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Abstract

In the research of bluff body aerodynamics, the natural flow complexity has to be

reduced to understand fundamental principles of fluid dynamics involved. Often, cylin-

ders with simple cross-sectional geometries such as circle, rectangle or plates with zero

thickness are used. This thesis presents results of water channel experiments on selected

cylindrical shapes, studying three-dimensionality and vortex dynamics of incompress-

ible bluff body wakes. Results of two distinct but related studies are reported:

A circular cylinder of diameter d, spinning about its main axis in cross flow,

was observed to generate new three-dimensional modes C–F for Reynolds numbers

175 6 Re 6 275 and non-dimensional rotation rates 0 6 α 6 4. Using particle image

velocimetry and digitally post-processed hydrogen bubble flow visualizations our ex-

periments confirmed for the first time the linear stability analysis of Rao et al. (2013).

For Re = 275 and α = 1.7, we observed the sub-harmonic mode C with a spanwise

wavelength of 1.1 d. On increasing the rotation rate, two modes with a wavelength

of ≈ 2 d became unstable in rapid succession, termed modes D and E. Mode D grew

on a shedding wake, whereas mode E consisted of streamwise vortices on an otherwise

steady wake. For α > 2.2, a short-wavelength mode F appeared in the wall-bounded

shear layer of the cylinder with a wavelength of 0.5 d, which is presumably a manifes-

tation of centrifugal instability. Unlike the other modes, mode F was a travelling wave

with a spanwise frequency of St3D ≈ 0.1. In addition to these new modes, observations

on the one-sided shedding process, known as the ‘second shedding’, are reported for

α = 5.1. Despite suggestions from the literature, this process seems to be intrinsically

three-dimensional.

In the second study, we investigated the wake characteristics shared by a circular

cylinder and a flat plate aligned normal to the flow. The link between these two models

was formed by cylinders of elliptical cross sections of varying axes aspect ratios Ar .

When ‘flattening’ the cross-section into ellipses perpendicular to the flow, the critical

Reynolds number of wake transitions decreased. Whilst modified versions of the mode A

and B transitions of a circular cylinder wake occurred at aspect ratios above Ar ≈ 0.4,

the two-dimensional base flow of the wake changed considerably for lower Ar . In

particular, the wake appeared to re-laminarize after it had already undergone three-

dimensional transition. This strictly periodic shedding regime was characterized by an

extended wake deficit, where the time-averaged velocities decreased to 5–20% of the

ix



freestream velocity. In some cases, a small second recirculation bubble was observed

downstream of the wake formation region. Proper orthogonal decomposition of PIV

data confirmed the presence of a secondary vortex street of double the wavelength,

with a rather abrupt transition between the wake types. It is speculated that the

close proximity of the secondary street at very low Ar stabilised the primary shedding

process. The reason for the increased periodicity of the primary shedding, and the exact

mechanism leading to suppression of three-dimensional modes in the re-laminarized

regime, are subjects for future studies.
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Chapter 1

Introduction

A body is designated as ‘bluff’ when its drag force is dominated by pressure drag. Above

a certain Reynolds number, the flow field contains large regions of separated flow as a

consequence of boundary layer separation caused by adverse pressure gradients. The

separated vorticity in the free shear layers rolls up into coherent regions, known as wake

vortices. It is the low pressure in the cores of these vortices that causes large fluctuating

forces on the rear of the body.

This process has direct engineering significance. The alternate shedding of vortices

in the near wake and the associated pressure forces may cause structural vibrations,

acoustic noise, or resonance, which in some cases can trigger failure (Tropea et al. 2007).

Road vehicles such as cars, trucks and trains can be considered as bluff, in which case

the issues of surface flutter, noise generation and overall drag reduction need to be

addressed by engineers (Hucho & Sovran 1993). Furthermore, high chimneys, bridges,

free swinging cables and oil rig pillars are in direct danger of structural failure due to

vortex induced vibrations.

But not only from the perspective of drag and flow induced vibrations are wakes

interesting study objects. Nature creates wakes in various sizes and shapes (see fig-

ure I). Many of the fluid dynamics phenomena associated with such flows are not

fully understood. Three-dimensional instabilities, vortex interactions and parameter

discontinuities have posed significant challenges to researchers for many years.

The question of how the body-shape determines its wake dynamics has been the

subject of numerous studies. A minor change of body shape, even the orientation to

the incoming flow, can lead to significant changes in drag and wake structure. Table I

exemplifies these changes in terms of the drag coefficient and shedding frequencies for a

range of two-dimensional bodies. A semicircular cylinder, for example, will experience

1



Chapter 1. Introduction

Figure I: Landsat 7 image of clouds off the Chilean coast. This ‘wake’ forms behind the
Alejandro Selkirk Island on the bottom left and develops into the well known von Kármán
vortex street (reproduced with permission from Robert Cahalan, NASA Goddard Space Flight
Center; http://earthobservatory.nasa.gov/IOTD/view.php?id=625).

a 42% drag increase if facing the stream with the flat side, compared to the curved

side facing upstream. Clearly, the fluid dynamics of such simple geometries need to be

understood first, before the flow around more complex (three-dimensional) objects can

be apprehended and predicted reliably.

When studying fundamental fluid dynamics, it is customary to reduce the natural

flow complexity by the use of simple geometric shapes, such as the ones shown in

table I, and by considering only two-dimensional flows. In how far truly two-dimensional

flows can be achieved experimentally using finite model lengths, and which role three-

dimensional effects play, will be discussed in section 2.1. All models considered in this

thesis are (nominally) two-dimensional, meaning that we are dealing with cylinders

which main axis is several orders bigger than the characteristic length of the cross-

sectional shape.

The choice of the cross-sectional shape determines the number of control parameters,

which impact the flow symmetry, complexity and richness of flow phenomena. Among

the most commonly studied shapes are the canonical circular cylinder and the flat

plate normal to the stream. The circular cylinder is the simplest model, with diameter

d as the only geometrical parameter. This body type has been studied for over 100

years (Bénard 1908; Kármán 1911), and it still challenges researchers with a richness

of two- and three-dimensional flow phenomena, which is truly astonishing for such a

2



‘plain’ geometry. Similarly, the normal flat plate is uniquely defined by its width, as

the thickness is assumed to be ideally zero and the plate to be infinitely long. Again,

the last two assumptions are a matter of debate.

Table I: Drag coefficients (CD) and Strouhal numbers (S) for common two-dimensional
shapes. Note how the body shape and orientation impact the overall drag coefficient. The
drag tends to increase when the flat side of the body is pointing into the stream. Note, that
the shown values are valid only above some specific Reynolds number (reproduced with kind
permission of Springer Science+Business Media from Tropea et al. 2007).

The models do not have to be stationary. The vortex shedding phenomenon can be

altered dramatically for cylinders undergoing in-line, transverse or rotational oscilla-

tions (Nazarinia 2010). A particularly interesting configuration is the circular cylinder

rotating at a constant rate in cross flow. Now, that one side of the cylinder accelerates

the adjacent flow and the other side delays it, the flow field loses its mirror symmetry

along the wake centreline. One of the consequences of this asymmetry is a lift force

in cross-stream direction (‘Magnus effect’: Magnus 1853). In terms of wake dynamics,

cylinder rotation can lead to full suppression of the shedding motion for certain rotation

rates (Mittal & Kumar 2003).

This thesis attempts to shed more light on how far the shape and motion of a

nominally two-dimensional body influences its wake dynamics. As this is a very broad

field, we limit the scope of this project to a carefully selected set of models and to one

3
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flow
x

y

Ω

(a)

flow

x

y

1.0 0.72 0.64

0.39 00.26

Ar =

b

d

(b)

Figure II: The two model types studied in this thesis: (a) rotating circular cylinder; (b)
elliptical cylinders, with the circular cylinder and normal flat plate as the limiting cases.

motion type. The pivot point of our experiments is the canonical circular cylinder,

which offers an abundant amount of literature for validation. From this point, our

research moves into two directions by modifying this canonical case twofold:

1. To investigate the role of motion, we spin the cylinder about its main axis at

a constant angular velocity Ω (figure IIa). In this set of experiments we are

primarily interested in three-dimensional instabilities of the wake as a function

of the dimensionless rotation rate α (Rao et al. 2013), and the phenomenon of

vortex suppression (Mittal & Kumar 2003; Kumar et al. 2011). The investigated

parameter range is 175 6 Re 6 275 and 0 6 α 6 4.

2. To investigate the role of shape, we change the cross-section in a systematic way,

by ‘flattening’ the circle into ellipses of decreasing aspect ratio Ar = b/d, obtaining

a normal flat plate at the end of this process (figure IIb). As a result, the circular

cylinder and the flat plate become limiting cases to a spectrum of general body

shapes, in this case elliptical cylinders. It is expected that these cylinders will

exhibit flow phenomena common to both limiting model types. By varying the

‘mix’ of the wake types (by varying the eccentricity / aspect ratio of the elliptical

cylinders), we gain new insight into the wake dynamics of the two limiting cases.

The investigated parameter range is 100 6 Re 6 300 and Ar = 1.00, 0.72, 0.64

0.39, 0.26 and 0.

4



Thesis structure

Chapter 2: A review of the relevant literature is conducted in order to assess the

current state of knowledge and to highlight unanswered questions and gaps in

the existing research. Practical issues associated with experimental research of

two-dimensional bluff bodies are discussed.

Chapter 3: The experimental setups (for rotating and stationary cylinders) are intro-

duced, followed by an outline of the experimental methods.

Chapter 4: Due to a modification of the existing water channel, an extensive valida-

tion study was carried out, which results are presented in this chapter.

Chapter 5: The results of experiments on the rotating circular cylinder are presented.

Using PIV and digitally post-processed hydrogen bubble flow visualizations, we

study several three-dimensional instability modes, some of which are observed

experimentally for the first time.

Chapter 6: The elliptical cylinder wakes are studied using the hot film technique.

The wake properties are compared to the circular cylinder and the flat plate

wakes. The results suggest that, besides expected similarities, several new flow

phenomena arise, including the ‘re-laminarized’ flow regime.

Chapter 7: An explanation is offered for the ‘re-laminarized’ regime. Studying the

time-averaged flow field, the wake geometry and the dominant POD modes, it

was concluded that the re-laminarization is a consequence of the appearance of

the secondary vortex street.

Chapter 8: The overall conclusions of the thesis are presented.

Appendix A: An error analysis of the main parameters is carried out.

Appendix B: A short study of the used FFT algorithm is presented.

Appendix C: Flow fields of POD modes 0–5 of the elliptic cylinder wakes are included

for completeness.
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Chapter 2

Literature Review

2.1 Stationary circular cylinders

Figure 2.1: The von Kármán vortex street behind a circular cylinder. (Artistic representa-
tion based on Van Dyke 1982)

The flow about a circular cylinder is a canonical case of incompressible bluff body

flows, and has been studied for over 100 years (Strouhal 1878; Bénard 1908; Kármán

1911). This model intrigues with its simple geometry and a straightforward experi-

mental setup. Nevertheless, the flow around this simple object exhibits an astonishing

variety of flow phenomena. The most famous flow pattern – partly due to its aesthetic

appeal – is the von Kármán vortex street (figure 2.1). With the progress of fluid dy-

namics research, several flow regimes of the cylinder wake have been identified, which

will be introduced in §2.1.1.

The flow regimes are determined by the non-dimensional Reynolds number:

Re =
dU∞

ν
, (2.1)

with cylinder diameter d, flow velocity U∞ and kinematic viscosity ν. The frequency

f of the periodic velocity fluctuations in the vortex street is expressed by the Strouhal

7



Chapter 2. Literature Review

number:

St =
fd

U∞
. (2.2)

The dependence of the Strouhal number on the Reynolds number, and especially dis-

continuities in this relationship, are of great interest, as they are reliable indicators of

transitions between wake regimes (Roshko 1993).

The exact transition Reynolds numbers and the appearance of associated wake

regimes are very sensitive to experimental conditions. Cylinder roughness, freestream

turbulence, aspect ratio of the cylinder, end conditions and blockage ratio can modify

these values. Therefore, the Reynolds number ranges discussed hereafter should be

treated as approximations of often gradual transitions, unless stated otherwise.

2.1.1 Wake regimes and three-dimensional instabilities

no separation,
creeping flow

separation,
pair of standing vortices

vortex shedding

(a) Re < 5 (b) 5 < Re < 47 (c) 47 < Re

Figure 2.2: The wake of a circular cylinder develops several flow regimes for increasing
Reynolds number.

Re < 5 At very low Reynolds numbers, the flow is dominated by viscosity and

stays attached to the cylinder surface (figure 2.2a). This creeping flow is steady, and

the streamline pattern is nearly symmetrical in the streamwise direction. This flow can

be approximated by potential theory by a superposition of a uniform steady flow and

a doublet (see for example Panton 2006).

5 < Re < 47 An increase of the Reynolds number above 5 leads to a steady and

symmetrical flow separation from the cylinder surface (figure 2.2b). The separated

shear layer rolls up into two symmetrical standing vortices downstream of the cylinder.

The length of the mean recirculation region grows with increasing Reynolds number

(Williamson 1996c).

47 < Re < 180− 190 This Reynolds number range is often referred to as the lam-

inar shedding regime (Williamson 1996b). Shortly before Re ≈ 47 is reached, the

recirculation region becomes unstable to flow perturbations (Williamson 1996c; Dusek

et al. 1994; Le Gal et al. 2001). The amplitude of the velocity fluctuations increases,

and the point of maximum fluctuation intensity (marking the formation length) moves
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Figure 2.3: Strouhal-Reynolds number relationship of the circular cylinder wake in the
laminar and transitional regimes. The curve is characterized by two transitions: The first at
Re ≈ 180 is hysteretic and marks the transition to three-dimensionality and the appearance
of the mode A instability. At the second transition, energy is transferred gradually from
mode A to mode B instability (reproduced with permission from Williamson 1996b).

upstream towards the cylinder. Laminar two-dimensional vortex shedding sets in, dur-

ing which spanwise vortices are released from alternate sides of the cylinder into the

wake (figure 2.2c).

Roshko (1954) pointed out that the change at Re ≈ 47 is not a laminar-turbulent

instability, but a transition between two different stable flows. In terms of nonlinear

dynamics, the transition to a shedding state is a Hopf bifurcation (Jackson 1987; Dusek

et al. 1994). It has been shown that a region of absolute instability in the near wake is

necessary for vortex shedding to occur (Monkewitz 1988).

The upper Reynolds number limit of the laminar shedding regime shows a wide

spread of Re, from 160 to 190. Numerical studies of the periodic two-dimensional wake,

using Floquet analysis, suggest a value of Re = 188.5± 1 (Henderson & Barkley 1996).

The reason for this discrepancy is premature transition caused by various ‘real-world’

effects which will be discussed in §2.1.3.

180− 190 < Re < 230− 260 This transition regime is characterised by two gradi-

ent changes of the St–Re curve. As seen in figure 2.3, the first change is an hysteretic

discontinuity at Re ≈ 180, which marks the amplification of three-dimensional distur-

bances. This leads to a periodic spanwise modulation of the primary vortices at a wave-

length λz ≈ 4d (Williamson 1988; Barkley & Henderson 1996). The three-dimensional

9



Chapter 2. Literature Review

flow structures of this mode A instability initially consist of vortex loops, which are

stretched between consecutive von Kármán vortices into counter-rotating streamwise

vortex pairs. The loops possess an out-of-phase symmetry, meaning that consecutively

formed vortices have opposite vorticity (see figure 2.4).

Figure 2.4: Symmetry properties of the secondary (streamwise) vortices of mode A and B.
The vortices of mode A change their sense of rotation from one shedding cycle to the next,
while consecutively formed vortices of mode B have equal vorticity. See figure 2.5 for a flow
visualization of both modes (reproduced with permission from Williamson 1996c).

The elliptic instability of the von Kármán vortex cores has been suggested as a pos-

sible physical mechanism of mode A (Williamson 1996b; Thompson et al. 2001). This

instability affects flows with elliptically shaped streamline patterns (Kerswell 2002;

Leweke & Williamson 1998; Landman & Saffman 1987), which can be created by vor-

tices exposed to strain fields, as happens in the von Kármán vortex street. Such flows

can be modelled by a superposition of a two-dimensional base flow, a solid-body ro-

tation and a potential stagnation-point flow (creating the strain field). The emerging

instability shifts the vortex core periodically in the radial direction, leading to its wavy

deformation. The axial wavelength scales on the size of the vortex core.

In the case of two parallel, counter-rotating vortices, an interaction between the

vortices can take place. As has been shown by Leweke &Williamson (1998) and Meunier

& Leweke (2005), the vortices influence each other and develop ‘cooperatively’. Unlike

the large-scale Crow instability (Crow 1970), this cooperative elliptic instability leads

to a short- wavelength deformation of the primary vortex cores with an antisymmetric

phase relationship. Due to this deformation, each vortex pulls out ‘tongues’ of fluid from

the other. These tongues are drawn around the vortices and stretched into counter-

rotating secondary vortex pairs. These intensify and lead to the breakdown of the

primary vortices.

Based on these experiments, Thompson et al. (2001) showed in numerical simula-
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2.1. Stationary circular cylinders

Figure 2.5: Flow visualisations of mode A at Re = 200, and mode B at Re = 270. The flow
is from left to right (reproduced with permission from Williamson 1996c).

11



Chapter 2. Literature Review

tions that a cooperative elliptic instability dominates the flow in the vicinity of cylinder,

in the moment the von Kármán vortex cores are formed. Once the formation process

is complete and the vortices detach from the cylinder, further amplification of span-

wise perturbations takes place in the strained braid regions connecting these vortices.

Thus, the elliptical instability determines only initially the spanwise wavelength of the

disturbance, and much of the actual amplification takes place outside of the vortex

cores.

In experiments, the transition regime is characterized by a phenomenon termed

vortex dislocations (figure 2.6). First reported by Roshko (1954), large amplitude low-

frequency irregularities of the velocity signal have been observed, caused by dislocations

of the primary vortices (referred to as the vortex adhesion mode by Zhang et al. 1995).

These dislocations are formed between spanwise cells of different frequency, when the

primary vortices move out of phase with each other (Williamson 1992, 1996a; Prasad

& Williamson 1997). Dislocations can be generated at the sites of the vortex loops of

the mode A instability, and evolve spontaneously and intermittently along the span,

independent of the cylinder end conditions. They grow and dominate the velocity

fluctuation profiles in the wake and lead to a broadening of the peak in the measured

velocity frequency spectrum (Braza et al. 2001). These large scale structures are not a

consequence of (unfavourable) experimental conditions, but an intrinsic property of the

transition regime, as has been confirmed by numerical simulations by Henderson (1997);

Braza et al. (2001); Behara & Mittal (2010). Braza et al. (2001) showed that these

structures lead to a drastic fundamental frequency reduction and amplitude modulation.

Re > 230 In this Reynolds numbers range, a new three-dimensional mode appears

(Williamson 1988; Zhang et al. 1995; Barkley & Henderson 1996; Thompson et al. 1996;

Wu et al. 1996; Henderson 1997), whose spanwise wavelength λz ≈ 1d scales on the

size of the braid shear layer between the primary von Kármán vortices. Williamson

(1996b) argues that mode B is a result of a hyperbolic instability of the braid region

(see Kerr & Dold 1994; Leblanc & Godeferd 1999, for hyperbolic instability). Barkley

(2005) showed that the development of mode B, and similarly of mode A, is confined

to the flow just behind the cylinder. It can be concluded that the formation region of

these three-dimensional modes spans only a few diameters downstream of the cylinder.

The streamwise vortex pairs of mode B exhibit a different spatio-temporal symmetry

compared to mode A, by maintaining their orientation from one shedding half cycle to

12
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Figure 2.6: Flow visualisations of a (forced) vortex dislocation. The flow is from left to
right (reproduced with permission from Williamson 1992).

the next (figure 2.4).

The appearance of mode B is noticeable in the St–Re diagram by the second rapid

change of Strouhal numbers (figure 2.3). A gradual energy transfer from mode A to

mode B takes place for Re = 230–260 (Williamson 1996b; Thompson et al. 1996). It is

assumed that these two modes do not exist simultaneously during this transition stage,

but an intermittent swapping between the lower frequency and higher frequency mode

takes place. This swapping leads to a broadening of the peak in the velocity frequency

spectrum. Mode B is devoid of vortex dislocations and, therefore, of low-frequency

modulations of the velocity-time signal (Behara & Mittal 2010).

Once the Reynolds number exceeds 260, mode B is the only detectable mode. Al-

though the wake becomes increasingly irregular and disturbed at higher Reynolds num-

bers, traces of mode B are still detectable up to Re = 10, 000 (Wu et al. 1996). Poncet

(2002) showed that mode B can be almost completely suppressed by a rotational oscil-

lation of the cylinder up to Re = 500, recovering the laminar two-dimensional shedding

regime.

Besides the modes A and B, which grow on the natural wake of a circular cylinder,

a third mode has been observed. Mode C was reported by Zhang et al. (1995) for

170 < Re < 270, when a thin control wire was placed close to the cylinder surface. The

wavelength was λz/d = 1.7 in simulations, and λz/d ≈ 2 in experiments. Sheard et al.

(2003b, 2005) observed a subharmonic mode (λz = 1.9d) in the wake of a torus aligned

normal to the direction of flow (figure 2.7). Depending on the aspect ratio of the torus,
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Figure 2.7: Perspective view of the subharmonic instability mode C on a large aspect ratio
torus. The flow is visualized using iso-surfaces of positive and negative streamwise vorticity.
The azimuthal wavelength is approximately 1.7d, with d being the cross-section diameter of
the torus (reproduced with permission from Sheard et al. 2004).

this mode became unstable at a Reynolds number lower than modes A and B.

The reason for the subharmonic nature of mode C is the broken spatial symmetry

of the base flow. Placing a wire off-centre, close to the cylinder surface, breaks the

planar reflective symmetry of the geometry and the spatio-temporal symmetry of the

base flow. That latter symmetry corresponds to invariance on evolving the flow for half

a period combined with reflection about the centre plane. In the case of flow past a

torus, the otherwise infinite cylinder is curved to form a closed ring, which breaks the

geometrical reflective symmetry, and this also breaks the spatio-temporal symmetry.

Blackburn & Lopez (2003); Blackburn & Sheard (2010) showed that true subharmonic

modes should not occur for flows with the half-period shift/reflection symmetry, such

as the circular cylinder wake.

Yildirim et al. (2013b) reproduced and extended experiments by Zhang et al. (1995)

by placing a thin control wire close to the circular cylinder. With help of time-resolved

PIV and volumetric flow-visualizations it was shown that mode C leads to a period-

doubling of the main shedding cycle, such that consecutive mode C structures are out

of phase with the previous ones. This period-doubling phenomenon is due to a feedback

mechanism between the consecutively shed upper vortices. The spanwise wavelength

was confirmed to be approximately 2 cylinder diameters.

2.1.2 Vortex street breakdown and secondary street

Kármán (1911) modelled the cylinder wake as a double row of potential vortices infinite

in both directions. The distance between the rows h and the spacing of the vortices in

each row a are kept constant (figure 2.8). The theory shows that the configuration is
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stable when the rows are staggered by a half wavelength and the vortex spacing ratio

is

h/a = 0.281. (2.3)

The real vortex street differs from the idealized one in the following points:

1. The street is not infinite.

2. The vortex spacing is not constant. In particular, the lateral spacing h increases

downstream.

3. The real vortices have cores of finite radius, which grow in downstream direction.

Approximating the real flow, Saffman & Schatzman (1982) showed in a stability

analysis that assigning a final core size to vortices in a von Kármán vortex street con-

figuration, can stabilize the vortex array with respect to two-dimensional disturbances.

h

a

+Γ+Γ +Γ

-Γ-Γ

(x0,y0)

U∞

Figure 2.8: Schematic of the von Kármán vortex street geometry.

As predicted by theory, in real vortex streets, the vortices arrange themselves with

a ratio of h/a ≈ 0.28, at least in the near wake (Roshko 1954). The question arises how

the vortex street decays at large downstream distances. The simplest mechanism is

viscous diffusion of the vortex cores with cross-annihilation of vorticity (Morton 1984).

If three-dimensional effects dominate the vortex evolution, which is the case at higher

Reynolds numbers, Reynolds stresses are likely to destroy the vortex street at early

stages and create a turbulent wake. Besides these effects, another mechanism has been

reported.

Taneda (1959) observed that the primary von Kármán vortex street behind cir-

cular cylinders can become unstable as the distance from the obstacle increases, and

finally breaks down. The dimensionless distance between the cylinder and the point

of breakdown decreases consistently with a Re−1/2 power law (figure 2.9) (Vorobieff &

Ecke 1999; Vorobieff et al. 2002). Thereafter, the wake tends to rearrange itself again
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Figure 2.9: The streamwise distance between a circular cylinder and the onset of the second
wake as function of Reynolds number. The solid line shows the best power-law fit to the data
(exponent -0.51). The data were obtained in flowing soap film experiments (reproduced with
permission from Vorobieff et al. 2002)

into a configuration of the von Kármán vortex street. The dimension of this secondary

vortex street is much larger than that of the primary one. Two regimes were reported

by Taneda (1959): when the Reynolds number was lower than about 150, the ratio of

the wavelength of the secondary vortex street to that of the primary one was about 1.8

to 3.6, while it was about 10 when the Reynolds number was higher than about 150.

The hydrodynamic stability (of convective type) of the mean wake velocity profiles was

named as the reason for the appearance of the larger vortex street.

The amalgamation of shed vortices (vortex pairing) was excluded as a possible

mechanism, as porous flat plates normal to the stream develop a similar secondary

vortex street, even in the absence of the primary shedding (Castro 1971; Cimbala et al.

1988). Cimbala et al. (1988) predicted the shedding frequency of this oscillation by

means of a locally parallel stability analysis of experimentally obtained mean velocity

profiles. He concluded that “hydrodynamic instability in a far wake leads to the growth

of downstream structure, the scale of which is determined by local wake properties; the

far-wake structure is not dependent on the scale of shed von Kármán vortices – which

for the case of a porous plate do not even exist”.

The geometric arrangement of vortices in the street determines its tendency for

breakdown; the critical parameter being the ratio of the lateral to streamwise vortex

spacing h/a. A ratio of h/a > 0.3–0.5 is stated as the condition for the decay of the

primary vortex street (Durgin & Karlsson 1971; Tsuboi & Oshima 1985; Karasudani

& Funakoshi 1994). By artificially changing this ratio (increasing the lateral spacing
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between the vortices), the primary vortex street can be annihilated prematurely, which

is followed by a stationary wake and a new vortex street of larger scale (Durgin &

Karlsson 1971).

The primary vortex street breaks down into a nearly parallel shear flow of Gaussian

profile, before the secondary vortex street can develop downstream of this breakdown

location (Karasudani & Funakoshi 1994). Durgin & Karlsson (1971) described the

resulting shear flow as a region where no significant velocity fluctuations were observed

(‘calm region’). A model was suggested in which a vortex is strained into an elliptical

shape by mutual induction of neighbouring vortices. This distorted vortex then rotates

in the proper direction, approaching alignment of its major axis in the downstream

direction. A region is reached where all vortices touch, or overlap, to the extent they

become shear layers on either side of the wake. These shear layers are then unstable

and give rise to the secondary vortex street. Figure 2.10 shows inviscid discrete vortex

method simulations that illustrate this process. When h/a is small (0.31), the initial

vortex regions remain isolated from each other. In contrast, when h/a is large (0.41),

the vortex regions amalgamate to form a nearly parallel shear flow.

The question whether there is a more profound connection between far-wake struc-

tures and the near-wake dynamics was addressed by Williamson & Prasad (1993), who

concluded that this link is formed via the sensitivity of the cylinder wake to the free-

stream disturbances. It was found that the far wake is receptive to a combination

frequency given by fFW = fK − fT, where fK and fT are the von Kármán shedding

frequency and the freestream frequency, respectively.

Global linear stability analysis of the time-averaged flow by Kumar & Mittal (2012)

revealed the presence of convectively unstable modes just downstream of the primary

vortex street breakdown. Beyond this region, a broad band of frequencies was selectively

amplified, leading to the formation of a secondary vortex street consisting of packets of

large-scale vortex structures. As these packets were advected downstream while they

were growing, their detection was delayed to much further downstream locations. For

Re = 150, the convective modes were most unstable at x = 30− 60d, while the packets

grew to detectable amplitudes only at x = 110−125d. When forcing with the frequency

fT, the secondary wake responded with the resonance frequency fFW = fK− fT, which
confirms the experimental findings of Williamson & Prasad (1993). Interestingly, a

shallow trough was observed in the time averaged centreline velocity (at x = 46d for
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Figure 2.10: Evolution of vortex street composed of vortex regions each approximated by
point vortices of the same strength. (a): h/a=0.31; (a): h/a=0.41. + , positive vortices. ◦,
negative vortices. (From Karasudani & Funakoshi 1994)

Re = 150), which might be related to local instabilities. Similar troughs have been

observed in the present study in the wake of elliptical cylinders (§7.1). These were

located considerably further upstream than in the circular cylinder case, which is a

consequence of the smaller aspect ratio.

For cylinders with elliptical cross-sections, Johnson et al. (2004) showed that by

reducing the ellipse aspect ratio Ar the onset of the secondary wake can be moved

upstream. For Ar = 0.25 and Re = 150, the fluctuation energy of the secondary

wake oscillations exceeded the energy of the primary von Kármán street already at a

downstream distance of x ≈ 18d, implying an earlier appearance of the second wake.

Additional results can be found in Qu et al. (2013) and Inoue & Yamazaki (1999).

2.1.3 Experimental considerations

2.1.3.1 Control of end effects

As distinct from the theoretical ‘infinite’ cylinder, the flow in experiments is affected by

finite aspect ratio effects (here ‘aspect ratio’ refers to the ratio of the spanwise length

of the cylinder to its diameter). The three-dimensionality of the wake induced by end-
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effects is referred to as extrinsic, whereas phenomena not associated with boundary

conditions, such as modes A, B and vortex dislocations, are intrinsic three-dimensional

effects (Roshko 1993).

The influence of aspect ratio and end effects were studied by Gerich & Eckelmann

(1982); Eisenlohr & Eckelmann (1989); Williamson (1989) and Lee & Budwig (1991),

who report a region at the cylinder ends (≈ 10 − 15d long) that is directly influenced

by the end effects. The shedding frequency in this affected region is 10 − 15% lower

than over the remaining cylinder length, which leads to a beat frequency at the junc-

tion points. For aspect ratios below l/d ≈ 15, only the lower frequency is observed

over the whole cylinder span. When increasing l/d above 45, the vortex shedding fre-

quency in the central span becomes independent of aspect ratio (Williamson 1989),

which implies that experimental results should be consistent for l/d > 45. In addition,

there is evidence that the necessarily required length-to-diameter ratio of a cylinder is

actually dependent on the Reynolds number (Norberg 1994). However, even for cylin-

der lengths of several hundred diameters, considerable spread in the measurement of

shedding frequency exists (Lee & Budwig 1991).

This scatter was finally linked to oblique shedding (Williamson 1989). Without

suitable boundary conditions, the von Kármán vortices are shed under an angle (up to

20◦) relative to the main cylinder axis, which leads to a lower measured Strouhal num-

ber. Once parallel shedding is enforced, the Strouhal numbers increase. The proposed

formula for the laminar shedding regime

St0 =
Stθ
cos(θ)

(2.4)

corrects the Strouhal number Stθ, measured during oblique shedding under the angle θ,

to the value St0, which would have been observed under parallel shedding conditions.

Using this formula, the previously measured data collapse onto a single St–Re curve

(this line is shown in figure 2.3).

Unlike the ‘affected region’ at the cylinder ends, oblique shedding is an indirect

effect of the boundary conditions. Oblique shedding begins at the cylinder ends and

propagates in the spanwise direction by induction, during the process of vortex shedding

(Albarede & Monkewitz 1992). This is best seen when the cylinder is moved from rest

in a XY towing tank (Williamson 1989). Within a traversing distance of 100d, the

vortices are shed parallel to the cylinder axis. Then, two oblique fronts propagate

from the cylinder ends towards the centre plane. The oblique front is the division line
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(a) (b)

Figure 2.11: Control of boundary conditions of a circular cylinder using suction tubes. (a)
‘Chevron pattern’ as extreme form of oblique shedding. (b) Parallel shedding. The cylinder
is the vertical line near the left edge, and the suction tubes can be seen at the top and bottom
edges of the pictures, causing the bright reflections just behind the cylinder. The flow is from
left to right (reproduced with permission from Miller & Williamson 1994).

between the oblique shedding region at the cylinder ends (having a lower frequency) and

the parallel shedding region in the centre of the cylinder. After traversing a distance

of 500d, the whole cylinder span is contaminated with oblique shedding, which is the

asymptotic end state. This end state is the only observable regime in a continuous flow

water or wind tunnel. This way, disturbances can propagate through a ‘chain reaction’

along the span, making the end effects felt over the whole span, independent of the

aspect-ratio of the cylinder.

There are several techniques that can prevent the decrease of Strouhal number

and enforce parallel shedding. These include inwards angled end-plates (‘inclined end-

plates’), ending the cylinder with larger coaxial cylinders, or placing larger cylinders

upstream and normal to the test cylinder at its ends (Williamson 1996c). A non-

mechanical and continuously variable technique by Miller & Williamson (1994) is used

in the present study, which employs two suction tubes placed parallel to the flow at

a distance of 10d behind the cylinder ends (see figure 3.9 in §3.3). All mentioned

techniques involve a speeding up of the incident flow at the cylinder ends, which is

equivalent to a local increase of effective Reynolds number in that region (Albarede &

Monkewitz 1992).

2.1.3.2 Blockage effects

The numerical study by Kumar & Mittal (2006) found that the non-dimensional vortex

shedding frequency of a circular cylinder at the onset of the primary instability (Rec0 ≈
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47) is very sensitive to blockage. For ratios 0.005 < d/W < 0.125 (W is the lateral width

of the domain), the increased blockage damped out the low-frequency modes, giving

way to higher frequency modes, effectively increasing the Strouhal number. Using the

curve fit in equation 2.5, the Strouhal number at the onset of instability is expected to

be increased by only 1% for the biggest blockage ratio B = 1/57 in the present study.

Similarly small changes can be expected in the advanced shedding regimes, as shown

for Re = 100 by Behr et al. (1995), where the variations were below 1% for domain

widths larger than 32 diameters:

Stc = 0.116311 + 0.0403825B + 1.81145B2 − 3.97608B3. (2.5)

The impact on the separation angle from the cylinder surface was explored by Ming-

Hsun Wu et al. (2004), who found that the separation point moves upstream for higher

blockage. Yet, this change was less than 0.5◦ during the shedding regime.

Due to these findings, no blockage correction will be applied to the data of the

present study.

2.1.3.3 Wire disturbances

A thin platinum wire, aligned parallel to the main cylinder axis, is used in the present

study for hydrogen bubble flow visualizations. The equivalent of this technique is the

smoke wire in wind tunnels (Cimbala et al. 1988; Hammache & Gharib 1991). It is

known that the wire can change the wake dynamics and can be used as a means of

flow control (Choi et al. 2008; Strykowski & Sreenivasan 1990). Possible flow changes

will depend on the position of the wire relative to the separating shear layers and the

distance to the cylinder surface. Despite the fact that the thin wire does not create

its own vortex street, the introduced vorticity can be sufficient to modify the vortex

dynamics of the main cylinder.

Yildirim et al. (2010) showed that at Re = 100 the primary effect of a wire (act-

ing as a control cylinder), positioned in one of the separating shear layers, was the

reduction of velocity fluctuations in the vortex formation region of the main cylinder.

Additionally, the shedding frequency was reduced. The secondary effect was observed

in the kinematics of the vortices, leading to a modified vortex arrangement and strength

difference between the upper and lower vortices. The wake was deflected downward or

upward, depending on the lateral position of the wire.
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A more drastic effect, in form of full vortex suppression, can be achieved for Re <

100. For this purpose, the control cylinder is typically placed downstream of the main

cylinder. The regions of maximum effectiveness are the separated shear layer and the

wake centreline. The shape of these regions depends on the Reynolds number of the

main cylinder and the diameter ratio of both cylinders (Strykowski & Sreenivasan 1990).

For higher Reynolds numbers, the control cylinder can modify the three-dimensional

wake instabilities, as shown by Zhang et al. (1995). The transition from the laminar

shedding regime to three-dimensional flow was delayed until Re = 220 when a thin

wire was placed in the centre plane, one diameter downstream of the cylinder. In

addition, the three-dimensional mode C was excited when positioning the wire close to

the cylinder surface, but off-centre at (xw/d, yw/d) = (0.75, 0.75).

It can be concluded, that the hydrogen bubble wire should not be placed close

to, and downstream of the cylinder in the present study. For most flow visualization

purposes, the wire will be positioned upstream, at a distance of approximately 5d from

the model, to prevent wake interaction.

2.1.3.4 Streakline effect

Flow visualisation techniques using tracer particles have inherent pitfalls, which might

lead to a misinterpretation of the results. There are three major issues:

First: When a passive scalar (dye, smoke, hydrogen bubbles) is introduced into a

flow where strong vortex stretching is present, its time evolution might not be identical

to the evolution of vorticity. This is a result of the transport equation of vorticity ~ω

∂~ω

∂t
= −(~V · ∇)~ω + (~ω · ∇)~V + ν∇2~ω (2.6)

containing the term (~ω · ∇)~V , which describes vortex stretching caussed by local strain

(Smits & Lim 2000), while this term is absent in the scalar transport equation:

∂S

∂t
= −(~V · ∇)S + κ∇2S. (2.7)

When a vortex filament is stretched, its vorticity increases, while the concentration

of the passive scalar decreases. Under intense vortex stretching, the concentration of

marker particles can decrease to such extent, that the still present vortex becomes not

visible in flow visualization data. The conclusion is, that the absence of a passive scalar

may not necessarily indicate the absence of vorticity.
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Second: The diffusion time scales are determined by the diffusion coefficient of

vorticity ν and the diffusion coefficient of the passive scalar κ, with the ratio being

the Schmidt number ν/κ. If dye or smoke are used as tracer particles in water or air,

respectively, this number is in the order of 1000. This means, that the tracer will follow

the vorticity exactly only in the initial stages. In later stages of flow development the

vorticity might have diffused due to the high viscosity coefficient, while the passive

scalar is still present, and visible, giving the wrong impression of vortical flow. An

impressive demonstration of this effect is given by Cimbala et al. (1988) for the wake

of a circular cylinder.

Third: Tracer particle have a ‘memory’. A streakline pattern shows only a spatially

integrated view of the flow field. It is the result of an accumulated distortion which the

particles have undergone from the point of release. This makes the observed streakline

pattern strongly dependent on the location where they have been introduced. To obtain

a true representation of the flow structures, the marker particles should be introduces

as close as possible to the zone of interest.

Finally, instantaneous streamlines patterns, e.g. as obtained from PIV vector fields,

depend on the frame of reference of the observer (Perry & Fairlie 1974; Perry et al.

1982). Two observers moving with different velocities will see different patterns, which

can make the identification of coherent structures ambiguous.

2.1.3.5 Freestream turbulence

The effect of freestream turbulence on the flow about a circular cylinder was investi-

gated by Norberg (1987) for Reynolds numbers 50 to 200,000 for grid-generated (ap-

proximately homogeneous) turbulence of low intensity (Tu ≈ 1.4%). It was found that

for Re < 1000, the main flow properties (Strouhal number, mean and r.m.s. pressure

coefficients) are rather insensitive to an increase of turbulence intensity. In this range,

which is particularly relevant to the present study, the large relative scales of turbu-

lence result in a quasi-stationary flow. Still, large-scale velocity fluctuations cause a

local variation of Reynolds number, which can lead to premature transitions for mean

Reynolds numbers close to a critical value. Furthermore, the spanwise coherence of

three-dimensional modes will be disrupted by increased turbulence.

23



Chapter 2. Literature Review

2.2 Elliptical cylinders and normal flat plates

2.2.1 Elliptical cylinders

(a) Re = 100

(b) Re = 125

(c) Re = 175

Figure 2.12: Decay of the primary von Kármán vortex street and the development of the
secondary street of larger scale downstream of the Ar = 0.25 elliptic cylinder. The onset
of the secondary street moves upstream for higher Reynolds numbers. The 2D numerical
simulations show the presence of a third wake frequency at Re = 175, which is indicated by
the dashed line in (c). The flow is from left to right. (Reproduced with permission from
Johnson et al. 2004)

There has been significantly less research on elliptical cylinders than on circular

cylinders or the flat plate. In most investigations, this body shape has been studied

either at very high Reynolds numbers (Modi & Wiland 1970; Modi & Dikshit 1975;

Ota et al. 1987), or under Stokes flow conditions (Shintani et al. 1983). In the majority

of cases, the main axis of the ellipse was aligned in the streamwise direction, or at an

angle of attack 6= 90◦, such as in Mittal & Balachandar (1995).

For elliptical cylinders normal to the flow, Jackson (1987) showed that the critical

Reynolds number for the onset of vortex shedding decreases from Rec0 = 45.4, for

Ar = 1, to Rec0 = 27.7, for the flat plate.

Only recently, research work has been extended to the transitional Reynolds number

regime. The numerical simulations by Johnson et al. (2004) investigated the effect of

aspect ratio Ar variation on the far wake at Reynolds numbers 75 6 Re 6 175. A low
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frequency modulation of the wake velocity signal was found for certain combinations of

Ar and Re (figure 2.12). Several flow regimes were defined, depending on the interaction

of these secondary flow structures with the primary von Kármán vortices. The low

frequency was not a subharmonic of the main shedding frequency, and was attributed

to an instability of the mean velocity profile. The saturation point for these structures

moved upstream, closer to the cylinder with increasing Reynolds number and decreasing

aspect ratio.

A similar observation was made by Aleksyuk et al. (2012) in 2D simulations, who

showed that an elliptical cylinder (Ar = 1/10) normal to the flow undergoes the se-

quence of von Kármán vortex street formation, vortex street decay and the formation of

a secondary vortex street of larger dimensions. Unlike the circular cylinder, the decay

of the primary and the formation of the secondary vortex streets take place close to the

cylinder, within 40 cylinder diameters at Re = 100.

Apart from this knowledge, no further literature could be found on the existence of

three-dimensional modes for the proposed Reynolds number range and cylinder orien-

tation.

2.2.2 Normal flat plates

Re = 40 Re = 80 Re = 130

Figure 2.13: Two-dimensional grey-scale vorticity contours showing the shedding pattern
for flow past a normal flat plate. The characteristic von Kármán wake is replaced by a wake
consisting of two rows of vortices offset from the wake centreline as the Reynolds number is
increased from Re = 40 to 80 and 130 (reproduced with permission from Thompson et al.
2006).

The first extensive study of the normal flat plate wake was undertaken by Fage

& Johansen (1927), who used a hot wire to measure mean and fluctuating velocity

profiles, and to determine the vortex spacing geometry. Jackson (1987) determined

the critical Reynolds number for the onset of vortex shedding as Rec0 = 27.7, with

StC = 0.124, whereas Saha (2013) reports a higher value of Rec0 = 32.45± 0.1. For in-

creasing Reynolds numbers, the characteristic von Kármán wake is displaced by a wake

consisting of two sets of vortices offset from the wake centreline, as seen in figure 2.13.
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The three-dimensional instabilities of the normal flat plate wake are largely unex-

plored, although it has been shown in numerical studies that three-dimensional effects

are essential for the accurate prediction of aerodynamic coefficients, such as lift and

drag (Tafti & Vanka 1991; Najjar & Vanka 1995a,b; Mittal & Balachandar 1995). The

consensus is that the flat plate wake remains two-dimensional until Re ≈ 200, after

which a short-wavelength mode develops (Saha 2007; Najjar & Vanka 1995b). This

mode has a spanwise wavelength λz/d = 1.2 at Re > 250, which is comparable to

mode B of the circular cylinder (Najjar & Balachandar 1998).

Yet, the absence of three-dimensional modes for Re < 200 appears questionable.

Thompson et al. (2006) report two three-dimensional modes being linearly unstable in

the periodic 2D wake: The first mode becomes unstable at Re ≈ 105 − 110 with a

spanwise wavelength of 5–6d (with d being the plate height). It has a complex Floquet

multiplier (quasi-periodic flow), and the period of this mode is not commensurate with

the base flow period. The mode is strong close to the rear of the plate, but decays

rapidly with downstream distance.

The second mode has a dominant wavelength of 2d and becomes linearly unstable

at Re ≈ 125. This shorter wavelength mode has the same spatio-temporal symmetry

as mode A of the circular cylinder. In addition, there is strong evidence of elliptical

instability in the vortex cores, consistent with mode A. A mode with this wavelength

was observed by Yang et al. (2012) in the wake of an inclined (25◦) plate up to Re = 350.

The normal flat plate wake exhibits a low-frequency unsteadiness in the drag and lift

coefficients for Re > 250, accompanied by a low-frequency modulation of the shedding

frequency with a period of approximately 10 times the primary shedding period (Lisoski

1993). Najjar & Balachandar (1998) propose a physical interpretation, showing that

the flow gradually varies between two different regimes: a regime H of high mean drag,

and a regime L of low mean drag. The regimes are a result of a phase mismatch /

imbalance of 3D and 2D structures. In regime H, the shear layer rolls up closer to

the plate to form coherent spanwise vortices, while in regime L the shear layer extends

farther downstream, and the rolled-up von Kármán vortices are less coherent.

Similarly to the circular and the elliptic cylinders, the flat plate wake develops

a secondary vortex street after the decay of the primary street (Taneda 1959; Saha

2007). This process is shown in figure 2.14 for a flat plate moving at Re = 8150.

Again, the second wake was contributed to a hydrodynamic instability of the mean
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Figure 2.14: Formation of the secondary vortex street is shown for a normal flat plate in
a towing tank at Re = 8150. Oscillating wake immediately behind the flat plate (left).
Secondary vortex street about 200 cm to 240 cm behind the model (right) (reproduced with
permission from Taneda 1959).

wake profile. This is supported by reports of a low-frequency oscillation of the wake

behind perforated flat plates (Castro 1971). Above a certain porosity value, the primary

vortex street is suppressed and the flow around the plate itself is essentially steady.

Farther downstream, the two shear layers (with the bleed air in between) coalesce, and

the turbulent wake is unstable and starts to ‘flap’. This observation excludes vortex

pairing as a mechanism for the formation of the larger vortices.

The time-mean flow field of the flat plate shows a feature absent in circular or ellip-

tical cylinder flows. Saha (2013) described an additional pair of recirculating bubbles

downstream of the primary recirculation region at Re > 150 (figure 2.15). The strength

and size of the secondary bubbles were found to increase with increasing Reynolds num-

ber; and the bubbles shifted upstream. These bubbles led to an extensive low-velocity

region in the time-averaged streamwise velocity profile along the wake centreline, fol-

lowed by a rapid velocity recovery along the downstream direction. No explanation

for this phenomenon was offered, but it was stated that the higher entrainment in the

near-wake and slow moving fluid downstream of the primary recirculation region may

be responsible for the formation of these bubbles. It should be noted that the flat plate

in this 2D simulation had a thickness of 12.5%, which lies between the flat plate model

(Ar = 0.07) and the Ar = 0.26 elliptic cylinder used in the present study.

Additional studies on this subject can be found in Narasimhamurthy & Andersson

(2009); Khaledi et al. (2012); Afgan et al. (2013); Han et al. (2012).
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(a) Re = 125

(b) Re = 150 (c) Re = 175

Figure 2.15: Additional pair of recirculating bubbles downstream of the primary recircula-
tion region in the time-averaged flat plate wake. The flow is from left to right (republished
with permission of the American Society of Civil Engineers from Saha 2013, permission con-
veyed through Copyright Clearance Center, Inc.)

.
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2.3 Rotating circular cylinder

As mentioned in the introduction, vortex shedding can lead to structural vibrations,

which can resonate with the shedding body and lead to structural failure. Due to such

critical engineering applications, there have been attempts at controlling the wake of

bluff bodies with the explicit aim of vortex shedding suppression.

One active flow control technique is the rotation of a circular cylinder about its

main axis at a constant or alternating rate. When mounting rotating cylinders on bluff

bodies, drag reduction and suppression of vortex-induced oscillations can be achieved

(Modi 1997). In this thesis, the fundamental fluid dynamics of a rotating cylinder in

cross-stream are studied.

When rotating the cylinder about its main axis, the non-dimensional rotation rate

α =
Ωd

2U∞
(2.8)

becomes the second control parameter besides Re, where Ω is the constant angular

velocity, d is the cylinder diameter and U∞ is the freestream velocity. Note the scaling

is such that the surface speed of the cylinder matches the freestream flow speed when

α = 1.

The effect of rotation rate on the two-dimensional base flow is well-investigated. It

is known that the wake shedding frequency is a function of the rotation rate (Stojković

et al. 2003), and that shedding can be suppressed altogether if the rotation rate is

sufficiently high. This vortex shedding suppression has been demonstrated in two-

dimensional computations by Mittal & Kumar (2003) for Re = 200, and rotation rates

0 6 α 6 5. For α < 1.91, the von Kármán vortex street was observed. For increasing

rotation rates, it became narrower, and was deflected in the cross-stream direction.

Shedding ceased beyond α ≈ 1.9, and the wake became steady.

When increasing α further, the wake becomes unstable again for a narrow range of

rotation rates. Depending on Reynolds number, the wake resumes shedding at α = 4−5

(Stojković et al. 2003; Mittal & Kumar 2003; El Akoury et al. 2008; Kumar et al. 2011),

but at a much lower frequency (referred to as the second shedding mode or mode II ).

For these rotation rates, the shed vortices are of same sign, indicating an underlying

physical mechanism different to that of the typical von Kármán wake (Pralits et al.

2010).

The described behaviour was confirmed experimentally by Kumar et al. (2011), who
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Figure 2.16: Diagram showing the lines of marginal stability in the parameter space for
0 < α < 2.5 and 170 < Re < 350. The steady-unsteady transition is marked by a dashed
line. The solid lines indicate the marginal stability curves for modes A–F. The points in
the α − Re parameter space where experiments were carried out are marked by symbols:
diamonds for PIV and triangles for flow visualisation.

observed the decay of vortex shedding at α ≈ 1.9, and its one-sided reappearance at

α ≈ 4.4. We will use aspects of that study for comparison and partial validation of our

experimental setup in §5.2.2.

Much less knowledge exists on the three-dimensional aspects of wakes of rotating

cylinders in free-stream. For high rotation rates, the flow becomes susceptible to the

centrifugal instability, as reported by Mittal (2004) for Re = 200 and α = 5. Centrifu-

gal instability was observed along the entire cylinder span as a row of closed vortex

loops, encircling the cylinder surface. Nevertheless, the wake remained steady for the

parameter pair investigated.

For a low rotation rate of α = 0.5, El Akoury et al. (2008) describe a three-

dimensional instability at Re > 220. The structure and wavelength of this mode suggest

that it is essentially mode A. The rotation of the cylinder has a stabilizing effect on the

flow, increasing the critical Reynolds number of this mode to 220.

The most extensive study on the three-dimensional stability of spinning cylinder

wakes was performed by Rao et al. (2013). Using linear (for the steady flows) and

Floquet (for the periodic flows) stability analyses several new three-dimensional modes

were predicted, which are distinctly different from the well known modes A and B.

The findings of this numerical study will be discussed in more detail to explain the

motivation behind the experiments of chapter 5. We seek to confirm the existence of
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the predicted modes, and to explore their possible interaction in the fully developed

nonlinear state. The (Re, α) parameter map of figure 2.16 will be used as a guide.

Figure 2.16 shows the core results of Rao et al. (2013) in form of neutral stability

curves in the (Re, α) parameter map. The map is divided into two regions by the

roughly horizontal dashed line through α ≈ 2. For rotation rates of the lower region,

the wake resembles the von Kármán vortex street with periodic shedding, whereas it is

steady for rotation rates above the dividing line.

The three-dimensional transition scenario is similar to that of the non-rotating

cylinder for low rotation rates of α < 1. The two unstable modes are modes A and

B, whose critical Reynolds numbers increase with increasing rotation rates. However,

for α > 1 the three-dimensional scenario becomes increasingly complex, with three new

modes identified that bifurcate from the unsteady flow, and two modes that bifurcate

from the steady flow.

The first new mode, mode C (figure 2.17a), becomes unstable in a closed region

of the (Re, α) plane, centred around Re = 260 and α = 1.7. The mode grows with a

spanwise wavelength of λz/d ≈ 1, and has a purely real but negative Floquet multiplier.

This means that this mode is subharmonic, repeating over two cycles of the base flow.

We will confirm this property experimentally, yet show that mode C also exists outside

of its linearly unstable region, at rotation rates as low as α = 1. This surprising

observation will be discussed in §5.3.1.

Equivalents of mode C have been reported in the non-rotating cylinder wake when

a thin control wire was placed close to the cylinder surface (Zhang et al. 1995; Yildirim

et al. 2013b), and in the wake of a torus aligned normal to the direction of flow (Sheard

et al. 2003b, 2005). These examples are characterized by the broken spatial symme-

try of the base flow, which also applies to the rotating cylinder wake. Blackburn &

Lopez (2003); Blackburn & Sheard (2010) showed that broken symmetry is a necessary

condition for a subharmonic mode to appear.

In Yildirim et al. (2013b) mode C is described as vortex loops that originate from

the upper von Kármán vortex. These vortex loops are further stretched in the braid

region and roll up to form streamwise vortex pairs from the sides of the loops. They are

located between the upper and lower vortices and affect the near-wake vortex shedding

process. Besides, it is shown that mode C instability exhibits feedback of streamwise

vortices between the upper primary vortices only, which is contrary to the natural
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instability modes A and B. In mode C, the vortex loops are generated at the same

spanwise position every two cycles.

Mode D (figure 2.17b) becomes unstable in the narrow region between the top

boundary of mode C and the steady – unsteady transition of the two-dimensional base

flow, at approximately α = 1.95. The mode grows with a characteristic spanwise wave-

length of approximately 2d. When the rotation rate is increased beyond α = 2, shedding

ceases, and the wake becomes steady. Mode D is replaced by mode E (figure 2.17c),

with the wavelength remaining unchanged. Perturbation vorticity plots in Rao et al.

(2013) show that both modes grow in the region between the highly strained standing

vortices in the wake, suggesting the hyperbolic instability as a plausible explanation for

both modes. Experimental results on modes D and E will be presented in §5.3.3.
Linear stability analysis predicts a second three-dimensional mode on the steady

base flow, termed mode F (figure 2.17d). It grows at higher rotation rates (α > 2.25),

with a wavelength of 0.45d. This mode exists primarily in the wall-bounded shear layer

of the spinning cylinder, and in the near wake, pointing to a centrifugal instability as its

origin. The Floquet multipliers for this mode occur in complex conjugate pairs. This

indicates that, while the two-dimensional base flow is steady, transition to this mode

marks a transition to three-dimensional flow and the onset of time dependence. This

observation will be confirmed by our experimental results presented in §5.3.4.
This section has presented only a short overview of the modes described in Rao

et al. (2013), and we refer the reader to the original paper for an in-depth discussion of

mode characteristics and proposed physical mechanisms. For easier comparison with

numerical predictions, the (Re, α) map of figure 2.16 has been annotated with symbols

showing the parameter pairs investigated experimentally. Figure 2.17 shows modes

C–D as reported by (Rao et al. 2013).
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(a) (b)

(c) (d)

Figure 2.17: Modes C, D, E and F (a–d, respectively) from the stability analysis of Rao
et al. (2013) are shown as iso-surfaces of streamwise vorticity (private communication).
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Chapter 3

Experimental setup & numerical
tools

3.1 The tunnel facility
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Top View

Side View

Figure 3.1: Schematic views of the water channel. (Figure is courtesy of Dr. Jisheng Zhao)

The experiments were performed in the FLAIR open surface water channel. Its test

section is 0.6m wide and 4m long, with a water depth of 0.77m. The velocity range

is 0.05–0.5ms−1 with a freestream turbulence level below 1.5%, except for very low

pump settings, when the fluctuating x-velocity component increases again (see LDV

measurements in figure 3.1). In the present study, a pump setting of 5Hz translates to

a Reynolds number of approximately 100.
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Figure 3.2: Average and fluctuating velocities in the centre plane of the empty water channel test section. U is the streamwise and W the vertical
velocity component.
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The turbulence spectrum is dominated by streamwise sloshing of the water with

a frequency of 0.1Hz. This frequency is about five times smaller than the cylinder

shedding frequency over the range of tunnel speeds used for all experiments. Filtering

out this component results in a background turbulence level of approximately 0.5%.

All coordinates and directions used in the following chapters refer to a right-hand

Cartesian system, in which the x-axis is aligned with the oncoming flow, the y-axis

points in the cross-stream direction, and the z-axis coincides with the cylinder axis

(pointing upwards).

3.2 Rotating cylinder

50VDC
stepper motor

cylinder
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wire
holder

laser
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Figure 3.3: Schematic of the setup for the flow visualization experiments. (a) View down-
stream; (b) Side view. Perforated screen holes are not to scale.

The rotating cylinder model was mounted vertically in the centre plane of the sub-

channel (see chapter 4 for a description of the sub-channel), positioned one third down-

stream of its entrance. The hollow shaft of an archery arrow of 5.82 ± 0.01mm outer

diameter, and 800mm length was used. These arrows are designed for Olympic com-

petition, which effectively guarantees a high degree of straightness and stiffness. The

wall material was carbon fibre, with an aluminium mantle and a smooth enamel fin-

ish. With a solid blockage of just 1.6%, no velocity correction was performed on the

collected data. The cylinder rotation was driven directly by a stepper motor, whose
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rotation rate was monitored by an optical encoder, and was typically within 0.5% of

the target value.

The end conditions were the channel floor at bottom and the free water surface at

top. This resulted in an aspect ratio (wetted length to cylinder diameter ) of 130. The

cylinder was fixed at two points. The upper fix point was an aluminium sting with

two steel bearings, mounted above the water surface (figure 3.4). The cylinder model

was electrically insulated from the stepper motor to reduce corrosion of the model’s

aluminium mantle. The lower end of the cylinder spun on a brass cone, which was

fixed to the tunnel floor. The cone proved to be superior to a second (plastic) bearing,

as it assured less play at the lower end, which resulted in less wobbling of the cylinder.

The stepper motor was attached over a flexible aluminium coupling directly to the

model. A Motion Control 6K2 controller was used to drive the stepper motor.

flexible coupling

electrical
insulation

bearings
cylinder model

Figure 3.4: The upper mounting sting of the rotating cylinder model. The flexible coupling
connects to the stepper motor.

To quantify its eccentricity of rotation (‘wobbling’), the cylinder was spun in its

final configuration outside the water channel, and the deflection was measured with a

mechanical deflection gauge at several points along its axis (figure 3.5a). It was found

that the deflection distribution is bow-shaped, with minimum deflection amplitudes

close to the cylinder’s two fixed points, and maximum amplitudes at the mid-length

of the cylinder. Here, the largest measured half-amplitude was less than 0.15mm,

equivalent to 2% of the cylinder diameter (figure 3.5b). Moderate amplitudes of up to

5% of cylinder diameter can be assumed acceptable, since according to Mittal (2001),

who investigated the eccentric cylinder rotation numerically (for α = 5), amplitudes

between 0.005 and 0.05d do not change the mean flow. Thus, the two-dimensional wake

flow can be assumed to be relatively insensitive with respect to disturbances caused by
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Figure 3.5: (a) Measurement of cylinder deflection during rotation (‘wobbling’) with a me-
chanical deflection gauge. (b) Half-amplitude deflection in mm and in percent of cylinder
diameter. The error bars are subjective estimates of the dial read uncertainty.

non-perfect cylinder rotation.

The maximum deflection due to fluid loading was estimated to be 0.15mm at the

mid-span of the cylinder for α = 5 at Re = 200 (using force coefficients from Mittal &

Kumar 2003). This deflection is the result of the lift force; the drag force is one order

of magnitude smaller. The deflection is highly dependent on rotation rate, and can be

expected to be 1/4 of the stated value for α = 2.

The freestream velocity was measured with LDV during the experiments 15d up-

stream of the cylinder. At this location, the velocity at α = 5 differs by less than

0.5% from the non-spinning cylinder. Figure 3.6 shows that, up to x/d > −15, the

streamwise velocity component is increased by the spinning motion of the cylinder. For

x/d < −20, the measured velocities are comparable for both rotation rates, but increase

slightly due to the velocity gradient in the sub-channel entrance.

The uncertainties of the Reynolds and Strouhal number measurements are less than

±1.6%; the rotation rate could be determined with an uncertainty of ±0.5% at a con-

fidence interval of 95% (at Re = 200). The full error analysis is given in appendix A.
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Figure 3.6: Dependence of the streamwise velocity on the rotation rate α. The free-stream
velocity U∞ was measured at x/d = −15 in the experiments, where the velocity difference
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Figure 3.7: (a) Schematic of the experimental setup from a side perspective; (b) Cross-
sections of the cylinder models and their orientation to the incoming flow.

3.3 Elliptical cylinders

Initially, elliptical cylinders models of aspect ratios Ar = 0.75 and Ar = 0.5 were man-

ufactured in-house from epoxy resin, using a machined aluminium mould. Preliminary

experiments were performed on these models. However, with the available tools, it was

not possible to machine a mould for the Ar = 0.25 cylinder due to its small radii. In

the end, a rapid prototyping company was found that printed all elliptical models from

plastic. This manufacturing process allowed the implementation of two additional fea-

tures: Square cross-sections at both ends of each cylinder for precise alignment of the
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models in the flow, and a hole through the whole length of the Ar = 0.72, 0.64 and 0.39

cylinders. This feature allowed the structural strengthening of these three cylinders by

insertion of a stainless steel rod. This was not possible with the Ar = 0.26 cylinder

due to its minimum thickness of just b = 1.5mm. A carbon fibre tube was used as

the circular cylinder; the flat plate model was a thin brass strip with untapered edges

(7% plate thickness). The diameters d of the cylinder models were measured with a

micrometer; the results are given in table 3.1. The precision limits were estimated from

at least 10 measurements along the span. The micrometer resolution was used as the

bias limit.

Table 3.1: Dimensions of cylinder models used in the experiments. Ud is the uncertainty of
the diameter measurement; UAr is the uncertainty of the aspect ratio Ar .

Ar d [mm] Ud [±%] UAr [±%] material

1.00 5.94 0.3 0.3 carbon fibre
0.72 5.78 1.6 2.6 plastic print
0.64 5.88 1.4 1.8 plastic print
0.39 5.81 0.4 1.0 plastic print
0.26 5.82 1.5 2.3 plastic print
0 6.32 0.4 3.4 brass

The elliptical cylinders were mounted vertically in the centre plane of the sub-

channel, with the main ellipse axis oriented perpendicular to the incoming flow. The

precise orientation of the cylinder cross section with respect to the flow direction was

accomplished by glueing small mirrors on the cylinder square sections, on the side

parallel to the flow direction (figure 3.8). A laser beam, aligned perpendicular to the

channel wall, was shone onto these mirrors. The cylinder model was rotated about its

main axis until the laser beam was reflected back into its source. This was done for

the top and bottom ends of the cylinder to prevent twisting of the model. Using this

technique, the elliptical cylinder cross-section could be aligned with an uncertainty of

±0.4◦.

The usable model length (≈ 100d) was defined by circular end plates of 10d diameter,

oriented parallel to the flow (figure 3.7). To induce parallel shedding, suction tubes

were used (Miller & Williamson 1994; Williamson 1996c). The suction system is shown

schematically in figure 3.9. The 10mm diameter tubes were placed in the symmetry

plane downstream, and perpendicular to the cylinder axis, with their intakes positioned

close to the end plates, at x ≈ 10d. The tubes were connected to a pump, which removed

the water into a buffer container above the water level. An overflow pipe guided the
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Figure 3.8: Precise alignment of the elliptical cylinders using an optical setup. The align-
ment error is tan−1(ǫ/υ)

water back into the channel, without causing surface disturbances. The suction tubes

proved very effective, and even essential, during the flow visualization experiments and

hot film measurements. The tubes had to be removed for PIV recordings, as the lower

tube obscured the view for the PIV camera mounted under the channel. As a note,

the technique of inclined end-plates (Williamson 1996c) was found to be ineffective in

producing parallel shedding in our experiments.

P

flow meter

buffer container

tunnel 

water level

valves pump

lower

suction tube

upper

suction tube

cylinder

Figure 3.9: Schematic of the suction system used to induce parallel shedding.

The volumetric flow rate of each tube was monitored by a flow meter, and ad-

justed with valves until parallel shedding was confirmed by flow visualizations (typi-

cally 300 l/h). When switched on, the ends of the von Kármán vortices were bent in

the downstream direction, creating a section of parallel vortices at the half-width of the

cylinder (see figure 3.10b). This had an impact on the critical Reynolds number, delay-

ing the transition of the circular cylinder wake to three-dimensionality from Re = 165

to 177.

The plastic material used for printing of the models had the undesirable property

of expanding from water absorption. The maximum length expansion after one night

in the water was 5mm, which equals to 0.7% of model length. While this makes
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(a) (b)

Figure 3.10: The effect of suction tubes on vortex shedding of the circular cylinder: (a)
tubes off, oblique shedding; (b) tubes on, parallel shedding.

the diameter change negligible, the issue of mounting the cylinder became challenging.

The expansion had to be compensated to prevent slackening of the model (the plastic is

elastically deformable). This was accomplished by installing a spring loaded linear slide

(Del-Tron Precision LMS-200/20) at the top mounting point of the model (figure 3.11).

This limited the cylinder movement to only one degree of freedom (vertical direction),

which prevented twisting of the model during expansion. The tension could be adjusted

with a wing nut, and was kept as high as possible to avoid flow induced vibrations of

the model.

cylinder model holder

spring

wing nut

linear
slide

Figure 3.11: Linear slide at the upper mounting point. The arrows show the movement
direction.

3.4 Instrumentation

3.4.1 Flow visualization

A 50µm platinum wire, 500mm long, was soldered between the prongs of an F-shaped

stainless steel frame and positioned upstream, and parallel to the cylinder axis (fig-
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ure 3.12). The frame was attached to a tiltable platform (Melles-Griot R© kinematic tilt

mount 07 MEA 505), which allowed a very accurate alignment of the wire parallel to

the cylinder axis. The wire could be moved in the x–y plane by a two-axes Zaber R©

traverse. A potential of 50VDC was sufficient to produce a dense sheet of hydrogen

bubbles. No additional electrolytes were added to the tunnel water. The maximum

Reynolds number based on the platinum wire diameter was 2.5, meaning steady flow

around the wire.

wire

mounting adapter

power supply

Figure 3.12: Frame with the hydrogen bubble wire.

A continuous NdYag laser was used to illuminate the bubble sheet. Shining from

below, through the tunnel glass floor, the beam was spread into a sheet of 2–3mm

thickness and aligned parallel to the x–z plane. A Nikon R© D7000 camera with 28, 50

or 105mm lenses was used to record still images or videos from a 90◦ side perspective.

It was observed during the rotating cylinder experiments that the best visualization

results were achieved when the wire was placed at a certain distance from the x–z

symmetry plane. The optimum distance varied with freestream velocity, and rotation

rate α, such that the distance had to be adjusted for each run. The streamwise location

was chosen conservatively with x/d = −5, to reduce the risk of a possible interaction

between the wire and cylinder wakes, as discussed in §2.1.3.3.

3.4.2 Particle image velocimetry (PIV)

PIV is is a member of a broader class of velocity-measuring techniques that measure

the motion of small, marked regions of a fluid by observing the locations of the images

of some markers at two or more times (Adrian 1991). These techniques exploit the

fundamental definition of velocity ~u as

~u(~x, t) =
∆~x(~x, t)

∆t

where ∆~x is the displacement of a marker, located at ~x at time t, over a short time

interval ∆t separating observations of the marker images. It provides non-intrusive
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measurements of an instantaneous velocity field of a fluid flow and subsequently derived

quantities, e.g. vorticity.

The PIV type used in the present study is the two-dimensional, two velocity com-

ponent PIV (2D2C-PIV), in conjunction with the normalised spatial cross-correlation

analysis. The system consists of a pulsed laser which creates a thin laser sheet, a

high-resolution camera with a suitable lens, a timing electronic that triggers the com-

ponents in a prescribed sequence, and a computer that calculates the velocity vectors

from the recorded images. The fluid is seeded with neutrally buoyant seeding particles

(Sphericel R© 110P8 by Potters Industries Inc.). The particles scatter light into a photo-

graphic lens located at 90◦ to the sheet, so that its in-focus object plane coincides with

the illuminated slice of the fluid. The images are recorded with the multiframe / single

pulse method, meaning that two frames are recorded at a time interval ∆t, and the

laser is fired once per frame. The images were analysed with an in-house PIV software

(Fouras & Soria 1998), using 32 × 32 px2 interrogation windows in a grid layout with

50% window overlap.

The used hardware is described in detail in Sherry (2012). The principle of the PIV

method can be found in common literature, such as Adrian & Westerweel (2010) or

Raffel et al. (2007).

The vorticity field ~ω is an important Galilean invariant vector field. Each of the

vorticity components can be computed from corresponding in-plane velocity, using its

basic definition

~ω = ∇~u

The 2D2C-PIV provides the x, y components of the velocity field, u and v, such that

one component of the vorticity field can be computed

ωz =
∂v

∂x
− ∂u

∂y

To calculate ωz from the PIV data, the algorithm uses a second order polynomial χ2 fit

to the local velocity components, with subsequent analytic differentiation. This method

yields an accuracy improvement compared to a finite difference calculation.

The accuracy of the ωz calculation depends on the spatial sampling distance between

the velocity data points (i.e. the spatial resolution between the in-plane velocity vector

samples) and on the accuracy of the velocity vector field measurements (Fouras & Soria

1998). An increase of the velocity spatial sampling separation (larger interrogation
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windows) introduces a larger bias error, resulting in an increasing underestimation of the

vorticity in the peak vorticity regions. The effect of the random velocity measurement

error is to scatter the vorticity measurements around the corresponding biased vorticity.

Unfortunately, the requirements to minimise the random error and to minimise the bias

error cannot be satisfied simultaneously, as both effects are coupled and oppose each

other. The coupling parameter is the non-dimensional velocity sampling separation. A

more detailed discussion of the accuracy of the used code can be found in (Fouras &

Soria 1998).

3.4.3 Laser Doppler velocimetry (LDV)

When light is reflected from a moving object, the frequency of the scattered light is

shifted by an amount proportional to the speed of the object. The LDA system uses

this Doppler shift to estimate the speed of the flow by observing the frequency shift

caused by moving seeding particles.

The configuration used here is based on an Argon laser that creates a multiple band

laser beam. The TSI R© Colorburst multicolour beam generator extracts two wavelengths

(514.5 nm and 488 nm), which are split into two beams of equal intensity. Thus, four

laser beams are needed to measure two perpendicular velocity components. One beam of

each colour is shifted by a known value (usually 40MHz) to avoid directional ambiguity

of the measured velocity. The four beams are coupled into optical fibres and guided to

the optical head.

Once the beams exit the optical head, an interference fringe pattern is generated

at the crossing point (figure 3.13a). The fringe pattern consists of alternating zones of

brightness and darkness (figure 3.13c). The fringe spacing, df , is the distance between

sequential bright (or dark) zones. As a particle crosses the fringe pattern, the intensity

of the scattered light varies with the intensity of the fringes (figure 3.13b). Thus, the

amplitude of the signal burst varies depending on the velocity component perpendicular

to the fringe pattern. The frequency of the amplitude modulation is equal to the

Doppler frequency fD. The scattered light is detected by a photomultiplier tube (PMT),

an instrument that generates a current in proportion to absorbed photon energy, and

then amplifies that current. A computer calculates the velocity value.
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probe head

the fringe pattern created 

by the intersection of two beams
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Figure 3.13: Principle of operation of the LDV. See text for explanations.

current I

velocity U

hot-film / wire

wire support

(a) (b)

Figure 3.14: (a) A hot film / wire sensor in a fluid flow. (b) Electric block diagram of the
anemometer. The sensor is represented as Rs in the Wheatstone bridge (TSI R© manual).

3.4.4 Hot film probes

A hot wire / film makes use of the principle that heat transfer from a heated surface

depends upon the flow conditions passing over it (figure 3.14a). The mode of operation

used for the present experiments is Constant Temperature Anemometry (CTA). A

feedback circuit is used to maintain the wire at a constant temperature (figure 3.14b).

The hot wire, shown between A and B, forms part of a Wheatstone bridge, such that

the wire resistance is kept constant over the bandwidth of the feedback loop. Since the

hot wire voltage is a simple potential division of the output voltage, the output voltage
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E–B is normally measured for convenience. The hot wire anemometer remains the only

instrument that can deliver as an output a truly analogue representation of the velocity

up to high frequencies.

The hot film sensor is essentially a conducting film laid on a ceramic or quartz

substrate. The sensor can be a quartz rod coated with a platinum film. Because of

their stability, film sensors have been used for many measurements which were otherwise

very difficult with the more fragile and less stable hot wires. A downside is that the film

sensor is generally less sensitive. The metal film thickness on a typical film sensor is

less than 0.1µm. Thus, the mechanical strength and the effective thermal conductivity

of the sensor are determined almost entirely by the substrate material. Hot film sensors

made for water or conducting fluids have an additional coating of quartz on top of the

metal film, providing complete electrical insulation. In the present experiments, hot

films were used exclusively.

The hot wire sensor itself is very small: typical dimensions of the heated wire are

5µm in diameter, and 1 to 3mm in length. With 25µm, the hot film diameter is consid-

erably larger. When a current is passed through the wire, heat is generated according

to I2Rw, with I being the current, and Rw being the resistance of the wire. In thermal

equilibrium, this must be balanced by heat loss to the surroundings. These losses in-

clude convection to fluid, conduction to supports, and radiation (usually neglected). In

static analysis, the forced convection to fluid is described by the Nusselt number Nu.

Assuming an exponential function for the Nusselt number – velocity dependence, the

King’s law gives a theoretical calibration equation.

In practice, the probe is calibrated against a velocity standard, if quantitative ve-

locity data are desired. The calibration curve is nonlinear, with maximum sensitivity

at low velocities (Bruun 1995). As no quantitative velocity data were required from

the hot film measurements in the present experiments (only spectral information was

of interest), no calibration was performed.

The theoretical treatment of the frequency response of a hot wire / film is not

straightforward, and should only be considered when a broadband and/or high fre-

quency velocity fluctuations are present in the flow, e.g. in supersonic or turbulent

flows. More conveniently, the frequency response can be optimized by injecting a small

voltage square wave of 1 kHz into the Wheatstone bridge at points A and D, and opti-

mizing the output by adjusting the trim and gain shown in figure 3.14b. The output
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Figure 3.15: Optimum square wave response of a hot wire.

voltage curve should have the shape shown in figure 3.15. This was not necessary for

the current experiments, as the dominant frequencies in the flow are low (1–10Hz),

but the square wave optimization was still performed, as the bridge output voltage was

unstable for some film probes used.

The CTA bridge output was filtered with a low-pass filter set to 10Hz, before being

sampled with a National Instruments R© BNC-2110 board at 20Hz.

3.5 Numerical tools

3.5.1 Space–time diagrams (rotating cylinder experiments)

During the experiments presented in chapter 5, flow visualisation data of the rotating

cylinder wake were recorded with an IDT R© Y4 high-speed camera. Algorithms, which

were coded in Matlab R©, extract information on spatio-temporal symmetry, wavelengths

of three-dimensional modes and the von Kármán shedding frequency from these flow

visualization sequences.

To gain information on spatio-temporal symmetry, space-time (s–t) diagrams were

created. In this context, an s–t diagram shows the temporal evolution of the flow

at a fixed location in space, by plotting some chosen quantity as a function of time.

To investigate the temporal behaviour of the three-dimensional modes, we used the

brightness distribution in our flow visualization images at a fixed downstream location

in the wake. For this purpose, a 10 pixels wide band, parallel to the cylinder axis,

was selected at the same downstream location in each picture. This location had to be

adjusted for each Reynolds number and rotation rate, to adapt to changes of the flow
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field. At each point along the span, the band was averaged over its width to form a

brightness distribution along the span. The bands of all pictures, plotted as a function

of time, formed a space-time-diagram.

A windowed (8d wide, 50% overlap) Fast Fourier Transform (FFT) was performed

on each band of the s–t diagram to calculate the instantaneous spanwise wavelength

spectrum. To decrease finite-length effects, a Hann function was applied to each win-

dow. The spectra of all bands were averaged, and the result plotted as a function of

wavelength λ (in units of cylinder diameter d). The highest peak (besides possible

long-wavelength noise) was considered as the mode’s spanwise wavelength.

To estimate the Strouhal number St of the two-dimensional base flow, a (windowed)

FFT in time was performed on all averaged bands. The resulting spectra typically

showed a clear peak at the von Kármán shedding frequency. A Gaussian normal dis-

tribution was fitted to this peak to improve the spectral resolution. The shedding

frequency was defined as the mean of the Gaussian fit; the standard deviation could be

used as an estimate of the peak width.

3.5.2 Proper orthogonal decomposition (POD)

POD is a proven method for identifying dominant features and events in experimental

and numerical data (other names for this method are Karhunen–Loève decomposition or

singular value decomposition). The POD method identifies fluid motions that contain

most of the flow energy. The result is a set of modes that represents an average spatial

description of most energetic structures. It should be kept in mind, that these modes

may also correspond to events, which are limited in time but contain large amounts of

energy. the following limitations of the method should be considered: (Kostas et al.

2005):

• The less deterministic a flow is, the less efficiently it will be represented by the

POD expansion. For the present study, this means that at higher Reynolds num-

ber, when the wake has undergone three-dimensional transition, more modes will

be needed to capture a large contribution of the kinetic energy in the flow. Dur-

ing laminar shedding, with its periodicity and limited length scales, most of the

energy can be expected to be contained in the first few modes (up to 10).

• The analysis de-emphasizes infrequent events, although they may be dynamically

important, such as flow disruptions by vortex dislocations.
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• The POD modes represent only time averaged information about the flow struc-

tures.

The idea behind POD is to approximate a vector-valued function u(~x, t) as a finite

sum of K functions φ(~x):

u(~x, t) ≃
K
∑

k=1

a(k)(t)φ(k)(~x) (3.1)

with ~x being the spatial and t the temporal coordinate, and a a scaling factor. Now,

instead of using an priori given basis function for φ(k)(~x), such as Fourier series or

Legendre polynomials, the POD method determines the functions φ that are naturally

intrinsic for the problem at hand. The criterion for determining the sequence of or-

thonormal functions φ(k)(~x) is such that the approximation for each K is as good as

possible in a least-squares sense. This minimization problem is solved by the singu-

lar value decomposition of the snapshot data matrix A ∈ R
M×Nt , which contains Nt

realizations at M spatial locations.

In this thesis, the snapshot technique suggested by Sirovich (1987) is used. The

snapshot POD drastically reduces the computational effort when the number of spatial

points in the snapshots data is much larger than the number of realizations, as is usually

the case for PIV data (Tropea et al. 2007). Assuming a set of Nt flow field realizations

~u(~x, tk) at time instances tk, we are looking for a set of orthogonal functions ~φ(k)(~x):

~φ(k)(~x) =

Nt
∑

k=1

a(k)(tk)~u(~x, tk) (3.2)

where the coefficients a(tk), k = 1, ..., Nt are to be determined such that the reconstruc-

tion becomes optimal in the sense that any reconstruction using another basis with the

same number of modes contains less energy. This is done by solving an eigenvalue

problem over the domain Ω, where the kernel is the two-point spatial correlation tensor

R:
∫

Ω

R(~x, ~x′)~φ(~x′) d~x′ = λ~φ(~x). (3.3)

Substituting (3.2) into (3.3) leads to the eigenvalue problem which determines a(tk),

and which is solved numerically1:

C~V = λ~V , (3.4)

1The present computations use the open source python library MODRED
(http://pythonhosted.org/modred).
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where

Cki =
1

Nt

∫

Ω

~u(~x, tk) · ~u∗(~x, ti) d~x and ~V = [a(t1), a(t2), . . . , a(tNt
)]T.

~V (k) is set of orthogonal eigenvectors (or orthonormal, depending on the normalization),

and λ are the eigenvalues, sorted as λ(1) > λ(2) > . . . λ(Nt) > 0.

The eigenmodes ~φ are computed using (3.2). The corresponding eigenvalues λ

represent the energy contained in each mode. A low-order reconstruction of the k’th

snapshot can be created using (3.1).

There remains the choice of the physical quantity used for the decomposition. 2D2C-

PIV provides two velocity components, which makes velocity a natural choice. Equally,

vorticity computed from these vector fields can be used for the POD analysis. In-

deed, these two variables will lead to slightly different results; after all, two different

quantities are being compared: the kinetic energy content in case of velocity, and the

enstrophy in case of vorticity. Kostas et al. (2005) conclude that the choice of quan-

tity will depend on the aim of the POD analysis. For the identification of coherent

structures, vorticity might the better choice, as it is a Galilean invariant quantity. The

flow structures deduced from velocity fields can be misleading, as they depend on the

velocity of the observer (Perry et al. 1982). On the other hand, POD modes based on

velocity tend to have a better energy convergence, requiring fewer modes to describe

the flow. Furthermore, the order of the modes might be not the same for the velocity

and vorticity decompositions, which can make the modes incomparable between these

two quantities.

Relevant for the present study, Kostas et al. (2005) report similar energy convergence

for velocity and vorticity based decompositions at low Reynolds numbers (backward

facing step: Re = 580). The limited range of length scales of low Reynolds number

flows leads to almost identical decompositions for both variables. For a turbulent flow

at a high Reynolds number (Re = 4660), vorticity based decomposition was the more

efficient technique, identifying coherent structures clearer and with a better energy

convergence. The conclusion is, that either variable can be used in the present study,

as the Reynolds numbers are very low (Re 6 300), resulting in a very periodic and

coherent flow field.
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Chapter 4

Reynolds number reduction

This chapter is based on:

Radi, A., Lo Jacono, D. & Sheridan, J. 2013a A device to achieve
low Reynolds numbers in an open-surface water channel. Experiments in
Fluids (submitted for publication)

4.1 Introduction
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Figure 4.1: (a) Layout and dimensions of the sub-channel insert. The model is mounted
at 334mm downstream of the leading edges. (b) View in downstream direction on the sub-
channel positioned in the main channel test section. Note the gap g.

The minimum workable Reynolds number of the FLAIR water channel was too high

for the present experiments. A short literature review was undertaken to find means of

reducing Re.

Three parameters determine the minimum Reynolds number Re = dU/ν: the fluid

viscosity ν, model dimension d and the freestream velocity U . The minimum model

dimension d is usually prescribed by experimental requirements, such as model stiffness,
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manufacturing process or minimum spatial resolution of PIV recordings. The kinematic

viscosity ν can be adjusted by changing the fluid temperature, or by using a different

working fluid. The high viscosity of e.g. mineral oil, is often exploited when a low

Reynolds number is required, such as in insect flight or micro-air vehicles research

(Bechert et al. 1992; Wang et al. 2004; Willert et al. 2010). A more exotic way of

modifying the (effective) viscosity is the use a ‘flowing soap film’, where the viscosity

is also a function of the film thickness (Vorobieff & Ecke 1999).

The last parameter, the freestream velocity U , is limited solely by the specifications

of the research facility. But reducing the velocity of an existing recirculating water

channel has its limitations. Tunnels are designed for a certain velocity range, with

the turbulence management system optimised for that range. Decreasing the channel

speed far below specifications can affect the turbulence level and frequency content of

the flow, and – more importantly – can have a negative effect on the uniformity of the

flow, leading to skewed velocity profiles in the test chamber.

To avoid these adverse effects, it was decided to modify the flow velocity only locally,

by splitting the flow inside the main channel test chamber. An U-shaped ‘sub-channel’

insert, with a perforated screen at its downstream end, was built (see figure 4.1). The

screen creates a pressure drop, which leads to a pressure increase within this structure.

The remaining flow bypasses it at higher velocity, keeping the overall flow rate through

the water channel unchanged. The porosity of the screen, α, defined as the ratio of the

open area Aopen to the total area of the screen Atotal, determines the degree of velocity

reduction.

4.2 Construction

4.2.1 Main Structure

The sub-channel is designed to occupy 2/3 of the test chamber cross section area. Its

(inner) width is W = 360mm, leaving 110mm on each side to the main channel walls

for the bypass flow. The side walls (L× H = 1000× 855mm) and bottom plate of the

insert are made of 10mm thick transparent acrylic. The leading edges of the side walls

and the bottom plate are elliptical, with a main axes ratio of 4 : 1. The experimental

model attaches to the bottom plate, 334mm downstream of the leading edges. The

rear screen consists of two perforated acrylic sheets, with adjustable porosity α.

The sub-channel can be suspended in the channel test chamber, leaving a gap of
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size g between its bottom plate and the main channel floor, or placed directly onto the

floor. It will be shown that this gap width has to be chosen carefully to achieve uniform

velocity profiles inside the sub-channel.

4.2.2 Perforated Screen
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Figure 4.2: (top) Holes pattern of the perforated screen, when the two acrylic sheets are
shifted with respect to each other by the distance ∆; (bottom) Geometry for calculation of
the screen porosity α .

The adjustable screen consists of two perforated acrylic sheets of 3mm thickness. A

staggered pattern of over 1200 holes of diameter D = 10mm was drilled into each sheet.

By overlaying the two sheets, and shifting them horizontally with respect to each other,

as shown in figure 4.2 (top), the ratio of open area Aopen to total screen area Atotal

can be varied continuously. For a fully open screen (shift distance ∆ = 0), the porosity

is α = π/8 ≈ 0.393. When decreasing the open area, this ratio varies according to

α =
Aopen

Atotal
= 0.393

(

2 arccos(δ)

π
− 2δ

π

√

1− δ2
)

(4.1)

where δ = ∆
D ,

which can be derived from geometric considerations shown in figure 4.2 (bottom).

The screen can be removed easily, by sliding it vertically along grooves machined

in the side walls. This allows quick adjustment of α between experiments, without

requiring the whole structure being removed from the water channel.

Seven values of α, between 0.393 and 0.0041, were chosen for the tests. Alignment

holes were drilled into both acrylic sheets in such a way that these values could be
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reproduced accurately by the insertion of a metal pin.

4.3 Validation tests

The following conventions are used for velocity measurements. u, v and w are the

streamwise, cross-stream and vertical velocity components. A velocity time series u(t)

is decomposed into u(t) = U + u′(t), where U is the time-averaged, and u′(t) is the

fluctuating component. The velocity in the empty main channel test section (sub-

channel not inserted) is referred to as U∞. Velocity profiles and cross-sectional velocity

contours are presented as difference to the average velocity: Udiff = (U −UAV G)/UAV G,

where UAV G is the average of all data points of the profile or contour. The flow velocity

at model location (x/L ≈ 1/3) is referred to as U0. The turbulence intensities are based

on root-mean-squares of the u and w velocity components:

Tu =

√

1
2(u

′2 + w′2)

UAV G
(4.2)

The tested channel velocities were U∞ = 0.045, 0.090 and 0.135m/s (pump speeds: 5,

10 and 15Hz), which translate to approximately Re = 100, 200 and 300 in the rotating

and elliptical cylinder experiments

4.3.1 Velocity reduction

The dependence of freestream velocity inside the sub-channel on porosity α is shown in

figure 4.3. These LDV measurements were taken in the centre plane of the sub-channel,

at model location, where the inflow has reached a steady velocity.
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Figure 4.3: Freestream velocity reduction inside the sub-channel at model location as a
function of screen porosity α (U∞ = 0.09m/s). Error bars show ±u′.
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Figure 4.4: Change of streamwise velocity U along the centre-line, as the flow enters the
sub-channel. Data for two pump speeds and two values of α are overlaid on a side view of
the sub-channel. The velocity error bars (u′) are smaller than the shown symbols. Flow is
from left to right.

For a fully open screen (α = 0.393), the flow velocity is 39% lower than U∞. The

velocity decreases approximately linearly up to α = 0.074; it then tends to level out for

the lowest porosity value. Theoretically, a velocity reduction of more than 70% can be

achieved with the screen.

Figure 4.4 shows the streamwise velocity along the centreline (at z/H ≈ 0.5) for

two channel pump settings and two values of α. Velocity reduction can be seen to have

already occurred upstream of the sub-channel entrance. The flow slows down mono-

tonically as it enters the structure and reaches a constant velocity at x ≈ −100mm.

For best results, the model should be placed slightly downstream of this location, at

x = 0mm. This means that the rear two thirds (0mm < x < 650mm) of the sub-

channel can be used for experiments.

4.3.2 Dependence on gap size g

A particularly interesting observation was made during the first velocity measurements.

The first version of the sub-channel did not possess a bottom plate, but was standing on

the water channel floor. Placed like this, the whole structure represented an obstacle to

the incoming floor boundary layer. For similar configurations, e.g. a vertical cylinder

mounted on a flat plate, it is known that a horse-shoe vortex is likely to develop in front

of the obstacle. For our configuration, flow visualizations revealed a standing vortex of

15–20 cm in diameter at the entrance to the sub-channel. As it was formed not by a
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Figure 4.5: Time-averaged PIV recordings at the bottom leading-edge of the sub-channel,
showing the impact of different gap sizes on the flow field in the centre plane y/W = 0: (a)
gap: 5mm, (b) 76mm. (U∞ = 0.075m/s, α = 0.154)

solid object but was pressure-induced (a sudden increase in pressure with subsequent

boundary layer separation), its location was not stable. After it reached a maximum

size, it periodically detached and was convected through the sub-channel, after which

a new standing vortex was slowly formed. The convection of this detached vortex led

to unacceptably large velocity fluctuations inside the structure.

To suppress this phenomenon, the sub-channel was suspended in the main test

chamber, with its bottom plate above the floor boundary layer (see figure 4.1b). A

study was undertaken to determine the effect of the gap size g between the bottom

plate and the channel floor. It was found that large gap sizes (38, 76 and 114mm)

suppressed the standing vortex, but with the adverse effect of strongly skewed vertical

U -velocity profiles at model location. Particularly, a velocity deficit of up to 10% of the

local mean was noticed in the lowest 200mm of the profiles, which persisted throughout

the streamwise extent of the structure. Smaller gaps of 2, 5 and 10mm, on the other

hand, achieved the desired effect of suppressing the standing vortex, at the same time

leading to more uniform velocity profiles. g = 5mm was chosen for all subsequent

experiments.

The increased skewness resulting from larger gap sizes is explained by the time-

averaged PIV data shown in figure 4.5. A small gap below the sub-channel – of the

order of 5mm – results in a suction effect, which removes fluid from the incoming floor

boundary layer. As seen in figure 4.5a, this is sufficient to prevent large-scale boundary

layer separation and a possible build-up of the horse-shoe vortex. In this case, the
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inflow into the sub-channel is parallel to the bottom plate. A large gap, on the other

hand, modifies the global inflow, by deflecting a large portion of the incoming stream

downward into the gap (figure 4.5b). This downward motion moves the stagnation line

on top of the plate leading edge and establishes a low-velocity zone in the vicinity of the

stagnation point. This results in a velocity deficit in the lower third of the streamwise

velocity profiles, which persists throughout the streamwise extent of the sub-channel.

The boundary layer thickness on the floor of the main test chamber is estimated

from PIV measurements to be 30–40mm. The displacement thickness, which is ap-

proximately 1/3 of the boundary layer thickness (Schlichting & Gersten 2000), can be

used as a rough estimate for the choice of the gap size g.

4.3.3 Dependence on freestream velocity

The flow uniformity and turbulence intensity of the sub-channel cross-section were

compared to the base case of the empty main channel test chamber at three tunnel

velocities. The LDV point velocity measurements were made in a plane perpendicular

to the flow direction. The focal length of the LDV lens allowed to traverse only half of

the channel width. Between 4 and 6 minutes were recorded per sampling point.

Figure 4.6 shows the streamwise velocity contour maps, overlaid with turbulence

intensity contour lines (turbulence contour levels: 1, 1.5, 2, 3, 4, 6, 8 %). The vertical

direction is measured from the sub-channel bottom plate and is non-dimensionalized

by the water depth h.

Figure 4.6a shows the flow field in the empty test section at U∞ = 0.045m/s,

0.090m/s and 0.135m/s (from left to right). With the exception of the lowest pump

setting, the streamwise velocity variations remain largely within ±1% of the plane

average. The turbulence intensity lies between 1.5 and 2%. At all velocities, the bottom

corner of the channel cross-section exhibits a pronounced velocity deficit and increased

turbulence intensity. This is likely the result of a secondary flow in form of a corner

vortex. The grey arrow heads, showing the time-averaged vertical velocity component

W , indicate counter-clockwise rotation (the largest arrow seen in (a) is equivalent to

7% of U∞). In addition, it is observed that the flow quality deteriorates at the lowest

tunnel velocity, resulting in an increased turbulence level.

The flow quality in the sub-channel at the two highest velocities, U∞ = 0.090m/s

and 0.135m/s (figure 4.6b), is comparable to the empty test section. A mild velocity
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Figure 4.6: Flow uniformity in the empty test section (a) and in the sub-channel at model
location (b) at three tunnel velocities. From left to right: U∞ = 0.045m/s, 0.090m/s,
0.135m/s (pump speeds 5Hz, 10Hz, 15Hz). The colour contours show Udiff ; the contour
lines represent Tu [%]. The size of the grey arrow heads is proportional to the value of the
vertical velocity component W . The dashed red arrow visualizes the secondary flow in the
sub-channel. (α = 0.154, g = 5mm, LE = 45◦)
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gradient in vertical direction exists at U∞ = 0.135m/s, with a difference of 6 percent

points between z/h = 0 and 0.9. The turbulence intensity remains between 1.5 and

2% in the top 2/3 of the channel depth, similar to the empty test section. An increase

of Tu is observed in the bottom 1/3, with a local peak at y/W ≈ 0.2, z/h = 0.1–

0.2. This peak is somewhat puzzling, but might be related to the secondary flow in

the sub-channel. This secondary flow is formed by a downward movement at the sub-

channel walls, and a convergent upward movement in the centre-plane, as indicated by

the dashed arrow in figure 4.6b at U∞ = 0.135m/s. This motion might form a weak

streamwise vortex, whose core is located at the turbulence peak. The highest vertical

velocity of this secondary flow is around 3% of the plane mean.

For the lowest velocity U∞ = 0.045m/s, the turbulence intensity increases to over

3%, with particularly high values in the centre-plane just below the water surface and

above the bottom plate. These high values are caused by boundary layer separation

with subsequent transition to turbulence at the entrance to the sub-channel due to

the negative pressure gradient. Separation bubbles are observed on the bottom plate

and below the free surface. Both separations are suppressed at velocities above U∞ ≈
0.080m/s.

4.3.4 Flow development along the streamwise direction

To estimate the flow quality throughout the streamwise extent of the sub-channel, LDV

measurements in 5 cross-stream half-planes at x/L = 0.18, 0.33, 0.48, 0.63, 0.83 were

performed (the planes are 150mm apart). The streamwise velocity in all planes of

figure 4.7 is non-dimensionalized by the average velocity of the plane at model location,

which makes velocity changes along streamwise direction visible. The bold red frame

marks the plane at model location, which was discussed already in relation to figure 4.6b.

The data show that the turbulence intensity remains between 1.5 and 2% throughout

the sub-channel. Upstream of the model location, a horizontal velocity gradient is

visible, with velocities close to the side wall being up to 6% lower than the average.

This is a remnant of the flow expansion at the sub-channel entrance. This horizontal

gradient vanishes at model location. Downstream of the model location, a vertical

velocity gradient develops, with the flow in the bottom 1/3 of the sub-channel being

up to 6% faster than the average. The top 2/3 of the flow field maintains a constant

velocity (within ±2%) throughout the sub-channel extent.

61



Chapter 4. Reynolds number reduction

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1 0

0.2

0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3

22

3

2
2

3

2

2

3

2

3
5

2

2
2

3

22

4

5

22

34

2

2

2

22

8

34

2

2

22

2

3

2

25

4
9

2

2
3

2

2

3

2 2

2
3

2

5

56

2

2

2

Y

X

Z

6%
4%
2%
1%

-1%
-2%
-4%
-6%

Udiff

x/L

y/W

z
/h
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channel. The colour contours show Udiff ; the contour lines represent Tu [%]. The plane
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4.3.5 Dependence on screen porosity

The screen porosity α was kept unchanged at a medium value of 0.154 during all cylinder

experiments. This is why the flow quality at other porosities was not studied in detail.

A comparison of the flow uniformity at model location for α = 0.041, 0.154 and 0.39

at U∞ = 0.090m/s is shown in figure 4.8. This data suggest that the flow quality does

not change considerably for porosities above the used α = 0.154. The lowest value of

α, on the other hand, leads to a deterioration of the flow uniformity inside the sub-

channel, with large-scale flow separation below the water surface and on the bottom

plate (figure 4.8a).

4.3.6 Side walls leading edges

It was found that the horizontal U -profiles could be slightly improved by tilting the

side wall leading edges inwards. The stagnation points (actually lines) were observed

not to lie on the tips of the leading edges, when these were oriented parallel to the

flow direction. Due to the global inflow characteristics, they were located on the inside,

approximately 20mm downstream of the tips. When tilting the vertical leading edges
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inwards by 45◦, the stagnation points were moved onto the leading edge tips. This also

slightly improved the horizontal velocity profiles at the model location. Figure 4.9a

shows two velocity profiles at the entrance to the sub-channel (x = −365mm). The

profile with a leading edge tilt of 45◦ is considerably straighter, and possesses a less

pronounced velocity deficit at the side wall. This improvement persists at the model

location, as seen in figure 4.9b. Here, the variation along the span decreases below

±0.5%.
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Figure 4.9: The effect of tilting the wall leading edges inwards by 45◦ on the uniformity of
horizontal U0-velocity profiles. (a) Velocity profiles at the entrance to the sub-channel; (b)
at model location. Error bars are ±u′. (U∞ = 0.09m/s, α = 0.154, g = 5mm)
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4.4 Conclusions

The ‘sub-channel’ is essential for the present study, as it expands the Reynolds number

range of the FLAIR water channel. The insert consists of a U-shaped acrylic structure

with a perforated screen at its downstream end. The screen increases the pressure

inside of this structure, leading to an uniform velocity reduction of the incoming flow.

Experiments can be performed in the rear 2/3 of the structure, which possess a uniform

streamwise velocity within ±2% along the streamwise direction.

To maintain adequate flow quality inside the sub-channel several conditions must

be met: The structure must be suspended above the main channel floor, leaving a gap

of 5-10mm. A rough estimate of the gap size is the displacement thickness of the main

channel floor boundary layer. Very low screen porosities, below α ≈ 0.1 should be

avoided, as they lead to a strong deterioration of flow quality. The increased pressure

gradient at low α results in large-scale flow separation on the bottom plate and at the

free surface at the sub-channel entrance. A porosity of 0.154 was used in all present

experiments. This setting results in very good flow quality at U∞ > 0.090m/s, and in

acceptable quality for lower velocities. The leading edges of the side walls should be

tilted inwards by 45◦ to improve the horizontal velocity profiles.

A velocity gradient along the vertical direction was observed, with the flow in the

bottom 1/3 of the sub-channel being up to 6% faster than in the top 2/3. This might

lead to non-uniform shedding patterns if long cylinder models are mounted vertically.

Nevertheless, all models were studied in vertical orientation to achieve larger length-to-

diameter ratios, and no substantial differences in flow behaviour ware observed along

the cylinder span. Quantitative measurements were performed in the top 2/3 of the

water depth, where the flow has been shown to be more uniform.
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Chapter 5

Rotating cylinder

This chapter is based on:

Radi, A., Thompson, M. C., Rao, A., Hourigan, K. & Sheridan,

J. 2013b Experimental evidence of new three-dimensional modes in the
wake of a rotating cylinder. Journal of Fluid Mechanics (accepted for
publication on 24.08.2013)

5.1 Introduction

The rotating cylinder can be considered as a means of active flow control. The spinning

motion can lead to vortex shedding suppression and to a (less studied) modification of

three-dimensional transitions. The existence of three-dimensional modes, and their

dependence on the control parameters Re and α, are the focus of this chapter.

The present experiments are motivated by the numerical study of Rao et al. (2013)

(see §2.3 for a detailed discussion), which predict the existence of several previously

unobserved linearly unstable three-dimensional modes. While linear stability analysis

suggests that some of these modes exist for relatively limited ranges of Reynolds num-

bers and rotation rates, this may not be true for fully developed nonlinear wakes. We

explore the fully developed flow for Reynolds numbers 175 6 Re 6 275 and rotation

rates 0 6 α 6 2.5. Using particle image velocimetry and digitally post-processed hydro-

gen bubble flow visualizations, we confirm the existence of the predicted modes for the

first time experimentally and report on observations of the one-sided shedding process,

known as the ‘second shedding’ (Stojković et al. 2003; Mittal & Kumar 2003; Kumar

et al. 2011).
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5.2 Setup validation

The experimental setup (see §3.2) was validated by comparing results of two exper-

iments to published data. First, a flow visualization study was undertaken for the

case of a non-spinning cylinder (α = 0) to estimate the critical Reynolds numbers and

to measure the characteristics of the well known modes A and B (Williamson 1988;

Barkley & Henderson 1996). Second, the process of vortex shedding suppression was

compared to PIV data of Kumar et al. (2011).

5.2.1 Non-rotating cylinder

A two-dimensional von Kármán vortex street was observed for Reynolds numbers up

to Re = 160. The vortices were shed under an angle of up to 12◦ with respect to

the cylinder axis (oblique shedding), a value which varied with time and along the

spanwise direction (figure 5.1a). This is not surprising, as only careful manipulation of

the cylinder end conditions can assure parallel shedding (Williamson 1996b).

For higher Reynolds numbers, irregularities and deformations of the shed vortices

appeared. At Re ≈ 175, the wake developed a fully three-dimensional character, known

as mode A (Williamson 1988). Stability analysis predicts the critical Reynolds num-

ber to be approximately 190 (Barkley & Henderson 1996); however, the transition is

hysteretic and finite-amplitude perturbations can cause premature onset for Reynolds

numbers down to approximately 180 (Henderson 1997). Visualization of this mode in

our water channel with the technique employed turned out to be challenging, and the

hydrogen bubble wire had to be placed in the wake, to provide the picture seen in

figure 5.1b. The wavelength of the spanwise modulations in this image is λz/d ≈ 3.4.

The preferred wavelength from Floquet stability analysis is 3.96d, although the mode

is unstable over a reasonably wide wavelength band (Barkley & Henderson 1996).

For Reynolds numbers above 200, mode B developed gradually, and dominated the

wake for Re > 270, in good agreement with the careful experiments of Williamson

(1996b). Figure 5.1c shows a flow visualization at Re = 275. Streamwise vortices

of mode B are clearly distinguishable. Numerical processing of a sequence of 1000

pictures, as described in §3.5, shows an average spanwise wavelength of λz/d ≈ 0.96.

Floquet analysis predicts the most unstable wavelength as 0.822d (Barkley & Henderson

1996). The Strouhal number is St = 0.194, in good agreement with values found in the

literature (e.g. St ≈ 0.202 in Norberg 1987).
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5d

11◦

(a)

5d

(b) (c)

Figure 5.1: Hydrogen bubble flow visualizations of the non-rotating cylinder wake: (a)
Oblique shedding on the right is observed simultaneously with a section of developing mode
A in the left half of the picture at Re = 170. (b) Mode A at Re = 175, with a spanwise
wavelength of λz/d ≈ 3.4. The platinum wire is placed at 6.5d downstream of the cylinder.
(c) Mode B at Re = 275; the average spanwise wavelength is λz/d ≈ 0.96. The platinum wire
is not visible in (a) and (c), being 5 cylinder diameters upstream of the cylinder. The scaling
is the same for (b) and (c). The cylinder can be seen at the bottom edge of all pictures. The
flow is from the bottom up.

5.2.2 Rotating cylinder

PIV data were recorded to validate the setup for the case of a rotating cylinder. Six

rotation rates between α = 0 and α = 2.0 were chosen at Re = 200. For rotation rates

above α ≈ 2 and Reynolds numbers above 100, the von Kármán vortex street can be

fully suppressed, resulting in a steady laminar double shear layer wake.

Kumar et al. (2011) demonstrated this phenomenon experimentally for Reynolds

numbers Re = 200–400, and rotation rates 0 < α 6 2.1. Their figure 6 shows the

decay of vortex shedding at α ≈ 1.95 for Re = 200. We repeated these experiments,

and our results are shown in figure 5.2; the same flow behaviour was observed. The

flow resembled the typical von Kármán vortex street for low values of α. For increasing

rotation rates, the double-row of vortices was deflected in cross-stream direction. At the

same time, the shedding became weaker, as indicated by the decreased peak vorticity

values. For α = 1.85, the vortices were highly stretched, and the wake resembled a
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Figure 5.2: Instantaneous PIV vorticity fields in the x–y plane at Re = 200 for the marked
clockwise rotation rates. Vorticity is non-dimensionalized as ωzd/U , with solid lines repre-
senting positive values. Vortex suppression is observed beyond α ≈ 1.9. This figure should be
compared directly to figure 6 in Kumar et al. (2011). The grey areas mask spurious vectors
in the obstructed region of the laser sheet.

snake-like pattern. For α = 1.90, shedding ceased completely, and the steady wake

consisted of the merger of the two separated shear layers. This wake showed some

intermittent ‘flapping’, probably due to slight variations of freestream velocity. This

rotation rate marks the critical value separating the shedding and non-shedding regimes.

For all the higher rotation rates investigated at this Reynolds number, 1.9 < α 6 2.10,

the wake remained steady.

Compared with experiments by Kumar et al. (2011), the re-stabilization happened

in our case at a slightly lower value of α = 1.9. However, this is consistent with the

linear stability analysis by Rao et al. (2013), and two-dimensional simulations by Mittal

& Kumar (2003), which estimate the critical value to be α = 1.91.
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5.3 Results & discussion

The main experiments consisted of flow visualizations at Re = 250 and Re = 275,

with subsequent numerical analysis of the digital images, as described in §3.5. For

rotation rates 0 6 α < 2.5, all modes predicted by the linear stability analysis of Rao

et al. (2013) were observed. In addition to the well known mode B for α = 0, these

were: the subharmonic mode C; mode D and its non-shedding version mode E; and

for rotation rates above α = 2.3, a short-wavelength mode F on the cylinder surface.

The modes differ in their wavelengths, spatio-temporal symmetries and underlying base

flows. Evidence will be presented of mode F being a travelling wave mode.

5.3.1 Mode C

Mode C is described for Re = 275 and α = 1.7. As seen in figure 2.16, this parameter

combination lies in the centre of the region of the parameter space occupied by this lin-

early unstable mode. Here, the linear amplification rates can be expected to be highest,

which should make the detection of this mode in experiments easier. Nonetheless, the

visibility of this mode was very dependent on the correct positioning of the hydrogen

bubble wire. Cross-stream movements of the wire of ±1mm made this mode invisible

and created the impression of only slightly disturbed two-dimensional laminar shed-

ding. Once the correct wire location was found, the mode could be visualised reliably

for a wide range of rotation rates. However, this difficulty in detection is an indication

that the saturated state of the mode does not lead to strong distortion of the otherwise

two-dimensional nature of the wake, at least at this Reynolds number.

Figure 5.3a shows the strict periodicity of mode C along a span of 70d. The flow

structures will be described with the help of the close-up views in figure 5.3b. The

photograph on the left is a flow visualization in the x–z plane similar to 5.3a, whereas

the right picture shows the wake cross-section in the x–y plane. The later picture shows

the first frame of a PIV double-exposure (inverse-colour), overlaid with ωz-vorticity

contours calculated for this vector field. The non-dimensional contour levels range from

−3 to +2.5 excluding 0, in steps of ±0.5, with solid lines denoting positive vorticity. The

hydrogen bubble wire upstream of the cylinder was switched on during the recording,

such that the bubble sheet cross-section can be seen as a dark streakline. The black

speckles are PIV seeding particles. The two views in figure 5.3b were not recorded

simultaneously, but represent the same stage of the shedding cycle. The approximate
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Figure 5.3: The subharmonic mode C at Re = 275. (a) Large-field view of the wake
(70d×12d), showing the strict spanwise periodicity at α = 1.2. (b) Close-up view of the near
wake at α = 1.7: A row of streamwise double-vortices is shown in the flow visualization on the
left, and the corresponding wake cross-section is seen on the right (both views are to scale).
In the right picture, instantaneous vorticity contours are overlaid on the PIV snapshot. The
hydrogen bubbles create the dark streakline. The flow is from the bottom to the top.

location of the laser sheet used for flow-visualization is marked in the right picture.

The flow visualization on the left can be interpreted the following way: The bubble

sheet passes the rotating cylinder on the side facing away from the observer. The

bubbles enter the near wake and cross the laser sheet at the location marked by I. The

bubble sheet moves out of the plane of the paper when it is lit up as the bright wavy

line. Approximately at this location the sheet splits up into a section which is moving

upstream (marked as II) and which is being wrapped around the forming vortex core

(A), and a section which is moving downstream (III). Already at this stage, the bubble

sheet is deformed with a periodic spanwise modulation. The upstream-moving part
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consists of a series of U-shapes, where the missing sections have been ‘folded out’, and

move into downstream direction. These sections form the stems (III) leading to the

mushroom shapes at IV. These shapes are typically created by a row of counter rotating

double-vortices. The laser sheet cuts through these streamwise vortices at IV.

It is evident that sections III experience strong stretching between the forming

vortex (A) and the downstream moving vortex (B), which leads to amplification of

streamwise vorticity. Furthermore, the streakline shape in the right picture of fig-

ure 5.3b suggests that the bubble sheet entrains the near wake in the vicinity of an

instantaneous saddle point (Délery 2001), close to marker I. This explains the splitting

of the sheet into upstream and downstream moving sections. These observations lead

to the conclusion that the mode C instability develops within 1–2d downstream of the

cylinder, and its streamwise double-vortices reside in the braid region and get amplified

through stretching of this braid region between consecutive von Kármán vortices.
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Figure 5.4: (a) Space-time diagram at x/d = 3 and (b) time-averaged spanwise wavelength
spectrum of mode C at Re = 275 and α = 1.7. The dominant spanwise wavelength is
represented by the peak in the spectrum at λz/d ≈ 1.1. The subharmonic nature of mode C
is revealed in (a) by the interchange of peaks and valleys every shedding period.

To investigate the temporal development of mode C, space-time diagrams have been

created using the technique described in § 3.5. Figure 5.4a shows a space-time diagram

at Re = 275 and α = 1.7, created from pixel data at x/d = 3. At this location, the

streamwise vortices are visible as mushroom shapes. The subharmonic nature of mode

C can be inferred from the arrangement of these patterns, each of which is repeated

every second shedding cycle. Equivalently, every ‘valley’ of the pattern is aligned with

a ‘peak’ of the successive shedding cycle.

71



Chapter 5. Rotating cylinder

Figure 5.4b shows the spanwise wavelength spectrum, created by performing an FFT

analysis of the space-time diagram. The peak shows the dominant spanwise wavelength

of λz/d = 1.1. A small side peak can be seen at the first higher harmonic (half the

wavelength). The spectral power rises again for larger wavelengths due to large-scale

spanwise irregularities of the wake.

5.3.2 Co-existence of modes B and C

The wake of a stationary cylinder (α = 0) at Re = 275 exhibits an (almost) pure

mode B wake. A rotating cylinder at the same Reynolds number, but at α = 1.7,

leads to pure mode C, as shown in the previous section. It follows that a transition

from one mode to the other has to take place somewhere between these two rotation

rates. According to the neutral stability curves in figure 2.16, the following observations

should be expected: Mode C is linearly unstable only above the critical rotation rate

αcrit ≈ 1.5; for smaller rotation rates, the wake should exhibit purely two-dimensional

shedding; for rotation rates α . 1.1, mode A becomes unstable, before finally changing

to mode B close to α = 0. The aim was to test whether this rather complex transition

scenario really takes place in the experiment.

The same type of experiments as in the previous section (flow visualizations, with

subsequent numerical analysis) were performed for 0 6 α 6 1.7, at Re = 275. In

contrast to the scenario outlined above, mode C was found to dominate the wake

for rotation rates far below αcrit ≈ 1.5. Its flow structures and subharmonic nature

were observed at α = 1.0. Unlike the linear prediction, the wake never lost its three-

dimensionality, meaning that no purely two-dimensional shedding was observed. In

addition, no traces of mode A could be found in flow visualizations for α < 1.

Nevertheless, the absence of mode A cannot be claimed from these data alone. This

mode is very difficult to visualise even under optimal conditions of a stationary cylinder,

and might have been masked by the structures of modes B and C. On the other hand,

it may have contributed to (or even caused) the increased randomness of the flow for

α < 1 by its intrinsic broad-band nature (Henderson 1997). The existence, or possible

contribution, of mode A was not explored further.

The spanwise wavelength of mode C was found to be dependent on the rotation

rate. Figure 5.5a shows that in the linearly unstable region (to the right of the dashed

vertical line), the wavelength was λz/d ≈ 1.1, in good agreement with predictions
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Figure 5.5: Co-existence of modes B and C at Re = 275 is shown in terms of spanwise
wavelengths. (a)Wavelength as function of rotation rate. Circular symbols depict mode C,
square symbols are associated with mode B. To the right of the dashed vertical line, mode C is
linearly unstable, according to Rao et al. (2013). (b) Wavelengths spectra for chosen rotation
rates show a gradual transition to mode C for increasing α. The spectra are shifted with
respect to each other in vertical direction for clarity. The spectra are based on measurements
at x/d = 3 – 5, depending on α.

by Rao et al. (2013). For rotation rates below αcrit ≈ 1.5, the wavelength of mode C

increased steadily as α was decreased, and almost doubled for α = 0.5 (round symbols).

For rotation rates below α = 1.0, the flow became increasingly irregular. Neither

the wavelength, nor the subharmonic nature of mode C could be clearly observed. The

three-dimensional flow patterns were changing randomly with time and lacked spatial

coherence. This leads us to conclude, that this marked the practical transition from

mode C to B. This claim is supported by the growth of a second peak in the wavelength

spectra at λz/d ≈ 1, a wavelength associated with mode B. These peaks are represented

by square symbols in figure 5.5a.

Some chosen wavelength spectra are shown in figure 5.5b. The identified peaks of

mode B and C are marked by round and square symbols, consistent with figure 5.5a.

The spectra can be interpreted as follows. Mode B exists in a spanwise incoherent flow

(α = 0.0). Its peak is small, and hardly dominates the long-wavelength background

noise, which is the plateau at λz/d > 1. Out of this noise, the peak of mode C rises,

when α is increased. For very small rotation rates, it is centred around a wavelength

of two cylinder diameters, but shifts to lower wavelengths for higher α, reaching its

terminal value of λz/d ≈ 1.1 at α = 1.5. Throughout this process, the peak becomes

narrower and higher, soon dominating the background noise. This is caused by the flow

becoming more coherent in the spanwise direction; the flow reaches a high degree of
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regularity already at α = 1.0.

One should bear in mind that these data are extracted from flow visualizations,

whose final appearance depend on the position of the hydrogen bubble wire and the laser

sheet. In addition, the streamwise location in the pictures from which the wavelength

spectra were created influenced, to some degree, the relative strengths of the two peaks

representing modes B and C. In this sense, the data shown above should be treated

as a rough sketch of the transition process between these two modes. A more robust

experimental technique is needed to investigate this transitional region in more detail.

The observation of mode C below the critical rotation rate of αcrit ≈ 1.5, stands out

as the greatest difference between linear stability analysis and experiment. An explana-

tion for this unexpected behaviour might be the initial conditions in the experiments.

Each point on the parameter map was approached from α = 0, by quickly spinning

up the cylinder from rest. This way, the initial condition at Re = 275 was a fully

developed mode B. Within a few seconds, the cylinder was spinning at its terminal

rotation rate, and any new mode would have to grow on this base flow. This excludes

a possible hysteresis effect of mode C, which may have been observed if the rotation

rate was changed continuously. Instead, it is speculated that the presence of mode B

triggers mode C, forcing it outside its predicted instability region to lower values of α.

A similar relationship exists between modes A and B of a stationary cylinder.

Mode A becomes linearly unstable through a sub-critical bifurcation at Re ≈ 190

(Henderson 1997). The critical Reynolds number for the onset of linear instability of

mode B is Re ≈ 260. This number is derived assuming a purely two-dimensional base

flow. In spite of this, mode B has been experimentally and numerically observed by

many researchers for Reynolds numbers below this critical value, some of them as low

as Re = 220 (Williamson 1988; Zhang et al. 1995; Thompson et al. 1996). Henderson

(1997) and Barkley et al. (2000) explain this observation by a nonlinear interaction

of these modes, in which mode A has a destabilizing effect on mode B, and mode B

has a stabilizing effect on mode A, with a resulting mixed-mode state emerging from

Re ≈ 230 on. Sheard et al. (2003a) extended this further, using a coupled Landau

model, showing that in practice the transition from mode A to mode B occurs over

the Reynolds number range 230 ≤ Re ≤ 260. Remarkably, once the Reynolds number

exceeds the critical value of Re ≈ 260, this mixed-mode state gives way to what appears

to be a much more ‘pure’ mode B wake.
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5d

(a)

(b)

Figure 5.6: Flow visualizations of (a) mode D and (b) mode E at Re = 250, α = 1.9 and
α = 2.1, respectively. The flow is from bottom up.

A similar nonlinear interaction may be at play at the transition of mode B to C,

with rotation rate α as the control parameter. Confirmation of this conjecture, and the

general influence of initial conditions on mode C, need further investigation.

5.3.3 Modes D & E

Once the rotation rate was increased above α ≈ 1.85, two new modes, termed here as

modes D and E, developed in rapid succession on further increasing the rotation rate.

As they have very similar characteristics, both modes will be discussed in this section.

Note that the following experiments were performed at a slightly lower Reynolds number

of Re = 250.

Linear stability analysis predicts mode D to exist for a narrow band of rotation

rates, approximately 1.85 < α < 1.95 (Rao et al. 2013). At these rotation rates, the

cylinder wake is on the verge of undergoing transition from a shedding state to a laminar
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Figure 5.7: Space-time diagrams of (a) mode D at α = 1.9; and (c) mode E at α = 2.1
(both created at x/d = 9.2). The time-averaged wavelengths are λz/d ≈ 1.7 and λz/d ≈ 2.1,
as seen in wavelength spectra (b) and (d), respectively.

steady double-shear layer wake. Mode D consists of uninterrupted streamwise vortices,

which wind around the (now weakened) von Kármán vortices, resembling a serpentine

pattern. Figure 5.6a shows a plan view of this wake at α = 1.9. The hydrogen bubble

sheet is wrapped around the streamwise vortices of mode D, and becomes illuminated

when these cross the laser sheet. The streamwise distance of the illuminated sections

in this image reflects the separation of the von Kármán vortices.

Figure 5.6b shows the wake at a slightly higher rotation rate of α = 2.1, for which

the two-dimensional von Kármán shedding no longer occurs. Superimposed on this

steady wake, steady streamwise vortices can be seen, with a spanwise spacing similar

to that of mode D. Due to the different base flow, this mode is referred to as mode E.
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The temporal behaviour of both modes can be seen in the space-time diagrams

of figure 5.7. Mode D is periodic in time with St = 0.206 (figure 5.7a). Mode E is

periodic in the spanwise direction, but steady in time, exhibiting only slight variations

due to a small amount of unsteadiness of the wake. Particularly the diamond shaped

cells connecting the vertical traces in figure 5.7c are formed by a remnant shedding

oscillation of the double-shear layer. The reason for the changing linking between

the longitudinal vortices at z/d =1–4 is not clear, but is probably caused by a slight

flow disturbance. Yet, for both modes, the structures are stationary in the spanwise

direction. In the case of mode D, von Kármán shedding is strictly periodic and parallel

to the cylinder axis.

The spanwise wavelengths are λz/d = 1.7 for mode D, and λz/d = 2.1 for mode E,

as can be seen in the wavelength spectra of figure 5.7b and d. It must be emphasized

that these values are an average over the measured space and time domains. The space-

time diagrams of figure 5.7 show only a small spanwise section of the collected data,

and also for a particular time window. Particularly for mode D, the full data set shows

a slow change in wavelength, which decreases from λz/d = 1.8 to 1.6 over a time period

of 45 s (68 shedding periods).

One concern regarding the use of qualitative flow visualization over extended stream-

wise domains, as in case of modes D and E, is the streakline effect with its spatially

integrated view of the flow patterns. Combined with vortex stretching and the slow

diffusion of the hydrogen bubbles as a passive scalar (Smits & Lim 2000, chapter 3.5),

this effect can lead to a misinterpretation of the existence and strength of vorticity (this

is shown impressively in Cimbala et al. 1988).

An estimate of the streakline effect for mode E is given in figure 5.8. Following

Cimbala et al. (1988), the hydrogen bubble wire was placed at increasing distances

downstream of the cylinder. The photographs show that the bubble sheet is deformed

periodically along the span as far as x/d > 30, meaning that the streamwise vortices of

mode E exist at least up to this distance. It can be concluded that the streakline effect

plays a minor role in our visual data, and the photographs show a good estimate of the

true location and strength of streamwise vorticity.

To support our flow visualizations and to confirm the spanwise periodicity of mode

E, PIV data in the y–z plane at x/d = 3 were recorded. For this plane orientation, the

streamwise vortices ‘pierce’ the laser plane almost perpendicular and create a periodic
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in-plane fluid motion. The vortices were strictly stationary, such that a time-average

of 500 PIV snapshots (1 s apart) could be calculated. The insert on the lower right of

figure 5.8 shows vorticity contours of this time-averaged vector field. Counter rotating

vortex pairs can be clearly distinguished with a spanwise spacing of 2.05d, confirming

the flow visualizations and the space-time diagram.

Returning to the comparison of modes D and E, it has been mentioned that the

transition between these modes is dominated by the gradual decay of the main vortex

shedding. This makes it difficult to determine a precise critical rotation rate separating

these two modes. Considering the similar wavelengths and spatio-temporal symmetries,

we speculate that these modes result from the same physical mechanism, but grow on

different but related base flows. As shown by PIV data in §5.2.2, shedding decayed

for Re = 200 and rotation rates beyond α = 1.9. As the critical rotation rate of this

process is only weakly dependent on Reynolds number, the wake can be expected to

undergo transition back to steady flow at a rotation rate in the range 1.9 < α < 2, even

for Reynolds numbers above 200. This would explain the striking similarity between

modes D and E.

We wanted to confirm this process at Re = 275, and link the flow fields in the wake

cross section (x–y plane) to visual observations from a side perspective. Figure 5.9 shows

instantaneous PIV vorticity fields in the x–y plane, and flow visualizations in the x–z

plane. As expected, the PIV data confirm the shedding decay in the range 1.9 < α <

2.1. Flow visualizations of the shedding wake show mode D structures, periodic in the

spanwise and streamwise directions (figure 5.9c). Once the wake becomes steady, the

spanwise periodicity persists, as seen in figure 5.9d, whereas the structures now resemble

streamwise vortices in a plane parallel to the x–z plane (mode E). The approximate

location of the laser sheet, which creates these flow visualizations, is indicated in the

PIV vorticity fields as a dashed line. The cut through the serpentine wake at α = 1.9

creates the interrupted patterns seen in 5.9c, whereas the cut through the steady wake

at α = 2.1 appears in figure 5.9d as steady streamwise structures.

The PIV data of figure 5.9 give clues on the physical mechanism behind these two

modes. Up to x/d ≈ 4, the wakes of both modes are practically identical, consisting of

a steady double-shear layer. Only further downstream, the wake develops an oscillation

for α = 1.9. A close-up of the time-averaged near-wake for Re = 250 and α = 1.90

is shown in figure 5.10. The two prominent features of this flow field are a single
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Figure 5.8: Inverse colour photographs of streakline patterns of mode E when the hydrogen
bubble wire is placed at increasing distances downstream of the cylinder (Re = 250, α = 2.1).
The location of the cylinder is marked with ‘c’, all wire positions are marked with ‘w’. The
insert on the lower right shows non-dimensional streamwise vorticity obtained from time-
averaged PIV data in the y–z plane (the view is upstream; vorticity is non-dimensionalized
as ωxd/U , with solid lines representing positive values). The PIV recording location is marked
in the first photograph with a dashed line at x/d = 3.
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Figure 5.9: Comparing PIV and flow visualizations of modes D (a, c) and E (b, d) at
Re = 250, α = 1.9 and 2.1, respectively. The PIV data show the instantaneous vorticity
fields in the x–y plane, and the flow visualizations are recorded from a side perspective in
the x–z plane. The horizontal dashed lines in (a) and (b) show approximate locations of the
laser sheet used to illuminate the hydrogen bubbles. The images have the same scale, but
were not taken simultaneously. The colour maps have been inverted to better show the flow
structures. (The flow is from left to right; vorticity is non-dimensionalized as ωzd/U).

closed recirculation region (rather a focal point), and a hyperbolic point at (x, y) =

(1.52d,−0.66d). The flow field of mode E at α = 2.10 is not shown, but displays the

same characteristics, with the hyperbolic point moved slightly upstream, to (x, y) =

(1.2d,−0.7d).

The hyperbolic stagnation point is characterised by local acceleration of fluid and

rapid stretching of vortices, resulting in amplification of vorticity perturbations. As

shown by Kerr & Dold (1994) and Leblanc & Godeferd (1999), hyperbolic instability

can lead to formation of counter-rotating vortices (‘ribs’), whose axes lie parallel to

the direction of the diverging flow. This mechanism has been proposed by Williamson

(1996b) and Leweke & Williamson (1998) as reason for mode B in the wake of a sta-

tionary cylinder, who argued that mode B scales on the smaller dimensions of the braid

shear layer, which explains its comparable small wavelength of 1d (for an alternative

viewpoint on the nature of mode B, see Ryan et al. 2005). In case of mode D and E,

the maximum streamwise vorticity occurs on the dividing streamline passing through

the hyperbolic point, consistent with this hypothesis. Further discussion can be found

in Rao et al. (2013).
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Figure 5.10: Time-averaged streamlines (PIV data) at Re = 250 showing the location of
the hyperbolic point (dashed circle) in the wake of the cylinder rotating at α = 1.90. The
approximate coordinates of this point are (x, y) = (1.5d,−0.7d). The flow is from left to
right.

5.3.4 Mode F

1d

Figure 5.11: Flow visualization of mode F on the surface of the spinning cylinder, at Re =
275 and α = 2.3. The average spanwise wavelength is λz/d ≈ 0.5. The flow is from bottom
up. The sense of rotation is such that the cylinder surface seen by the observer is moving up.

The last instability investigated was the short-wavelength mode F, appearing at

rotation rates above α ≈ 2.2, at Re = 275. Its flow structures formed on the cylinder

surface, with an average spanwise spacing of λz/d ≈ 0.5. These structures consisted

of streamwise vortex filaments, partly wrapping around the cylinder and extending

into the near wake, as seen in the flow visualization in figure 5.11. Considering the

relatively high rotation rates and small length scales, a centrifugal instability seems to

be the most likely explanation for this mode. Similar structures have been observed in

the three-dimensional computations by Mittal (2004) at Re = 200 and α = 5, and were

linked to the centrifugal instability mechanism.
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Figure 5.12: (a) Space-time diagram and (b) time-averaged wavelength spectrum of mode
F at Re = 275, α = 2.3. White lines in (a) show principal directions of movement of mode F
structures.

Table 5.1: Characteristics of spanwise movement of mode F.
−z direction +z direction abs. mean

phase velocity [d/s] -0.42 +0.52 0.47
frequency [Hz] 0.76 0.95 0.85

St3D 0.09 0.11 0.1

Unlike the previously discussed modes of this study, the streamwise vortices of

mode F were not stationary, but wandered along the cylinder span. This can be seen

in the space-time diagram of figure 5.12 (created at x/d = 1), which shows consistent

pattern of almost parallel inclined lines. These are oriented along the direction bottom

left to top right, and are intersected by another group, orientated along bottom right to

top left. A two-dimensional auto-correlation of the full space-time diagram (only a 15 s

segment is shown here) displays two correlation maxima in directions indicated by the

two white lines. The inverse slopes of these lines are the average phase velocities ±cph
(in units of cylinder diameters per second) of mode F structures moving in positive

and negative spanwise directions. Estimations of frequency (f = cph/λz) and spanwise

Strouhal number (St3D = fd/U) of this mode are shown in table 5.1. The three-

dimensional Strouhal number is in good agreement with predictions by Rao et al. (2013)

(0.11).

These results suggest that mode F is a travelling wave. Rao et al. (2013) reported

a change in sign of streamwise vorticity within one perturbation field period. After a

half period, the perturbation field was identical but of opposite sign. It was speculated
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5d

Figure 5.13: Flow visualization at Re = 275, α = 2.4, showing streamwise structures similar
to mode E. Not visible in this picture –due to the chosen hydrogen bubble location– is mode F
on the surface of the cylinder, similar to figure 5.11. Dashed circles mark ‘loop-like’ structures,
which distinguish this flow regime from the pure mode E. The flow is from bottom up.

that mode F is subharmonic, although the present experimental results support the

travelling wave explanation.

Furthermore, there are signs of coexistence and nonlinear interaction of modes E

and F. This is evident from the parameter space in figure 2.16, which shows an overlap

region of these two modes for Re > 290 and α > 2.2. Our experiments confirm the

existence of structures similar to mode E in the far-wake, even at lower Reynolds

numbers. Figure 5.13 shows the cylinder wake at Re = 275 and α = 2.4 (for better

clarity and contrast, the wire was positioned downstream of the cylinder). There is a

striking visual similarity to mode E of figure 5.6b. The dominant spanwise wavelength

at this rotation rate lies between 1.6 and 2 cylinder diameters, compared to λz/d ≈ 2.1

of the ‘pure’ mode E.

Despite the visual similarity, two characteristics distinguish this flow regime from

mode E: First, the streamwise structures visible in figure 5.13 are moving in the spanwise

direction. Numerical processing shows that the phase velocity is cph ≈ ±0.5 d/s, similar

to that of mode F. This is the first sign of a possible interaction between these two

modes. The second difference is the appearance of ‘loop-like’ structures in the far wake,

some of which are marked by dashed circles. This phenomenon has not been observed

in the case of pure mode E. Preliminary experiments indicate that these structures are

created in the vicinity of the cylinder, by ejection of large hairpin-vortices (in the order

of 2d) into the near wake (figure 5.14). Nevertheless, the physics involved are not clear

at this stage and should be investigated in future work.
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1d

Figure 5.14: Ejection of two hairpin-vortices from the immediate near-wake of the rotating
cylinder at Re = 275, α = 2.4. These vortices are likely to be the structures marked by dashed
circles in figure 5.13. (The hydrogen bubble wire is placed downstream of the cylinder.)

5.3.5 Second shedding

Although outside the main scope of this study, a short note on the subject of second

shedding, as reported by Stojković et al. (2003); Mittal & Kumar (2003); El Akoury

et al. (2008); Kumar et al. (2011), will be added. It is remarkable that all evidence of this

phenomenon in literature are either two-dimensional computations or experimental data

(PIV and flow visualizations) of the wake cross section. Stunningly, some studies report

the absence of this phenomenon altogether (Luo et al. 2010). To our best knowledge,

no published data exist which show this process in three dimensions. Without such

data, the question arises how strictly two-dimensional this process is in reality. In

other words, it is not clear whether the one-sided vortex detaches simultaneously along

the whole cylinder span, or whether it happens as a three-dimensional process.

Initially, we hoped to observe this phenomenon under conditions reported by other

researchers. For example, Kumar et al. (2011) presented instantaneous PIV vorticity

maps in the wake cross section at Re = 200, α = 4.45, which showed the detachment of

a one-sided vortex from the rotating cylinder. For these conditions, we can not report

anything comparable from our flow visualizations. The near wake was in a permanent

chaotic state. In addition, a centrifugal instability (mode F) was present on the cylinder

surface, adding to the disruption of the near wake. Nevertheless, large-scale vortical

structures was ejected at random intervals into the wake, containing large amounts of

vorticity.

The closest phenomenon resembling second shedding was observed only for a signif-
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5d t = 0 s t = 2 s t = 4 s

Figure 5.15: Flow visualization of one-sided shedding at Re = 100, α = 5.1. The detaching
vortex forms a horse-shoe shaped vortex bend, which peels slowly off the cylinder. The
rotating cylinder can be seen at the bottom edge; the hydrogen bubble wire is positioned
downstream of it. The flow is from bottom up.

icantly reduced Reynolds number. This had two effects: the wake became more stable;

and the centrifugal instability was suppressed due to the lower rotation rates. In this

‘clean’ wake, we made the observation of a single-sided vortex detachment at Re = 100

and α = 5.1. Against expectations, this process was very localized, initiating from

random ‘detachment points’ along the cylinder span in an unpredictable fashion.

Figure 5.15 shows three video snapshots cropped around one of these points. The

overall wake is initially steady. The first picture shows the start of detachment, as the

vortex passes the hydrogen bubble wire. The vortex wraps the bubble sheet into a

horse-shoe shaped tube. As this peeling process continues, the base of the ‘horse-shoe’

structure widens, its two end points moving apart in the spanwise direction. In most

cases, the process stops only when one of these base points reaches the base point of a

neighbouring vortex bend.

No further data were collected on this phenomenon, and at this point it can only

be speculated on the reasons for the described behaviour. Is the observed three-

dimensionality due to end effects of the finite cylinder, the imperfections of the experi-

mental setup (free-stream turbulence and unavoidable (but small) cylinder vibrations),

or is this process inherently three-dimensional? Previously published observations in

the cross-sectional plane might be the result of an opportune positioning of the record-

ing plane. A cut parallel, and close to the symmetry plane of one of these vortex

bends, would appear in planar PIV vector fields as a single spanwise vortex moving

downstream.
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On the other hand, PIV recordings by Kumar et al. (2011) confirm one-sided shed-

ding at Re = 200, a Reynolds number at which no coherent shedding was visually

perceivable in our experiments. One explanation for this might be the interaction of

centrifugal instability and second shedding. One-sided shedding may be present in our

flow, but visually masked by the flow disruptions caused by centrifugal instability. The

previously mentioned ejection of large-scale vortical structures at this Reynolds number

might in fact consist of actual vortex bends, disrupted and deformed by the interaction

with mode F. For now, these claims are of a speculative nature and further thorough

investigation is needed to address these issues.

5.4 Summary

The results presented in this chapter are the first to show experimentally a new set of

three-dimensional instability modes in the wake of rotating cylinders. These match the

modes first found in the linear stability analysis of Rao et al. (2013).

The subharmonic mode C was observed for rotation rates 1.0 6 α 6 1.85. Its

nominal spanwise wavelength was λz/d ≈ 1.1 at α = 1.7, but increased significantly

with decreasing rotation rate. This mode has similar characteristics to the subharmonic

mode C, observed in the wakes of a torus (Sheard et al. 2003b), and of a cylinder

disturbed by a thin wire (Zhang et al. 1995; Yildirim et al. 2013b). Furthermore, a

complex interaction with mode B took place for α 6 1.0. This nonlinear interaction

could not be predicted by linear stability analysis.

Two modes with a wavelength of λz/d ≈ 2 appeared in close succession at Re = 250.

For rotation rates above α = 1.85, mode D consisted of continuous streamwise vortices

in a shedding wake. Mode E was observed at a slightly higher rotation rate of α = 2.1.

It appears that this mode is a continuation of mode D, but on a henceforth steady

wake. This is supported by the observation of a smooth transition between these two

modes, as the wake changes gradually from a shedding to a steady state. Both modes

are attributed to an hyperbolic instability of the mean wake.

The fourth mode, mode F, was observed on the cylinder surface for Re = 275 and

rotation rates above α ≈ 2.2. It consisted of ring-like vortices at an average spanwise

spacing of λz/d ≈ 0.5. Similar structures with a spanwise wavelength of one cylinder

diameter were observed in three–dimensional computations by Mittal (2004) for α = 5.

It is speculated that this mode is the result of centrifugal instability. However, in
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5.4. Summary

Table 5.2: Summary of the main characteristics of the newly observed three-dimensional
modes C – F. A comparison is made between numerical results (num.) of Rao et al. (2013)
and experimental measurements (exp.) of this publication. (* ‘period’ refers to the period T
of the two-dimensional periodic base flow. In case of mode F, the reference is made to the
spanwise movement of the three-dimensional structures, expressed as Strouhal number St3D.)

mode C D E F
data num. exp. num. exp. num. exp. num. exp.

λz/d 1 1.1 2 1.6− 1.8 2 2.1 0.45 0.5
period 2T 2T 1T 1T N\A 0.11* 0.1*

movement stationary stationary stationary travelling wave

our experiments, the three-dimensional structures moved along the span, resembling a

travelling wave of St3D ≈ 0.1. In addition, while mode F was fully developed on the

cylinder surface, streamwise structures similar to mode E were observed in the wake

for rotation rates α > 2.3. There is indication of a nonlinear interaction between these

two modes, which needs further investigation.

One-sided shedding (second shedding/mode II) was visualised for Re = 100, α = 5.1.

Unlike the current assumption of a two-dimensional vortex parallel to the cylinder axis,

the observed shedding created localized horse-shoe shaped vortex structures peeling

off the cylinder. The detachment was initiated at randomly distributed ‘detachment

points’ along the span, giving this process a fully three-dimensional character.

Overall, the presented experimental results largely confirm the linear stability anal-

ysis of Rao et al. (2013). The predicted modes C – F have been observed experimentally,

with a good agreement in terms of spanwise wavelengths and spatio-temporal symme-

tries.

The largest discrepancy concerns the observation of mode C at rotation rates signif-

icantly below its linearly unstable range. A possible cause might be the fully developed

mode B as an initial triggering condition in the experiment. This does not seem to play

a role for α > 1.0, but leads to a complex interaction of these two modes for α 6 1.0,

which should be investigated in future work.

A side-to-side comparison of the main characteristics of the newly observed modes

is presented in table 5.2.
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Chapter 6

Elliptical cylinders: St–Re

relationship

The second main study of this thesis deals with the flow about elliptical and stationary

circular cylinders, and the normal flat plate. All models are thought of as members

of a continuous spectrum of bodies, differing only by their cross-sectional aspect ratio

Ar . The modifications of the wake, as Ar is varied, are investigated in detail in the

next two chapters. The present chapter discusses changes to the Strouhal–Reynolds

number relationship (St–Re curves) as a function of the aspect ratio Ar in the range

100 < Re < 300 and the associated three-dimensional transitions. These findings lead

to an hypothesis, which will be tested in chapter 7 in the form of a detailed PIV study.

This chapter is based on:

Radi, A., Thompson, M. C., Sheridan, J. & Hourigan, K. 2013c
From the circular cylinder to the flat plate wake: the variation of Strouhal
number with Reynolds number for elliptical cylinders. Physics of Fluids
(submitted for publication)

6.1 St–Re curves

6.1.1 Introduction

For the circular cylinder, the Strouhal numbers lie on a curve which has been estab-

lished by many experimental (e.g., see Williamson 1996b, and references therein) and

numerical (e.g., Henderson 1997) studies. For this model, the St–Re curve reflects

the major flow regimes and transitions of the wake in the form of possibly hysteretic

discontinuities and slope changes (Williamson 1996c).

We attempt to use this ‘imprint’ of a cylinder’s transition behaviour as a first guide

in the search for wake transitions of the elliptical cylinders. We seek to obtain the

St–Re curves by means of hot film velocimetry, identify associated flow transitions and
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Chapter 6. Elliptical cylinders: St–Re relationship

their potential causes, and compare the transition scenarios of the elliptical cylinders

to the two limiting cases of a flat plate and a stationary circular cylinder. The hot film

findings will be supported by hydrogen bubble flow visualizations, which will confirm

the transition between the two-dimensional laminar wake to three-dimensional flow,

and will provide an estimate of spanwise wavelengths.

This chapter will show that whilst modified versions of the mode A and B transitions

of a circular cylinder wake occur at aspect ratios above Ar ≈ 0.4, at lower aspect ratios

some major differences occur. In particular, for Ar . 0.4, the wake appears to re-

laminarize after it has already undergone three-dimensional transition. The possible

cause for this surprising observation will be explored in a short case study at the end

of this chapter, which will lay the foundation for the major investigation presented in

chapter 7.

6.1.2 Method

A hot film probe, placed at (x, y) ≈ (10d,−1.5d), was used to record the velocity

fluctuations. The chosen y-location assured larger velocity oscillation amplitudes com-

pared to the symmetry plane (Fage & Johansen 1927); the streamwise distance from

the cylinder was kept large to prevent an interaction of the hot film probe with the

cylinder’s near wake and unintended triggering of three-dimensional modes. The ana-

logue signal was low-pass filtered at 10Hz and sampled at 20Hz. For each Reynolds

number, a velocity time series of 20min was recorded (equivalent to 440–1600 main

shedding cycles). The Reynolds numbers were increased stepwise from 100 to 300; then

the series was reversed, to capture any hysteretic effects in the flow. The water tem-

perature was measured throughout the experiments, to correct for changes in viscosity.

The freestream velocity was recorded simultaneously by LDV upstream of the model.

The full experimental setup is described in §3.3.

To obtain the shedding frequency, a windowed FFT was performed on the velocity

time series, with a window width of 512 points (25.3 s), and 50% overlap. The spectra

of all windows were averaged, and the highest spectral peak was defined as the von

Kármán shedding frequency. The width of the frequency peak in the power spectrum

contains useful information on the transition process (Williamson 1996b). This spectral

bandwidth ∆f∗ is defined as the difference between the frequencies where the spectral

level is 3 dB below the peak value (Prasad & Williamson 1997). As it depends on the
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6.1. St–Re curves

window width (see appendix B), only relative values will be given. ∆f∗ is normalized

with the averaged spectral bandwidth of the circular cylinder in the laminar regime

(Re < 177 in our experiments).

To make all three-dimensional transitions associated with the different cylinder

types more comparable, the following terminology will be used for the three-dimensional

modes: (1) ‘Mode L’ refers to a long-wavelength instability appearing at lower Reynolds

numbers. This is equivalent to mode A for the circular cylinder; (2) ‘Mode S’ refers

to a short-wavelength instability (similarly equivalent to mode B) at higher Re. Their

critical Reynolds numbers are Rec1 and Rec2 ; λL, λS are the wavelengths of each mode.

The spanwise wavelength of the modes was estimated from flow visualization pictures.

Note that for larger aspect ratios, the identified modes are effectively equivalent to vari-

ants of modes A and B; however for lower aspect ratios, and especially the flat plate,

they do not necessarily correspond to the circular cylinder modes.

6.1.3 Results

The validation of the experimental setup is presented in figure 6.1a, which shows the

St–Re curve for the circular cylinder. The initial section of the curve is known to begin

outside of the measured Reynolds number range at Rec0 ≈ 47, when the steady wake

starts shedding spanwise vortices of alternate sign (see §2.1.1). The Strouhal numbers

increase monotonically, until a hysteretic discontinuity takes place at Rec1 = 160–190

(depending on the experimental conditions, Williamson 1996c). The discontinuity is

reproduced accurately in our experiment at Re = 177, with a pronounced hysteresis.

This sudden drop is caused by the appearance of the first three-dimensional mode

(mode A) with a spanwise wavelength λL = 3–4, combined with large-scale vortex

dislocations, which evolve spontaneously and intermittently along the span. These

dislocations lead to low-frequency irregularities of the measured velocity signal and

to a broadening of the spectral bandwidth (Braza et al. 2001). For Reynolds numbers

above 220, perturbation energy is gradually transferred to the second three-dimensional

mode (mode B) with λS ≈ 1, which dominates the wake completely at Re = 260. See

figure 5.1 in the previous chapter for a flow-visualization of these modes. During this

gradual transition, the St–Re curve experiences a steep increase, followed by a plateau.

The curve plateaus in our experiments at Re > 250 with a dimensionless shedding

frequency of St ≈ 0.20.
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6.1. St–Re curves

The spectral bandwidth ∆f∗ reflects the appearance of the three-dimensional modes

by exhibiting two maxima: A first sharp peak at Re ≈ 180 caused by mode A, and a

broader peak centred at Re = 230, as a result of gradual transition to mode B. These

observations are consistent with previous experimental studies (Williamson 1996c).

Figure 6.1b shows the St–Re curve and the spectral bandwidths of the Ar = 0.72

cylinder. The steep drop in Strouhal number is the most prominent feature of this

curve. The following changes compared to the circular cylinder can be observed: (1)

The discontinuity is shifted to a lower critical Reynolds number Rec1 = 135. (2) The

steep increase of Strouhal numbers, associated with the circular cylinder wake mode B,

is not present. (3) The St–Re curve plateaus at a lower value of St ≈ 0.19.

The discontinuity at Rec1 = 135 is a reliable indicator of a transition from a lam-

inar two-dimensional shedding to a three-dimensional flow. Analogous to the circular

cylinder, this process is accompanied by a sudden increase in spectral bandwidth. Flow

visualizations show a spanwise modulation of the wake with a wavelength of λL = 3.6–

4.0 (figure 6.2a). The appearance of mode S is not obvious from the St–Re curve,

but can be inferred from a wide peak in the spectral bandwidth at 160 < Re < 190.

Flow visualizations indeed show a short-wavelength mode with λS ≈ 1.2 for Reynolds

numbers above this range (figure 6.2b).

The wide second peak in the spectral bandwidth might be an indication of a com-

peting process between modes L and S, similar to the overlap region of modes A and B

of the circular cylinder. Although this process is not reflected in the Strouhal number

variation, overall the curve for the Ar = 0.72 cylinder appears to be just a modified

version of the circular cylinder’s curve. The same observation holds for the Ar = 0.64

cylinder (figure 6.1c). Only for smaller aspect ratios below Ar = 0.39 are major changes

observed, which are indicative of new physical processes.

These changes will be highlighted with results for the Ar = 0.26 cylinder, whose

St–Re curve is shown in figure 6.1e. This curve differs fundamentally from the circular

cylinder. Firstly, it must be emphasized that the Strouhal number drop at Re ≈

Figure 6.1 (facing page): St–Re curves and spectral bandwidths of the elliptical cylinders.
The curve of the circular cylinder (Ar = 1.00) is reproduced in each plot for easier compar-
ison (grey circular symbols). The Reynolds number was increased (triangles up), and then
decreased (triangles down) to capture hysteresis effects. The Ar = 0.72 cylinder curve shows
error estimates of St for Re = 100 and 300. The data by Williamson (1996b) are rescaled
and normalized. The results by Saha (2013) are for an Ar = 0.125 normal plate.
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5d

hydrogen bubble wire

cylinder

(a)

5d

cylinder

(b)

Figure 6.2: (a) Mode L in the wake of the Ar = 0.72 cylinder at Re = 150. The spanwise
wavelength in this photograph is λL ≈ 3.6 (b) Mode S at Re = 200 with a spanwise wavelength
λS ≈ 1.2. The cylinder can be seen at the bottom. The hydrogen bubble wire is placed
downstream of the cylinder in (a), and upstream in (b). Flow is from bottom to top.

120 is not the discontinuity marking the transition to three-dimensional flow. This

transition takes place outside of the measured range at Re < 100, with the flow being

already fully three-dimensional with a mode L structure at the lowest Reynolds numbers

investigated, as will be shown in figure 6.3a. Accordingly, the spectral bandwidths

are large in the range 100 < Re < 150, and the hot film signals show low-frequency

irregularities, reminiscent of mode A and vortex dislocations known to occur from the

circular cylinder.

In addition to the strongly decreased critical Reynolds number Rec1 , two more

unique properties are noticed: (1) A steep increase of the Strouhal numbers at Re ≈ 225,

accompanied by a peak in the spectral bandwidth. (2) A gradual decrease of Strouhal

numbers over the range 120 < Re < 180, paired with the lowest spectral bandwidths

measured for this cylinder type for 150 < Re < 190.

The steep increase of the Strouhal numbers at Re ≈ 225 can be reliably attributed

to the appearance of the three-dimensional mode S. At this Reynolds number, this

short-wavelength mode is fully developed with a wavelength of λS = 1.2d, as estimated

from flow visualizations. It appears intermittently already at Re = 200, which explains

the increased spectral bandwidths (figure 6.3b).

For Re < 150, flow visualizations show the long-wavelength mode L with λL ≈

94



6.1. St–Re curves

5d

(a)

5d

(b)

5d

hydrogen bubble wire

cylinder

(c)

Figure 6.3: Flow visualizations of the Ar = 0.26 cylinder wake. (a) Re = 100: mode L with
λL ≈ 6d; (b) Re = 200: mode S with λS ≈ 1.4d. (c) Re = 160: re-laminarized wake. The
flow is from bottom to top.
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5d (figure 6.3a). This mode strongly deforms the von Kármán vortices from their

inception. The presence of a three-dimensional mode is the most likely reason for the

differences between the Strouhal numbers obtained from two-dimensional computations

by Johnson et al. (2004) and the experiment, particularly for Re < 120 (figure 6.1e).

The discrepancy decreases as the Reynolds number approaches 150. Surprisingly, the

near wake in the experiment becomes two-dimensional again in the range 150 < Re <

190, devoid of three-dimensional modes or vortex dislocations! This can be seen in

figure 6.3c. The figure shows that the von Kármán vortex cores are shed initially

parallel to the cylinder axis, with only minor spanwise modulation. This stands in

stark contrast to figure 6.3a at Re = 100, which shows a strong three-dimensional

deformation. Yet, the minor spanwise modulation in figure 6.3c is amplified strongly

as the vortex cores are advected downstream, which is indicative of a high strain region

for distances x/d & 10.

The described condition will be referred to as the ‘re-laminarized’ regime, because

it is characterized by a strictly periodic hot film signal and narrow spectral bandwidths,

similar to the laminar shedding regime of the circular cylinder at Re . 190 (No reference

is made by this term to the distinction between laminar and turbulent flows!). A

comparison of velocity time traces in figure 6.4 exemplifies this trend: The velocity

signal (a), prior to re-laminarization, shows gradual amplitude modulations, which

are characteristic of vortex dislocations. Once mode S appears, the velocity signal

(c) exhibits high frequency bursts. The velocity trace (b) is strictly periodic with a

constant amplitude, which defines the re-laminarized regime.

(a) (b) (c)

Figure 6.4: Velocity time traces of the Ar = 0.26 cylinder wake at (a) Re = 107; (b)
Re = 165; (c) Re = 240. The re-laminarized regime (b) exhibits strictly periodic shedding.

Apart from the Ar = 0.26 cylinder, this newly found regime was observed in a

weaker form in the Ar = 0.39 wake for 200 < Re < 250, although its St–Re curve does

not show such a pronounced decrease of Strouhal number (figure 6.1d).

The flat plate curve resembles the Ar = 0.26 case, with the transitions shifted to

lower Reynolds and Strouhal numbers (figure 6.1f), tempting the interpretation of its

features in the same way. The steep increase of St values between Re = 170 and 200 is
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flat platewire

Figure 6.5: Flat plate mode S at Re = 200. The spanwise wavelength is λS ≈ 1.8d. Flow is
from bottom to top.

indeed caused by a short-wavelength mode S, which is fully developed at Re > 200 with

a wavelength λS ≈ 1.2− 1.8. This is in accordance with reports of a short-wavelength

mode for Re > 200 (Najjar & Vanka 1995a; Najjar & Balachandar 1998). This mode

is shown in figure 6.5.

6d 6d

t0

t0 + T

t0 + 2T

flat plate

(a) (b)

Figure 6.6: (a) Mode L in the wake of the flat plate at Re = 150. The spanwise pattern
repeats every second shedding cycle. (b) The same wake with a slightly differently positioned
hydrogen bubble wire. The wire is placed 2.8d upstream of the model in both pictures. Flow
is from bottom to top.

Nevertheless, the flat plate wake differs from the previous cases by a surprising

property: Its mode L is subharmonic, as can be seen in figure 6.6a at Re = 150.

Spanwise modulations of λL ≈ 6d form immediately downstream of the model. The

structures shift by a half-wavelength in spanwise direction every shedding cycle T , such

that the same pattern is repeated every 2T . Yet, the vortex cores are shed strictly

parallel to the cylinder axis, without a three-dimensional modulation, as can be seen
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Figure 6.7: Schematic St–Re curves of all investigated models. The insert on the top left
shows Strouhal number values sampled at Re = 300, representing the region in which the
curves plateau.

in figure 6.6b. The wavelength and the subharmonic nature of this mode match the

predictions by Thompson et al. (2006), who state a critical Reynolds number Rec1 =

105–110. An additional long-wavelength mode with λz ≈ 2d, as described in the same

publication, has not been observed in our experiment yet.

A unified comparison of all investigated models is made in figure 6.7, in which the

data points have been replaced by hand-drawn curves to emphasize the trends. Four

characteristics can be identified, which describe the main changes as the aspect ratio

decreases from 1 to 0:

• First, the critical Reynolds number marking the transition to three-dimensionality

reduces. The accompanying discontinuity is captured for Ar = 1.00, 0.72 and 0.64;

it is assumed to exist at Re < 100 for Ar = 0.39 and 0.26, as the flow is already

three-dimensional at Re = 100. The discontinuity is hysteretic for Ar = 1.00

and 0.72, only (marked by arrows). It is not clear if/how the flow undergoes

three-dimensional transition in the case of the flat plate.

• Second, all curves flatten for Re > 250, with the Strouhal number of this plateau
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6.2. Spectral energy of the primary frequency

decreasing for smaller aspect ratios. The Strouhal numbers St300 (sampled at

Re = 300) show a linear relationship with aspect ratio, as can be seen in the top

left insert of figure 6.7.

• Third, the steep increase of Strouhal numbers marking the appearance of mode S

(mode B equivalent), vanishes for Ar = 0.72, 0.64 and 0.39, but reappears again

for Ar = 0.26 and the flat plate. In all cases, a short-wavelength mode with a

spanwise wavelength λS = 1–2 was observed.

• Fourth, a gradual decrease of Strouhal numbers, associated with the phenomenon

of wake re-laminarization, is observed for Ar 6 0.39. This regime is associated

with highly periodic shedding, at least in the near wake.

In conclusion, as the aspect ratio of an elliptical cylinder is varied between 0 6 Ar 6

1, bridging the geometries of a circular cylinder and a flat plate, a range of different

modifications of the St–Re curves can be observed. Some of these modifications can be

explained in terms of variations of known circular cylinder transitions (e.g., the impact

of modes L and S), in line with changes to the two-dimensional base flow, whilst the

origin of others are less predictable and demand further research. Perhaps the most

prominent of these being the re-laminarized wake for Ar 6 0.39. The main experimental

observations are summarized in table 6.1.

Table 6.1: Overview of all investigated models. Missing data were linearly interpolated from
Jackson (1987). (H) denotes hysteretic transitions.

Ar Rec0 Rec1 Rec2 λL λS St300 re-lam.

1.00 45.41 177 (H) 220–260 3.962 0.8222 0.20 No
0.72 40.11 135 (H) 160–190 3.7–4.0 1.3 0.191 No
0.64 38.21 110 140–160 4–6 1.2–1.4 0.184 No
0.39 34.21 < 100 220 4–6 1.1–1.2 0.172 Weak
0.26 32.01 < 100 220–230 5–6 1.2–1.4 0.165 Yes
0 27.81 ? 180–200 6 1.2–1.8 0.155 Yes

—————————————————–

1 Jackson (1987)

2 Henderson & Barkley (1996)

6.2 Spectral energy of the primary frequency

In addition to the characteristics of the velocity signal, the St–Re relationship and

flow visualizations, one more quantity was extracted from the hot film data presented

in §6.1. The temporal variation of the energy content of the shedding frequency was
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computed by measuring the spectral energy of a finite frequency band of width 2∆f ,

centred around the primary von Kármán frequency (∆f = 0.05Hz). This was done for

each window of the windowed FFT and for each Reynolds number. Figure 6.8 shows

the resulting diagrams for all cylinder models. Each vertical stripe of tiles represents

a 20min time series. As the windowed FFT was performed with 25.3 s wide windows

and 50% overlap, each tile represents 12.7 s in the time domain. The stripe width

is determined by the Reynolds number increment during the experiments The energy

content of the tiles is represented by its grey tone. A vertical sequence of dark tiles

means strong and coherent shedding, while a rapid and random change of grey tones

is caused by incoherent velocity fluctuations, typically the result of vortex dislocations.

The St–Re curves from figure 6.1 are overlaid for easier comparison.

The diagram of the circular cylinder in figure 6.8a clearly shows its three flow

regimes. To the left of Re ≈ 180, the tiles pattern is uninterrupted and dark, meaning

very periodic shedding with the fluctuation energy concentrated in the primary fre-

quency. This is characteristic for the laminar shedding regime. Once mode A develops

in the transition regime, the tiles pattern becomes random, meaning that the primary

shedding is less energetic and interrupted. Both observations, leakage of energy out

of the primary frequency peak and temporal randomness, are a direct result of vor-

tex dislocations (Braza et al. 2001). Interestingly, once mode B is fully developed at

Re > 250, the shedding becomes more regular with a higher spectral energy content.

This implies the absence of vortex dislocations for Re > 250, which explains the hence-

forth increased Strouhal numbers. The transitions between these three flow regimes

correlate with changes in the overlaid St–Re curve.

Figures 6.8b and 6.8c show the decrease of the critical Reynolds number of the onset

of three-dimensionality for decreasing aspect ratios. In both cases, the uniformly dark

regions are shifted to the left, coinciding with the discontinuity in the corresponding

St–Re curves. The transition is followed by a more random shedding, reminiscent of the

transition region of the Ar = 1.00 cylinder. Yet, none of the elliptical cylinders recover

the spectral energy at higher Reynolds numbers, as in the case of the circular cylinder at

Re > 250. Although short wavelength modes are present in all cases at higher Reynolds

numbers, they do not lead to the same flow coherence as mode B did. The diagrams

suggest that vortex dislocations persist until the highest Reynolds number studied for

all elliptical cylinders, with the exception of the re-laminarized regimes.
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80 100 120 140 160 180 200 220 240 260 280 300

0.15

0.16

0.17

0.18

0.19

0.2

0.21

S
t

(d) Ar = 0.39
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Figure 6.8: Energy content of the von Kármán frequency band as a function of Reynolds
number and time. The laminar shedding regimes are visible as regions of uniform dark
grey. The presence of three-dimensional modes and vortex dislocations leads to randomly
interrupted patterns. The re-laminarized regimes are visible as the darker segments for Ar =
0.39, 0.26, 0, and are marked by the horizontal brackets. The St–Re curves are overlaid for
easier comparison.
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The re-laminarized regimes become apparent for the Ar = 0.26 cylinder and the flat

plate as uniform and continuous tile mosaics. Although not reflected in the St–Re curve,

a particularly smooth region is observed for Ar = 0.39 in the range 210 6 Re 6 260.

These data confirm that the wake begins to laminarize already at Ar = 0.39. The

approximate extent of this regime is marked by the horizontal brackets in figure 6.8d–f.

The region of re-laminarization exhibits the same trend as Rec0 (the onset of three-

dimensionality), by moving to lower Reynolds numbers for smaller Ar . Uniformly grey

bands of regular shedding are observed at Re > 210 for Ar = 0.39, they develop at

Re > 150 for Ar = 0.26, and exist already at Re = 100 for Ar = 0. In case of the flat

plate, it can be speculated that this region merges with the initial laminar shedding

regime, which is assumed to prevail at Re < 100.

6.3 Low frequency oscillation in the wake of the Ar = 0.26

cylinder: a case study

The previous section showed that there are profound changes to the primary shedding

during the re-laminarized regime. Primarily, the spectral energy of the von Kármán

frequency increases and the shedding becomes more uniform in time. Before the poten-

tial cause of this phenomenon is studied in detail in chapter 7, it shall be shown that

the re-laminarized regime is linked to the appearance of a second (low) frequency in

the wake. This will be done as a case study for the Ar = 0.26 cylinder at Re = 150.

6.3.1 Comparison to Johnson et al. (2004)

Johnson et al. (2004) analysed numerically the vortex structures in the wake of 2D

elliptical cylinders for 75 < Re < 175. The power spectrum analysis of the v velocity

component along the horizontal centreline showed the presence of secondary and tertiary

frequencies in the far region of the wake. As the Reynolds number was increased and/or

the aspect ratio was decreased, the lower frequencies in the far wake became more

dominant and their inception point occurred closer to the elliptical cylinder. Consistent

with the discussion on the secondary vortex street in §2.1.2, it was suggested that this

low frequency unsteadiness does not need to be due to vortex interaction, but rather,

can result from the presence of a two-dimensional instability of the mean wake.

Figure 6.9 shows the downstream development of spectral energy for the three most

dominant frequencies of the velocity spectrum for Ar = 0.25 and Re = 150. It can
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en
er
gy

x/d

Figure 6.9: Downstream development of selected frequency energy for Ar = 0.25 at Re =
150 (numerical results from Johnson et al. 2004, reproduced with permission from Elsevier).

be seen that the primary shedding frequency at St = 0.166 loses energy rapidly, while

a lower frequency oscillation, at St = 0.072, gains energy and dominates the wake for

x/d > 30. Already at x/d ≈ 15, both oscillations have equal energy.

A reproduction of this numerical experiment in the water channel is shown in fig-

ure 6.10. The velocity oscillations were measured with a hot film probe at several

downstream locations. The recording length per point was 1 hour (equivalent to almost

2500 shedding periods). In contrast to the numerical setup, the probe was positioned

outside the centre plane, at y/d ≈ 1, and the velocity data consist of both, the u and

v velocity components. Nevertheless, the same qualitative behaviour can be observed:

The primary shedding frequency at St = 0.17 loses energy quickly, and is replaced by

a much lower secondary shedding frequency at St = 0.08. Both oscillations have equal

energy content at x/d ≈ 14, in agreement with the numerical results. In contrast to

the two-dimensional simulations, the secondary shedding frequency decays fast with

downstream distance, and is undetectable already at x/d = 40− 50.

The insert in the top right of figure 6.10 contrasts the spectral energy distribution

at x = 6d to that at x = 16d. At x = 6d, the oscillation energy is concentrated in

the von Kármán shedding frequency fK and its first higher harmonic 2fK. These two

frequencies are replaced by a broader peak at fsec, representing the secondary shedding.

The third frequency of St = 0.022, as seen in figure 6.9, was not observed in the

experiment. The frequency bands below St = 0.03 consisted mainly of uniform noise

and were filtered out by a high-pass filter during post-processing.
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Figure 6.10: Downstream development of the velocity frequency spectrum in the wake of
the Ar = 0.26 cylinder at Re = 150. The main von Kármán shedding frequency fK at
St = 0.17 decays rapidly and is replaced by a lower frequency fsec at St = 0.08 − 0.09. The
insert in the top right shows a comparison of power density spectra at x/d = 6 and 16. The
x-axis labels are placed at the streamwise locations of the sampling points.

Figure 6.10 confirms the numerical results for this cylinder type and shows the

presence of a secondary shedding frequency in the wake of the Ar = 0.26 during the

re-laminarization regime. Johnson et al. (2004) explained the appearance of this low

frequency by the formation of the secondary vortex street (see §2.1.2). We conclude

that there is a possible link between the re-laminarized regime and the secondary vortex

street.

6.3.2 Instantaneous flow field

The question arises how the decay of the primary, and the rise of the secondary, shedding

frequencies are reflected in the flow field downstream of the Ar = 0.26 cylinder. For this

purpose, PIV data were recorded in the x–y plane. Figure 6.11a shows the instantaneous

streamwise velocity contour map at Re = 150. Two observations can be made: First,

downstream of the initial recirculation region in the immediate near wake (region I),

an unusual low-velocity region exists in the range 4 < x/d < 12 (region II). The extent

of this region is shown by overlaying the 0.2U/U∞ contour line of the time-averaged

flow field1 onto the instantaneous flow field (white line in figure 6.11a). Within the

closed contour of region II, the streamwise velocity decreases to 5.5% of U∞. It will be

1The time-averaged flow field was created from 1000 PIV snapshots, 1 sec apart.
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Figure 6.11: Ar = 0.26 cylinder wake at Re = 150. (a) The grey colour map shows the
instantaneous streamwise velocity; the white line is the 0.2U/U∞ contour of the time-averaged
flow field. (b) Γ2 contours showing the instantaneous vortex cores. (The contour levels are
±0.4, ±2/π, ±0.8 and ±0.9, with dashed lines denoting negative values.). The cylinder is
shown at the left edge; the flow is from left to right.

shown in §7.1 that this velocity deficit is an intrinsic property of the elliptical cylinder

wakes during the re-laminarized regime. The second observation is a long-wavelength

oscillation of the entire wake at x/d > 14 (region III). This oscillation bears remarkable

resemblance to the secondary wake described in §2.1.2.

To locate the vortex cores in the flow field of figure 6.11a, the Γ2 vortex identification

functions was computed from the PIV data. This Galilean invariant function identifies

the boundary of a vortex on the basis of the velocity field. These boundaries are defined

by the value Γ2 = ±2/π; details can be found in Graftieaux et al. (2001). We concluded

that this function shows the vortices much clearer than the vorticity field, particularly

at advanced stages of wake development (for x/d > 10).

Figure 6.11b shows contours of Γ2. The primary von Kármán vortex street is

observed until x/d ≈ 15. The vortices detach from the cylinder and arrange themselves

105



Chapter 6. Elliptical cylinders: St–Re relationship

into a staggered double-row, travelling downstream. For x/d > 15, these vortices

rearrange into larger structures, and the streamwise spacing between them more than

doubles.

It can be concluded, that the formation of the large vortical structures at x/d > 15

causes the wavy oscillation of the wake seen in figure 6.11a. Furthermore, the re-

arrangement of the primary von Kármán shedding into these large vortices – accom-

panied by a significant increase of the streamwise wavelength – explains the secondary

frequency in the velocity signal (St = 0.080 in figure 6.10).

The circular cylinder wake develops the secondary vortex street at downstream

distances in the order of x/d = 100. Our case study shows for the first time experimen-

tally that equivalent structures can be observed at much smaller streamwise distances

(x/d < 30), if an elliptical cylinder is used. Furthermore, these PIV data are additional

evidence for a link between the re-laminarized regime and the secondary vortex street.

It has been demonstrated that a rearrangement of the primary von Kármán street into

large-scale structures, resembling the secondary vortex street, takes place during the

re-laminarized regime of the Ar = 0.26 cylinder wake. Nevertheless, the discussed data

are only an instantaneous snapshot of the flow field, and a systematic study of all avail-

able models at various Reynolds numbers is needed to elucidate the connection with

the phenomenon of wake re-laminarization. This study will be presented in the next

chapter.

6.4 Chapter summary

This chapter described the first study of the largely unexplored elliptical cylinder flows,

focusing on the Strouhal-Reynolds number relationship. The shape of the St–Re curves

provides a wealth of information on the cylinder wake transitions, three-dimensional

modes and base-flow changes. An in-depth analysis of the collected hot film velocity

data, supported by flow visualizations and preliminary PIV data, leads to the following

conclusions:

• The Reynolds number of the transition to three-dimensionality decreases for

smaller aspect ratios.

• The Strouhal number variations degrade for Re > 250, reaching a plateau whose

Strouhal number decreases linearly with aspect ratio.
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• All cylinder types possess a long wavelength mode L, and a shorter wavelength

mode S (modes A and B equivalents). Mode L is subharmonic in case of the

flat plate. The Strouhal number discontinuity marking the appearance of mode S

vanishes for Ar = 0.72, 0.64 and 0.39, but reappears again for Ar = 0.26 and the

flat plate.

• A gradual decrease of Strouhal numbers, associated with the phenomenon of

‘wake re-laminarization’, is observed for Ar 6 0.39. This regime is associated

with highly periodic shedding, at least in the near wake, and the absence of

vortex dislocations.

• The re-laminarized regime is shifted to lower Reynolds numbers for decreasing

aspect ratios.

• A secondary (low) frequency in the velocity signal and the formation of large-

scale vortical structures, resembling the secondary von Kármán vortex street, are

observed during the re-laminarized regime.

The last item on this list is the basis for the following hypothesis, which will be tested

in the next chapter:

The re-laminarized wake regime is caused by the secondary von Kármán vortex street,

whose inception point shifts upstream for decreasing aspect ratios.
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Chapter 7

Elliptical cylinders: Secondary
wake

The previous chapter showed that, as the aspect ratio of an elliptical cylinder is varied

between 0 6 Ar 6 1, certain modifications of the St–Re curve cannot be explained in

terms of known circular cylinder transitions (e.g., the appearance of modes A and B).

The most interesting and puzzling observation is the re-laminarization of the wake for

Ar 6 0.39. This flow regime is defined by a particularly regular primary shedding, sim-

ilar to the laminar shedding regime of the circular cylinder at Re . 180, and a possible

suppression of a previously developed three-dimensional mode. This new regime ap-

pears at lower Reynolds numbers for decreasing aspect ratios Ar . Finally, a hypothesis

was put forward, stating that the wake re-laminarization is caused by the formation of

the secondary von Kármán vortex street.

This chapter aims to support this hypothesis by showing the following:

1. The conditions for the breakdown of the primary von Kármán vortex street are

fulfilled during wake re-laminarization.

2. Downstream of this breakdown, a long wavelength / low frequency secondary

vortex street develops.

This chapter discusses PIV data at Re = 100, 150, 200, 250. The wake of each

cylinder type was sampled 672 times at fs = 1Hz in the x–y plane. The interrogation

window size was 32 × 32 pixels, with a 50% overlap. The freestream velocity was

measured with LDV 15d upstream of the cylinder. A schematic of the experimental

setup is shown in figure 7.1. The suction tubes (see §3.3) were removed for optical

access of the PIV camera from below the tunnel.
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(a) (b)

Figure 7.1: Experimental setup for the PIV data collection. (a) View from the side; (b)
view from above.

It was realized only during post-processing that the PIV sampling rate fs coincided

with the shedding frequency of the flat plate at Re = 250. This led to an inferior

convergence of the time-averaged flow field, which is seen as a waviness in the wake

centreline velocity profile (figure 7.2). In addition, the POD analysis failed for this case,

as most of the snapshots were not linearly independent. However, all other cases were

sampled satisfactorily.

7.1 Wake centreline velocity profiles

First, the time averaged flow fields will be discussed. For easier comparison, only the

streamwise velocity profiles along the wake centreline are presented, which were created

by selecting the lowest velocity value of the U(y) velocity at each streamwise location.

Figure 7.2 shows a comparison of all profiles. For all Re, the circular cylinder profiles

show the typical velocity deficit in the immediate near wake, caused by the recirculation

bubble. The velocity recovers to about 80% of U∞ within the first 5 cylinder diameters.

A comparison is made to Williamson & Prasad (1993) at Re = 150, which shows that

the velocity recovery is slightly lower in our experiment. This might be caused by

oblique shedding, as the suction tubes were removed. At Re = 250, a shallow trough in

the velocity profile is visible, centred at x/d ≈ 25. This trough exists at x/d ≈ 50–60

for Re = 150, and is thought to be caused by the formation of the secondary wake

(Williamson & Prasad 1993; Kumar & Mittal 2012).
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Figure 7.2: Time-averaged streamwise velocity profiles along the wake centreline. The data by Saha (2013) are from 2D simulations of an Ar = 0.125
flat plate; the data by Williamson & Prasad (1993) are from circular cylinder experiments.
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As the aspect ratio is decreased / Reynolds number is increased, this trough deepens

and shifts upstream. This is a continuous process for Ar = 1.00–0.64. For Ar = 0.39−0

a new behaviour is observed: the trough develops into a deep wake deficit, spanning

the range x/d ≈ 3–12. This happens at lower Reynolds numbers for lower Ar : the

Ar = 0.26 cylinder and the flat plate exhibit this wake deficit at Re = 150. The

Reynolds number has to be increased to 200–250 for the Ar = 0.39 cylinder to exhibit

this effect. Interestingly, once a certain Re is exceeded, the velocity profile develops a

steep velocity recovery within the first 5 cylinder diameters again (see Ar = 0.39 and

0.26 at Re = 250).

At this point, it is instructive to divide the centreline velocity profiles into 3 groups:

Type I profiles, for Reynolds numbers prior to the development of the extreme wake

deficit; type II profiles exhibiting the deficit; and type III profiles, at Reynolds numbers

above the wake deficit regime. The three profile types are sketched in figure 7.3.

type I type II type III

x x x

U U U

Figure 7.3: Schematic representation of three types of centreline velocity profiles for in-
creasing Re. Type II was observed for Ar 6 0.39 during the re-laminarization regime. The
arrows mark reverse-flow regions.

For type II profiles, streamwise velocities in the wake deficit region lie between 5%

and 20% of freestream. For Ar = 0.26 at Re = 200, and for Ar = 0.39 at Re = 250,

even a small reverse flow region exists at x/d ≈ 3. This is the first experimental

confirmation of the secondary recirculation bubble, as reported by Saha (2013) (see

figure 2.15 on page 28). This bubble is located at the upstream end of the wake

deficit. The numerically obtained velocity profiles by Saha (2013) are overlaid on our

experimental data in figure 7.2 for comparison. The reverse-flow region is clearly visible

at x/d = 4 − 5 in these data. The wake deficit region is longer in simulations than in

the experiment, likely due to stronger vortices in the 2D simulation compared to the

3D physical flow.

To quantify the profile shape changes in the Ar–Re parameter space, an ‘integrated
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Figure 7.4: Re–Ar parameter space showing the integrated kinetic energy deficit ratio edef .
The profile type is shown in the circles. The dashed line marks the parameter space of wake
re-laminarization.

kinetic energy deficit ratio will be defined as:

edef =

∫ 30d

1d

(

U(x)

U∞

)2

dx.

The value of edef is rather insensitive to the integration limits, which were chosen to

cover the wake deficit and most of the recovery region.

This parameter is shown in figure 7.4 as an interpolated colour map. The profile

type is overlaid for each Ar–Re combination. The edef values tend to decrease from

high to low Ar , with type II profiles having some of the lowest values. The Ar = 0

profile at Re = 100 lies between types I and II, as it has a very low value of edef , while

having a wake deficit velocity above 20% of U∞.

The parameter space for which wake re-laminarization was observed in chapter 6, is

marked by the black dashed contour in figure 7.4. It is apparent that all type II profiles

fall into this region. For higher Reynolds numbers, these profiles change to type III

profiles.

We can conclude that the wake re-laminarization regime is characterized by type II

velocity profiles, exhibiting a strong velocity deficit. The velocity deficit disappears for

higher Reynolds numbers, and type III profiles are established. For Ar > 0.64, only

type I profiles exist in the studied Reynolds number range.
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7.2 Vortex street geometry

Chapter 2.1.2 discussed the geometrical parameters of the vortex street, which are

associated with its breakdown. Several studies (Taneda 1959; Durgin & Karlsson 1971;

Tsuboi & Oshima 1985; Karasudani & Funakoshi 1994) observed that the von Kármán

vortex street was likely to decay into a steady double shear layer when its vortex spacing

ratio h/a exceeded the critical range 0.3–0.5 (with h being the distance between the

vortex rows, and a being the spacing of the vortices in each row). Durgin & Karlsson

(1971) presented a derivation of the theoretical value h/a = 0.365, whereas Karasudani

& Funakoshi (1994) report an experimentally obtained value 0.4–0.5. Once the double

shear layer was formed, the secondary vortex street of larger dimensions was very likely

to appear downstream of the breakdown location.

Naturally, the value of h/a increases in downstream direction, as the vortex row

separation h increases, but the streamwise distance of the vortices does not change

considerably. The following study examines the streamwise development of the vortex

street geometry of elliptical cylinders and assesses the applicability of the h/a criterion

in predicting an earlier vortex street breakdown as the condition for the development

of the secondary vortex street for Ar < 1.

7.2.1 Method

The Γ2 vortex identification function was computed from PIV vector fields (Graftieaux

et al. 2001). In each vector field, the vortex boundaries were identified based on the

condition Γ2 = ±2/π; vortices with contours clipped at the frame edges and vortices

with an area below a minimum threshold were ignored. The vortex core centres were

computed from an area integral within each boundary, weighted by the vorticity dis-

tribution within these boundaries. Figure 7.5a shows the identified vortex boundaries

as bold lines; positive and negative core centres are marked by plus and circle sym-

bols, respectively. The vorticity colour maps are plotted within each vortex boundary;

positive vorticity is blue, negative is green.

To track the development of the geometry parameters in downstream direction, h,

a and h/a were calculated for each identified vortex. This was done by measuring the

streamwise (∆x) and cross-stream (∆y) distances to the next vortex of opposite sign

within a properly sized bounding box. The geometric parameters were then: h = ∆y

and a = 2∆x. The direct connection lines of length
√

∆x2 +∆y2 between all identified
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(a)

(b)

Figure 7.5: Geometric analysis of the circular cylinder wake: (a) sample PIV frame showing
identified vortex core boundaries in bold blue (positive) and green (negative) lines. (b)
Locations of the vortex core centres at Re = 100 (identified from 672 vector fields), overlaid
on the time-averaged streamwise velocity contours (grey lines).

vortices are shown as the green-blue dashed lines in figure 7.5a.

The time-averaged vortex core trajectories were approximated by averaging all vor-

tex locations. Figure 7.5b shows that, in case of the circular cylinder at Re = 100,

the vortex locations collapse onto two narrow paths. By binning these data along

the streamwise direction into bins of width 1d, local averages of h, a, h/a, and their

spread (standard deviation) were calculated. Typically, over 100 vortices were com-

bined in each bin; this number decreased significantly when the secondary vortex street

appeared. This is why data only up to x/d = 15 will be plotted for Ar = 0.26.

7.2.2 Results

Figure 7.6 shows the streamwise development of the geometry parameters of the circular

cylinder at Re = 100, 150 and 250. It can be seen in the left column that the two vortex

paths diverge in cross-stream direction after an initial parallel section. The trajectories

are in good agreement with data by Karasudani & Funakoshi (1994) (dashed bold lines).

During the laminar shedding regime at Re = 100 and 150, the spread of the core loci in

cross-stream direction is small, but increases after the transition to three-dimensionality

at Re = 250, as can be seen by the error bars (showing two standard deviations of the

spread in each bin).

The streamwise separation between vortices of each row reaches a constant value

a/d =4–5 for x/d > 8, after an initial rapid increase (figure 7.6, middle column). It
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Figure 7.6: Vortex street geometry of the circular cylinder wake. The left column shows the
vortex cores trajectories (black lines with error bars) overlaid on the time-averaged streamwise
velocity contours (grey). The middle and the right columns show the streamwise development
of streamwise core spacing a, lateral spacing h and their ratio h/a. The dashed-dotted line
in the right column is the critical value h/a = 0.365; the dotted line is the von Kármán ratio
h/a = 0.281. The bold dashed lines and the triangles in (a) show data from Karasudani &
Funakoshi (1994).
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Figure 7.7: Vortex street geometry of the Ar = 0.26 cylinder wake. Compare to figure 7.6;
note the different scale in the right column. The wake is re-laminarized at Re = 150.
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is the simultaneous growth of the cross-stream vortex separation h which leads to an

increase of the parameter h/a in streamwise direction (right column). h/a = 0.365 is

reached at x/d ≈ 30 at Re = 100 and 200. This point shifts upstream to x/d =20–25

for Re = 250. As no data was recorded downstream of x/d = 32, the consequences of

exceeding the critical value are not clear. For comparison with elliptical cylinders, it

should be noted that h/a stays largely below the critical range 0.3–0.5.

As a side note, the von Kármán ratio of the idealized vortex street h/a = 0.281 exists

only in a very limited streamwise extent, at x/d ≈ 18. The cross-stream separation of

the vortex rows in the real vortex street increases considerably in streamwise direction.

Figure 7.7 shows the wake geometry of the Ar = 0.26 cylinder. The left column

reveals a wider wake compared to the circular cylinder at all three Reynolds numbers,

and the absence of the initial parallel section of the two vortex rows. The cross-stream

distance between the vortex rows h within the first 5 diameters downstream of the

cylinder is almost twice as large compared to the circular cylinder (h/d =1.4–1.8 for

Ar = 0.26, compared to 0.6–1.0 for Ar = 1.00; middle column). The vortex spacing

ratio is above the critical value 0.365 throughout the sampled domain at all three

Reynolds numbers (right column). This ratio is particularly high (> 0.5) at Re = 150,

which is in the re-laminarized regime of this cylinder type. Comparing the graphs of

the middle column, it is apparent that the high value of h/a at this Reynolds number is

primarily caused by a decrease of a. At Re = 150, the vortices are formed at an initial

streamwise spacing of just 3 cylinder diameters, whereas this distance is above 4d at

Re = 100 and 250.

7.2.3 Conclusions

The vortex spacing ratio h/a increases consistently for decreasing aspect ratios Ar

(figure 7.8). Yet, the data do not show a clear enough trend to allow the use of h/a

as a criterion for the identification of the re-laminarized flow regime. For Ar = 0.26,

this ratio is equal, or above the critical value 0.365, independently of the flow regime.

Nevertheless, it can be concluded that the re-laminarized regime is characterized by

a particularly high vortex spacing ratio (h/a > 0.5), which is caused by a decreased

streamwise separation of newly formed vortices.
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Figure 7.8: Dependence of the vortex street geometry on the aspect ratio Ar at Re = 150.
The vortex spacing ratio h/a is observed to increase consistently with decreasing aspect ratio.
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Chapter 7. Elliptical cylinders: Secondary wake

7.3 Proper orthogonal decomposition of velocity fields

Direct evidence of the secondary vortex street will be presented in form of a proper

orthogonal decomposition (POD) of PIV vector fields (see §3.5.2 for the mathemati-

cal background). First, the accuracy of the decomposition will be evaluated for the

Ar = 1.00 cylinder at Re = 100. Then, selected cases will be presented, showing

the appearance of the second wake during the re-laminarization regime. Flow fields of

modes 0–5 for all Ar–Re combinations can be found in appendix C.

As the POD was performed on velocity fields1, the modes are ordered according

to their kinetic energy. All modes will be presented as ωz-vorticity contours, which

have been computed by taking the curl of the modes’ velocity fields. Positive vorticity

is marked in blue, negative vorticity is coloured light green. The contour levels are

arbitrary, but of the same order of magnitude for all modes, as the mode flow fields are

orthonormal. The kinetic energy content of each mode is expressed by its eigenvalue λ.

For plotting, these energies are normalized by the sum of all modes excluding mode 0

(the time-averaged flow field), which is equal to the fraction of the fluctuating energy

content of the flow.

7.3.1 Circular cylinder

The circular cylinder wake is known to exhibit strictly periodic laminar shedding at

Re = 100. The POD modes form pairs, due to the closeness of the vortex street to a

travelling wave (Ma et al. 2000). As the harmonic oscillation of the wake contains most

of the fluctuating kinetic energy, the two most energetic POD modes can be expected

to represent the von Kármán vortex shedding, followed by higher harmonics of this

motion. In figure 7.9, the streamfunctions Ψ (dΨ = −v dx+u dy) of the experimentally

obtained modes are compared to numerical results by Noack et al. (2003). Naturally,

the (2D) simulation has a lower noise level than the experiment, and reproduces the

higher harmonics much cleaner. Still, the match of modes 1 & 2 is very good, and the

mode shapes of the higher harmonics are recognizable in the experimental data. In both

cases, the paired modes have the same flow pattern, shifted in streamwise direction by

a quarter wavelength.

The energy distribution of the first 15 modes is shown in figure 7.10. The first

1According to Kostas et al. (2005), for low-Reynolds number flows with dominant periodic motion,
no significant differences exist between a decomposition based on velocity fields and a decomposition
based on vorticity fields. This is not the case for turbulent flows.
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7.3. Proper orthogonal decomposition of velocity fields

(a)

n = 1

n = 5

n = 9

n = 2

n = 6

n = 10

(b)

Figure 7.9: Circular cylinder POD modes at Re = 100. (a) Numerical results by Noack
et al. (2003). (b) Selected modes from the present experiments. The flow field is visualized
by iso-contour lines of the streamfunction. Positive (negative) values are indicated by thick
(thin) lines. The cylinder is represented by the solid circle. ((a) is reproduced with permission
from Noack et al. 2003)
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Chapter 7. Elliptical cylinders: Secondary wake

two modes contain over 98% of all fluctuating kinetic energy in the 2D simulations by

Deane et al. (1991), and similarly by Noack et al. (2003). In the experiment, modes 1

& 2 combine over 80% of energy, and a drastic drop for the next 2 modes is observed.

The ‘energy cascade’ is not as steep, and the mode pairs are not as discretely defined as

in the simulations. The match is good up to mode 6, after which the energy is spread

rather equally over the higher modes. This is probably due to the fact that the real

flow is not perfectly periodic, creating a limited number of higher harmonics.

It should also be noted that not all mode numbers in figure 7.9b match the nu-

merical modes in 7.9a. Considering the flat energy cascade of higher modes in the

experiment, it is possible that modes are ‘pushed up’ along this cascade by energetic

flow irregularities or intermittent events. In particular, the omitted modes 3 & 4 have

a strong cross-stream velocity component, which might be the result of ’wake flapping’.

At higher Reynolds numbers, vortex dislocations can create specific mode shapes that

reside relatively high in the eigenvalue spectrum (Zhao & Ling 2003).
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Figure 7.10: Eigenvalues of the 15 most energetic POD modes of the circular cylinder wake
at Re = 100.

The energy distributions of the first 4 modes at Re = 100, 150, 200 and 250 are

compared in figure 7.11. The first two Reynolds numbers lie in the laminar shedding

regime, thus, no significant changes of the modes’ shape or order are observed, while

the fluctuating energy remains concentrated in the first two modes. This changes in

the transitional regime at Re = 200, when mode A develops, and irregularities in the

form of vortex dislocations disrupt the periodic shedding. This leads to a broader

distribution of fluctuating energy across the modes, decreasing the energy content of
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7.3. Proper orthogonal decomposition of velocity fields
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Figure 7.11: Comparison of the energy distribution of modes 1–4 of the circular cylinder
wake at various Reynolds numbers. Modes 1 and 2 contribute most to the von Kármán
shedding motion.

the first two modes to just over 20% each (which is still a high value). Consistent

with the discussion in §6.2, the von Kármán shedding becomes more regular again for

Re > 250 (see also Williamson 1996c), which leads to increased energy content of modes

1 and 2 at Re = 250.

7.3.2 Ar = 0.72 and Ar = 0.64 cylinders

The energy distribution among the first four modes of the Ar = 0.72 and 0.64 cylinders

is shown in figure 7.12. Similar to the circular cylinder, modes 1 and 2 contain at least

70% of the fluctuating energy at Re = 100. This value is almost halved for Re > 150,

when the first three-dimensional mode develops. The energy recovery of modes 1 and

2 at Re = 250 is much weaker than in the circular cylinder case, and is observed only

for Ar = 0.72.
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Figure 7.12: Comparison of the energy distribution of modes 1–4 between the Ar = 0.72
(a) and Ar = 0.64 (b) cylinder wakes.
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Chapter 7. Elliptical cylinders: Secondary wake

The most prominent changes of the flow field, as the aspect ratio is decreased

to Ar = 0.64, are exemplified in figure 7.13. Compared to the circular cylinder at

Re = 100 (figure 7.13a), the streamwise extent of the von Kármán wake is decreased

(figure 7.13b). It can be speculated that the von Kármán vortices are disrupted and

‘smeared out’ into two parallel rows of opposite vorticity. This assumption is supported

by the appearance of a mode representing a double shear layer, which becomes strongest

downstream of the decaying main vortices (x/d = 15–30). This mode type is observed

up to Re = 200 for Ar = 0.72 and 0.64. It should be noted that the streamwise extent

of the highest vorticity of this mode coincides with the ‘trough’ in the wake velocity

profile, discussed previously (figure 7.2).
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Figure 7.13: (a) Mode 1 of the circular cylinder wake at Re = 100. (b) Modes 2 and 3 of
the Ar = 0.64 cylinder wake at Re = 100 show that the streamwise extent of the von Kármán
vortex street decreases, which tends to be replaced by a double shear layer. Note that the
energy content of mode 2 is seven times higher than of mode 3.
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7.3. Proper orthogonal decomposition of velocity fields

7.3.3 Ar = 0.39 cylinder

The first evidence of the secondary wake is observed in the sampling domain for Ar =

0.39 at Re = 250 (in a weak form already at Re = 200). The second wake appears

in form of a mode pair (modes 3 & 4). The streamwise wavelength of these modes is

approximately 2.1 times larger than of the von Kármán modes 1 & 2. Assuming equal

convection velocity, this would result in approximately half the shedding frequency

compared to the primary frequency. A similarly low frequency fsec ≈ fK/2 was already

observed in the Ar = 0.26 wake (see §6.3)2.

Figure 7.14 shows the flow fields of modes 0, 1 and 3. Mode 1 (and similarly

mode 2) bear little resemblance to the previously discussed von Kármán vortex street

modes. The mode structure is defined now by two rows of vortices offset from the wake

centreline. The replacement of the regular von Kármán – type wake by a double-row

of vortices is known from the flat plate flow at Re < 100 (Thompson et al. 2006). The

current results show that this process sets in already at Ar = 0.39 for Re = 200–250.

Mode 3, which represents the secondary wake, is equivalent in structure to the reg-

ular von Kármán vortex street. The vorticity peaks are centred on the wake centreline,

but at double the streamwise distance. When comparing this mode to mode 2 of the

circular cylinder in figure 7.13a, we see that in both cases the main structures develop

from a reversed ‘C’-shape into oval shapes with increasing streamwise distance from

the cylinder.

In case of the secondary wake, the main structures originate from a region 5–10

cylinder diameters downstream of the model. This is the vorticity-free region enclosed

by vortices of mode 1 and the strong time-averaged vorticity seen in mode 0. It is

concluded that strong vortices traverse this region and retard fluid between them. This

leads to the velocity deficit discussed in connection with type II velocity profiles in §7.1.
This velocity deficit is outlined by the 0.2U/U∞ contour in the mode 0 flow field (bold

black line).

Finally, the bar graph in figure 7.14 shows that modes 1 & 2 and modes 3 & 4

have comparable energies, each containing approximately 10% of the overall fluctuating

energy. This confirms that two vortex streets of similar strength are present in the flow:

a short wavelength street represented by modes 1 & 2, and a long wavelength street

2Unfortunately, the PIV sampling rate (1Hz) was not sufficient to resolve the frequencies of modes
1–4. The hot film measurements of chapter 6 suggest: fK = 1.33Hz and fsec ≈ 0.66Hz (assuming
fsec = fK/2).
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Figure 7.14: POD modes of the Ar = 0.39 cylinder wake at Re = 250. Modes 1 & 2
represent the primary von Kármán street; modes 3 & 4 can be attributed to the secondary
vortex street. The bold black line in mode 0 is the 0.2U/U∞ contour of the time-averaged
flow field. The graph at the bottom shows the energy distribution of the first 7 modes (black
bars; left ordinate axis), and the energy convergence of the first 50 modes (red markers; right
ordinate axis).

formed by modes 3 & 4.

7.3.4 Flat plate

The Ar = 0.26 cylinder and the flat plate show similar wake behaviour: For low

Reynolds numbers, a weak double-row of vortices develops already at Re = 100, which

tends to collapse into a double shear layer at increasing downstream distance, similar

to the discussion of figure 7.13. Modes representing the secondary vortex street are

observed for Re = 150 and 200 in case of Ar = 0.26, and for Re = 150 for the flat plate.

The full data set can be found in the appendix C.
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7.3. Proper orthogonal decomposition of velocity fields

Figure 7.15 shows modes of the flat plate wake at Re = 150, when the second vortex

street is present. Modes 1 & 2 and 4 & 5 represent the primary and the secondary

vortex streets, respectively. Similar modes were already observed in the Ar = 0.39

wake at Re = 250. The main difference (besides a shortened primary wake) is the

appearance of a double shear layer mode 3 . The effect of this mode can be deduced

from the time history of its projection coefficient a(3)(t), shown in the right half of

figure 7.15. Most of the time, a(3)(t) is small, meaning that this mode is weak. Yet,

larger bursts are observed at 35 and 65 main shedding periods. These bursts are of

positive sign (a(3)(tk) > 0) and coincide with periods of reduced amplitudes of a(1)(t)

and a(4)(t). Superimposing mode 3 with mode 0, leads to a reduction of vorticity

strength of the primary wake. The conclusion is that mode 3 represents a random

collapse of the primary (and secondary) vortex street, which is ‘smeared out’ into a

double-shear layer. Although Re = 150 belongs to the re-laminarized regime, this data

show that the vortex street still can collapse intermittently. This was already observed

in the hot film data presented in chapter 6.2 (see figure 6.8f on page 101).

The shedding frequency of the flat plate at the discussed Reynolds number lies above

the PIV Nyquist frequency, which means that the time history of a(1)(t) is aliased. Hot

film data show that the flat plate sheds with fK = 0.566Hz at Re = 1503. Nevertheless,

the PIV sampling frequency was sufficient to resolve the secondary shedding frequency,

which is fsec = 0.32−0.37Hz. The ratio of Strouhal numbers is StK/St sec = 0.56−0.65,

close to 1:2.

Finally, the reconstruction process for a PIV snapshot, which exhibits a well devel-

oped secondary wake, is presented in figure 7.16. The reconstruction of the k’th PIV

frame using n modes has been computed as

ωz(~x, tk) =
∑

n

√

λ(n)a(n)(tk)φ
(n)(~x, tk),

with λ being the eigenvalue and a the projection coefficient from equation 3.3 (Sirovich

1987; Kostas et al. 2005). The multiplication with
√
λ(n) is due to the normalization

of a and φ.

3The Fourier transform of a(1)(t) shows a peak at 0.43Hz, which matches the folding frequency of
fK about the Nyquist frequency.
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(right). Note that mode 1 is aliased. The bold black line in mode 0 is the 0.2U/U∞ contour of the time-averaged flow field.
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7.3. Proper orthogonal decomposition of velocity fields

Figure 7.16a is the superposition of the time-averaged flow (mode 0) and modes

1 & 2, which reconstructs largely the primary vortex street. The combination of the

shear layer mode 3 and modes 4 & 5 recreates the second wake, and is shown in

figure 7.16b. Note that the vorticity levels are one order of magnitude smaller in (b).

The superposition of modes 0–5 in figure 7.16c shows the transition from the primary

to the secondary vortex street. Compared to the ‘raw’ PIV frame in figure 7.16d, the

POD reconstruction has a lower noise level and shows the coherent structures of the two

vortex streets more clearly. Modes 1–5 contain 39% of the fluctuating kinetic energy of

the flow field.
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Figure 7.16: Reconstruction of the flat plate wake at Re = 150 using the first 5 modes.
Spanwise vorticity contours are non-dimensionalized as ωzd/U∞.
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7.3.5 Discussion

Numerous reports exist on the streamwise vortex distance in the primary (aK) and

secondary (asec) vortex streets of the circular cylinder (e.g. Taneda 1959; Karasudani

& Funakoshi 1994), and the flat plate (e.g. Taneda 1959; Najjar & Vanka 1995b).

Depending on Reynolds number, the ratio asec/aK lies between 2 and 3, although

Taneda (1959) reported ratios up to 10 for turbulent wakes. These parameters are

compared to the elliptical cylinder wakes in table 7.1. In the present experiments, aK

and asec were determined by autocorrelation of the wake centreline vorticity profiles4

of the POD modes representing the two wake types. As the vortex distance a grows

rapidly in the wake formation region x/d < 5, only the domain 5 < x/d < 30 was used

for the autocorrelation. The presented values have an uncertainty of ±4%, based on

the vector field resolution.

Table 7.1: Average streamwise vortex distance in the primary (aK) and secondary (asec)
vortex streets for 5 < x/d < 30.

Ar Re aK [d] asec [d] asec/aK
1.00 100 5.3 (5.21) (121) (2.31)
0.39 250 3.3 6.9 2.1
0.26 150 3.6 8.8 2.5
0.26 200 3.8 7.3 1.9
0 150 3.8 (5.252) 7.7 2.6
0 100 4.2 (≈ 43,4) N\A N\A

—————————————————–

1 Karasudani & Funakoshi (1994)

2 Fage & Johansen (1927)

3 Najjar & Vanka (1995b)

4 Saha (2007)

Table 7.1 shows that aK and asec depend on the Reynolds number and the aspect

ratio Ar . At Re = 100, aK decreased from 5.3d to 4.2d, when comparing the circular

cylinder and the flat plate. The values of a are in good agreement with literature, with

the exception of Fage & Johansen (1927). The exceptionally high value of aK = 5.25

appears questionable, as one can expect a lower value of a at Re = 150 than the

confirmed ≈ 4d at Re = 100.

In cases in which the second vortex street could be observed, the ratio of the vor-

tex spacing asec/aK was on average 2.2. This value suggests a pairing mechanism

between the vortices of the primary vortex street, although this mechanism has been

4The results did not change when autocorrelating velocity profiles.
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7.3. Proper orthogonal decomposition of velocity fields

Figure 7.17: Transition from primary to secondary vortex street in case of the Ar = 0.25
elliptic cylinder at Re = 125 (Reproduced with permission from Johnson et al. 2004).

dismissed in literature for the circular cylinder (Durgin & Karlsson 1971; Karasudani

& Funakoshi 1994). The extended ’calm region’ between the decayed primary and the

forming secondary wakes at Ar = 1 is likely to promote an independent development of

the secondary vortex street. The present experiments have shown that such a spatial

separation does not exist for elliptical cylinders of low aspect ratios. This supports the

idea of a direct relationship between the streamwise wavelengths of these two streets.

Related to this thought is the observation of a wake deficit in the time-averaged wake

centreline velocity profile (type II profiles). In this region, the streamwise velocity

exhibits strong gradients in cross-stream direction, which are known to lead to high

linear amplification rates of disturbances (Schlichting & Gersten 2000). The selective

amplification of disturbances in the velocity deficit region is a possible explanation

for the formation of the secondary wake. Kumar & Mittal (2012) report convectively

unstable modes in the ‘trough’ region of the circular cylinder wake at x/d ≈ 46 and Re =

150 (compare figure 16 in Kumar & Mittal 2012). It has been shown in the present work

that this trough is shifted upstream for decreasing Ar , and deepens rather suddenly for

Ar 6 0.39. It is plausible that the linear instability mechanism, as described by Kumar

& Mittal (2012), creates the secondary wake in case of elliptical cylinders. Yet, the

streamwise extent of the transition region from the primary to secondary wake shortens

as Ar is decreased (Johnson et al. 2004). The merging of the von Kármán vortices into

a steady double shear layer, as known from the circular cylinder wake or elliptical

cylinders at moderate Reynolds numbers (see figure 7.17), is replaced by a sudden

transition in form of a rapid stretching and amalgamation of the primary vortices into

structures of the secondary street (compare figure 7.16c). The intermediate region

between the wakes (called the ‘middle wake’ in Williamson & Prasad 1993) shrinks

to a minimum. As a conclusion, the close proximity of both vortex streets makes a

close relationship, such as forcing of preferred wavelengths in the secondary street, very

likely. The interaction of the two streets for Ar < 1 remains a subject of future studies.
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7.4 Chapter summary

This chapter established the following properties of the elliptic cylinders wakes:

1. The ‘trough’ in the time-averaged streamwise velocity profile along the wake cen-

treline, which is known from the circular cylinder wake (Williamson & Prasad

1993; Kumar & Mittal 2012), moves upstream and deepens for smaller Ar and

higher Re. Below a critical aspect ratio of Ar ≈ 0.39, the trough deepens into a

pronounced wake deficit, where velocities decrease to 5–20% of the freestream. A

small secondary recirculation bubble is observed in some cases.

2. The vortex spacing ratio h/a increases for smaller aspect ratios. For Ar = 0.26,

it reaches a maximum during the re-laminarized regime. During this regime, the

streamwise separation of the vortices decreases from over 4 to approximately 3

cylinder diameters for x < 5d.

3. Proper orthogonal decomposition of the elliptic cylinder wakes shows that the

von Kármán wake shortens as the aspect ratio Ar is decreased. The von Kármán

vortex street is replaced by two rows of vortices offset from the wake centreline

during the re-laminarization regime. The three-dimensional wake resembles the

von Kármán type again for higher Reynolds numbers. Within re-laminarization,

modes representing a von Kármán type wake of double the wavelength are ob-

served downstream of the primary vortex street. The transition between the wake

types is rather abrupt; no extended double shear layer, as in the circular cylinder

wake, was observed within the sampling domain x/d < 32. The wavelength ratio

of secondary to primary vortex street is approximately 2 : 1 for all cases.

132



Chapter 8

Conclusions

8.1 Rotating cylinder

The first part of this study investigated the effect of constant angular rotation on the

three-dimensionality of the circular cylinder wake. A new set of 3D modes has been

demonstrated for the first time experimentally in such flows. Different spatio-temporal

symmetries and wavelengths point to different physical mechanisms responsible for

these modes.

The 2T -periodic (subharmonic) mode C is observed for rotation rates 1.0 6 α 6

1.85 at Re = 275. Its nominal spanwise wavelength is λz/d ≈ 1.1 at α = 1.7, but

increases significantly with decreasing rotation rate. This mode has characteristics

similar to the subharmonic mode C, observed in the wakes of a torus (Sheard et al.

2004), and of a cylinder disturbed by a thin wire (Zhang et al. 1995; Yildirim et al.

2013b). In particular, when extrapolating the wavelength values for decreasing rotation

rates, λz ≈ 2d is obtained for α = 0, which matches the wavelength reported by Yildirim

et al. (2013b).

Mode C consists of streamwise vortex pairs, which experience strong amplification

through stretching in the braid region between consecutive von Kármán vortices. The

amplification process in the strained braid region is similar to the circular cylinder’s

mode A (Thompson et al. 2001). Yet, the instability mechanism of this mode is not

understood at the present.

A complex interaction of this mode with mode B takes place for α < 1.0. This

nonlinear interaction is not predictable by linear stability analysis (Rao et al. 2013).

The use of flow-visualization alone was not sufficient to understand this mixed state;

more sophisticated methods (e.g. , hot film cross-correlation along the cylinder span or

time-resolved PIV) should be employed in future studies.
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The largest discrepancy between experiment and linear stability analysis concerns

the observation of mode C at rotation rates significantly below its linearly unstable

range. A possible cause might be the fully developed mode B as an initial triggering

condition in the experiment or the presence of the hydrogen-bubble wire upstream of

the cylinder.

It has been shown that shedding activity can be suppressed for α > 2. During this

transition, two modes with a wavelength of λz/d ≈ 2 develop in close succession. For

α > 1.85, mode D consists of continuous streamwise vortices in a weakly shedding wake.

Once shedding ceases, the 3D mode retains its structure and wavelength. This mode E

can be considered as a continuation of mode D, but on a henceforth steady wake. Both

modes are attributed to an hyperbolic instability of the mean wake. The time-averaged

velocity fields of the shedding and non-shedding wakes possess a hyperbolic stagnation

point just downstream of the recirculation zone.

The last observed mode, mode F, consists of short-wavelength structures in the

cylinder’s wall-bounded shear layer. With a spanwise wavelength of λz/d ≈ 0.5, it is

presumably a manifestation of centrifugal instability. Similar structures were observed

by Mittal (2004) for Re = 200 and α = 5. Unlike the previously discussed modes, mode

F is a travelling wave with a spanwise frequency of St3D ≈ 0.1. There is indication

of a nonlinear interaction between modes F and E for α > 2.3 that needs further

investigation.

One-sided shedding (second shedding mode) was visualised for Re = 100, α = 5.1.

Unlike the current assumption of a two-dimensional vortex parallel to the cylinder axis,

the observed shedding created localized horse-shoe shaped vortex structures peeling

off the cylinder. The detachment was initiated at randomly distributed ‘detachment

points’ along the span, giving this process a fully three-dimensional character.

8.2 Elliptical cylinders

The role of ‘flatness’ of the cylinder cross-section, quantified as the aspect ratio Ar ,

was studied in the second part of the project. As the aspect ratio is varied between

0 6 Ar 6 1, bridging the geometries of a flat plate and a circular cylinder, a range of

different modifications of the wake is observed. For aspect ratios above Ar ≈ 0.4, the

transition scenario is similar to that of the circular cylinder wake: A long-wavelength

mode L appears for Reynolds numbers above 100, before a short-wavelength mode S
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8.2. Elliptical cylinders

develops for Reynolds numbers approaching 200. Both modes are considered as modified

versions of the mode A and B transitions, having a spanwise wavelength of 4–6d and 1–

4d, respectively. Yet, the critical Reynolds number for the onset of mode L decreases for

decreasing Ar , and the typical increase of Strouhal numbers caused by the appearance

of mode B is missing. Mode S develops gradually, without leaving a clear imprint on

the St–Re curve.

For Ar 6 0.39, modes L and S appear in the same sequence, but the wake develops

a new feature: for a limited Reynolds number range, vortex shedding becomes highly

periodic, devoid of wake irregularities, and previously developed three-dimensionality

is largely suppressed. Due to the resemblance of the wake characteristics of this new

flow state to the laminar regime of the circular cylinder at Re . 180, we termed it the

‘re-laminarized’ regime.

In this regime, the primary shedding Strouhal numbers decrease significantly, and

a secondary low frequency of fsec ≈ 2fK appears in the wake. A change of the two-

dimensional base flow is observed in form of an extended wake velocity deficit containing

a second minor reverse flow region. The former von Kármán wake structure gives way

to two rows of vortices, offset from the wake centreline. This primary vortex street

rearranges rather abruptly into the secondary vortex street of much larger dimensions.

The ratio of secondary to primary wake wavelength is 2–2.6.

Whilst the existence of a secondary vortex street is known from the far-wake of the

circular cylinder (at x/d > 100), our results show for the first time experimentally that

the onset moves upstream for decreasing Ar (confirming the simulations by Johnson

et al. 2004). It appears that for Ar . 0.4, the secondary wake has moved so far upstream

that it starts interacting with the primary wake. The main effect of this interaction is

the stabilisation of the primary shedding process, which leads to strictly periodic hot

film velocity traces and an increase of spectral power of the primary shedding.

Wake re-laminarization described in this thesis is a first-time observation, which re-

quires further studies. In particular, the reason for increased periodicity of the primary

shedding and the exact mechanism leading to the suppression of 3D modes during this

regime are not clear.

In conclusion, the elliptical cylinder study highlights similarities and differences

between the circular cylinder and the flat plate wakes. The long and short wavelength

modes reappear consistently with a wavelength of 4–6d and 1–1.4d, respectively, for
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Chapter 8. Conclusions

all aspect ratios. The flat plate wake shows a rather sudden change of behaviour

compared to the elliptic cylinders, as its mode L is subharmonic. Nevertheless, our

experiments show that it develops on a highly periodic two-dimensional wake, which

is a consequence of the re-laminarized regime. This explains the common assumption

of a 2D laminar flow until the appearance of the ‘first’ 3D mode at Re ≈ 200 (Saha

2007). The present experiments support the scenario of Thompson et al. (2006) of a

3D transition at Re = 105–110.

8.3 Recommended future work

8.3.1 Rotating cylinder

• The instability mechanism of the subharmonic mode C remains unknown, al-

though this mode has gained recent attention in the research community (Pralits

et al. 2013; Yildirim et al. 2013a,b).

• The observation of mode C below rotation rates of its instability region is a

puzzling observation. The assumption, that the existence of mode B as the initial

condition triggers an early appearance of mode C, needs confirmation.

• The nonlinear interaction of modes C and B for rotation rates 0 < α < 1 requires

further investigation with appropriate experimental techniques.

• ‘Second shedding’ needs to be studied quantitatively for Re = 100 and α = 5,

when the wake is devoid of 3D modes. When increasing the rotation rate, the

impact of 3D modes on this one-sided shedding should to be clarified.

8.3.2 Elliptical cylinders

The newly observed re-laminarized regime needs further studies. The following are

suggested:

• The extended wake deficit of the time-averaged flow field leads to high velocity

gradients in cross-stream direction. A linear stability analysis of the U(y) velocity

profiles in this region could provide further insight into the mechanism responsible

for the secondary vortex street. Can the low shedding frequency fsec be predicted?

Is the observed second wake a convective instability, as has been shown by Kumar

& Mittal (2012) for the circular cylinder?
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8.3. Recommended future work

• Is the increased periodicity of the primary vortex shedding due to suppression of

vortex dislocations caused by the secondary street?

• For the circular cylinder and elliptical cylinders in simulations, a transition region

between the two vortex streets is observed, consisting of a steady double shear

layer. This ‘calm region’ (Durgin & Karlsson 1971) was not observed in the el-

liptical cylinder wakes; the transition between the two wakes was rather abrupt.

Considering that the flow reported here is in a fully developed nonlinear state,

transient experiments (accelerating the cylinders from rest) might show a devel-

oped double shear layer, which is ‘overridden’ by an upstream shifting secondary

wake, until a final, converged state is reached.
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Appendix A

Uncertainty analysis

A.1 Estimation of error

The experimental uncertainty estimates are based on techniques described in Coleman

& Steele (1995), which deal specifically with error analysis of wind tunnel data.

For each variable it is assumed that the total error δ is the sum of the bias error β

and the precision error θ. For N readings, the bias error is the difference between the

mean value of the readings µ and the true value of that variable. Unlike the precision

error θ, it cannot be determined statistically.

The precision errors θ will have different values for each measurement, and are due to

limitations on repeatability of the measurement system and facility, and environmental

effects. When repeated measurements are made for fixed conditions, precision errors

are observed as “scatter” of the data.

As the the true values of the measured quantities are rarely known, β and θ need

to be estimated. The estimate of β is called bias limit B, the estimate of θ is the

precision limit P . These estimates are made at a certain confidence level – usually

95% –, meaning that the true value of the quantity expected will lie within ±B (±P )
interval about the mean 95 times out of 100.

The desired experimental result is often a combination of several variables, and is

defined by the data reduction equation r. Each variable has bias and precision errors,

all of which contribute to the total error of the result (error propagation). How much

the error of the ith variable Xi contributes to the error of the result r, is described by

its sensitivity coefficient θi:

θi =
∂r

∂Xi
(A.1)

For a given distribution of N → ∞ values, its spread is measured by the variance
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σ2. In reality the variance is not known exactly, but estimates of the variances can

be used to describe the bias and precision errors. bi, bik are the estimates of variances

and covariances of the bias errors, and Si, Sik are the estimates of the precision errors.

To obtain the bias and precision limits at a specific confidence level, these values are

multiplied by a coverage factor. Under the assumption of a normal distribution of

error, the t value from the Student t distribution can be used, which is t = 2 for N ≥ 10

measurements, and 95% confidence level. Then, the uncertainty of the result Ur can

be determined with the uncertainty propagation equation:

U2
r =

J
∑

i=1

θ2iB
2
i + 2

J−1
∑

i=1

J
∑

k=i+1

θiθkBik +
J
∑

i=1

θ2i P
2
i + 2

J−1
∑

i=1

J
∑

k=i+1

θiθkPik (A.2)

where Bi = tbi, Bik = t2bik, Pi = tSi, Pik = t2Sik and t = 2 for N ≥ 10. Bi, Pi are the

bias and precision limits in each variable, Pik, Bik are the correlated bias and precision

limits. Si is the standard deviation of a sample of N readings of the ith variable.

In case a variable is measured M times at the same experimental set point, the

multiple tests method can be used, which results in a smaller precision limit:

Pi =
tSi√
M

(A.3)

This equation will be applied to the LDV measurement of the freestream velocity,

because otherwise the natural noise of the LDV at low flow velocities inflates the un-

certainty of the results Ur to unrealistically high values.

A.1.1 Reynolds number uncertainty

The uncertainties will be calculated for the Ar = 0.72 cylinder model (as it has the

largest spread in the diameter measurement), and for a rotation rate of α = 2. All

reference values are listed in table A.1. The results of this base case are assumed to

represent the maximum uncertainty for all used models.

The data reduction equation for the Reynolds number is:

Re = Re(U, d, ν) =
dU

ν
(A.4)

The total uncertainty URe is calculated using equation A.2, in which no correlation

between variables will be assumed (the second and fourth terms are zero)1:

URe = ±
√

B2
Re + P 2

Re (A.5)

1This is permissible, as the variables were measured with different instruments.

140



Table A.1: Reference values for the uncertainty calculation.

definition symbol ref. value

Reynolds number Re 200

Strouhal number St 0.183

non-dim. rotation rate α 2

cylinder diameter d 5.78 mm

freestream velocity U 33.8 mm/s

kinematic viscosity ν 1.004 mm2/s

shedding frequency f 1.036 Hz

rotation rate Ω 23.71 rad

Table A.2: Bias limits for error analysis of Reynolds number Re, Strouhal number St and
rotation rate α.

Bias Limit Magnitude Percentage Estimation

Bd 0.001 mm 0.02% d 1/2 instrument resolution

BU 0.1 mm/s 0.29% U LDV last significant digit

Bν 0.001 mm2/s 0.10% ν 1/2 temperature resolution

Bf 0.02 Hz 1.92% f 1/2 PSD spectral resolution

BΩ 0.008 rad/s 0.03% Ω 1/2 instrument resolution

Using equation A.2, the bias and precision limits of the Reynolds number are:

B2
Re =

J
∑

i=1

θ2iB
2
i = θ2UB

2
U + θ2dB

2
d + θ2νB

2
ν

P 2
Re =

J
∑

i=1

θ2i P
2
i = θ2UP

2
U + θ2dP

2
d

The bias limits of all variables are given in table A.2; the precision limits are summarized

in table A.3. The precision limit PRe is estimated with the single test method, meaning

that the ‘test’ (calculation of Re) is performed only once, even if the measurements of

one or more variables are made from many samples.

The precision limit of the freestream velocity measurement was calculated using the

multiple tests method (equation A.3). 11 velocity measurements of 5min each were

recorded with the LDV in the empty test section. Each time series m was averaged

to obtain Ūm. The standard deviation of all 11 averages was SU . With M − 1 = 10

degrees of freedom, the Student t value is 2.228 at 95% confidence limit. The precision

limit of the LDV velocity measurement becomes

PU =
2.228Si√

M
,

which value is shown in table A.3.
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Table A.3: Precision limits for error analysis of Reynolds number Re, Strouhal number St
and rotation rate α.

variable magnitude of ref value estimation

Pd 0.09 mm 1.56% 2 standard deviations

PU 0.05 mm/s 0.14% multiple tests method

PΩ 0.082 rad 0.34% 2 standard deviations

Table A.4: Uncertainty estimates of the Reynolds number

θiBi % B2
Re θiPi % P 2

Re BRe % U2
Re PRe % U2

Re URe % Re

d 0.03 0.3% 3.11 99.2%

0.61 3.7% 3.13 96.3% 3.19 1.59%
U 0.58 89.0% 0.29 0.8%
ν -0.20 10.7% – –

The sensitivity coefficients θi of the Reynolds number measurement are:

θU =
∂Re

∂U
=
d

ν
= 5.8 s/mm

θd =
∂Re

∂d
=
U

ν
= 34.6mm−1

θν =
∂Re

∂ν
=
dU

ν2
= −199.2 s/mm2

The results of the uncertainty analysis are shown in table A.4. The measured Reynolds

number is:

Re = 200± 3.19 (±1.59%)

Table A.4 shows that the precision limit PRe contributes 96.3% to overall uncertainty

URe; the bias limit is negligible with only 3.7%. PRe is dominated by the random error

of the diameter measurement Pd (resulting from the non-uniformity of the cylinder

model).

A.1.2 Strouhal number uncertainty

The data reduction equation for the Strouhal number is:

St = St(f, U, d) =
fd

U
(A.6)

with the shedding frequency f ; d and U defined as previously. This leads to the following

sensitivity coefficients:

θU =
∂St

∂U
=
fd

U2
= −0.005 s/mm

θd =
∂St

∂d
=
f

U
= 0.030mm−1

θf =
∂St

∂f
=
d

U
= 0.166Hz−1
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Table A.5: Uncertainty estimates of the Strouhal number.

θiBi % B2
St θiPi % P 2

St BSt % U2
St PSt % U2

St USt % St

d 0.00003 0.1% 0.0027 99.2%

0.0033 55.3% 0.003 44.7% 0.0045 2.26%
U -0.0005 2.2% -0.0003 0.8%
f 0.0033 97.7% – –

Using the bias and precision limits from tables A.2 and A.3, the Strouhal number

uncertainty is:

St = 0.183± 0.0045 (±2.26%)

A.1.3 Non-dimensional rotation rate uncertainty

The data reduction equation for the non-dimensional rotation rate is:

α = α(Ω, U, d) =
dΩ

2U
(A.7)

with the cylinder rotation rate Ω; d and U defined as previously. The sensitivity

coefficients θi are:

θU =
∂α

∂U
=

dΩ

2U2
= −0.1 s/mm

θd =
∂α

∂d
=

Ω

2U
= 0.35mm−1

θΩ =
∂α

∂Ω
=

d

2U
= 0.083Hz−1

Using the bias and precision limits from tables A.2 and A.3, the rotation rate uncer-

tainty is:

α = 2± 0.011 (±0.53%)

Table A.6: Uncertainty estimates of the non-dimensional rotation rate (based on the rotat-
ing cylinder dimensions).

θiBi % B2
α θiPi % P 2

α Bα % U2
α Pα % U2

α Uα % α

d 0.0003 0.3% 0.005 29.8%

0.006 30.5% 0.009 69.5% 0.011 0.53%
U -0.006 98.4% -0.003 10.8%
Ω 0.0007 1.3% 0.007 59.4%
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Appendix B

FFT code testing

The Strouhal numbers of the elliptical cylinders in chapter 6 were calculated by per-

forming a windowed FFT on the discrete hot film time series. The spectra of all windows

were averaged, and the highest peak of the averaged frequency domain was attributed

to the von Kármán shedding frequency fK. The choice of the window width NW deter-

mined the spectral resolution of the frequency domain. A short study was undertaken

to determine a suitable window width for identification of fK.

The raw data consisted of hot film time series of 12,000 data points each at three

different Reynolds numbers, sampled at fs = 40Hz. 5 window widths were chosen: 256,

512, 1024, 2048 and 4096 data points, which translate to windows of 6.4, 12.8, 25.6,

51.2 and 102.4 s. These windows contain 3.7–59 shedding periods at Re = 109, 3.8–62

shedding periods at Re = 111 and 7.3–116 shedding periods at Re = 205. A Hanning

function was applied to each window. An non-windowed FFT was also performed for

comparison (in this case, a Hanning function function was applied to the full time

series).

Figure B.1 shows power spectra of the Ar = 0.64 elliptic cylinder. The frequency

domain is cropped around the shedding frequency peak. The averaged spectra of the

five window widths are shifted vertically with respect to each other for clarity. The

non-windowed FFT is plotted with a dashed line. The identified von Kármán shedding

frequencies are marked by black triangles.

It can be seen in figures B.1a and B.1c that the frequency peak narrows for larger

window widths. The peak width (defined as the difference between the limiting fre-

quencies where the peak power decreases by half) is roughly halved for each doubling of

the window size. The identified peak frequency value is insensitive to changes of NW .

Furthermore, the location of the peak of the non-windowed transform of the whole data
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set does not differ considerably from the windowed transforms (the differences remain

below 1%). This shows that the vortex shedding at Re = 109 and 205 is highly periodic

at a fixed frequency.

Re = 111 on the other hand, lies in the transition regime of the Ar = 0.64 cylin-

der (figure B.1b). At this Reynolds number, the wake has just undergone transition

to three-dimensionality, which is accompanied by wake irregularities, such as vortex

dislocations. These flow irregularities widen the frequency peak, which now becomes

strongly dependent on the used window size NW . For window sizes of 256–2048 points,

the spectrum plot shows a single broad peak. For larger window sizes, and for the

non-windowed transform, side-peaks are resolved, which make the identification of fK

ambiguous. The conclusion is, that a widening of the FFT window does not neces-

sarily lead to a convergence of the peak location to a unique frequency value in the

transitional wake regime. For the present experiments, NW = 512 was considered as a

good compromise, which avoided the ambiguousness of multiple frequency peaks, while

providing an acceptable spectral resolution. This resulted in a temporal window width

of 12.8 s, equivalent to approximately 7 shedding cycles at Re = 100.
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Figure B.1: Power spectral densities (PSD) of a hot film time series computed with a
windowed FFT of various window sizes NW ; from top to bottom: NW = 256, 512,1024, 2048
and 4096 points. The non-windowed transform of the whole data set is plotted with the
dashed line. The identified frequency peaks are marked by the black triangles. The spectra
are shifted vertically with respect to each other for clarity.
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Appendix C

POD modes of elliptical cylinders
at Re =100, 150, 200 & 250

Flow fields of POD modes 0–5 of all investigated elliptical cylinder types are included

in this appendix. All modes will be presented as ωz-vorticity contours, which have been

computed by taking the curl of the modes’ velocity fields. Positive vorticity is marked

in blue, negative vorticity is coloured light green. The contour levels are arbitrary, but

of the same order of magnitude for all modes, as the mode flow fields are orthonormal.

The flow is from left to right.

The kinetic energy content of each mode is expressed by its eigenvalue λ. The

eigenvalues of modes 0–5 are plotted as black bars in the graphs below the mode flow

fields. The energies are normalized by the sum of all modes excluding mode 0 (the time-

averaged flow field), which is equal to the fraction of the fluctuating energy content of

the flow. The cumulative energy sum of the first 50 modes is shown in the same graph

as the red symbols.
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Figure C.1: Ar = 1.00, Re = 100
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Figure C.2: Ar = 1.00, Re = 150
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Figure C.3: Ar = 1.00, Re = 200
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Figure C.4: Ar = 1.00, Re = 250

153



m
od

e 
0

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
1

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
2

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
3

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
4

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
5

y/
d

x/d0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

Figure C.5: Ar = 0.72, Re = 100
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Figure C.6: Ar = 0.72, Re = 150
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Figure C.7: Ar = 0.72, Re = 200
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Figure C.8: Ar = 0.72, Re = 250
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Figure C.9: Ar = 0.64, Re = 100
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Figure C.10: Ar = 0.64, Re = 150
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Figure C.11: Ar = 0.64, Re = 200
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Figure C.12: Ar = 0.64, Re = 250
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Figure C.13: Ar = 0.39, Re = 100
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Figure C.14: Ar = 0.39, Re = 150
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Figure C.15: Ar = 0.39, Re = 200
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Figure C.16: Ar = 0.39, Re = 250

165



m
od

e 
0

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
1

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
2

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
3

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
4

y/
d

0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

m
od

e 
5

y/
d

x/d0 5 10 15 20 25 30
−3

0

3

1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5
0.6

mode number

en
er

gy
 f

ra
ct

io
n

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

cu
m

. e
ne

rg
y 

su
m

Figure C.17: Ar = 0.26, Re = 100
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Figure C.18: Ar = 0.26, Re = 150
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Figure C.19: Ar = 0.26, Re = 200
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Figure C.20: Ar = 0.26, Re = 250
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