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1. Introduction

The goal of this presentation is to review recent progress concerning the design of feedback con-
trol strategies for bluff body wake flows based on point vortices. This investigation grows out
of a long–term research effort which seeks to integrate rigorous methods of modern control the-
ory and computational fluid dynamics. We will use a combination of mathematical analysis and
numerical computation to study properties of a family of flowcontrol algorithms and will focus
on circular cylinder wake flows which are canonical examplesof massively separated flows. In
principle, application of the linear control theory to systems described by partial differential equa-
tions (PDEs) is relatively well understood, however, in practice even the design of “simple” linear
control strategies, such as the Linear Quadratic Regulator(LQR), may result in computationally
intractable problems when applied to discretizations of the full Navier–Stokes system [1]. There-
fore, in order to facilitate synthesis and application of such control strategies, it is necessary to
introduce reduced–order models of the Navier–Stokes system and in this investigation we study
one such family of reduced–order models.

2. The Föppl System as Reduced–Order Model

In this research we are interested in stabilizing the steadysymmetric flow past a circular cylinder
which is known to become unstable forRe& 46. In order to simplify the mathematical description,
we will assume that the system satisfies the steady–state Euler equations which can be written in
the form











∆ψ = f (ψ) in Ω,

ψ = 0 on ∂Ω,

ψ →U∞y for |(x,y)| → ∞,

(1)

whereΨ is the streamfunction and the right–hand side functionf is a priori undetermined. Tak-
ing this function in the formf (Ψ) = −ωH(Ψ−Ψ0), whereH(·) is the Heaviside function, we
obtain a family of Prandtl–Batchelor flows [3], characterized by constant–vorticity vortex patches
embedded in irrotational flow, as solutions of problem (1). Assuming that the circulation of every
vortex region is fixed results in a one–parameter family of solutions of (1) depending on the area
of the vortex region [3] (see Fig. 1a). Taking the limit of thevanishing vortex area reduces the
Prandtl–Bachelor flow family to an equilibrium point vortexsystem discovered by Föppl [2] in
1913 (Fig. 1b). Analysis of the linear stability of the Föppl equilibrium shows that it is unsta-
ble and, in addition to a linearly growing mode associated with a real positive eigenvalue, is also
characterized by a decaying mode associated with a real negative eigenvalue and a neutrally stable
oscillatory mode associated with a conjugate pair of purelyimaginary eigenvalues. These stability
properties make the Föppl system a feasible candidate for areduced–order model of the onset of
the vortex shedding instability in bluff body wakes.
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Figure 1. (a) Boundaries of the vortex patches with different areas and constant circulation ob-
tained as solutions of (1) and the limiting point vortex Föppl system (represented by a solid circle),
(b) schematic showing the location of the singularities in the Föppl system with control represent-
ing the cylinder rotation.

3. Control Design

Our goal is to stabilize the steady symmetric wake flow represented, for the control design pur-
poses, by the unstable equilibrium of the Föppl system as a reduced–order model. The flow actua-
tion (system input) has the form of the cylinder rotation andis represented in the Föppl system as
a vortex with the circulationΓC = ΓC(t) located inside the obstacle, whereas the system output has
the form of velocity measurementsy at the flow centerline. Usingx ∈ R

4 to denote the perturba-
tion variables (i.e., perturbations of the vortex positions around the equilibrium), the linearization
of the Föppl system around this equilibrium can be expressed in the canonical state–space repre-
sentation as [4]

d
dt

x = Ax +BΓC, (2a)

y = Cx+DΓC, (2b)

whereA, B, C andD are suitable matrices. We seek to determine the control in the feedbackform
ΓC(t) = −Kx(t), so that it will stabilize model equation (2a) and at the sametime will minimize
the cost functionalJ (ΓC) = 1

2

R ∞
0 (yTQy + ΓCRΓC)dt, whereR > 0 andQ is a suitably chosen

positive–definite weighing matrix. Before we can devise a control algorithm, we need to verify
that model system (2) has an appropriate internal structure. It was shown in [4] that problem (2)
is fully observable, however, it is notcontrollable. Performing the Kalman decomposition in or-
der to transform system (2) to the minimal representation, i.e., one which is both observable and
controllable, shows that the neutrally stable oscillatorymodes are in fact not controllable, so the
whole system remainsstabilizable. The stabilization problem is solved by constructing a linear–
quadratic–Gaussian (LQG) compensator [4] and in Fig. 2a we show the results concerning LQG
stabilization of the Föppl equilibrium. We note that the vortex trajectory is indeed stabilized, how-
ever, instead of returning to the equilibrium, the trajectory lands on a circular orbit circumscribing
the equilibrium. The same LQG approach was then applied to stabilization of the circular cylinder
wake atRe= 75 (Fig. 2b). We observe that, while the far wake is remarkably symmetrized, the
level of oscillations in the near wake region is in fact increased. Properties of the Föppl system
responsible for the behavior observed in these two cases areinvestigated next.

4. Center Manifold Analysis

It is well–known that, if a linearization of a nonlinear system possesses pairs of purely imaginary
eigenvalues, then such linearization may not provide conclusive information about stability of the
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Figure 2. (a) Trajectories of the Föppl vortices with the LQG control, (b) instantaneous vorticity
field in a cylinder wake atRe= 75 with the LQG control.

original nonlinear system and higher–order information must be analyzed. To this end we consider
the minimal representation of system (2) with the feedback control ΓC = −Kx

d
dt

[

ξξξ
ηηη

]

=

[

A11 0
0 A22−BK

][

ξξξ
ηηη

]

+

[

g1(ξξξ,ηηη)
g2(ξξξ,ηηη)

]

, (3)

whereξξξ andηηη represent, respectively, the controllable and uncontrollable parts of the state of the
Föppl system with the feedback control and the matrixA11 has purely imaginary eigenvalues only.
In [5] we proved the following two theorems in regard to system (3):

Theorem 1. System(3) possesses an invariant (center) manifold given by the function ηηη = φφφ(ξξξ) =
0.

Theorem 2. For sufficiently small initial data the reduced system

d
dt

ξξξ = A11ξξξ+g1(ξξξ,0), (4)

obtained via an invariant reduction of system(3), possesses stable periodic orbits.

The significance of these results concerning the observed behavior of the Föppl system under
feedback control is as follows. Theorem 1 implies that the controllable and uncontrollable parts
of the state are essentially uncoupled. Therefore, as soon as the control stabilizes the unstable
mode, the system trajectory converges to the center manifold ξξξ = 0. Since this manifold is in fact
spanned by the uncontrollable modes, the dynamics on this manifold is unaffected by the flow
actuation and, as asserted by Theorem 2, stable periodic oscillations are observed. We conclude
that the presence of this center manifold is clearly an undesirable effect from the control point of
view. Next we attempt to modify the internal structure of theFöppl system so as to disrupt the
center manifold.

5. Beyond the Classical F̈oppl System

In Section 2. we argued that the classical Föppl system represents an extreme member of the
Prandtl–Batchelor family of vortex flows. In [6] we showed that it is in fact possible to construct
point vortex systems corresponding to the Prandtl–Batchelor flows with finite area vortex patches.
This can be accomplished by adding higher–order terms representing corrections due to the finite
size of the vortex patch to the classical Föppl system. As shown in [6], the equilibria of such
higher–order Föppl systems form loci parametrized by the area of the vortex patch and the trun-
cation order (Fig. 3a). In addition to a range of properties interesting from the mathematical point
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Figure 3. (a) Loci of the higher–order equilibria parametrized by the area of the vortex region
in the Prandtl–Batchelor solution for different truncation orders (the dotted line represents the
boundary of a vortex region, whereas the thick solid line represents the obstacle), (b) trajectories
of the state of (solid line) the classical and (dotted line) higher–order Föppl system stabilized with
an LQG compensator in the neighborhood of the correspondingequilibrium solutions.

of view, such higher–order Föppl systems have an importantcharacteristic relevant for our control
applications, namely, the uncontrollable modes are now exponentially, rather than just neutrally,
stable, This means that a center manifold is no longer present in this new reduced–order model
and, as shown in Fig. 3b, the LQG compensator is now able to completely stabilize the equilib-
rium. Control–theoretic advantages of the higher–order F¨oppl systems as reduced–order models
are being now investigated. It is anticipated that controllers designed based on such higher–order
systems will be characterized by more robust performance, especially when applied to actual sys-
tems.
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