It splits the Navier-Stokes equations into threesub-steps and allows a mixture of impli
it and expli
it high-order temporal s
hemes tobe used for ea
h sub-step. The momentum equations are split into three semi-dis
reteequations, namely the non-linear 
onve
tive step,u� � un�t = �u � ru; (2.7)the pressure 
orre
tion step, u�� � u��t = �rpn+1; (2.8)and the di�usive step un+1 � u���t = 1Rer2u; (2.9)where the supers
ripts n and n + 1 refers to the time level at the start and end of thetimestep respe
tively. This te
hnique introdu
es two intermediate 
ow �elds (i.e. u� andu��). The pressure (pn+1) is obtained by enfor
ing in
ompressibility at the end of steptwo (Equation 2.8).The 
onve
tive equations are non-linear and are normally solved expli
itly usingthe Adam-Bashforth family of s
hemes to avoid iterations but this restri
ts the maximumsize of the timestep. The di�usive step 
an be solved impli
itly using the Adam-Moultonfamily of s
hemes resulting in a Helmholtz equation whi
h is solved by inverting theequation matrix. The spe
tral-element spe
tral s
heme used for the simulations des
ribedhere uses the third-order Adam-Bashforth s
heme for the non-linear step and the se
ond-order Adam-Moulton (Crank-Ni
holson) s
heme for the di�usive step. For the pressure41



step, the se
ond intermediate 
ow �eld (u��) is for
ed to satisfy the in
ompressibility
onstraint. As a result the pressure 
an then be found by solving a Poisson equation,r2pn+1 = 1�tr � u�; (2.10)and subsequently the pressure sub-step is used to �nd (u��). When u�� satis�es the
ontinuity equation then un+1 also satis�es that 
ondition (provided the initial �eld isdivergen
e free).2.1.3 Boundary 
onditionsTypi
ally, the equation for the 
onve
tive sub-step is applied to the entire domain in
lud-ing the boundary nodes and no boundary 
onditions are pres
ribed in this operation (i.eu� is not �xed at the boundaries). The pressure boundary 
ondition is 
hosen so that thethe se
ond intermediate velo
ity �eld, u��, is divergen
e free everywhere in the domainand also at the boundaries. Boundary 
onditions are imposed on the �nal velo
ity �eld,un+1 when solving the Helmholtz equation for the di�usion step. This ensures that thevelo
ity boundary 
ondition is satis�ed at the end of this timestep and the start of thenext. As shown by Karniadakis et al. (1991), an appropriate 
hoi
e of boundary 
ondi-tion for the pressure gradient normal to the boundary is required to eliminate the splittingerrors and ensure 
ontinuity is satis�ed at the boundaries. A stable formulation is pro-posed in Karniadakis et al. (1991) whi
h uses the 
ow �eld from previous timesteps toform a 
ondition for the normal pressure gradient at the boundary. As shown by Karni-adakis et al. (1991), the order of the time-mar
hing s
heme 
an only be one order abovethe order of extrapolation used to �nd the pressure boundary 
ondition. The numer-i
al s
heme used in this study uses a �rst-order pressure boundary 
ondition resultingin overall se
ond-order time-a

urate s
heme (
onsistent with the order of the di�usionsub-step).2.1.4 Stopping 
riteria for temporal evolutionIn the present study, generally only the asymptoti
 state is of interest. Simulations arestarted with either a stationary 
uid or a 
ow �eld whi
h has rea
hed an asymptoti
 stateat a lower Reynolds number. Care is taken to as
ertain if the 
ow has rea
hed an asymp-toti
 state. This sometimes required between several hundred and several thousand timeunits to be simulated before this is a
hieved (Typi
ally there are 100 or more timestepsper time unit). The 
ow is judged to have rea
hed a steady state if the maximum 
hange42



in the velo
ity �eld (�u) per timestep is four orders of magnitude below the mean 
owvelo
ity. When the asymptoti
 
ow is not steady, a key indi
ator su
h as the total kineti
energy or the base pressure is monitored. The possible unsteady states observed in these
ows in
lude a periodi
 state where the 
ow is repeatable every period, a quasi-periodi
state in that there are a few frequen
ies present and a 
haoti
 or random state where thereare many frequen
ies present. The 
ow is assumed to have rea
hed a periodi
 state whenthe indi
ator shows a repeatable pattern over several periods. When the 
ow rea
hes aquasi-periodi
 state, the signal is usually repeated after a mu
h longer time interval thanin the previous 
ase. In this 
ase, the simulation is evolved until several periods of thelongest wavelength is 
aptured and show a repeatable pattern. In the last 
ase, the statis-ti
al properties of the signal su
h as the mean and the standard deviation are 
al
ulatedand the simulation is stopped after these properties are approximately 
onstant (takenover several data sets).2.2 ValidationTo validate the 
ode and investigate typi
al grid resolutions required, two 
lassi
al testproblems are studies: namely, 
ow over a ba
kward-fa
ing step and the driven 
avity 
ow.These are two distin
t problems in that the 
ow over a ba
kward-fa
ing step involves anin
ow and an out
ow boundary, while the driven 
avity 
ow is a 
losed system. Thedriven 
avity 
ow problem is also used to investigate the possibility of using a di�erentimpli
it s
heme for the non-linear substep namely the Runge-Kutta s
heme. This isstudied be
ause the 
onve
tive step is done expli
itly and an improved s
heme 
ouldredu
e the timestep restri
tion.2.2.1 Ba
kward-fa
ing step 
owThere are numerous studies involving this parti
ular problem as this is used as a ben
h-mark problem to verify numeri
al methods for 
omputing 
ows. Results from Kim &Moin (1985), and Gresho et al. (1993) will be used as validation. Simulations from Kim& Moin (1985) are 
hosen be
ause results are presented for a wide range of Reynolds num-bers using a time-dependent solver. A detailed study of this problem at Re = 800 waspresented by Gresho et al. (1993). Using various spatial s
hemes in
luding the spe
tral-element method, Gresho et al. (1993) showed that at Re = 800, the 
ow is steady andstable to perturbations. Gresho et al. (1993) showed that if the 
ow is not well resolved,the spe
tral-element method (as well as other s
hemes) 
an predi
t an arti�
ial unsteadybehaviour even after a long simulation time. The resolution used in this study mat
hes a43
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Figure 2.1: A layout for the '
ow over a ba
kward-fa
ing step' problem (above) and thespe
tral-element mesh used for the simulation (below). Note that within ea
h spe
tral-element there are 8� 8 nodes (N = 8).resolution used in Gresho et al. (1993) to produ
e a 
onsistent result at Re = 800. It isassumed that this will also be able to resolve the 
ow at lower Reynolds numbers. As is
ommon pra
ti
e, the reatta
hment length of the separation bubble formed in the wakeof the step will be used for 
omparison.The parameters for this problem is 
hosen so as to mat
h Kim & Moin (1985)and Gresho et al. (1993). A layout of the 
ow over a ba
kward-fa
ing step problem isshown in Figure 2.1. It involves a two-dimensional 
hannel of height H and an in
ow onthe left boundary above a step of height h and out
ow some distan
e downstream. Noslip boundaries are applied to the top and bottom of the 
hannel and the step. In thisparti
ular study, the step height is 
hosen to be half the 
hannel height and the out
owboundary to be 17H downstream of the in
ow boundary although Kim & Moin (1985)used a shorter domain (15H). The in
ow velo
ity pro�le has a paraboli
 pro�le whi
happroximates a fully developed laminar 
hannel 
ow at the entry to the expanded region.The paraboli
 pro�le is, u(y) = (24y(12 � y); 0); y 2 (0; 0:5); (2.11)where y is the verti
al distan
e above the step. The paraboli
 pro�le 
hosen has an averagevelo
ity of one unit. The Reynolds number is based on the average in
ow velo
ity andthe 
hannel height H. The normal gradients for all 
ow variables are set to zero at theout
ow boundary.Simulations were performed at Reynolds numbers of Re = 10; 100; 200; 400 and800. The spe
tral-element mesh used for this problem 
onsisted of a 32 � 4 (K = 128)regularly spa
ed element with 8 � 8 (N = 8) nodes in ea
h element as shown in Figure2.1. The simulations were started with the 
ow �eld from a lower Reynolds number andstopped when the 
ow rea
hed a steady state. Figure 2.2 shows the streamlines of the44




ow at ea
h Reynolds number after the 
ow has rea
hed a steady state. The reatta
hmentlength, r, is measured by sear
hing for the point where the 
ow swit
hes dire
tion alongthe �rst layer of nodes from the bottom boundary. Table 2.1 show a 
omparison ofreatta
hment lengths, r, between the present simulations and previous studies . The twosets of results show only a small di�eren
e. A possible sour
e of error other than fromthe numeri
al s
heme is the method used for measuring the reatta
hment length. Thespa
ing between the �rst layer of nodes and the boundary and the horizontal spa
ing ofthe nodes are di�erent for the di�erent s
hemes. This may have a small in
uen
e on theresults. Re r=h (Present Study) r=h (Comparison)10 0:81100 3:19 3:2 (Kim & Moin, 1985)200 5:39 5:3 (Kim & Moin, 1985)400 8:61 8:6 (Kim & Moin, 1985)800 12:05 12:2 (Gresho et al., 1993)Table 2.1: Comparison of reatta
hment length and between the present study and Kim& Moin (1985) and Gresho et al. (1993).2.2.2 Driven 
avityThe 
lassi
al driven 
avity 
ow problem 
onsists of a square domain with three stationarywalls and a 'sliding lid'. The 'sliding lid' is normally the top boundary having a uniformtangential velo
ity. A sket
h of this is show in Figure 2.3(a). The Reynolds number isbased on the length of the domain and the velo
ity of the lid. The velo
ity singularity atthe top 
orners where the lid meets the stationary walls 
auses problems with high-orders
hemes. Some regularisation is required to avoid lo
al arti�
ial os
illations in the velo
ity�eld but only a small amount of regularisation is needed. A velo
ity pro�le for the lid is
hosen so that it is uniform for a large proportion of the lid but de
ays to zero 
lose theedges where it meets the stationary walls and is also 
ontinuous in the �rst and se
ondspatial derivatives. The velo
ity pro�le is:u(x) = ((1� exp(�20(1� x2)))3; 0); x 2 (�1:0; 1:0); (2.12)where x is the horizontal distan
e along the lid. This velo
ity pro�le is used for both thespe
tral-element and global spe
tral s
hemes.The driven 
avity 
ow problem is also a 
ommonly 
onsidered ben
hmark problemand been used by many authors to validate numeri
al s
hemes. In the steady state regime,45



(a)

(b)

(c)

(d)

(e)Figure 2.2: Streamline plots for 
ow over a ba
kward-fa
ing step at Reynolds numbers(a) Re = 10, (b) Re = 100, (
) Re = 200, (d) Re = 400 and (e) Re = 800.

46



the results will be 
ompared to Ghia et al. (1982) be
ause results were presented for awide range of Reynolds numbers. It is one of the earlier studies whi
h presented detailedresults for the driven 
avity 
ow using a steady solver and many others have sin
e usedit for 
omparison. Above a 
riti
al Reynolds number, the driven 
avity 
ow will notasymptote to a steady solution. The time-dependent solution 
an be periodi
, quasi-periodi
 or 
haoti
. In this 
ow regime the spe
tral-element simulations will be 
omparedwith results from a global spe
tral s
heme. The global spe
tral 
ode was also used todevelop and test a modi�ed time-splitting s
heme that uses the Runge-Kutta s
hemeinstead of the Adams-Bashforth s
heme for the 
onve
tive term.The mesh used for the spe
tral-element simulation 
onsisted of am 11� 11 (K =121) elements with 10�10 (N = 10) nodes within ea
h element as shown in Figure 2.3(b).The elements are stret
hed towards the boundaries in both dire
tions by lo
ating the edgesof the elements at the Chebyshev 
ollo
ation points. Figure 2.4 shows the streamlines ofthe driven 
avity 
ow at various Reynolds numbers. For Re = 1; 000, 5; 000 and 7; 500,the 
ow rea
hed a steady state. At the higher Reynolds numbers of Re = 10000, 14; 000and 17; 000 the streamlines are a snapshot in time as the 
ow does not rea
h a steadystate.2.2.2.1 Steady stateSimulations were performed using the spe
tral-element s
heme at a Reynolds number ofRe = 100, 400, 1; 000, 3; 200, 5; 000 and 7; 500 whi
h 
orresponded to results presentedin Ghia et al. (1982). The simulations were started using the results from the next lowerReynolds number ex
ept for Re = 100 whi
h was started using a stationary velo
ity �eld.The 
ow �eld was integrated until a steady state solution was a
hieved (i.e. �u=�t < 10�6for the entire domain) whi
h required several thousand non-dimensional time units ofintegration. The simulations were performed using a timestep of �t = 0:0012. Su
h asmall timestep is a result of Courant restri
tion from the expli
it step in the time-mar
hingalgorithm due to the �ne spatial resolution. Although Ghia et al. (1982) presented resultsat Re = 10; 000, those results were obtained using a steady state solver. When using thistime-dependent solver, the highest Reynolds number at whi
h the solution asymptotes toa steady state is Re = 8; 000. At the next in
rement in Reynolds number, Re = 8; 125,the solution asymptotes to a periodi
 state. This was the 
ase even after several thousandmore time units were simulated with the 
ow in a periodi
 state. This is in 
lose agreementwith the analyti
al work of Poliashenko & Aidun (1995) whi
h predi
ted the 
ow be
omingunsteady above Re = 7763 with the small di�eren
e in the transition Reynolds numberpossibly due to the regularisation used in the lid pro�le for the simulations.47



(a)

(b) (c)

Driving Lid

u=0

Figure 2.3: (a) A s
hemati
 of the driven 
avity 
ow, (b) the spe
tral element mesh and(
) the global spe
tral mesh.
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(a) (b)

(c) (d)

(e) (f)Figure 2.4: Streamlines plots of the driven 
avity 
ow at (a)Re = 1; 000, (b)5; 000,(
)7; 500, (d)10; 000, (e)14; 000 and (f)17; 000. Note: Bla
k lines are positive streamlineswhi
h start at 0:01 with in
rements of 0:02. Grey lines are negative streamlines whi
hstart at �0:001 with de
rements of �0:001. These values are non-dimensionalised withthe 
avity length and the lid velo
ity. 49
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Figure 2.5: (a) u velo
ity pro�le taken verti
ally at the 
entre of the 
avity and (b) vvelo
ity pro�le taken horizontally at the 
entre of the 
avity. Also plotted for 
omparisonare results from Ghia et al. (1982) whi
h in
lude the maximum or minimum velo
ities inthe velo
ity pro�le. (Note: The velo
ity pro�les are o�set for 
larity.)50



Figure 2.5 shows a 
omparison of velo
ity pro�les at various Reynolds numberswith those from Ghia et al. (1982). Figure 2.5(a) shows the pro�le of the horizontal
omponent of velo
ity taken verti
ally a
ross the 
entre of the 
avity while Figure 2.5(b)shows the pro�le of the verti
al 
omponent of velo
ity taken horizontally a
ross the 
entreof the 
avity. Also shown are the minimum and maximum velo
ities within ea
h pro�lefound by Ghia et al. (1982). In this 
omparison, the two separate simulations produ
egraphi
ally identi
al velo
ity pro�les. The magnitude and lo
ation of the maximum andminimum velo
ities found by Ghia et al. (1982) are also 
onsistent with the present sim-ulations. Although there is a small amount of regularisation of the velo
ity pro�le of the'driving lid', the e�e
t on the overall 
ow �eld appears to be small.2.2.2.2 Global spe
tral s
hemeA global spe
tral s
heme was developed to study the pra
ti
al implementation of a Runge-Kutta s
heme for the non-linear term. A global spe
tral s
heme is used be
ause it is asimpler s
heme to implement and the spe
tral 
onvergen
e allows spatial error to bemu
h smaller than the temporal errors. The global spe
tral s
heme was developed underthe guidan
e of Dr. Paul Morris who was formerly with the Department of Me
hani
alEngineering at Monash University and is 
urrently at Kodak (Aust.). The implementationand results a
quired have been published in Tan et al. (1998).An outline of the spatial te
hnique is presented in Canuto et al. (1988). As the
ow is wall bounded, a Global-Galerkin te
hnique is employed with Chebyshev polyno-mials used to interpolate the 
ow variables in both dire
tions within the domain. Thisnode positioning is ideal for studying this problem as the natural 
ompression towards theboundaries improves the resolution of boundary layers. Other polynomials 
ould be usedbut the Chebyshev polynomials have traditionally been favoured be
ause a Fast Fouriertransform exists to 
onvert between real and polynomial spa
e and, of 
ourse, they exhibitspe
tral 
onvergen
e. Although a Fast Fourier transform exists, for the large grids usedin the 
omputations, an optimised matrix multipli
ation routine is found to be faster forderivatives 
al
ulation. Although the operation 
ount is higher, the transform method isslower be
ause of the numerous logi
al operations and reordering of the matri
es requiredby this method. Shen (1991) also found the matrix multipli
ation to be faster whenstudying the regularised driven 
avity using a similar spe
tral method. A dire
t matrixmethod also allows any arbitrary resolution to be used rather than powers of two. Theimpli
it steps are performed using a matrix diagonalisation te
hnique given by Canuto etal. (1988).The 
lassi
al time-splitting s
heme (Equations 2.7, 2.8 and 2.9) uses the Adam-51



Bashforth family of s
hemes to advan
e the 
onve
tive step as shown in Karniadakiset al. (1991). As this is an expli
it step, the Courant stability limit restri
ts the max-imum allowable timestep espe
ially for �ner grids. For �nite di�eren
e dis
retisationof the 
onve
tion or di�usion operators on an equi-spa
ed grid, the maximum timestepwhen using fourth-order Runge-Kutta s
heme is approximately seven times larger thanfor the third-order Adams-Bashforth s
heme (Canuto et al., 1988). Although the fourth-order Runge-Kutta s
heme requires approximately four times more 
omputation than thethird-order Adams-Bashforth s
heme, an overall saving is gained from the less restri
tivetimestep. This led to the investigation into the use of the Runge-Kutta s
heme insteadof the Adams-Bashforth s
heme.The initial attempt was for ea
h timestep to advan
e only Equation 2.7 (the
onve
tive term) with the fourth-order Runge-Kutta s
heme and then solve Equation 2.8and 2.9 using the same method des
ribed earlier. This led to results whi
h were moredissipative than expe
ted. For example this parti
ular problem was found to asymptote toa steady solution at Re = 10; 000 while the spe
tral-element s
heme using the traditionaltime-mar
hing algorithm and a predi
tion by Li�man (1996) both showed the 
ow toasymptote to an unsteady state. The error resulted from the Runge-Kutta step whi
his meant to advan
e the equation a full timestep rather than to an intermediate velo
ity�eld(u�). In other words, it leads to a splitting error. When the Runge-Kutta s
hemeis applied to Equation 2.7 and summed with Equation 2.8 and 2.9, the result is not theoriginal Navier-Stokes equation but instead a similar equation 
ontaining some spuriousterms. This was realised after tests showed that the 
onvergen
e was less than �rst-orderin time. To over
ome this problem, a modi�ed time-splitting s
heme is developed to 
or-re
tly implement the Runge-Kutta s
heme to advan
e the non-linear term. The temporals
hemes for the pressure 
orre
tion step and the di�usion step remains the same. Thiss
heme basi
ally advan
es all three terms within ea
h Runge-Kutta sub-step. As all theequations do not expli
itly depend on time, a memory eÆ
ient Runge-Kutta s
heme de-s
ribed in Canuto et al. (1988) is used. The resulting algorithm is shown below.Set u = unFor k = s; 1;�1u��un�t=k = �u � ruu���u��t=k = �rp r�u�� = 0u�u���t=k = 12 Re(r2u +r2un)End ForSet un+1 = u:The order of the Runge-Kutta s
heme is set to four (s = 4) for all the simulations. The52



global spe
tral s
heme produ
es results whi
h were 
onsistent with the spe
tral-elements
heme and Li�man (1996) when the above algorithm was used. Simple 
onvergen
etests showed that this s
heme is se
ond-order a

urate when using a �rst-order pressureboundary 
ondition. A 
omparison between the global spe
tral te
hnique and the spe
tral-element te
hnique for the driven 
avity 
ow in the unsteady regime will be presented inthe next se
tion.2.2.2.3 Time dependen
e of High Re 
avity 
owThis se
tion presents a 
omparison between the time-dependent 
hara
teristi
s of thedriven 
avity 
ow predi
ted by the spe
tral-element te
hnique and the global spe
tralte
hnique. For this parti
ular problem, both s
hemes predi
ted the system evolved toa steady state for Reynolds number up to Re = 8; 000. Additional simulations wereperformed at Re = 9; 000, 10; 000, 12; 000, 14; 000, 15; 000, 16; 000 and 17; 000 with thedi�erent s
hemes for 
omparison. The total kineti
 energy is used to 
ompare the separatesimulations be
ause it is a global measurement whi
h provides and indi
ation of the stateof the 
ow. This method has been used previously for studying driven 
avity 
ow, e.g.,Shen (1991), Li�man (1996), and Tan et al. (1998). The total kineti
 energy of the 
owis de�ned as, E(t) = Z 12 juj2dA; (2.13)with the integration over the entire domain. For the spe
tral-element simulation, thisintegral is performed using the Gauss-Legendre-Lobatto quadrature within ea
h elementand then by summing over all elements. In the global spe
tral 
ase, the integral is obtainedby transforming the �eld into Chebyshev spa
e where �nding the integral is only a simplearithmeti
 operation.The global spe
tral simulations were performed on a 80 � 80 grid as shown inFigure 2.3(
) with a timestep of �t = 0:0025. To as
ertain that this resolution is suÆ
ient,a 100 � 100 simulation was performed at the highest Reynolds number. The di�eren
ein the statisti
al properties in the kineti
 energy tra
e was less than 2%. The spe
tral-element simulations were performed on the same grid used for the steady state 
ase butthe timestep redu
ed at Re = 12; 000, 14; 000, 15; 000, 16; 000 and 17; 000 to �t = 0:008,0:008, 0:006, 0:006 and 0:005 respe
tively. The simulations were performed until anasymptoti
 state was rea
hed and then the evolution of the kineti
 energy is re
ordedover approximately 300 time units. For those 
ases where a periodi
 state is attained,the period was also re
orded. Additional results of the global spe
tral simulation 
an befound in Tan et al. (1998).
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Re Spe
tral-Element Global Spe
tralMean Period Std. Dev. Mean Period Std. Dev.9; 000 4:551� 10�2 2:28 7:380� 10�6 4:536� 10�2 2:28 7:357� 10�610; 000 4:523� 10�2 9:349� 10�6 4:472� 10�2 9:338� 10�612; 000 4:347� 10�2 1:48 1:381� 10�5 4:388� 10�2 1:47 1:351� 10�514; 000 4:172� 10�2 1:652� 10�5 4:188� 10�2 1:637� 10�515; 000 4:070� 10�2 1:60 1:938� 10�5 4:078� 10�2 1:58 1:833� 10�516; 000 3:986� 10�2 2:128� 10�5 3:940� 10�2 1:831� 10�517; 000 3:861� 10�2 7:407� 10�5 3:850� 10�2 8:421� 10�5Table 2.2: Mean, Standard Deviation and Period of the kineti
 energy tra
e at variousReynolds number from the spe
tral element simulation and the global spe
tral simulation.The mean, standard deviation and period of the kineti
 energy tra
e is sum-marised in Table 2.2. The results 
ompare well with deviations not ex
eeding 3% in most
ases. This is likely due to the di�erent spatial and temporal errors from the di�erents
hemes and numeri
al round o�. The larger di�eren
e in the standard deviations atRe = 16; 000 and 17; 000 is be
ause at those high Reynolds numbers the kineti
 energytra
e 
ontains many wavelengths. A mu
h longer time series has to be analysed to redu
ethis un
ertainty.2.2.2.4 Runge-Kutta versus Adams-BashforthAfter implementing the di�erent s
hemes for advan
ing the non-linear term and showingthat the results for both s
hemes are 
onsistent, a 
omparison was made of the perfor-man
e of both s
hemes. Both time-mar
hing s
hemes were implemented with the globalspe
tral dis
retisation and several simulations were performed to assess the 
omputational
ost and timestep restri
tion.In terms of operation 
ount, to perform one timestep using the fourth-orderRunge-Kutta s
heme is approximately equivalent to performing four 
omplete timestepsusing the Adam-Bashforth s
heme. Simulations of the driven 
avity 
ow with varioustimesteps showed that the stability limit of the fourth-order Runge-Kutta s
heme is ap-proximately 6 times larger than using the third-order Adam-Bashforth s
heme. This isapproximately 
onsistent with theoreti
al predi
tions for a �nite di�eren
e s
heme on a
onve
tive equation dis
ussed earlier. The storage requirements of the two s
hemes areequivalent when using the memory eÆ
ient Runge-Kutta s
heme. This result shows thatthe Runge-Kutta s
heme 
an be more eÆ
ient if simulations are performed with mu
hlarger timesteps. 54



However, when taking larger timesteps, the overall a

ura
y of the s
heme mustalso be 
onsidered. Both s
hemes use a �rst-order pressure boundary 
ondition and aCrank-Ni
holson s
heme for the di�usion term whi
h restri
ts them to be se
ond-ordera

urate in time. This means that the larger timesteps with the Runge-Kutta s
heme in
ura larger temporal error. Attempts to in
rease the order of the s
heme by using a se
ond-order pressure boundary 
ondition and a third-order Adam-Moulton s
heme instead of theCrank-Ni
holson te
hnique signi�
antly redu
es the stability of the overall s
heme. Thetreatment of the pressure boundary 
ondition requires extrapolating velo
ity �elds fromprevious timesteps; however in
reasing the order of the pressure boundary 
ondition thisway redu
es the overall stability. This is also the observation of Karniadakis et al. (1991).Using the third-order Adam-Moulton s
heme is expe
ted to redu
e the stability althoughit is an impli
it s
heme as theoreti
al predi
tions show that it is not un
onditionally stablelike the Crank-Ni
holson s
heme.Weighting the 
ost between a lower operation 
ount and the larger errors, thespe
tral-element 
ode used for the simulations in the following 
hapters has not be mod-i�ed to in
orporate the Runge-Kutta s
heme. The Runge-Kutta s
heme would be usedif the order of a

ura
y of the overall s
heme was improved without su�ering from aredu
ed maximum timestep. The main 
ause of this redu
ed timestep is from the im-plementation of the pressure boundary 
ondition. With further development, it 
ould bepossible to formulate a stable pressure boundary 
ondition that better suits the Runge-Kutta s
heme. Even re
ently, se
ond-order time-a

urate s
hemes are still used by manyauthors (Sohankar et al., 1999, Najjar & Bala
handar, 1998, Barkley & Henderson, 1996).2.3 Flow around long platesThis se
tion will present the preliminary work performed for the simulation of 
ow pastlong plates. The two geometries studied are an ellipti
al leading-edge plate with a blunttrailing edge, and a re
tangular plate. This se
tion will in
lude a des
ription of thedomain and boundary 
onditions used. Several simulations were performed to verify thatthe 
omputational domain is large enough. A domain whi
h is too small signi�
antlyin
uen
es surfa
e pressures due to blo
kage and therefore hydrodynami
 for
es on theplate. Simulations with di�erent resolution and timesteps are performed to verify thatthe resolution is suÆ
ient.
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Figure 2.6: The 
omputational domain for (a) the re
tangular plate and (b) the ellipti
alleading-edge plate. The 
omputational mesh for (
) a plate with 
=t = 10, (K = 562)and (d) an ellipti
al leading-edge plate with 
=t = 7:5, (K = 557).(e) A sket
h showingan ellipti
al leading-edge plate with an an axes ratio of a:b and an aspe
t ratio of 
=t.
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2.3.1 Computational domain and boundary 
onditionsA sket
h of the 
omputational domain is shown in Figure 2.6(a) and Figure 2.6(b) for are
tangular plate and a ellipti
al leading-edge plate respe
tively. With the 
ow dire
tionfrom left to right, the inlet, top and bottom boundaries are set to a free-stream 
onditionwhi
h has a unit velo
ity in the horizontal dire
tion. The normal gradients for all velo
ity
omponents are set to zero at the out
ow boundary on the right. The velo
ity on theplate is set to zero. In those simulations where for
ing is applied to the 
ow, a sinusoidal
ross-
ow 
omponent is added to all the free-stream boundaries. The resultant boundary
ondition is, u(t) = (U1; Ao sin(2� St t)); (2.14)where St is the non-dimensional for
ing frequen
y. In later 
hapters, the phase in thefor
ing 
y
le used to des
ribe the di�erent times in a period is based on the sine wave.Figure 2.6(
) and Figure 2.6(d) shows typi
al spe
tral-element grids used for thesesimulations. The elements are 
on
entrated towards the plate. The elements are stret
hedtowards the plate from the top, left and bottom boundary using a 
osine stret
hing fun
-tion. The �rst few elements from the boundary are merged to redu
e the overall numberof elements. Between the plate and the out
ow boundary, this stret
hing was found tobe too severe and to better resolve the wake, a hyperboli
 sine stret
hing fun
tion asdes
ribed in Thompson et al. (1985) was used. To redu
e the overall number of elements,they are adapted to a 
oarser mesh away from the wake in the 
ross-
ow dire
tion. Theelements are gradually adjusted from an ellipti
al leading-edge geometry to a 
ir
ularboundary for the ellipti
al leading-edge plate.The square edges on the plates are dis
ontinuities that restri
t the spatial 
onver-gen
e rate of spe
tral-element s
heme. However this e�e
t is lo
al and does not degradethe a

ura
y of the 
ow �eld away from these points. A higher 
on
entration of elementsare pla
ed near these points to redu
e this e�e
t.The simulations are normally started from a stationary state. The solution froma lower Reynolds number is used if one is available. The 
ow starts shedding betweenapproximately 80�150 time units depending on the Reynolds number. Typi
ally the 
owis evolved for another 100 time units to allow it to settle to an asymptoti
 state. In those
ases where for
ing is applied, the solution of the unperturbed 
ow is used as an initial
ondition.Extending the model into the spanwise dimension is 
urrently restri
ted only toperiodi
 boundaries (e�e
tively an in�nite 
ylinder) by using a Fourier series. The freeparameters in this 
ase are the number of Fourier planes and the size of the spanwise57



domain.2.3.2 Domain sizeWhen simulating vis
ous 
ows over blu� bodies, the size of the domain signi�
antlyin
uen
es the surfa
e pressure on the body (Barkley & Henderson, 1996). As the two-dimensional simulations aim to generate quantitative results of the pressure and for
eson the plate, it is important to determine the required size of the domain in order toredu
e this e�e
t below a 
ertain toleran
e. Several simulations were performed on the
ow over an ellipti
al leading-edge plate to as
ertain the required domain size. This sizewas then tested on the re
tangular plate. These tests were performed without externalfor
ing and at a low Reynolds number of Re = 300 where the 
ow stru
tures are largerand the overall system is more a�e
ted by 
lose boundaries. The resolution near the plateis approximately the same for all the domain sizes tested. The next se
tion will show thatthis resolution is adequate.For the two geometries in this study, there are three parameters that govern thesize of the domain. From Figure 2.6 these are: l1 is the distan
e from the in
ow to theleading-edge of the plate, l2 is the distan
e between the top or bottom boundary to theplate and l3 is the distan
e from the trailing edge to the out
ow boundary. All distan
esare normalised by plate thi
kness.In the three-dimensional simulations, the 
omputational domain on ea
h spe
tral-element plane is mu
h smaller than for the two-dimensional simulations. This redu
es thesize of the problem to a manageable one. These 
omputations are aimed at simulatingthe qualitative 
ow stru
tures. A restri
tive domain may a�e
t pressure measurementsbut should not signi�
antly in
uen
e the large s
ale 
ow stru
tures. The majority of thethree-dimensional simulations were with the spanwise domain of 2� t wide.2.3.2.1 Ellipti
al leading-edge plateSimulations were performed on the ellipti
al leading-edge plate with a 5:1 axes ratio andan overall aspe
t ratio of 
=t = 7:5. The domain has a rounded in
ow boundary hen
e l1is equivalent to l2. This results in only two free parameters. At this Reynolds number,the 
ow asymptotes to a periodi
 state. The mean base pressure (measured at the 
entreof the trailing edge) and the peak-to-trough is re
orded in Table 2.3 for 
omparison.On in
reasing the size of the domain, the results 
onverged to a mean base pressure of
p = �0:274 and a peak-to-trough value of 0:050.58



l2 l3 Mean 
p Peak-to-trough10 4 -0.450 0.08514 6 -0.353 0.08120 10 -0.311 0.07222 12 -0.283 0.05524 15 -0.279 0.05728 20 -0.273 0.05440 27 -0.274 0.05140 40 -0.273 0.05160 60 -0.274 0.050Table 2.3: The mean base pressure and peak-to-trough base pressure di�eren
e for variousdomain sizes.It is important to model the essential physi
s in the two-dimensional simulations.A small error due to boundary proximity is a

eptable so that less elements are required;espe
ially far away from the plate thereby speeding up 
omputations and allowing alarger parameter spa
e to be studied. It was de
ided that an an error of less than 2%would be tolerated as this is 
omparable with other un
ertainties whi
h in
lude modellingassumptions and numeri
al error.l2 Mean 
p Peak-to-trough12 -0.292 0.04220 -0.277 0.05427 -0.275 0.05340 -0.273 0.051Table 2.4: The mean base pressure and peak-to-trough base pressure di�eren
e with l3�xed at 40. l3 Mean 
p Peak-to-trough28 -0.277 0.05434 -0.275 0.05440 -0.273 0.051Table 2.5: The mean base pressure and peak-to-trough base pressure di�eren
e with l2�xed at 20.To determine the required distan
e for l2 and l3, initially l3 is �xed at 40. FromTable 2.4, a distan
e of l2 = 20 would be suÆ
ient to redu
e the errors due to the59



boundaries below the a

eptable limit. Next l2 is �xed at 20 and various values of l3are experimented on. From Table 2.4, a distan
e of l3 = 28 appears to be adequate.Subsequent simulations with ellipti
al leading-edge plates were performed using l2 = 20and l3 = 28.2.3.2.2 Re
tangular plateThe re
tangular plate geometry with 
=t = 10 is tested with this domain size to determineif it is adequate. This domain size is 
ompared with another whi
h is 5 units larger inea
h dire
tion. Simulations at a higher Reynolds number of Re = 400 is also used asnumerous simulations will be performed at that Reynolds number. At the lower Reynoldsnumber of Re = 300, the base pressure shows a regular periodi
 signal but at Re = 400,the signal is not perfe
tly periodi
 be
ause the system is not as strongly lo
ked into aparti
ular shedding mode. Therefore the peak-to-trough base pressure di�eren
e is notpresented at Re = 400. From the base pressure predi
tions show in Table 2.5, the smallerdomain appears to be adequate and was used in further 
omputations.Re l1 l2 l3 Mean 
p Peak-to-trough300 24 20 28 -0.334 0.074300 29 25 33 -0.341 0.071400 24 20 28 -0.482400 29 25 33 -0.487Table 2.5: The mean base pressure and peak-to-trough base pressure di�eren
e for 
owaround a re
tangular plate simulated with two di�erent domain sizes at Re = 300 and400.2.3.3 Spatial and temporal resolutionSimulations were performed on the same grid as in the previous se
tion but the numberof nodes in ea
h element was in
reased to determine the resolution required to adequatelyresolve the 
ow. The domain size determined previously was used in these simulations.The grids for the re
tangular plate and the ellipti
al leading-edge plate is shown in Figure2.6(
) and Figure 2.6(d) respe
tively. The investigation will involve both the natural andfor
ed shedding 
ases. Base pressure measurements are used for 
omparison. When thespatial resolution is in
reased, the size of the timestep needs to be de
reased be
ause ofthe stability restri
tions imposed by the Courant stability restri
tion.60



For the ellipti
al leading-edge plate, the simulations were performed on a platewith an ellipti
al (5:1 axes ratio) leading edge and a overall aspe
t ratio of 
=t = 7:5.The simulations were performed at a Reynolds number of Re = 500 for two di�erentresolutions. At this Reynolds number, the system rea
hes a periodi
 shedding state.Identi
al meshes were used, one with a lower resolution of 7 � 7 (N = 7) nodes perelements and the other higher resolution simulation had 9�9 (N = 9) nodes per elements.A timestep of �t = 0:007 was used for the lower resolution and �t = 0:004 for the higherresolution. The results of base pressure predi
tions as shown in Table 2.6 below 
on�rmsthat the lower resolution is suÆ
ient to resolve the 
ow at this Reynolds number.N �t Mean 
p Peak-to-trough7 0.007 -0.439 0.1359 0.004 -0.438 0.134Table 2.6: The mean base pressure and peak-to-trough base pressure di�eren
e at twodi�erent resolutions for a ellipti
al leading-edge plate at Re = 500.To ensure that this resolution was suÆ
ient when applied for
ing is introdu
ed,the same geometry was simulated at a Reynolds number of Re = 500 with a sinusoidalfor
ing in the 
ross-
ow dire
tion added to the free stream with an amplitude of vpert =2:5%. A for
ing frequen
y of St = 0:2025 was used be
ause it lo
ks the 
ow and produ
ethe strongest mean base su
tion within the range tested. Again the simulations wereperformed on an identi
al domain but at two resolutions. The lower resolution used 7� 7(N = 7) noded elements and the higher, 9 � 9 (N = 9) noded elements. The timestepfor ea
h simulation were �t = 0:007 and �t = 0:004 respe
tively. Table 2.7 show thepredi
ted base pressure. Again, this indi
ates the lower resolution is suÆ
ient to resolvethe for
ed shedding 
ase.N �t Mean 
p Peak-to-trough7 0.007 -0.592 0.30510 0.004 -0.585 0.309Table 2.7: The mean base pressure and peak-to-trough base pressure di�eren
e at twodi�erent resolutions for a ellipti
al leading-edge plate at Re = 500 with a sinusoidal
ross-
ow.A limited number of simulations were performed at a Reynolds number of Re =700. At this parti
ular Reynolds number, the same mesh was used but the resolutionwithin ea
h element was in
reased to 8 � 8 (N = 8) nodes and the timestep redu
ed61



to �t = 0:005. To verify that this resolution was adequate, a simulation with 10 � 10(N = 10) nodes with a timestep of �t = 0:003 was performed. The results from Table2.8 indi
ate that the lower resolution is adequate.N �t Mean 
p Peak-to-trough8 0.005 -0.582 0.28810 0.003 -0.583 0.286Table 2.8: The mean base pressure and peak-to-trough base pressure di�eren
e at twodi�erent resolutions for a ellipti
al leading-edge plate at Re = 700.A similar experiment was performed on the re
tangular leading-edge plate atRe = 400. The di�eren
e in this 
ase was that a sinusoidal os
illation with an amplitudeof vpert = 2:5% was applied to all free-stream boundaries. The simulations were 
arriedout using 7� 7 (N = 7) and 9� 9 (N = 9) noded elements with a timestep of �t = 0:007and �t = 0:004 respe
tively. The 
ow generates stronger vorti
es when for
ing is appliedtherefore a resolution that suÆ
iently resolves this 
ow 
an resolve one without appliedfor
ing. Figure 2.7 shows a plot of the mean base pressure 
oeÆ
ient for various for
ingfrequen
ies. The lower resolution appear to be able to resolve the 
ow.Subsequent simulations with various geometries are performed using grids with asimilar resolution near the plates and 7� 7 (N = 7) noded elements. A timestep of �t =0:007 is maintained for those simulations. This 
orresponds to between approximately700 to 1200 timesteps in a typi
al shedding period. Tests have shown that in
reasing theresolution only 
hanged the properties of the base pressure by less than 2%.2.4 Post-pro
essingOn
e the simulations are performed in subsequent 
hapters, results are presented whi
hanalyse the results of the simulations. From the vorti
ity �eld, the movement of the vortex
ores 
an be tra
ked and the 
ir
ulation evaluated. The appli
ation of Howe's a
ousti
model is also done as a post-pro
essing step. The te
hniques used to implement thesepro
edures are outlined in this se
tion.2.4.1 Vortex 
oresThe shed vorti
es 
an be tra
ked over some time interval to gain more insight into the
ow. The 
onve
tive velo
ity of these vorti
es 
an also be evaluated. The lo
ation of62
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the lo
al maximum or minimum in the vorti
ity �eld is used to de�ne the lo
ation of thevortex 
ore. This task is more diÆ
ult as this s
heme is an Eulerian te
hnique whi
hsolves the 
ow on a �xed grid. To lo
ate the peak value of vorti
ity within a pat
h ofvorti
ity, initially the lo
al maximum value on a node is lo
ated. A two-dimensionalNewton-Raphson method is used to re�ne that lo
ation. The same interpolants usedwithin ea
h spe
tral-element to solve the 
ow variables are used when interpolating. Thestopping 
riteria for the Newton-Raphson iterations are when the 
hange in lo
ation isless than 0.001% of the plate thi
kness. This pro
ess is may be repeated at regular timeintervals to obtain the traje
tories of the vortex 
ores.2.4.2 Cir
ulationThe point of this exer
ise is to evaluate the amount of 
ir
ulation 
ontained in a shedvortex. To 
al
ulate the amount of 
ir
ulation within a two-dimensional region, eitheran area integral or a line integral around the region 
an be used. In this instan
e, the
ir
ulation is 
al
ulated using the line integral given by,� = I u � d~s: (2.15)To perform this line integral, the 
losed path of integration around a region 
ontainingvorti
ity has to be lo
ated. A small value of vorti
ity is 
hosen as the 
ut o� value withthe aim of 
apturing as mu
h of the 
ir
ulation of a parti
ular vortex while avoiding other
ow stru
tures. The 
ow �eld velo
ity is then found at regular intervals of 0:04t alongthis iso-
ontour. The interpolation is done using the same polynomials as the spe
tralelement s
heme. The tangent ve
tor to the iso-
ontour is found using a 
ubi
 splinebetween the neighbouring nodes. The integral is evaluated using a �rst-order method.Again all interpolation is done using the spe
tral-element interpolants.2.4.3 Howe's a
ousti
 modelHowe's theory (1975, 1980) has been developed to 
al
ulate the sound power generatedby the 
ow in the presen
e of an external sound �eld. This 
an be used to predi
t thea
ousti
 resonan
e when a plate is pla
ed in a du
t. The length and time s
ales of the
ow and sound �eld are several orders of magnitude apart when the Ma
h number islow. This model is used instead of simulating the fully 
ompressible 
ow be
ause ofthe high 
omputational 
ost involved due to the small timestep required to 
apture the
ompressible behaviour.In this 
ase the sound is generated by the vorti
al 
ow around the plate. This64



feeds into the sound �eld in the du
t and may generate an a
ousti
 resonan
e. Theresonan
e will then lo
k the 
ow to that frequen
y. This model is used to determine theamount of power transferred between the 
ow �eld and the a
ousti
 �eld. A positivetransfer is a ne
essary 
ondition for du
t resonan
e to o

ur. This is not a suÆ
ient
ondition be
ause it negle
ts damping in the du
t and re
eptivity of the 
ow. An appliedfor
ing is used to lo
k the 
ow in the simulations.The remainder of this se
tion des
ribes how the model is implemented. Thismodel has been formulated assuming the 
ow is rotational, invis
id and isentropi
. Fromthe a
ousti
 model, the a
ousti
 power in a region of the 
ow is given by the volumeintegral, P = ��0 Z ~! � (u� v)dV: (2.16)The volume integral redu
es to an area integral in two dimensions. The vorti
ity, ~!,and velo
ity, u, are properties of the 
ow �eld, �0 is the mean 
uid density and v is thea
ousti
 parti
le velo
ity.The a
ousti
 velo
ity �eld for the �rst �-mode (des
ribed in the previous 
hapter)in a du
t is approximately a standing wave with nodes at the top and bottom wallsof the du
t, anti-nodes along the 
entreline and de
aying away from the plate in thestreamwise dire
tions. This leads to the velo
ity potential of the a
ousti
 parti
le velo
ity,�, satisfying the wave equation. This is expressed as,D2�Dt2 = 
2sr2�; (2.17)where 
s is the speed of sound. This has also been used previously by Stoneman et al.(1988) to model the a
ousti
 parti
le velo
ity.The wave equation is solved by assuming the solution 
an be separated into afun
tion only dependent on time and another on spa
e su
h that�(x; y; z; t) = �t(t) �s(x; y; z): (2.18)Negle
ting the 
onve
tive terms, using this assumption the wave equation redu
es to thefollowing equation for the temporal variation,d2�tdt2 + (2�f)2�t = 0; (2.19)together with the equation for the spatial variation,r2�s +  2�f
s !2�s = 0: (2.20)Solving for the time dependen
e gives�t = Ao sin(2�f t+ �); (2.21)65



with the resonant frequen
y, f , and phase of os
illations, � mat
hing that of the appliedfor
ing (i.e. � = 0) used to lo
k the 
ow. The amplitude of the os
illations, Ao, is setto unity leaving the only arbitrary s
aling fa
tor to be in the spatial part. Solving thespatial part basi
ally results in the amplitude (as a fun
tion of spa
e) of the a
ousti
parti
le velo
ity in the du
t. The spatial part results in an eigenvalue problem whi
his solved on the same grid as the 
ow by modifying the spe
tral-element s
heme. Theboundary 
ondition for the spatial part of the wave equation are zero normal gradientsfor all boundaries in
luding the du
t 
entreline ex
ept for the plate surfa
e where �t = 0.This will result in a solution that is mirrored a
ross the 
entre line and de
ays away fromthe plate. Note that this solution 
an be arbitrarily s
aled. For uniformity between aspe
tratios, the amplitude of the a
ousti
 parti
le velo
ity is set to one unit at the 
entre ofthe leading or trailing edge of the plate (the value at these two points are equal be
auseof symmetry).As some of the earlier studies (Welsh et al., 1984, Stokes et al., 1988) used asinusoidally varying potential 
ow to model the a
ousti
 parti
le velo
ity, this has alsobeen done for 
omparison. Firstly, the potential 
ow around a 
ir
ular 
ylinder is found.Then the spa
e around the 
ylinder is transformed to the spa
e around a re
tangular plateusing the S
hwarz-Christo�el transformation (Chur
hill et al., 1974). Finally the velo
ity�eld around the 
ir
ular 
ylinder is also transformed to that around a re
tangular plate.A positive time-average a
ousti
 power transfer from the 
ow to the a
ousti
�eld is ne
essary to sustain the resonan
e. Sele
ting the size of the integration domainis 
ompli
ated by the vorti
es 
onve
ting downstream and the �nite domain size. Themethod used for time averaging and over
oming the �nite domain size is addressed whenthe model is applied in the Chapter 4.
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Chapter 6
Summary and Con
lusions
This 
hapter reviews the issues 
overed in this study and 
on
lusions are drawn from thework presented both here and in previous studies. The numeri
al te
hniques employedand their use in the study of 
ow around long plates is des
ribed. In relation to thesimulation te
hniques, the topi
s 
overed in
lude ben
hmarking, testing of a modi�edtemporal s
heme, domain and resolution testing, and pro
edures used for post-pro
essing.The plates 
onsidered either had an ellipti
al or blunt leading edge and a blunt trailingedge. The 
ases 
onsidered in
lude natural and for
ed shedding in two-dimensional spa
eand a limited number of 
ases in three dimensions. For the re
tangular plate, the du
ta
ousti
 resonan
e 
ase is also investigated.6.1 Computational aspe
tsThe approa
h to this problem involves numeri
ally simulating the 
ow around the blu�bodies. As the problem being studied involves re
eptivity and feedba
k me
hanisms, ahigh-order method is preferable be
ause it is able to a

urately 
apture the relativelyweak and sensitive features within the 
ow.6.1.1 Numeri
al te
hniqueThe time-dependent Navier-Stokes equations in primitive variables are the governingequations used in this solver. The spatial s
heme 
onsists of a spe
tral-element/Fouriermethod as outlined by Karniadakis & Triantafyllou (1992). The spe
tral-element methodis used for spatial dis
retisation on a two-dimensional plane. This te
hnique is similar to a206



Galerkin �nite element method ex
ept that high-order Lagrangian polynomials (althoughothers 
ould be used) are used to interpolate within ea
h element. This te
hnique has theability to handle geometries like the �nite element method and 
an a
hieve high orders ofa

ura
y if the solution is 
ontinuous. A global Fourier expansion is used for dis
retisationin the spanwise dire
tion. This s
heme is 
hosen be
ause it is relatively simple to imple-ment and is eÆ
ient on 
omputational resour
es. A 
lassi
al three-step time-splittings
heme (Karniadakis et al., 1991) is used to evolve the solution in time. This te
hniquesplits a timestep into 
onve
tive, pressure and di�usion sub-steps. The 
onve
tive stepis handled by an expli
it third-order Adam-Bashforth s
heme. Continuity is enfor
ed tosolve for pressure whi
h results in a Poisson equation. The di�usion is performed usingan impli
it se
ond-order Crank-Ni
holson s
heme whi
h results in a Helmholtz equation.The latter two steps are solved by matrix inversion. To redu
e the splitting errors, a�rst-order pressure boundary 
ondition is enfor
ed and the overall s
heme is se
ond-ordera

urate in time.6.1.2 Ben
hmark testTwo 
ommonly used ben
hmark problems are used for validation, namely the driven
avity 
ow and the 
ow over a ba
kward fa
ing step. These two are 
hosen be
ausethey are distin
t problems with the 
ow over a ba
kward fa
ing step involving 
ontinuousin
ow and out
ow while the driven 
avity 
ow is in a 
losed system.In the 
ow over a ba
kward fa
ing step problem, simulations are performed atvarious Reynolds numbers and the reatta
hment length is re
orded. The results at Re =10, 100, 200 and 400 are 
ompared with those of Kim & Moin (1985) and the result at800 with Gresho et al. (1993). All these 
ases in
luding at Re = 800 asymptotes to asteady state as predi
ted by Gresho et al. (1993). The reatta
hment length for all the
ases simulated were within 2% of the previous published data. The s
heme used in thesesimulations 
an therefore reprodu
e steady-state results of previous simulations.Simulations on the driven 
avity 
ow problem were performed over a large Reynoldsnumber range whi
h resulted in asymptoti
 states that were either steady or time depen-dent. A small amount of regularisation to the lid pro�le was needed to maintain thespe
tral 
onvergen
e. Simulations at Re = 100, 400, 1000, 3200, 5000 and 7500 whi
hasymptote to a steady state were 
ompared with those of Ghia et al. (1982). Velo
itypro�les taken verti
ally and horizontally a
ross the 
entre of the 
avity were used for
omparison. Plots of velo
ity pro�les showed that the two sets of simulations are visuallyindistinguishable. This s
heme is therefore able to 
onsistently reprodu
e results in thesteady regime and the small di�eren
e in lid pro�le is negligible. The asymptoti
 state207



was steady in time below Re � 8000 in these simulations.A 
ode using a global spe
tral te
hnique for spatial dis
retisation was developedindependently to validate the time dependent results produ
ed and investigate the feasi-bility of using a Runge-Kutta s
heme to advan
e the 
onve
tive step. This is a Global-Galerkin te
hnique whi
h uses Chebyshev polynomials to interpolate the 
ow variable inboth spatial dimensions. Again, spe
tral 
onvergen
e is a
hievable if the solution is 
on-tinuous. The time-stepping s
heme is modi�ed from the 
lassi
al three-step time-splittings
hemed to fa
ilitate the use of a forth-order Runge-Kutta s
heme for the 
onve
tive step.Simulations were performed with both numeri
al s
hemes at Reynolds numbersranging from Re = 8; 000 to 17; 000. The global spe
tral s
heme also predi
ted thatthe 
ow rea
hes a steady state at Re = 8; 000. The total kineti
 energy was used tomonitor the 
ow. The mean kineti
 energy di�ered by less than 1% between the twote
hniques used for simulation. The di�eren
e in the standard deviation were also in thatrange ex
ept at Re = 16; 000 and 17; 000 where the di�eren
e is larger (less than 10%).This larger di�eren
e is due to many frequen
ies present in the tra
e and a mu
h largersampling time is required to redu
e this un
ertainty. There is an overall agreement in theresults produ
ed by the independently developed 
odes using di�erent s
hemes.No three-dimensional 
ow problem was performed to validate the 
ode. This te
h-nique is limited to two-dimensional geometries and periodi
 boundary 
onditions in thespanwise dire
tion. This further limits the number of problems where a

urate solutionshave been published. No detailed validation was performed be
ause of the 
omputational
ost and the limited number of a

urate 
ow simulations for 
omparison. This is the same
ode used by Thompson et al. (1994, 1996) and has a

urately simulated the two stagetransition for 
ow around a 
ir
ular 
ylinder.6.1.3 On using the Runge-Kutta s
heme for the 
onve
tive sub-stepThe time-stepping algorithm has been modi�ed to enable the Runge-Kutta s
heme tobe used for the 
onve
tive step. This temporal s
heme together with the global spe
trals
heme for spatial dis
retisation has been tested by simulating the driven 
avity 
ow.This investigation is 
arried out be
ause impli
it s
hemes (su
h as the Adam-Bashforthand Runge-Kutta s
hemes) have stability limits whi
h restri
t the size of the timestep.The aim of this investigation is to determine if the Runge-Kutta s
heme is more eÆ
ientand stable than the 
urrent s
heme. 208



To implement 
orre
tly the Runge-Kutta s
heme for the 
onve
tive step, thepressure and di�usive step also has to be advan
ed within ea
h sub-step of the Runge-Kutta s
heme. In terms of operation 
ount, using the fourth-order Runge-Kutta s
hemewould be approximately equivalent to four dis
rete timesteps with the Adam-Bashforths
heme. The bene�t of using the fourth-order Runge-Kutta s
heme is that timestep 
ouldbe six times larger than the third-order Adam-Bashforth s
heme (
lose to theoreti
alpredi
tions). In term of storage requirements, the third-order Adam-Bashforth s
hemerequires four levels of velo
ity �elds while the Runge-Kutta s
heme (any order) wouldrequire only three levels when using the memory eÆ
ient algorithm.Beside operation 
ount and storage requirements, the order of a

ura
y of theoverall s
heme must also be 
onsidered. The original s
heme and the modi�ed s
heme areboth se
ond-order a

urate in time be
ause both are limited by the pressure boundary
ondition and the order of the di�usive step. Attempts to in
rease the order of a

ura
yeither by using higher-order pressure boundary 
onditions or higher-order impli
it s
hemesfor the di�usive step have resulted in a signi�
ant de
rease in the allowable timestep.(Note that the third-order Adams-Moulton s
heme is not un
onditionally stable unlikethe Crank-Ni
holson s
heme.)It was de
ided that a

ura
y was more important than the higher operation 
ount(� 25%) required to a
hieve the same simulation time. Therefore the third-order Adam-Bashforth s
heme is maintained for all subsequent simulations. The main 
onstrainton a

ura
y in these s
hemes is the pressure boundary 
ondition and the Runge-Kuttas
heme would be more favourable if a more stable high-order pressure boundary 
ondition
ould be formulated.6.1.4 Simulation of 
ow around platesBefore the detailed investigation into 
ow around long plates was undertaken, some pre-liminary simulations were performed to determine the adequate domain size and resolu-tions. For 
ow around blu� bodies, the predi
tions of surfa
e pressure 
an be signi�
antlyaltered if the boundaries are too 
lose to the body (Barkley & Henderson, 1996). The two-dimensional simulations are intended to produ
e quantitative predi
tions of base pressureand for
es on the plate and therefore some preliminary simulations are performed to de-termine the adequate domain size. Simulations with various domain sizes are performedfor an ellipti
al leading-edge plate (5:1 axes ratio) with 
=t = 7:5 at Re = 300 and a re
t-angular plate with 
=t = 10 at Re = 300 and 400. The mean and the level of 
u
tuationin the base pressure is used to gauge the e�e
t of the domain size. The domain size is
onsidered adequate when predi
tions with larger domains di�er by less than 2%. These209



simulations show that this is a
hieved when the distan
e from the plate to the upstreamdomain (l1) and to the side boundary (l2) is 20t and the distan
e from the plate to theout
ow boundary (l3) is 28t.To 
he
k if the resolution is adequate, simulations were performed with higherspatial and temporal resolution. Again the ellipti
al leading-edge plate (
=t = 7:5) andthe re
tangular plate (
=t = 10) were simulated at Re = 500 (upper limit). Simulations ofthe natural and for
ed shedding 
ases are performed on the same grid using 7�7 (N = 7)and 9 � 9 (N = 9) noded elements. The in
reased resolution required the timestep tobe redu
ed from �t = 0:007 to 0:004. Again the properties of the base pressure tra
eis used for 
omparison and the di�eren
e between resolutions in all 
ases were less than2%. This shows that the lower resolution is adequate and therefore all the simulationsmaintained this resolution around the plate. The higher resolution used for simulatingthe 
ow around the ellipti
al leading-edge plate (
=t = 7:5) at Re = 700 was also shownto be adequate.6.2 Flow around ellipti
al leading-edge platesIn this 
ase, there is no leading-edge shedding with the aerodynami
 leading edge. Thisredu
es the 
omplexity and is a natural pre
ursor to studying the 
ow around re
tangularplates. This geometry shares some similarities with short blu� bodies be
ause vorti
esare only shed in the wake.6.2.1 Natural sheddingThe shedding frequen
y predi
ted by the simulation is 
ompared with the results obtainedexperimentally by Eisenlohr & E
kelmann (1988). Simulations are performed for a platewith 
=t = 7:5 between Re = 200 and 700. As with most of the aerodynami
 leading-edgeplates, the leading edge is an ellipse with a 5:1 axes ratio. The shedding frequen
y isextra
ted from the base pressure tra
e whi
h in all these 
ases asymptote to a periodi
state. Eisenlohr & E
kelmann (1988) found a 
orrelation between the redu
ed sheddingfrequen
y (Ft0) and the Reynolds number (Ret0) if the 
hara
teristi
 length is the platethi
kness plus two times the displa
ement thi
kness at the trailing edge. The simulationsare in good agreement with these results. The plots show that the rate of in
rease of Ft0with Ret0 is visually indistinguishable. All but the lowest Reynolds number simulated are210



within the range of experimental un
ertainty.6.2.2 For
ed sheddingSimulations of 
ow around ellipti
al leading-edge plates ranging from 
=t = 3:5 to 12:5at Reynolds numbers between 300 � Re � 500 are performed. The for
ing is in the formof a sinusoidal os
illating velo
ity 
omponent in the 
ross-
ow dire
tion added to the freestream. The amplitude of these os
illations are small relative to the free-stream velo
ity(i.e. for
ing amplitudes simulated were at vpert = 1:25%,2:5% or 5:0%).The base pressure was used initially to gauge the response of the system. Thefor
ing only alters the mean base pressure at frequen
ies 
lose to the natural sheddingfrequen
y. This range approximately 
orresponds to the lo
k-in range where the sheddingis lo
ked to the for
ing and the base pressure tra
e shows a periodi
 os
illation with afrequen
y mat
hing that of the for
ing (twi
e the for
ing frequen
y, be
ause taken at the
entre). The lo
k-in range varies between 
ases (i.e Re and 
=t) but grows with in
reasingfor
ing amplitude. This is illustrated in Figure 3.13 whi
h is the state sele
tion diagramfor the 
ase where 
=t = 7:5 and Re = 500. The state sele
tion diagram for this geometryis similar to that des
ribed for a 
ir
ular 
ylinder in Karniadakis & Triantafyllou (1989).For this geometry, as the for
ing amplitude is in
reased, the lower limit of the lo
k-inrange grows faster than the upper limit. The natural shedding frequen
y is 
loser to theupper limit of the lo
k-in range. Outside the lo
k-in regime, the mean base pressure isapproximately equivalent to that of the natural shedding 
ase and the spe
trum showed atypi
al 'beating' pro
ess (i.e. the two dominant frequen
ies present were the natural shed-ding frequen
y and a low frequen
y 
orresponding to the di�eren
e between the for
ingand the natural shedding frequen
y).In all the 
ases studied, there is a linear in
rease in mean base su
tion with for
ingfrequen
y for most of the lo
k-in range. The main di�eren
e is the behaviour nearer thelower and upper limits of the lo
k-in range. These 
an be 
lassi�ed into two typi
al 
ases,one that o

urs at longer plates or lower Reynolds numbers and the other at shorterplates or higher Reynolds numbers. It is expe
ted that these two parameters govern thebehaviour be
ause they 
ontrol the thi
kness of the boundary layer at the trailing edgeof the plate. At these Reynolds numbers, there was also no shedding from the leadingedge when the nose geometry was rounded. Changing the nose geometry in
reases theoverall boundary layer thi
kness along the plate. For the trailing-edge shedding, this isequivalent to a marginally longer plate.The behaviour generi
 to the higher Reynolds number or shorter aspe
t ratio211




ases is des
ribed next. At the lower limit of the lo
k-in range, there is a de
rease inmean base su
tion as the 
ow lo
ks to the for
ing. This is followed by linear in
reases inmean base su
tion with for
ing frequen
y. The mean base pressure gradually approa
hedthat of the natural shedding 
ase as the for
ing frequen
y in
reases pass the upper limitof the lo
k-in boundary. There is a distin
t di�eren
e for the 
ases where the Reynoldsnumber is lower or the aspe
t ratio shorter. At the lower for
ing frequen
y limit of thelo
k-in range, the drop in mean base su
tion asso
iated with the onset of lo
k-in is lesssigni�
ant than the earlier 
ase. Again, this is followed by a linear in
rease in meanbase su
tion with for
ing frequen
y whi
h dominates the lo
k-in range. Towards theupper limit of the lo
k-in range, there is a drasti
 drop in mean base su
tion to belowthat of the natural shedding 
ase as the for
ing frequen
y is in
reased and approa
hesthe upper limit of the lo
k-in range. The mean base pressure approa
hes that of thenatural shedding with further in
rease in for
ing frequen
y. The sudden drop in meanbase su
tion (rise in mean base pressure) is asso
iated with a 
hange in the relative phasebetween the for
ing and the shedding. While the relative phase between the for
ing andthe shedding is approximately 
onstant for the rest of the lo
k-in range, a phase shiftof approximately 90o in the shedding relative to the other for
ing frequen
ies has beenobserved in 
onjun
tion with the drasti
 drop in mean base su
tion when 
=t = 12:5 andRe = 300.Further analysis is performed on two 
ases whi
h typify the two distin
t be-haviour. The 
ase with 
=t = 7:5 and Re = 500 is representative of the higher Reynoldsnumber or shorter aspe
t ratio 
ases, and the 
ase with 
=t = 12:5 and Re = 300 is forthe the lower Reynolds number or longer aspe
t ratio. The level of applied for
ing is atvpert = 2:5%. The fo
us will be in the lo
k-in range where the for
ing has more in
uen
eon the pressure and for
es on the plate.The behaviour of the drag for
e as a fun
tion of for
ing frequen
y mimi
s that ofthe mean base pressure. This 
an be expe
ted as the for
ing has an insigni�
ant e�e
t onthe for
es at the leading edge and the base pressure is monitored at the trailing fa
e. Asthe drag for
e in
reases in the lo
k-in range, the 
u
tuating lift for
e de
reases. Plots ofvortex traje
tories have shown that the vorti
es form and remain 
loser to the 
entre linein these 
ases. The narrower wake would a

ount for the in
rease in drag for
e and thede
rease in 
u
tuating lift for
e. Experiments on 
ow around blu� bodies have re
ordedan in
rease in 
u
tuating lift for
e when for
ing is applied (Staubuli, 1981, Bearman& Obasaju, 1982). In those situations, the 
ow is three-dimensional in nature and theapplied for
ing in
reases the spanwise 
orrelation and thus the overall for
es.The narrowing of the wake 
an be related to the phase of the shedding relative tothe for
ing. Within the lo
k-in range, ex
luding the narrow region where the phase shift212



o

urs, the vorti
es are en
ouraged by the for
ing to form 
loser to the 
entreline. Thisis supported by visualisation whi
h shows vorti
es forming on the top side of the platebetween 90o and 270o in the for
ing 
y
le where the perturbation is a

elerating in thedownward dire
tion and the opposite o

urs in the other half of the 
y
le.The vortex formation length is evaluated for both 
ases (i.e. Re = 500, 
=t = 7:5and Re = 300, 
=t = 12:5) at for
ing frequen
ies that lo
k the 
ow and also the naturalshedding 
ase for 
omparison. In general, the vortex formation length is proportionalto the mean base pressure. As expe
ted, stronger mean base su
tion is re
orded whenthe vorti
es are more 
ompa
t and form 
loser to the base of the plate. In determiningthe vortex formation length, the standard deviation of the verti
al velo
ity 
omponentalong the 
entreline is also 
al
ulated. The analysis shows that the magnitude of the peakstandard deviation also in
uen
es the mean base pressure. When both the natural andfor
ed shedding 
ases are 
onsidered, the mean base pressure is more 
losely related to themagnitude of the peak standard deviation for the 
ase where the Reynolds number is lowerand the aspe
t ratio is greater. In both 
ases, as the for
ing frequen
y is in
reased pastthe frequen
y at whi
h the peak base su
tion o

urs, there is a small drop in mean basesu
tion, a further redu
tion in vortex formation length and a redu
tion in the magnitudeof the peak standard deviation of the verti
al 
omponent of 
ow velo
ity. A possibleexplanation for this behaviour is that the vortex formation length is 
ontrolled by thefor
ing (in
reased frequen
y resulting in a redu
tion in vortex formation length) but thewake is not as re
eptive to the higher frequen
y (shown by the de
rease in the peak valueof standard deviation, de
rease in mean base su
tion and approa
hing the upper limit ofthe lo
k-in range). A further in
rease in for
ing frequen
y for the lower Reynolds numberand longer aspe
t ratio 
ase results in a drasti
 in
rease in vortex formation length in
onjun
tion with a phase shift in the shedding and a drasti
 redu
tion in mean basesu
tion. Theoreti
al predi
tions have shown that there is a dire
t relationship betweenthe mean base pressure and the amount of 
ir
ulation of one sign generated in one period(i.e. Equation 3.5, St�o1�
p = 0:5). The 
ir
ulation 
ontained within the vorti
es in thewake were examined in both representative 
ases. Only the periodi
 
ases were examinedwhi
h were the natural shedding 
ase and the lo
k-in range for the for
ed shedding 
ases.Extrapolating the amount of 
ir
ulation in the wake to the base of the plate, all thesimulations were within, St�o1�
p = 0:42 � 0:03. The lower values are mainly due to theunder estimation of the 
ir
ulation 
ontained in ea
h vortex. The region of integrationused to 
al
ulate the 
ir
ulation is arbitrarily trun
ated at about 15% of the peak vorti
itylevel within the vortex so as to isolate individual vorti
es. Another sour
e of error 
ouldbe from the linear extrapolation te
hnique used whi
h may not a

urately model the highlevels of 
ross-annihilation that o

ur near the trailing edge.213



Earlier in the study, the mean base pressure as a fun
tion of for
ing frequen
yfor all 
ases studied display either one of two distin
t 
hara
teristi
s. Further analysishas shown that there are di�eren
es in the wake. In general, the observations at higherReynolds number or shorter aspe
t ratio show a higher natural shedding frequen
y andasso
iated lo
k-in range, smaller length s
ales (shorter vortex formation length and more
ompa
t vorti
es), and stronger vorti
es shed (larger 
u
tuations in base pressure andverti
al velo
ity 
omponent in the wake) than the 
ases observed at lower Reynolds num-ber or longer aspe
t ratio. The natural 
ases already show these quantitative di�eren
es.The aspe
t ratio and Reynolds number govern the thi
kness of the boundary layer at thetrailing edge. This in turn determines whether 
ompa
t or di�use vorti
es are shed fromthe trailing edge. This is indire
tly measured by evaluating the vortex formation lengthand vortex traje
tories in the wake. The small applied for
ing has only a limited 
ontrolon the 
ow in a narrow band of frequen
ies. The simulations have shown that the 
owwith the di�erent 
hara
teristi
s in the wake respond di�erently to the external for
ing.The simulations are performed at Reynolds number below or around where tran-sition to three-dimensional 
ow o

urs. These two-dimensional simulations in the naturalshedding 
ase are therefore only a

urate at these low Reynolds numbers before transitiono

urs. As applied for
ing suppress the three-dimensionality of the 
ow, these 
ases arevalid to a higher Reynolds number. In this study, some 
omparisons were made withexperiments, in parti
ular those of Mills (1988) whi
h were performed at Re � 9; 000.In that situation, the 
ow is three-dimensional even with applied for
ing. As a result,there are di�eren
es between the experimental observations and the numeri
al predi
tionswhi
h have been previously dis
ussed.6.3 Flow around re
tangular platesThe study of 
ow around re
tangular plates has in
reased 
omplexity when 
ompared tothe previous se
tion with the additional intera
tion of leading- and trailing-edge shedding.This study involves three di�erent 
ow situations, namely the natural shedding 
ase, thefor
ed shedding 
ase and the du
t a
ousti
 resonan
e 
ase. Firstly, the main points ofobservations in ea
h situation will be reviewed. Next, the me
hanism in ea
h 
ase will bedes
ribed and related to the predi
tions. Finally, the similarities between the three 
asesare highlighted.
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6.3.1 Results from simulations6.3.1.1 Natural sheddingAt moderately low Reynolds numbers, studies in the past have shown that the 
ow aroundre
tangular plates lo
k to distin
t shedding modes depending on the aspe
t ratio (Okajimaet al., 1990, Nakamura et al., 1991 and Ohya et al., 1992). Only n (integer) pairs of vorti
es
an develop along the sides of the plate when the 
ow is lo
ked to a parti
ular mode. Thein
reasing number of vortex pairs along the plate also result in the Strouhal number basedon 
hord (St
) of the shedding to show a stepwise in
rease with aspe
t ratio 
=t with ea
hstep 
orresponding to a parti
ular shedding mode (n). The me
hanism that lo
ks the 
owto the di�erent modes has been 
lassi�ed as the impinging leading-edge vortex instability(ILEV) by Naudas
her & Wang (1993). Simulations of the natural shedding 
ases areperformed in the lead up to the for
ed shedding and du
t a
ousti
 resonan
e 
ase tostudy the relationship between 
ases.Firstly several simulations are performed to study the e�e
t of Reynolds number.Flow around plates with aspe
t ratios of 
=t = 3 and 
=t = 10 are simulated at Re = 300,400 and 500. All simulations with 
=t = 3 lo
ked to the �rst shedding mode (n = 1) whileat 
=t = 10, the 
ow lo
ked to the third shedding mode (n = 3) when Re = 300 and 400.At Re = 400, there are small 
u
tuations between periods in the base pressure tra
e andat Re = 500, the 
ow no longer lo
ked to a parti
ular shedding mode and there are severalfrequen
ies present in the base pressure tra
e. When the 
ow is lo
ked to a parti
ularmode, varying the Reynolds number has only a small in
uen
e on the shedding frequen
y(i.e. less than 10%). Nakamura et al. (1991) also found that the shedding frequen
y isindependent of Reynolds number when this me
hanism lo
ks the 
ow. The base pressuretra
e showed that the mean and 
u
tuating levels in
reasing with Reynolds number forall 
ases where the 
ow is lo
ked. There is a drop in the mean and 
u
tuating levels whenthe Reynolds number is in
reased and the 
ow no longer lo
ked to a shedding mode.Next, the aspe
t ratio is varied between 
=t = 3 to 16 at Re = 400 to study thee�e
t of varying the aspe
t ratio. The 
ow lo
ked to a shedding mode between 
=t = 3to 10 and also at 
=t = 13. Vorti
ity plots showed that 
=t = 3, 4 and 5 lo
ked to n = 1,
=t = 6, 7 and 8 to n = 2, 9 and 10 to n = 3, and 
=t = 13 to n = 4. The sheddingfrequen
y (Strouhal number based on 
hord) approximately 
orresponds to St
 = 0:55nfor all these 
ases. The base pressure tra
e showed more 
u
tuations between periodstowards the higher aspe
t ratio end of ea
h shedding mode. The spe
trum taken from thebase pressure tra
e when 
=t = 11 (not lo
ked) showed the presen
e of two frequen
ies,one 
orresponding to the n = 3 shedding mode and another to a frequen
y whi
h is inthe middle of the n = 2 and 3 shedding mode.215



The e�e
t of the ILEV instability is also seen in the base pressure and for
es onthe plate. The mean base su
tion and drag for
es are generally higher at the lower aspe
tratio end of the step and de
rease with aspe
t ratio. This trend 
ontinues even to aspe
tratios that no longer lo
k to a single frequen
y. The standard deviation of lift 
oeÆ
ientis approximately inversely proportional to aspe
t ratio.6.3.1.2 For
ed sheddingAt higher Reynolds numbers where the wake only shows a broad band of frequen
ies,experiments with applied external for
ing have shown that the system is more re
eptiveat parti
ular frequen
ies (Mills et al., 1995 and Mills, 1998). These experiments showedthat the for
ing frequen
y (St
) whi
h ex
ited the peak base su
tion also showed a stepwisein
rease with aspe
t ratio. Applied for
ing is introdu
ed into the simulations with theaim of simulating these observations and further study the me
hanism involved.Initially, several simulations are performed using 
=t = 10 to examine the e�e
tof varying Reynolds number and for
ing amplitude. The lo
k-in range in these 
asesare mu
h larger than the 
ases with the aerodynami
 leading-edge plates. Firstly, theReynolds number is varied from Re = 300 to 500 while the for
ing is �xed at vpert = 2:5%.The mean base pressure as a fun
tion of for
ing frequen
y shows a similar trend. Thefor
ing frequen
y where the peak base su
tion o

urred varied by 0:05 in Strouhal number.The magnitude of the peak in
reases with Reynolds number. Next, the for
ing amplitudeis varied between vpert = 1:25% and vpert = 5:0% while the Reynolds number is �xedat Re = 400. Again the overall behaviour in mean base pressure is similar betweenfor
ing levels. The in
rease in mean base su
tion with for
ing levels is greater at for
ingfrequen
ies that result in strong base su
tion.Next, 
ow around plates ranging between 
=t = 6 to 16 are simulated at Re = 400with a for
ing level of vpert = 2:5%. The for
ing frequen
y at whi
h the mean base su
tionpeaks also displays a stepwise in
rease with aspe
t ratio. These steps 
orresponds toSt
 = 0:55n with 
=t = 6 to 9 at n = 2, 
=t = 10 to 14 at n = 3, and 
=t = 15 and 16at n = 4. In some 
ases where these peaks o

urred at lower for
ing frequen
ies, anotherpeak developed at a higher frequen
y within the lo
k-in range. The mean base su
tionshowed another lo
al peak in 
ases with aspe
t ratios of 
=t = 8, 9, 12, 13 and 14. Thefor
ing frequen
y at whi
h these peaks o

ur 
orrespond to a frequen
y whi
h is betweenthe major steps (i.e. for 
=t = 8 and 9, it is between n = 2 and 3 and for 
=t = 12, 13 and14, it is between n = 3 and 4). When the for
ing amplitude is de
reased to vpert = 1:25%,the peaks 
orresponding to the major steps de
reased in magnitude but the magnitude ofthe peaks asso
iated with the intermediate steps in
reased.216



The stepwise nature of the peaks in base su
tion is also seen in the mean dragand 
u
tuating lift for
es. The mean drag for
e shows a similar trend to that observed forthe mean base pressure. The standard deviation of lift 
oeÆ
ient showed lo
al maxima
orresponding to the 
ases asso
iated with the major steps while the intermediate stepsshowed lo
al minima.Vorti
ity plots showed that the major steps 
orresponding to the peak in meanbase su
tion has the same n integer pairs of vorti
es along the plate as the level of thesteps. The se
ond peaks that o

urs at a higher frequen
y have an extra vortex presentalong the plate 
ompared with the major step at that aspe
t ratio. As a result thetrailing-edge shedding is 180o out of phase 
ompared with the lower frequen
y peak.6.3.1.3 Du
t a
ousti
 resonan
eSound generated from 
ow around a plate pla
ed in a du
t 
an ex
ite resonant modesin the du
t whi
h in turn lo
ks the 
ow. Stokes & Welsh (1986) found it possible togenerate that resonan
e at several distin
t frequen
y bands. These bands also showeda stepwise in
rease with aspe
t ratio. Previous theoreti
al and 
omputational models(Welsh et al., 1984, Stokes & Welsh, 1986, Stoneman et al., 1988) have proposed theme
hanism for the sound generation. The 
urrent simulations improve on the previouswork by a

urately simulating the 
ow (i.e. no 
ow and boundary layer models). The
ow �eld and the a
ousti
 �eld are de
oupled and the a
ousti
 �eld is modelled usingHowe's a
ousti
 theory (Howe 1975, 1980).These simulations are performed at Re = 400 and the applied for
ing used tolo
k the 
ow is vpert = 2:5%. The a
ousti
 model predi
ts distin
t frequen
y rangeswhere there is a nett transfer of energy from the 
ow �eld to the a
ousti
 �eld. This is ane
essary 
ondition for a
ousti
 resonan
e. The ranges of St
 where resonan
e is possiblealso showed a stepwise in
rease with aspe
t ratio. Again these steps are approximatelyat St
 = 0:55n. Further investigations showed that the predi
tions were not sensitiveto the di�erent approximations used for the a
ousti
 parti
le velo
ity. The di�erentapproximations tested are the potential 
ow model and the wave model with di�erentdu
t lengths.6.3.2 On the 
ontrolling me
hanismIn this se
tion, the proposed 
ontrolling me
hanism involved in ea
h of the three 
asesis reviewed and supported by further analysis. Figure 6.1 shows a sket
h of the essential217




omponents involved. The underlying me
hanism in ea
h 
ase was used to explain thebehaviour of the 
ow predi
ted by the simulations. The relationship and similaritiesbetween the me
hanisms involved in ea
h 
ase will be highlighted.6.3.2.1 Natural sheddingIn the natural shedding 
ase, it is generally agreed that the impinging leading-edge vortexinstability (ILEV) whi
h lo
ks the 
ow at low and moderate Reynolds numbers 
onsistsof a feed ba
k loop (Nakamura et al., 1991, Ohya et al., 1992, Naudas
her & Wang, 1993).As shown in Figure 6.1(a), this me
hanism 
onsists of leading-edge vorti
es 
onve
tingdownstream. These vorti
es intera
t with the trailing-edge vorti
es and pressure 
u
tua-tions develop with the passing of the leading-edge vorti
es and the development of dis
retevorti
es at the trailing edge. These pressure 
u
tuations radiate out and if they are strongenough at the leading edge to lo
k the shedding, it 
ompletes the feed ba
k loop. This re-sults in a syn
hronisation between the leading- and trailing-edge shedding. Vorti
ity plotstaken from the simulations have shown that in all 
ases where this me
hanism lo
ks the
ow, there is a 
onstant relative phase between the leading- and trailing-edge shedding.To maintain this syn
hronisation, the possible modes 
an either in
rease or de
rease byan integer pair of vorti
es. Again as shown by vorti
ity plots, there 
an be only n integerpairs of dis
rete vorti
es along the plate. With only a pair generated ea
h period, thismeans that a 
ow stru
ture would require n periods to 
onve
t from the leading edge tothe trailing edge.This me
hanism is also responsible for the frequen
y sele
tion. When the 
ow isperiodi
 and a 
ow stru
ture requires n periods to traverse the plate, then the Strouhalnumber based on 
hord, St
 (whi
h is 
f=U1), divided by the shedding mode n, is theaverage 
onve
tive velo
ity of these stru
tures. The 
al
ulations have shown that thebehaviour of the 
onve
tive velo
ity of the vorti
es are approximately uniform for plateswith di�erent aspe
t ratio. It follows then that the shedding frequen
y of St
 = 0:55nmeans that the average 
onve
tive velo
ity is 55% of the free-stream velo
ity for all theaspe
t ratios tested that lo
k to the 
ow.As the aspe
t ratio is in
reased, the shedding frequen
y, St, would have to de-
rease to allow more time for the vorti
es to traverse the plate. This 
ontinues until thesystem is no longer re
eptive to su
h a low frequen
y that it jumps to the next step.This is seen in the redu
tion in mean base su
tion and drag for
e as the aspe
t ratio isin
reased within a shedding mode. The lower frequen
y shedding also results in the basepressure tra
e showing some random 
u
tuations between periods. After the step jumpin frequen
y, these trends 
ontinue with further in
reases in aspe
t ratio. The trend in218
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Figure 6.1: S
hemati
 representation of the me
hanism involved in the (a) natural shed-ding, (b) for
ed shedding and (
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e 
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base pressure and drag for
e 
ontinue even when the 
ow no longer lo
ks to the shedding.This is not surprising as spe
tral plots of the base pressure tra
e shows that the ILEVfrequen
y is still signi�
ant for the 
ase with 
=t = 11 and Re = 400 whi
h does not lo
kto the single frequen
y due to a 
ompetition between this shedding mode (n = 3) and alower intermediate mode (between n = 2 and n = 3).The syn
hronisation between the leading- and trailing-edge shedding also resultsin a more uniform 
u
tuating lift for
e with aspe
t ratio. Pairs of vorti
es along the plateapproximately 
an
el the e�e
t of ea
h other. The leading-edge shedding and the passingof vorti
es at the trailing edge are the main 
ontributors to the 
u
tuating lift for
es.As these two pro
esses are syn
hronised, the the levels of the 
u
tuation in the lift for
eis approximately 
onstant and the standard deviation in the 
u
tuating lift 
oeÆ
ient(based on 
hord) would therefore be inversely proportional to the aspe
t ratio.The re
eptivity range of the system is a 
ombination of the re
eptivity at theleading and trailing edges. In the 
ase where the trailing-edge shedding is suppressed,su
h as the ` se
tion at Re = 300, Nakamura (1996) found the �rst shedding mode(n = 1) o

urred between 
=t = 3 to 10 and the se
ond shedding mode (n = 2) o

urredbetween 
=t = 11 to 15(limit of experiment), n = 2. In that 
ase, where only the leading-edge shedding is signi�
ant, the shedding frequen
y (St) range is mu
h larger 
omparedto the re
tangular plate. The presen
e of the trailing-edge shedding, although in
uen
edby the passing of the leading-edge vorti
es, redu
es the re
eptivity range of the systeman leads to transition between shedding modes at shorter intervals in aspe
t ratio.This feedba
k me
hanism relies on a relatively weak pressure pulse from thetrailing edge to syn
hronise the leading-edge shedding. With in
reasing distan
e (largeraspe
t ratios), the pressure pulse whi
h propagates radially would be weaker at the leadingedge. The leading-edge shedding would not lo
k if the strength of this pulse falls belowa 
riti
al level. As the Reynolds number in
reases, any disturban
es from upstream anddue to 
ow stru
tures would experien
e less damping. The level of \ba
kground" noiselevels due to 
haos and turbulen
e also grows with in
reasing Reynolds number. Sin
ethe pressure pulse does not grow as rapidly with Reynolds number, these disturban
eswould drown the signal at higher Reynolds numbers. This would explain the upper limitin aspe
t ratio and Reynolds number where the 
ow no longer lo
ks to a single frequen
y.6.3.2.2 For
ed sheddingAlthough not present in the natural shedding 
ase at higher Reynolds number, this me
h-anism 
an be ex
ited if there is some external in
uen
e (Nakamura et al., 1991). This isseen in the for
ed shedding and the du
t a
ousti
 resonan
e 
ases. Hourigan et al. (1993)220



proposed the for
ing frequen
y where the mean base su
tion peaks is determined by theinterferen
e of leading-edge vorti
es at the trailing edge. Further re�nements by Mills(1998) showed that the phase in the for
ing 
y
le at whi
h the leading-edge vortex arrivesat the trailing edge determines the frequen
y sele
tion. These simulations also show thisto o

ur and builds on these observations.The key 
omponents in the for
ed shedding 
ases is shown in Figure 6.2(b). Thesimulations have shown that the leading-edge shedding is phase-lo
ked to the for
ing inall 
ases where the 
ow is lo
ked to the for
ing. As in the natural shedding 
ase, they
onve
t downstream and the trailing-edge vorti
es form between the passing of leading-edge vorti
es. This lo
ks shedding of both the leading- and trailing-edge vorti
es toone frequen
y whi
h is the applied for
ing frequen
y. The phase of the trailing-edgeshedding relative to the for
ing or the leading-edge shedding is therefore determinedby these leading-edge vorti
es. The behaviour of the trailing-edge-shedding, whi
h alsoexperien
es the global for
ing, would be governed by its relative phase to the for
ing aswell. For all aspe
t ratios tested, at the for
ing frequen
y that 
orresponds to the peakbase su
tion, or the lower frequen
y peak in those 
ases where there are two lo
al peaks,the phase of shedding at the trailing edge relative to the for
ing is 
onstant. To maintainthis phase relationship, as in the natural shedding 
ase, there 
an be only an in
rease orde
rease in a 
omplete pair of vorti
es along the plate. The vorti
ity plots also show thatthere are n (integer) number of vorti
es along the plate with integer in
reases at 
riti
alaspe
t ratios. At this relative phase, the dire
tion of the a

eleration in the perturbationvelo
ity indu
es the vorti
es forming at the trailing edge towards the 
entreline of theplate. Vorti
es forming 
loser to the base and the narrower wake results in the strongerbase su
tion predi
ted by the simulations.The frequen
y sele
tion also depends on the 
onve
tive velo
ity of the leading-edge vorti
es. Cal
ulations have shown that the behaviour of the 
onve
tive velo
ity ofthese vorti
es is not signi�
antly in
uen
ed by the aspe
t ratio and the for
ing frequen
y.One di�eren
e under for
ing is that the leading-edge vortex is more 
ompa
t and theminima in 
onve
tive velo
ity o

urs 
loser to the leading edge suggesting that theyform 
loser to the leading edge 
ompared with the natural shedding 
ase. Based on thesyn
hronisation of the trailing-edge shedding and the behaviour of the 
onve
tive velo
ityof the leading-edge vorti
es, the stepwise response in the for
ing frequen
y St
 where thesepeaks in mean base su
tion o

ur would therefore also show a stepwise response as in thenatural shedding 
ase. The number of vorti
es along the plate (n) 
orrespond to the levelof the steps. Again the level of the steps at St
 = 0:55n would signify that the average
onve
tive velo
ity of the vorti
es along the plate is 55% of the free-stream velo
ity.221



At some aspe
t ratios, where the peak in base su
tion o

urs at a low for
ingfrequen
y, another lo
al peak develops at a higher for
ing frequen
y within the lo
k-inrange. These 
ases show that the trailing-edge shedding is 180o out of phase relativeto the 
ases 
orresponding to the major steps. These 
ases have only one extra vortexalong the plate, and as a result, the for
ing frequen
y (St
) is at an intermediate levelbetween steps. Simulations at a di�erent level of for
ing show that the magnitude ofthese peaks de
rease with in
reasing for
ing levels. As the trailing-edge shedding is outof phase relative to the major steps, the applied for
ing is a
tually suppressing the meanbase su
tion by indu
ing the trailing-edge vorti
es to form further from the 
entreline ofthe plate.The me
hanism ex
ited by the for
ing 
an also explain other observations found inthe simulations. The for
ing frequen
y at whi
h the base su
tion peaks is not signi�
antlyaltered by variations in Reynolds number and for
ing amplitude. These parameters donot signi�
antly alter the behaviour of the 
onve
tive velo
ity of vorti
es along the plate.As the same me
hanism is involved, the for
ing frequen
y at whi
h the peak base su
tiono

urs would not vary signi�
antly. The e�e
t of in
reasing the for
ing amplitude is toin
rease the mean base su
tion with larger in
reases at for
ing frequen
ies whi
h resultin strong mean base su
tion. At these for
ing frequen
ies, there is strong base shedding,and as in the 
ase where the nose is aerodynami
, the base su
tion grows with for
ingamplitude. Even with a small for
ing amplitude, the lo
k-in range of frequen
ies is large.This is 
aused by the leading-edge shedding lo
king to the large range of frequen
ies.The vorti
es from the leading edge have a strong in
uen
e on the trailing-edge sheddingthereby lo
king the entire system over a large band of frequen
ies.As in all previous 
ases, the behaviour of the drag for
e mimi
s that of the meanbase pressure. The 
u
tuating lift for
e shows lo
al maximums 
orresponding to themajor steps and lo
al minimums 
orresponding to the intermediate steps. This is a resultof the phase at whi
h the leading-edge vorti
es pass the trailing edge. They 
an eitheradd or oppose the 
u
tuating 
omponent resulting from the leading-edge shedding. Themagnitude of the peak in base su
tion and drag for
e is higher for 
ases with aspe
tratios 
loser to the lower end of ea
h step. In these 
ases, the for
ing frequen
y is higher.The simulations have shown that the vortex formation length de
reases with in
reasingfrequen
y. Therefore the vorti
es form 
loser to the trailing edge in these 
ases andthis results in stronger base su
tion. If the for
ing frequen
y is in
reased further, thesimulations show that the trailing-edge shedding is suppressed and this results in a lowermean base su
tion.
222



6.3.2.3 Du
t a
ousti
 resonan
eIn this 
ase, the sound �eld resonating in the du
t 
ompletes the feed ba
k loop. Figure6.1(
) shows the essential 
omponents in this parti
ular 
ase on
e resonan
e o

urs. Thepredi
tions in this study and previous studies have shown the region near the trailingedge to be the main sour
e of sound (Stokes & Welsh, 1986, Thompson et al., 1987).Energy transfered from the 
ow to the sound �eld will then sustain the resonant �eld.The resonant sound in turn lo
ks the leading-edge shedding. The �nal result is a feedba
k loop with the sound �eld, trailing- and leading-edge shedding lo
king to the resonantfrequen
y.The te
hnique used in this study assumes the 
ow is 
lose to in
ompressible andde
ouples the 
ow �eld and the a
ousti
 �eld. A resonant a
ousti
 �eld is assumed to bepresent and the 
ow is lo
ked to that frequen
y by the external applied for
ing. Howe'sa
ousti
 theory is then used to determine if there is a nett transfer of energy form the
ow �eld to the a
ousti
 �eld. This is a ne
essary but not a suÆ
ient (be
ause energylosses are negle
ted) 
ondition to sustain the resonan
e.The a
ousti
 model predi
ts only a negligible amount of sound generated betweenthe leading and trailing edge be
ause the a
ousti
 parti
le velo
ity is approximately tan-gential to the 
ow. Upstream of the plate, a negligible a
ousti
 power is generated be
ausethe amount of vorti
ity is negligible. Further downstream of the plate, vortex pairs 
an
elthe e�e
t of ea
h other. Nett a
ousti
 energy is generated when vorti
es are shed at thetrailing edge or leading-edge vorti
es pass the trailing edge and enter the wake. Contourplots of a
ousti
 power and analysis of the shedding pro
ess have shown that the phasein the resonan
e 
y
le these vorti
es are introdu
ed into the wake govern the dire
tion ofaverage energy transfer.As the leading-edge shedding is phase-lo
ked to the resonant sound, the phase ofthe leading-edge vorti
es passing the trailing edge and the trailing-edge shedding is againdependent on aspe
t ratio and resonant (for
ing) frequen
y as for the for
ed shedding
ases. It is not surprising then that the frequen
y bands where resonan
e is possiblealso shows steps approximately 
orresponding to St = 0:55n. In the plates simulated,some plates showed two or three frequen
y bands where resonan
e is possible. In these
ases, ea
h in
reasing band 
orresponds to an additional pair of vorti
es along the plate.Even when trailing edge shedding is suppressed at higher for
ing frequen
ies, resonan
eis possible with a
ousti
 power generated from leading-edge vorti
es entering the wake.
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6.3.2.4 Similarity between 
asesOne 
ommon feature in all three 
ases is the frequen
y sele
tion whi
h in ea
h 
ase showsstepwise in
reases of St = 0:55n with aspe
t ratio. After reviewing ea
h 
ase, it was foundthat they all rely on a syn
hronisation between the leading- and trailing-edge shedding. Inall 
ases the leading-edge vorti
es 
onve
t downstream and this 
ontrols the trailing-edgeshedding. The di�eren
e is the way the leading-edge shedding is syn
hronised to shedalternately. In the natural shedding 
ase, there is a pressure pulse from the the trailingedge. In the 
ases with applied for
ing or du
t resonan
e, the leading-edge shedding isphase-lo
ked to the applied for
ing or sound �eld. These triggers (pressure pulse, appliedfor
ing or a
ousti
 �elds) travel mu
h faster than the 
ow velo
ity in these 
ases be
ausethe 
ow �eld is almost in
ompressible. The frequen
y sele
tion is therefore based on therole of the leading-edge vorti
es whi
h take a �nite time to travel the length of the plate.This study has shown that the behaviour of the 
onve
tive velo
ities of these vorti
es isnot signi�
antly in
uen
ed by aspe
t ratio and for
ing frequen
y (when applied). Thestepwise in
rease with aspe
t ratio is therefore a result of the system maintaining thesyn
hronisation between the leading- and trailing-edge shedding.The simulations have shown that in ea
h 
ase the steps in frequen
y are approxi-mately St = 0:55n. This is a result of the 
onve
tive velo
ity of the 
ow stru
tures betweenthe leading and trailing edges being 55% of the free-stream velo
ity. The independentexperiments in ea
h 
ase show that the steps are 
loser to St = 0:6n (Nakamura et al.,1991 in the natural shedding 
ase, Mills, 1988 in the for
ed shedding 
ase and Stokes &Welsh, 1986 in the a
ousti
 resonan
e 
ase). In these experiments, the Reynolds numbersare generally higher and the 
ow three dimensional (Nakamura et al., 1991 at Re = 1; 000,Mills, 1988 at Re � 9; 000 and Stokes & Welsh at Re � 15; 000� 30; 000). As a result,the average 
onve
tive velo
ity of 
ow stru
tures along the plate in the experiments maybe higher than in the simulations.Although these simulations are two dimensional, they have 
aptured the majorme
hanism 
ontrolling the 
ow. Physi
ally at these Reynolds numbers, there is somethree-dimensionality in the 
ow, the me
hanism is two dimensional and the vortex rollersare still predominantly two dimensional with some spanwise distortions. This allows the
ows to be simulated with a reasonable amount of a

ura
y in two dimensions.6.3.2.5 On the feedba
k me
hanism in the natural shedding 
asesThe 
ow around long bodies with blu� leading edges 
an lo
k to a parti
ular sheddingmode thereby syn
hronising the leading-edge shedding with the 
ow stru
tures at the224



trailing edge. To a
hieve this, a feedba
k loop is established between the leading andtrailing edges. There are some di�eren
es in several parts of the feedba
k loop as shown inFigure 6.2. This diagram builds on previous works (see Se
tion 1.2.4) and the observationsin this study. The sele
tion is dependent mainly on aspe
t ratio and the trailing-edgegeometry. The 
ommon 
omponent is the separated leading-edge shear layer and thepressure pulse generated around the trailing edge whi
h feeds ba
k and 
ontrols the shearlayer thus 
ompleting the loop. Small aspe
t ratio geometries where the vorti
es from theleading edge are shed dire
tly into the wake are not 
onsidered here.The �rst of three 
ases 
onsidered here is where the leading-edge shear layer di-re
tly intera
ts with the trailing edge (shown in blue, Figure 6.2). This has been 
lassi�edby Nakamura (1986) as the impinging shear layer instability. That study involved geome-tries with re
tangular, H and ` 
ross-se
tions ranging between 
=t = 2 and 5. Here, theshear layer intera
ts dire
tly with the trailing edge whi
h in turn sends a pressure pulse tolo
k the leading-edge shedding. This 
lassi�
ation of impinging shear layer instability hasbeen used previously in other 
ases to des
ribe the situation where the shear layer inter-a
ts with a solid boundary downstream whi
h send a pressure pulse upstream in
uen
ingthe shear layer (Ro
kwell & Naudas
her, 1978).The term impinging leading-edge vortex instability (ILEV) was proposed by Nau-das
her & Wang (1993) to in
orporate the shedding of leading-edge vorti
es in those 
aseswhere the leading-edge shear layer does not rea
h the trailing edge (i.e. n = 2; 3; ::). Theearlier 
ase (n = 1) 
ould be in
luded in this 
lassi�
ation be
ause vorti
es are shed fromthe leading edge although the shear layer does periodi
ally rea
h the trailing edge. Thispro
ess is highlighted in red (Figure 6.2). The shear layer at the leading edge rolls upinto dis
rete vorti
es and 
onve
t along the body. As these vorti
es pass the trailingedge, a pressure pulse is generated. This pulse travels upstream to lo
k the leading-edgeshedding. Examples of where this o

urs in
lude the ` se
tion and a wide variety of blu�bodies su
h as 
ylinders and square se
tions �tted with splitter plates (Nakamura, 1996).Previous studies and 
lassi�
ation asso
iated with the 
ow around long re
t-angular plates did not highlight the important role of shedding from the trailing edge(Nakamura et al., 1991, Ozono et al., 1992, Naudas
her & Wang, 1993). In these simu-lations, although pressure 
u
tuations do o

ur when the leading-edge vorti
es pass thetrailing edge, strong base shedding is also observed. The pressure 
u
tuations asso
iatedwith the formation of trailing-edge vorti
es are larger in these simulations. This is seenin the large mean and 
u
tuating 
omponents in base pressure. A des
ription of thefeedba
k pro
ess o

urring in these simulations is shown in green (Figure 6.2). Vorti
esare shed from the shear layer at the leading edge. These vorti
es 
onve
t along the plateand intera
t with the shedding at the trailing edge (i.e., trailing-edge vorti
es forms be-225
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Figure 6.2: A s
hemati
 showing the possible feedba
k me
hanisms for 
ow around a longbody with a blu� leading edge experien
ing no external ex
itation.tween the passing of leading-edge vorti
es). The pressure pulse from the base sheddingthen feeds ba
k upstream and 
ontrols the leading-edge shedding. As dis
ussed earlierin Se
tion 6.3.2.1, the added in
uen
e of the trailing-edge shedding 
ompared with those
ases without is the more limited range of shedding frequen
ies in ea
h shedding mode.Previous des
ription of this feedba
k me
hanism su
h as the impinging shear layer orthe impinging leading-edge vortex instability does not dis
riminate between trailing-edgegeometries. As a result, the trailing-edge shedding has been ex
luded from the feedba
kme
hanism. In the 
ase of a re
tangular plate, the simulations show strong base sheddingwhi
h would dominate the e�e
t of leading-edge vorti
es passing the trailing edge. Thedes
ription proposed here to in
orporate the base shedding is therefore more appli
ableto 
ases with signi�
ant base shedding.
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6.4 Three-dimensional simulationsA limited number of three-dimensional 
ow simulations are performed to study the transi-tional states for 
ow around ellipti
al leading-edge and re
tangular plates. The Reynoldsnumbers in these simulations are 
hosen around where transition from two- to three-dimensional 
ow o

urs. In the 
ase where the leading edge is aerodynami
, the transitionin the wake is examined. The spanwise instability of leading-edge vorti
es is the fo
us insimulations involving re
tangular plates. The nature of the te
hnique used here enfor
esperiodi
 boundary 
onditions on the spanwise boundaries. This allows only dis
rete span-wise wavelengths (more limited at longer wavelengths) to be 
aptured and therefore mayin
uen
e the results.6.4.1 Ellipti
al leading-edge plateSimulations are performed for the 
ow around ellipti
al leading-edge plates with a 5:1 axesratio and aspe
t ratios of 
=t = 7:5 and 2:5. Two spanwise shedding modes have beenobserved similar to Mode A and Mode B in the wake of a 
ir
ular 
ylinder. The spanwisewavelengths in these simulations are generally larger be
ause of the thi
ker boundarylayers near the trailing edge and the resulting vorti
es being more di�used.The simulations were able to 
apture three-dimensional vorti
al stru
tures withtopology similar to Mode A at Re = 500 and 
=t = 7:5. Two wavelengths of this sheddingwere simulated in the 
omputational domain resulting in a spanwise wavelength of � t.It is un
ertain if the most unstable mode is 
aptured be
ause only dis
rete wavelengths
an be simulated. No spanwise instabilities were observed in simulations at Re = 400and below. Mode B shedding is expe
ted to dominate at higher Reynolds number but nosimulations were attempted due to 
omputational 
onstraints.Simulations with 
=t = 2:5 have 
aptured two shedding modes in the transitionpro
ess. The simulation 
aptured a long wavelength 
ow stru
ture at Re = 300 withtopology 
onsistent with Mode A shedding. As only one wavelength of this 
ow stru
turewas 
aptured within the domain (2�t), there is some un
ertainty as to whi
h is the mostunstable wavelength. There are smaller wavelengths that develop in 
ertain shedding
y
les. This 
ould be either a 
ompetition between shedding modes or a result of therestri
tive domain. At Re = 350, Mode A shedding is suppressed and the presen
e ofsome 
ow stru
tures 
onsistent with Mode B shedding is present. The wavelength ofthese stru
tures is un
ertain be
ause they are sporadi
 and not uniform a
ross the span.When the Reynolds number is in
reased to Re = 380, these stru
tures be
ome strongerand more regular. These 
ow stru
tures have a spanwise wavelength of approximately227



0:8t. Simulations with applied external for
ing are not attempted for this geometrybe
ause of the diÆ
ulty in simulating at higher Reynolds number to 
apture the transition.Some simulations with applied for
ing are attempted with the re
tangular plate.6.4.2 Re
tangular plateThe 
ow around plates with 
=t = 6, 10 and 13 is simulated at Re = 350 and 400. Nospanwise instability was observed in the simulations with 
=t = 6. Flow stru
tures similarto those 
lassi�ed as Pattern B by Sasaki & Kiya (1991) are observed when 
=t = 10and 13 at both Re = 350 and 400. These were hairpin-like stru
tures arranged in astaggered manner on both sides of the plate. In all 
ases, two wavelengths were 
apturedin the domain and therefore the spanwise wavelength is approximately 3t. The streamwisewavelengths is approximately 3t when 
=t = 10 and 4t when 
=t = 13. Both streamwiseand spanwise wavelengths are within the range of experimental un
ertainty.Further simulations to 
apture Pattern A have not been su

essful. These wereperformed with 
=t = 13 at several Reynolds number below Re < 350 and with di�erentspanwise domain sizes. Simulations with applied for
ing for plates with 
=t = 10 andRe = 400 all resulted in the 
ow rea
hing a two-dimensional state. The for
ing amplitudewas at vpert = 2:5% and the frequen
y ranged ranged between St = 0:13 and 0:19. To
apture transition in these 
ases would require simulations with higher Reynolds number.
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